
HAL Id: hal-02295652
https://hal.science/hal-02295652v1

Submitted on 24 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A New Model-Based Framework for Testing Security of
IOT Systems in Smart Cities Using Attack Trees and

Price Timed Automata
Moez Krichen, Roobaea Alroobaea

To cite this version:
Moez Krichen, Roobaea Alroobaea. A New Model-Based Framework for Testing Security of IOT
Systems in Smart Cities Using Attack Trees and Price Timed Automata. 14th International Conference
on Evaluation of Novel Approaches to Software Engineering, May 2019, Heraklion, Greece. pp.570-577,
�10.5220/0007830605700577�. �hal-02295652�

https://hal.science/hal-02295652v1
https://hal.archives-ouvertes.fr


A New Model-Based Framework for Testing Security of IOT Systems in
Smart Cities Using Attack Trees and Price Timed Automata

Moez Krichen1,2, Roobaea Alroobaea3

1 Faculty of CSIT, Al-Baha University, Saudi Arabia
2ReDCAD Laboratory, University of Sfax, Tunisia

3College of CIT, Taif University, Saudi Arabia
moez.krichen@redcad.org, r.robai@tu.edu.sa

Keywords: Model-Based, Testing, Security, Internet of Things, IoT, Smart Cities, Attack Tree, Price Timed Automaton,
UPPAALL, TTCN-3, Cloud.

Abstract: In this paper we propose a new model-based framework for testing security properties of Internet of Things in
Smart Cities. In general a model-based approach consists in extracting test cases from a formal specification
either of the system under test or the environment of the considered system in an automatic fashion. Our
framework is mainly built on the use of two formalisms namely Attack Trees and Price Timed Automata. An
attack tree allows to describe the strategy adopted by the malicious party which intends to violate the security
of the considered IOT system. An attack tree is translated into a network of price timed automata. The product
of the constructed price timed automata is then computed using the well known UPPAALL platform. The
obtained timed automata product serves as input for the adopted test generation algorithm. Moreover our
framework takes advantage of the use of the standardized specification and execution testing language TTCN-
3. With this respect, the obtained abstract tests are translated into the TTCN-3 format. Finally we propose a
cloud-oriented architecture in order to ensure test execution and to collect the generated verdicts.

1 Introduction

Nowadays Internet of Things (IoT) is playing an
important role in our modern society as a technol-
ogy which allows to connect everyday objects to In-
ternet. These objects are equipped with sophisticated
interfaces which give them the capabilities to measure
physical aspects from the environment and to interact
with other entities by exchanging specific messages.

This new technology has provided a wide genera-
tion of valuable and innovative services. In this man-
ner, modern cities are becoming smarter by adopting
intelligent systems for water management, traffic con-
trol, energy management, street lighting, public trans-
port, etc. However, these services can massively be
attacked and compromised by several malicious par-
ties whenever adequate and appropriate security mea-
sures are absent.

A few years ago, the smart devices that make
up the Internet of Things, such as light bulbs, ther-
mostats, webcams, and many others , were seen as
potential targets for attackers to activate or disable
remote devices and to harm consumers. Today, the
IoT no longer represents a mere target, but a real plat-

form which may be used by attackers to launch dan-
gerous remote aggressions and to cause very serious
incidents.

With the emergence of wide-ranging Open Source
worms, such as Mirai (Antonakakis et al., 2017), ca-
pable of spreading to tens of millions of IoT devices,
attackers can exploit these systems to generate a mas-
sive influx of traffic and disconnect any company or
institution from Internet. Beyond the massive attack
of the network, these IoT attack platforms can present
other forms of threats, such as information theft and
passwords decryption.

The attacks on industrial control systems have
taken a disturbing turn. Cyber criminals attack the op-
erational core of vital infrastructures taking advantage
of their vulnerability. Recent attacks have not only
disrupted the provision of essential services, such as
electricity, but have also damaged automation systems
to return to normal operation.

For instance the 2015 and 2016 attacks in
Ukraine (Boyte, 2017) that caused power outages
were perfectly planned and coordinated. The at-
tackers managed to hijack the automation systems to
cause power outages and then perform a well-ordered



succession of destructive payloads on workstations,
servers, and embedded devices.

In the future, it will be more difficult to recover
from breakdowns caused by attacks, and interruptions
may be measured in days instead of hours. Events
of this type force providers in charge of these infras-
tructures to think about how to act in the event of an
attack.

In this context our goal in this work is to pro-
pose a new framework for testing security aspects for
IoT systems deployed in smart cities in order to avoid
such anomalies or at least to minimize them as much
as possible. Our framework is model-based (Krichen
et al., 2018a) in the sense that it is based on the use
of a formal approach which consists is generating test
cases from a given model.

In our case, the considered model corresponds to
the behavior of the attacker aiming to violate the sys-
tem under investigation. First the behavior of the at-
tacker is given as an attack-tree (Kordy et al., 2014).
The latter is a formalism used to describe the strategy
adopted by the attacker to achieve its goal.

In a second step the proposed tree is translated
into an equivalent network of price timed automa-
ton (Behrmann et al., 2005) which is a graphical
representation which is used to model timed behav-
iors. The obtained network of price timed automaton
serves as an input for the test generation algorithm.

The generated abstract test cases are then trans-
lated into the specification and execution standard
testing language TTCN-3 (Lahami et al., 2012a). Fi-
nally a cloud-oriented test architecture (Tilley and
Parveen, 2012) is proposed to run the obtained
TTCN-3 concrete tests and to collect the generated
verdicts.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the notion of attack trees. Section 3
defines the model of price timed automata. Section
4 illustrates how attack trees are translated into net-
works of price timed automata. Section 5 presents
an overview about the test generation and execution
phases. Section 6 reports on related research works
dealing with IoT security testing. Finally Section 7
summarizes the main contributions of the paper and
gives some possible directions for future work.

2 Attack Trees

Attack trees (AT) (Kordy et al., 2014) correspond
to a useful graphical formalism to study the security
of critical systems. More precisely an attack tree can
be seen as a graphical representation of the attacker
strategy represented in the form of a tree.

The root of an AT corresponds to the goal the at-
tacker aims to fulfill. The children of a node in the
AT are refinements of the goal of the corresponding
parent node into sub-goals.

The refinement of an internal node of an AT can
be either conjunctive or disjunctive:

• A conjunctive refinement is used when the fulfil-
ment of all the childrens goals is needed to ful-
fill the parent’s goal. In this case we associate an
AND-Gate with considered parent node (See Fig-
ure 1- (a)).

• A disjunctive refinement is used when the fulfil-
ment of one of the childrens goals is enough to
fulfill the parent’s goal. In this second case an
OR-gate is associated with the considered node
(See Figure 1-(b)).

Figure 1: Different possible gates of an attack tree.

We consider a finite set of attribute variables
Attribs = {Att1, · · · ,Attn}. These attributes are used
to describe the characteristics of the attacker like
available resources for instance. We denote by Vals⊆
(R≥0)

n the set of valuations of the attributes.
The leaves of the AT correspond to the elementary

actions the attacker has to execute. They are called
basic attack steps (BAS). Each BAS is equipped with
an additional attribute Time (which measures the time
since the basic attack step started) and two precondi-
tions:

Ready2Start : Vals→{0,1}
which indicates that the BAS can be started or not
(i.e., has enough resources to start for example); and

Able2Succeed : Vals→{0,1}

which indicates whether the BAS can succeed or not.
These preconditions are Boolean combinations of lin-
ear equations over Attributes. Moreover each BAS
has an update function:

Modi f y : Vals×R≥0→Vals

which updates the attribute values when time elapses.
At this level we assume that time dependence is linear
between the attributes {Att1, · · · ,Attn} and the special
attribute Time.



Let PrePost(Attribs) be the set of all possi-
ble triples (Ready2Start,Able2Succeed,Modi f y) de-
fined with respect to Attribs. We also define an At-
tacker Initializer which gives the initial valuation of
the attributes. It is defined as:

Init : {Att1, · · · ,Attn}→ R≥0.

The set of attack tree gate types is defined as:

Gates = {AND,OR}.

An attack tree A is formally defined as a tuple
〈Nds,Chld,Rt,Attribs, Init,Ftrs〉 where:

• Nds is a finite set of attacker nodes;

• Chld : Nds→ Nds∗ associates a set of children to
each parent node;

• Rt corresponds to the root of the AT A which de-
fines the global goal of the attacker;

• Attribs corresponds to the set of attributes of the
AT A;

• Init corresponds to the attacker initializer;

• Ftrs : Nds→Gates∪PrePost(Attribs) associates
an AND/OR Gate with each internal node and a
tuple (Ready2Start,Able2Succeed,Modi f y) with
each leaf of the AT.

An example of an AT is given in Figure 2. This AT
is inspired from the work of (Kumar et al., 2015). The
goal of the attacker here is to crack the password of a
protected file. As indicated by the figure the global
goal of the attacker can be achieved by:

• Either cracking the password: this sub-goal can
in turn be achieved using one of three possible
choices (namely: Dictionary, Guessing or Brute
Force attacks).

• Or performing a password attack: this sub-goal
can be either achieved by a Social Engineer-
ing or a Key Logger attacks. The Social En-
gineering attack is in turn decomposed into two
BASs namely: Generic Reconnaissance and Trap
Execution. Similarly the Key logger attack is
achieved within two BAS: Key Logger Installa-
tion and Password Intercept.

More details about this example can be found in the
previously mentioned article (Kumar et al., 2015).

3 Priced Timed Automata

The model of Priced timed automata
(PTA) (Behrmann et al., 2005) is an extension

of timed automata, obtained by assigning costs to
actions and locations. Next, we will denote by Ψ(Y )
the set of all possible Boolean predicates over a set Y
of continuous variables.

A priced timed automaton P is defined as a tuple
〈Loc, loc0,Cl,Act,Edg, Inv,Cost〉 where:

• Loc is a finite set of states;

• loc0 ∈ L is the initial state;

• Cl is a finite set of clocks;

• Act is finite a set of labels;

• Edg ⊆ Loc×Ψ(Cl)×Act × 2Cl × Loc gives the
set of transitions;

• Inv : Loc→Ψ(Cl) assigns invariants to locations;

• Cost : Loc∪ Edg → Nn
≥0. assigns cost rates to

states and costs to edges.

An edge 〈loc,ψ,act,λ, loc′〉 ∈ Edg defines a tran-
sition from location loc to location loc′ taking an ac-
tion act. This edge can only be traversed when the
constraint ψ over Cl is true, and the set λ⊆Cl identi-
fies the subset of clocks which must be reset after the
execution of the transition.

A trace of P = 〈Loc, loc0,Cl,Act,Edg, Inv,Cost〉
is a sequence of locations and transitions T R =

loc0
act0−−→
λ0

t0
c0

loc1
act1−−→
λ1

t1
c1

loc2 · · · where:

• For every i, there is a transition Ti =
(loci,ψi,acti,λi, loci+1) ∈ E;

• For every i, ci = C(Ti) + ti ·C(li) is the cost in-
curred in the transition;

• The initial valuation V0 =
−→
0 which assigns 0 to

every clock in Cl;

• After each transition, there is a new clock valua-
tion Vi+1 = (Vi+ti)[λi = 0] obtained by increasing
every clock in Xi by ti and re-initializing all clocks
in λi to 0;

• Each valuation Vi + t for t < ti must satisfy the
invariant Inv(li);

• The valuation Vi + ti must satisfy ψi for every i.

Let ‖ be the parallel product operator over price
timed automata. That is given a set of PTAs
{P1,P2, · · ·Pn}, P1‖P2‖· · ·‖Pn will denote the corre-
sponding parallel product obtained by synchronizing
the transitions of the component PTAs via joint sig-
nals. The formal definition of this operator is given in
(Bengtsson and Yi, 2004).



Figure 2: An example of an attacker tree inspired by the work of (Kumar et al., 2015).

4 From Attack Trees to Price Timed
Automata

In this section we explain how an attack tree is
transformed into a network of price timed automata.
The proposed transformation is borrowed from the
work of (Kumar et al., 2015).

Figure 3: A priced timed automaton for a basic attack step.

First in Figure 3 we draw the price timed au-
tomaton corresponding to a basic attack step. The
proposed PTA has five nodes. The considered BAS
is activated when the input-signal activate BAS? is
received from the corresponding parent-node PTA.
In order to execute this input-signal the condi-
tion Ready2Start(Val) == 1 must hold. The
clock variable Time is reset to zero as soon as
the BAS is activated. The attributes of the at-
tacker are updated through the transition labeled
with Val := Mo f i f y(Val,Time). At the end of
the execution of the BAS the PTA reaches ei-
ther state Succeeded BAS or Failed BAS. In or-
der to reach the state Succeeded BAS the condition
Able2Succeed(Val) == 1 must hold.

In Figure 4, we propose a PTA which corresponds
to a parent node connected to two children via an

Figure 4: A priced timed automaton for an AND gate and a
parent node having two children.

AND gate. This PTA is activated after receiving the
input-signal activate Prt?. After that an activation
output-signal is sent to each child PTA. If a success
signal is received from both children then the parent
PTA moves to its success state.

Similarly Figure 5 is an illustration of the PTA
corresponding to a parent node connected to two chil-
dren via an OR gate. In this case receiving a success



Figure 5: A priced timed automaton for an OR gate and a
parent node having two children.

signal from one of the two children is enough to guar-
antee the success of the parent PTA.1

Figure 6: Priced timed automaton corresponding to the
global goal of the attacker.

Finally Figure 6 gives a PTA which corresponds to
the execution of the global goal of the attacker. The
output signal activate Root! will be the first action to
be executed by the network of obtained PTAs.

5 Test Generation and Execution

Test generation consists in extracting abstract test
cases from the obtained network of PTAs. For this

1It is worth noting that the two previous cases can be
easily extended to the situation where a parent node has
more than two children.

purpose we may use UPPAAL CORA (Behrmann
et al., 2005; Rasmussen et al., 2004) which is an ex-
tension of the platform UPPAAL. This extension is
enriched with additional variables used for optimal
reachability analysis.

As already mentioned the proposed framework in
this work is based on the TTCN-3 standard (ETSI,
2015). For this purpose, we will take advantage from
the work of (Lahami et al., 2016; Lahami et al.,
2012a). Next we give a brief recall about the main
constituents of the TTCN-3 reference architecture as
illustrated in Figure 7:

• Test Management (TM): manages the whole test
process by starting and stopping tests;

• Test Logging (TL): manages all log events;

• TTCN-3 Executable (TE): runs the compiled
TTCN-3 code;

• Component Handling (CH): places parallel test
components and guarantees communication be-
tween them;

• Coding and Decoding (CD): encodes and de-
codes received from and sent to the TE;

• System Adapter (SA): adjusts the communica-
tion with the application or system under test;

• Platform Adapter (PA): implements the set of
external functions.

Figure 7: TTCN-3 Architecture (Lahami et al., 2016).

At this level we are interested in defining a set of
rules for transforming abstract test cases into concrete
TTCN-3 tests.

The adopted transformation algorithm may be in-
spired by the following works (Axel Rennoch and
Schieferdecker, 2016; Hochberger and Liskowsky,
2006; Ebner, 2004). Table 1 gives some examples of



the rules to use to derive TTCN-3 tests from abstract
test cases. These rules are concisely explained below:
• R1: This rule generates a new TTCN-3 module

for each abstract test suite;

• R2: This rule transforms each test sequence into
a TTCN-3 test case;

• R3: This rule associates a TTCN-3 timer with
each abstract timed behavior;

• R4: This rule transforms each test sequence into
a TTCN-3 function;

• R5: This rule transforms the abstract channels
into TTCN-3 templates.

Table 1: TTCN-3 Transformation Rules.

R# Abstract Concepts TTCN-3 Concepts
R1 Test Suite TTCN-3 Module
R2 Single Trace TTCN-3 Test Case
R3 Timed Behavior TTCN-3 Timer
R4 Test Sequence TTCN-3 Function
R5 Channel TTCN-3 Template

Cloud computing can be used in the field of soft-
ware testing to deal with the problem of lack of re-
sources and the considerable cost of building a dis-
tributed test solution during the testing activity. Con-
sequently, the notion of Cloud testing is increasingly
emerging in order to offer cost-effective and efficient
testing facilities. As defined by (Gao et al., 2011),
it corresponds to testing activities (namely test case
generation, test case execution and test result evalua-
tion) on a cloud-oriented environment.

The proposed cloud testing architecture is built
based on TaaS (Testing as a Service) concepts. Figure
8 outlines an overview of its different components of
this architecture.

• Test management GUI: offers a GUI (Graphical
User Interface) charged with manages the whole
testing process.

• Resource management: enables flexibility and
elasticity during the testing process.

• Test component management: offers services
which create/delete test components and start/stop
their execution.

• Runtime monitoring: gives the status of the re-
sources of each VM (e.g., memory, CPU, etc.).

6 Related Work

Authors of (Felderer et al., 2016) proposed an
interesting survey on dozens of articles related to

model-based security testing chosen from the most
relevant digital sources and classified with respect to
specific criteria. However this review did not cover
any work dealing security issues for IoT and smart
cities. In the opposite way, the authors of (Ahmad
et al., 2016) presented a model-based approach to test
IoT systems but they did not consider security aspects
in anyway. Moreover the authors of (Wang et al.,
2017) proposed a formal framework based on timed
automata for analyzing security properties of cyber-
physical systems. In (Krichen et al., 2018a), the au-
thors proposed a preliminary work which introduced
a model based approach for testing security aspects of
IoT systems in smart cities. Regarding the use of at-
tack trees we mention the following works (Aslanyan
et al., 2016) (Kammüller et al., 2016) (Kumar et al.,
2015) (Kordy et al., 2014) which adopted this formal-
ism to model and analyse security attacks. However
none of these works has attempted to use testing tech-
niques to check the ability of the considered systems
to defend themselves against security attacks.

7 Conclusion

In this work we proposed a new approach for test-
ing security aspects for IoT systems in Smart Cities.
The proposed approach is based on the use of attack
trees which correspond to a graphical representation
of the strategy adopted by an attacker in order to vi-
olate the IoT system. We proposed a transformation
method to translate a given attack tree into a network
of price timed automata. The latter is then used as
input for the test generation algorithm for producing
abstract test cases. The obtained test cases are trans-
lated into concrete TTCN-3 test scenarios. Finally a
cloud oriented testing architecture is proposed in or-
der to execute tests and collect testing results.

Many extensions are possible for this work. First
we may take advantage from the work of (Lahami
et al., 2016; Krichen, 2012; Lahami et al., 2012b;
Krichen and Tripakis, 2006) to build a decentral-
ized testing architecture. Moreover we may adopt
the methodology proposed in (Krichen et al., 2018b;
Maâlej and Krichen, 2016; Maâlej et al., 2013; Maâlej
et al., 2012b; Maâlej et al., 2012a) to combine secu-
rity and load tests for IoT applications. Finally we
may exploit the same techniques presented in (Ben-
salem et al., 2007) in order to refine abstract test cases
before translating them into TTCN-3.



Test 

management 

GUI

Resource 

management

Runtime

monitoring

Resource 

request

Resource 

request

SUT

TC

SUT

SUT

VM

Test 

component 

management

VM state

request
VM

VM VM

VM

TC

TC

Google Compute Engine

Create Delete Start Stop
Scale

up/down

request

Figure 8: Cloud Testing Architecture Overview.

REFERENCES

Ahmad, A., Bouquet, F., Fourneret, E., Le Gall, F.,
and Legeard, B. (2016). Model-based testing
as a service for iot platforms. In Margaria, T.
and Steffen, B., editors, Leveraging Applications
of Formal Methods, Verification and Validation:
Discussion, Dissemination, Applications, pages
727–742, Cham. Springer International Publish-
ing.

Antonakakis, M., April, T., Bailey, M., Bernhard, M.,
Bursztein, E., Cochran, J., Durumeric, Z., Hal-
derman, J. A., Invernizzi, L., Kallitsis, M., Ku-
mar, D., Lever, C., Ma, Z., Mason, J., Menscher,
D., Seaman, C., Sullivan, N., Thomas, K., and
Zhou, Y. (2017). Understanding the mirai botnet.
In 26th USENIX Security Symposium (USENIX
Security 17), pages 1093–1110, Vancouver, BC.
USENIX Association.

Aslanyan, Z., Nielson, F., and Parker, D. (2016).
Quantitative verification and synthesis of attack-
defence scenarios. In IEEE 29th Computer Secu-
rity Foundations Symposium, CSF 2016, Lisbon,
Portugal, June 27 - July 1, 2016, pages 105–119.

Axel Rennoch, Claude Desroches, T. V. and Schiefer-
decker, I. (2016). TTCN-3 Quick Reference
Card.

Behrmann, G., Larsen, K. G., and Rasmussen, J. I.
(2005). Priced timed automata: Algorithms and
applications. In de Boer, F. S., Bonsangue,
M. M., Graf, S., and de Roever, W.-P., editors,
Formal Methods for Components and Objects,
pages 162–182, Berlin, Heidelberg. Springer
Berlin Heidelberg.

Bengtsson, J. and Yi, W. (2004). Timed Automata:

Semantics, Algorithms and Tools, pages 87–124.
Springer Berlin Heidelberg, Berlin, Heidelberg.

Bensalem, S., Krichen, M., Majdoub, L., Rob-
bana, R., and Tripakis, S. (2007). A simpli-
fied approach for testing real-time systems based
on action refinement. In ISoLA 2007, Work-
shop On Leveraging Applications of Formal
Methods, Verification and Validation, Poitiers-
Futuroscope, France, December 12-14, 2007,
pages 191–202.

Boyte, K. J. (2017). A comparative analysis of the cy-
berattacks against estonia, the united states, and
ukraine: Exemplifying the evolution of internet-
supported warfare. Int. J. Cyber Warf. Terror.,
7(2):54–69.

Ebner, M. (2004). TTCN-3 Test Case Generation
from Message Sequence Charts. In Proceed-
ing of the Workshop on Integrated-reliability
with Telecommunications and UML Languages
(WITUL’04).

ETSI (2015). Methods for Testing and Specifica-
tion (MTS), The Testing and Test Control No-
tation version 3, TTCN-3 Language Extensions:
TTCN-3 Performance and Real Time Testing.

Felderer, M., Zech, P., Breu, R., Büchler, M., and
Pretschner, A. (2016). Model-based security
testing: A taxonomy and systematic classifica-
tion. Softw. Test. Verif. Reliab., 26(2):119–148.

Gao, J., Bai, X., and Tsai, W.-T. (September 2011).
Cloud testing- issues, challenges, needs and
practice. Software Engineering : An Interna-
tional Journal (SEIJ).

Hochberger, C. and Liskowsky, R., editors (2006).
Informatik 2006 - Informatik für Menschen,



Band 2, Beiträge der 36. Jahrestagung der
Gesellschaft für Informatik e.V. (GI), 2.-6. Ok-
tober 2006 in Dresden, volume 94 of LNI. GI.

Kammüller, F., Nurse, J. R. C., and Probst, C. W.
(2016). Attack tree analysis for insider threats
on the iot using isabelle. In Tryfonas, T., editor,
Human Aspects of Information Security, Privacy,
and Trust, pages 234–246, Cham. Springer Inter-
national Publishing.

Kordy, B., Pitre-Cambacds, L., and Schweitzer, P.
(2014). Dag-based attack and defense modeling:
Dont miss the forest for the attack trees. Com-
puter Science Review, 13-14:1 – 38.

Krichen, M. (2012). A formal framework for black-
box conformance testing of distributed real-time
systems. IJCCBS, 3(1/2):26–43.

Krichen, M., Cheikhrouhou, O., Lahami, M., Al-
roobaea, R., and Jmal Maâlej, A. (2018a). To-
wards a model-based testing framework for the
security of internet of things for smart city appli-
cations. In Mehmood, R., Bhaduri, B., Katib,
I., and Chlamtac, I., editors, Smart Societies,
Infrastructure, Technologies and Applications,
pages 360–365, Cham. Springer International
Publishing.

Krichen, M., Maâlej, A. J., and Lahami, M. (2018b).
A model-based approach to combine confor-
mance and load tests: an ehealth case study. In-
ternational Journal of Critical Computer-Based
Systems, 8(3-4):282–310.

Krichen, M. and Tripakis, S. (2006). Interesting
properties of the real-time conformance rela-
tion. In Theoretical Aspects of Computing - IC-
TAC 2006, Third International Colloquium, Tu-
nis, Tunisia, November 20-24, 2006, Proceed-
ings, pages 317–331.

Kumar, R., Ruijters, E., and Stoelinga, M. (2015).
Quantitative attack tree analysis via priced timed
automata. In Sankaranarayanan, S. and Vicario,
E., editors, Formal Modeling and Analysis of
Timed Systems, pages 156–171, Cham. Springer
International Publishing.

Lahami, M., Fakhfakh, F., Krichen, M., and Jmaı̈el,
M. (2012a). Towards a TTCN-3 Test System for
Runtime Testing of Adaptable and Distributed
Systems. In Proceedings of the 24th IFIP WG
6.1 International Conference Testing Software
and Systems (ICTSS’12), pages 71–86.

Lahami, M., Krichen, M., Bouchakwa, M., and
Jmaiel, M. (2012b). Using knapsack problem
model to design a resource aware test architec-
ture for adaptable and distributed systems. In
Testing Software and Systems - 24th IFIP WG

6.1 International Conference, ICTSS 2012, Aal-
borg, Denmark, November 19-21, 2012. Pro-
ceedings, pages 103–118.

Lahami, M., Krichen, M., and Jmaı̈el, M. (2016).
Safe and Efficient Runtime Testing Frame-
work Applied in Dynamic and Distributed Sys-
tems. Science of Computer Programming (SCP),
122(C):1–28.

Maâlej, A. J., Hamza, M., Krichen, M., and Jmaiel,
M. (2013). Automated significant load testing
for WS-BPEL compositions. In Sixth IEEE In-
ternational Conference on Software Testing, Ver-
ification and Validation, ICST 2013 Workshops
Proceedings, Luxembourg, Luxembourg, March
18-22, 2013, pages 144–153.

Maâlej, A. J. and Krichen, M. (2016). A model
based approach to combine load and functional
tests for service oriented architectures. In Pro-
ceedings of the 10th Workshop on Verification
and Evaluation of Computer and Communica-
tion System, VECoS 2016, Tunis, Tunisia, Oc-
tober 6-7, 2016., pages 123–140.

Maâlej, A. J., Krichen, M., and Jmaiel, M. (2012a).
Conformance testing of WS-BPEL compositions
under various load conditions. In 36th Annual
IEEE Computer Software and Applications Con-
ference, COMPSAC 2012, Izmir, Turkey, July 16-
20, 2012, page 371.

Maâlej, A. J., Krichen, M., and Jmaiel, M. (2012b).
Model-based conformance testing of WS-BPEL
compositions. In 36th Annual IEEE Computer
Software and Applications Conference Work-
shops, COMPSAC 2012, Izmir, Turkey, July 16-
20, 2012, pages 452–457.

Rasmussen, J. I., Larsen, K. G., and Subramani,
K. (2004). Resource-optimal scheduling us-
ing priced timed automata. In Jensen, K. and
Podelski, A., editors, Tools and Algorithms for
the Construction and Analysis of Systems, pages
220–235, Berlin, Heidelberg. Springer Berlin
Heidelberg.

Tilley, S. and Parveen, T. (2012). Software Testing in
the Cloud: Perspectives on an Emerging Disci-
pline. IGI Global, Hershey, PA, USA, 1st edi-
tion.

Wang, T., Su, Q., and Chen, T. (2017). Formal anal-
ysis of security properties of cyber-physical sys-
tem based on timed automata. In Second IEEE
International Conference on Data Science in Cy-
berspace, DSC 2017, Shenzhen, China, June 26-
29, 2017, pages 534–540.


