Moez Krichen
email: moez.krichen@redcad.org

Roobaea Alroobaea

A New Model-Based Framework for Testing Security of IOT Systems in Smart Cities Using Attack Trees and Price Timed Automata

Keywords: Model-Based, Testing, Security, Internet of Things, IoT, Smart Cities, Attack Tree, Price Timed Automaton, UPPAALL, TTCN-3, Cloud

In this paper we propose a new model-based framework for testing security properties of Internet of Things in Smart Cities. In general a model-based approach consists in extracting test cases from a formal specification either of the system under test or the environment of the considered system in an automatic fashion. Our framework is mainly built on the use of two formalisms namely Attack Trees and Price Timed Automata. An attack tree allows to describe the strategy adopted by the malicious party which intends to violate the security of the considered IOT system. An attack tree is translated into a network of price timed automata. The product of the constructed price timed automata is then computed using the well known UPPAALL platform. The obtained timed automata product serves as input for the adopted test generation algorithm. Moreover our framework takes advantage of the use of the standardized specification and execution testing language TTCN-3. With this respect, the obtained abstract tests are translated into the TTCN-3 format. Finally we propose a cloud-oriented architecture in order to ensure test execution and to collect the generated verdicts.

Introduction

Nowadays Internet of Things (IoT) is playing an important role in our modern society as a technology which allows to connect everyday objects to Internet. These objects are equipped with sophisticated interfaces which give them the capabilities to measure physical aspects from the environment and to interact with other entities by exchanging specific messages.

This new technology has provided a wide generation of valuable and innovative services. In this manner, modern cities are becoming smarter by adopting intelligent systems for water management, traffic control, energy management, street lighting, public transport, etc. However, these services can massively be attacked and compromised by several malicious parties whenever adequate and appropriate security measures are absent.

A few years ago, the smart devices that make up the Internet of Things, such as light bulbs, thermostats, webcams, and many others , were seen as potential targets for attackers to activate or disable remote devices and to harm consumers. Today, the IoT no longer represents a mere target, but a real plat-form which may be used by attackers to launch dangerous remote aggressions and to cause very serious incidents.

With the emergence of wide-ranging Open Source worms, such as Mirai [START_REF] Antonakakis | Understanding the mirai botnet[END_REF], capable of spreading to tens of millions of IoT devices, attackers can exploit these systems to generate a massive influx of traffic and disconnect any company or institution from Internet. Beyond the massive attack of the network, these IoT attack platforms can present other forms of threats, such as information theft and passwords decryption.

The attacks on industrial control systems have taken a disturbing turn. Cyber criminals attack the operational core of vital infrastructures taking advantage of their vulnerability. Recent attacks have not only disrupted the provision of essential services, such as electricity, but have also damaged automation systems to return to normal operation.

For instance the 2015 and 2016 attacks in Ukraine [START_REF] Boyte | A comparative analysis of the cyberattacks against estonia, the united states, and ukraine: Exemplifying the evolution of internetsupported warfare[END_REF] that caused power outages were perfectly planned and coordinated. The attackers managed to hijack the automation systems to cause power outages and then perform a well-ordered succession of destructive payloads on workstations, servers, and embedded devices.

In the future, it will be more difficult to recover from breakdowns caused by attacks, and interruptions may be measured in days instead of hours. Events of this type force providers in charge of these infrastructures to think about how to act in the event of an attack.

In this context our goal in this work is to propose a new framework for testing security aspects for IoT systems deployed in smart cities in order to avoid such anomalies or at least to minimize them as much as possible. Our framework is model-based (Krichen et al., 2018a) in the sense that it is based on the use of a formal approach which consists is generating test cases from a given model.

In our case, the considered model corresponds to the behavior of the attacker aiming to violate the system under investigation. First the behavior of the attacker is given as an attack-tree [START_REF] Kordy | Dag-based attack and defense modeling: Dont miss the forest for the attack trees[END_REF]. The latter is a formalism used to describe the strategy adopted by the attacker to achieve its goal.

In a second step the proposed tree is translated into an equivalent network of price timed automaton [START_REF] Behrmann | Priced timed automata: Algorithms and applications[END_REF] which is a graphical representation which is used to model timed behaviors. The obtained network of price timed automaton serves as an input for the test generation algorithm.

The generated abstract test cases are then translated into the specification and execution standard testing language TTCN-3 (Lahami et al., 2012a). Finally a cloud-oriented test architecture [START_REF] Tilley | Software Testing in the Cloud: Perspectives on an Emerging Discipline[END_REF] is proposed to run the obtained TTCN-3 concrete tests and to collect the generated verdicts.

The rest of this paper is organized as follows. Section 2 introduces the notion of attack trees. Section 3 defines the model of price timed automata. Section 4 illustrates how attack trees are translated into networks of price timed automata. Section 5 presents an overview about the test generation and execution phases. Section 6 reports on related research works dealing with IoT security testing. Finally Section 7 summarizes the main contributions of the paper and gives some possible directions for future work.

Attack Trees

Attack trees (AT) [START_REF] Kordy | Dag-based attack and defense modeling: Dont miss the forest for the attack trees[END_REF] correspond to a useful graphical formalism to study the security of critical systems. More precisely an attack tree can be seen as a graphical representation of the attacker strategy represented in the form of a tree.

The root of an AT corresponds to the goal the attacker aims to fulfill. The children of a node in the AT are refinements of the goal of the corresponding parent node into sub-goals.

The refinement of an internal node of an AT can be either conjunctive or disjunctive:

• A conjunctive refinement is used when the fulfilment of all the childrens goals is needed to fulfill the parent's goal. In this case we associate an AND-Gate with considered parent node (See Figure 1-(a)).

• A disjunctive refinement is used when the fulfilment of one of the childrens goals is enough to fulfill the parent's goal. In this second case an OR-gate is associated with the considered node (See Figure 1-(b)). We consider a finite set of attribute variables Attribs = {Att 1 , • • • , Att n }. These attributes are used to describe the characteristics of the attacker like available resources for instance. We denote by Vals ⊆ (R ≥0) n the set of valuations of the attributes.

The leaves of the AT correspond to the elementary actions the attacker has to execute. They are called basic attack steps (BAS). Each BAS is equipped with an additional attribute Time (which measures the time since the basic attack step started) and two preconditions:

Ready2Start : Vals → {0, 1}
which indicates that the BAS can be started or not (i.e., has enough resources to start for example); and

Able2Succeed : Vals → {0, 1}
which indicates whether the BAS can succeed or not. These preconditions are Boolean combinations of linear equations over Attributes. Moreover each BAS has an update function:

Modi f y : Vals × R ≥0 → Vals
which updates the attribute values when time elapses. At this level we assume that time dependence is linear between the attributes {Att 1 , • • • , Att n } and the special attribute Time.

Let PrePost(Attribs) be the set of all possible triples (Ready2Start, Able2Succeed, Modi f y) defined with respect to Attribs. We also define an Attacker Initializer which gives the initial valuation of the attributes. It is defined as:

Init : {Att 1 , • • • , Att n } → R ≥ 0.
The set of attack tree gate types is defined as:

Gates = {AND, OR}.
An attack tree A is formally defined as a tuple Nds,Chld, Rt, Attribs, Init, Ftrs where:

• Nds is a finite set of attacker nodes;

• Chld : Nds → Nds * associates a set of children to each parent node;

• Rt corresponds to the root of the AT A which defines the global goal of the attacker;

• Attribs corresponds to the set of attributes of the AT A;

• Init corresponds to the attacker initializer;

• Ftrs : Nds → Gates ∪ PrePost(Attribs) associates an AND/OR Gate with each internal node and a tuple (Ready2Start, Able2Succeed, Modi f y) with each leaf of the AT.

An example of an AT is given in Figure 2. This AT is inspired from the work of [START_REF] Kumar | Quantitative attack tree analysis via priced timed automata[END_REF]. The goal of the attacker here is to crack the password of a protected file. As indicated by the figure the global goal of the attacker can be achieved by:

• Either cracking the password: this sub-goal can in turn be achieved using one of three possible choices (namely: Dictionary, Guessing or Brute Force attacks).

• Or performing a password attack: this sub-goal can be either achieved by a Social Engineering or a Key Logger attacks. The Social Engineering attack is in turn decomposed into two BASs namely: Generic Reconnaissance and Trap Execution. Similarly the Key logger attack is achieved within two BAS: Key Logger Installation and Password Intercept. More details about this example can be found in the previously mentioned article [START_REF] Kumar | Quantitative attack tree analysis via priced timed automata[END_REF].

Priced Timed Automata

The model of Priced timed automata (PTA) [START_REF] Behrmann | Priced timed automata: Algorithms and applications[END_REF] is an extension of timed automata, obtained by assigning costs to actions and locations. Next, we will denote by Ψ(Y) the set of all possible Boolean predicates over a set Y of continuous variables.

A priced timed automaton P is defined as a tuple Loc, loc 0 ,Cl, Act, Edg, Inv,Cost where:

• Loc is a finite set of states;

• loc 0 ∈ L is the initial state;

• Cl is a finite set of clocks;

• Act is finite a set of labels;

• Edg ⊆ Loc × Ψ(Cl) × Act × 2 Cl × Loc gives the set of transitions;
• Inv : Loc → Ψ(Cl) assigns invariants to locations;

• Cost : Loc ∪ Edg → N n ≥0 .
assigns cost rates to states and costs to edges.

An edge loc, ψ, act, λ, loc ∈ Edg defines a transition from location loc to location loc taking an action act. This edge can only be traversed when the constraint ψ over Cl is true, and the set λ ⊆ Cl identifies the subset of clocks which must be reset after the execution of the transition.

A trace of P = Loc, loc 0 ,Cl, Act, Edg, Inv,Cost is a sequence of locations and transitions T R = loc 0

act 0 --→ λ 0 t 0 c 0 loc 1 act 1 --→ λ 1 t 1 c 1 loc 2 • • • where:
• For every i, there is a transition T i = (loc i , ψ i , act i , λ i , loc i+1) ∈ E;

• For every i, c i = C(T i) + t i • C(l i) is the cost incurred in the transition;

• The initial valuation V 0 = -→ 0 which assigns 0 to every clock in Cl;

• After each transition, there is a new clock valuation V i+1 = (V i +t i)[λ i = 0] obtained by increasing every clock in X i by t i and re-initializing all clocks in λ i to 0;

• Each valuation V i + t for t < t i must satisfy the invariant Inv(l i);

• The valuation V i + t i must satisfy ψ i for every i.

Let be the parallel product operator over price timed automata. That is given a set of PTAs {P 1 , P 2 , • • • P n }, P 1 P 2 • • • P n will denote the corresponding parallel product obtained by synchronizing the transitions of the component PTAs via joint signals. The formal definition of this operator is given in [START_REF] Bengtsson | Timed Automata: Semantics, Algorithms and Tools[END_REF]. [START_REF] Kumar | Quantitative attack tree analysis via priced timed automata[END_REF].

From Attack Trees to Price Timed Automata

In this section we explain how an attack tree is transformed into a network of price timed automata. The proposed transformation is borrowed from the work of [START_REF] Kumar | Quantitative attack tree analysis via priced timed automata[END_REF]. First in Figure 3 we draw the price timed automaton corresponding to a basic attack step. The proposed PTA has five nodes. The considered BAS is activated when the input-signal activate BAS? is received from the corresponding parent-node PTA. In order to execute this input-signal the condition Ready2Start(Val) == 1 must hold.

The clock variable Time is reset to zero as soon as the BAS is activated. The attributes of the attacker are updated through the transition labeled with Val := Mo f i f y(Val, Time). At the end of the execution of the BAS the PTA reaches either state Succeeded BAS or Failed BAS. In order to reach the state Succeeded BAS the condition Able2Succeed(Val) == 1 must hold.

In Figure 4, we propose a PTA which corresponds to a parent node connected to two children via an AND gate. This PTA is activated after receiving the input-signal activate Prt?. After that an activation output-signal is sent to each child PTA. If a success signal is received from both children then the parent PTA moves to its success state.

Similarly Figure 5 is an illustration of the PTA corresponding to a parent node connected to two children via an OR gate. In this case receiving a success Finally Figure 6 gives a PTA which corresponds to the execution of the global goal of the attacker. The output signal activate Root! will be the first action to be executed by the network of obtained PTAs.

Test Generation and Execution

Test generation consists in extracting abstract test cases from the obtained network of PTAs. For this purpose we may use UPPAAL CORA [START_REF] Behrmann | Priced timed automata: Algorithms and applications[END_REF][START_REF] Rasmussen | Resource-optimal scheduling using priced timed automata[END_REF] which is an extension of the platform UPPAAL. This extension is enriched with additional variables used for optimal reachability analysis.

As already mentioned the proposed framework in this work is based on the TTCN-3 standard (ETSI, 2015). For this purpose, we will take advantage from the work of [START_REF] Lahami | Safe and Efficient Runtime Testing Framework Applied in Dynamic and Distributed Systems[END_REF]Lahami et al., 2012a). Next we give a brief recall about the main constituents of the TTCN-3 reference architecture as illustrated in Figure 7:

• Test Management (TM): manages the whole test process by starting and stopping tests;

• Test Logging (TL): manages all log events;

• TTCN-3 Executable (TE): runs the compiled TTCN-3 code;

• Component Handling (CH): places parallel test components and guarantees communication between them;

• Coding and Decoding (CD): encodes and decodes received from and sent to the TE;

• System Adapter (SA): adjusts the communication with the application or system under test;

• Platform Adapter (PA): implements the set of external functions. At this level we are interested in defining a set of rules for transforming abstract test cases into concrete TTCN-3 tests.

The adopted transformation algorithm may be inspired by the following works (Axel [START_REF] Rennoch | TTCN-3 Quick Reference Card[END_REF][START_REF] Hochberger | Informatik 2006 -Informatik für Menschen[END_REF][START_REF] Ebner | TTCN-3 Test Case Generation from Message Sequence Charts[END_REF]. Table 1 gives some examples of Cloud computing can be used in the field of software testing to deal with the problem of lack of resources and the considerable cost of building a distributed test solution during the testing activity. Consequently, the notion of Cloud testing is increasingly emerging in order to offer cost-effective and efficient testing facilities. As defined by [START_REF] Gao | Cloud testing-issues, challenges, needs and practice[END_REF], it corresponds to testing activities (namely test case generation, test case execution and test result evaluation) on a cloud-oriented environment.

The proposed cloud testing architecture is built based on TaaS (Testing as a Service) concepts. Figure 8 outlines an overview of its different components of this architecture.

• Test management GUI: offers a GUI (Graphical User Interface) charged with manages the whole testing process.

Related Work

Authors of [START_REF] Felderer | Model-based security testing: A taxonomy and systematic classification[END_REF] proposed an interesting survey on dozens of articles related to model-based security testing chosen from the most relevant digital sources and classified with respect to specific criteria. However this review did not cover any work dealing security issues for IoT and smart cities. In the opposite way, the authors of [START_REF] Ahmad | Model-based testing as a service for iot platforms[END_REF] presented a model-based approach to test IoT systems but they did not consider security aspects in anyway. Moreover the authors of [START_REF] Wang | Formal analysis of security properties of cyber-physical system based on timed automata[END_REF] proposed a formal framework based on timed automata for analyzing security properties of cyberphysical systems. In (Krichen et al., 2018a), the authors proposed a preliminary work which introduced a model based approach for testing security aspects of IoT systems in smart cities. Regarding the use of attack trees we mention the following works [START_REF] Aslanyan | Quantitative verification and synthesis of attackdefence scenarios[END_REF] [START_REF] Kammüller | Attack tree analysis for insider threats on the iot using isabelle[END_REF] [START_REF] Kumar | Quantitative attack tree analysis via priced timed automata[END_REF] [START_REF] Kordy | Dag-based attack and defense modeling: Dont miss the forest for the attack trees[END_REF] which adopted this formalism to model and analyse security attacks. However none of these works has attempted to use testing techniques to check the ability of the considered systems to defend themselves against security attacks.

Conclusion

In this work we proposed a new approach for testing security aspects for IoT systems in Smart Cities. The proposed approach is based on the use of attack trees which correspond to a graphical representation of the strategy adopted by an attacker in order to violate the IoT system. We proposed a transformation method to translate a given attack tree into a network of price timed automata. The latter is then used as input for the test generation algorithm for producing abstract test cases. The obtained test cases are translated into concrete TTCN-3 test scenarios. Finally a cloud oriented testing architecture is proposed in order to execute tests and collect testing results.

Many extensions are possible for this work. First we may take advantage from the work of [START_REF] Lahami | Safe and Efficient Runtime Testing Framework Applied in Dynamic and Distributed Systems[END_REF][START_REF] Krichen | A formal framework for blackbox conformance testing of distributed real-time systems[END_REF][START_REF] Lahami | Using knapsack problem model to design a resource aware test architecture for adaptable and distributed systems[END_REF][START_REF] Krichen | Interesting properties of the real-time conformance relation[END_REF] to build a decentralized testing architecture. Moreover we may adopt the methodology proposed in [START_REF] Krichen | A model-based approach to combine conformance and load tests: an ehealth case study[END_REF][START_REF] Maâlej | A model based approach to combine load and functional tests for service oriented architectures[END_REF][START_REF] Maâlej | Automated significant load testing for WS-BPEL compositions[END_REF][START_REF] Maâlej | Model-based conformance testing of WS-BPEL compositions[END_REF]Maâlej et al., 2012a) to combine security and load tests for IoT applications. Finally we may exploit the same techniques presented in [START_REF] Bensalem | A simplified approach for testing real-time systems based on action refinement[END_REF] in order to refine abstract test cases before translating them into TTCN-3.

Figure 1 :

 1 Figure 1: Different possible gates of an attack tree.

Figure 2 :

 2 Figure 2: An example of an attacker tree inspired by the work of[START_REF] Kumar | Quantitative attack tree analysis via priced timed automata[END_REF].

Figure 3 :

 3 Figure 3: A priced timed automaton for a basic attack step.

Figure 4 :

 4 Figure 4: A priced timed automaton for an AND gate and a parent node having two children.

Figure 5 :

 5 Figure 5: A priced timed automaton for an OR gate and a parent node having two children.

Figure 6 :

 6 Figure 6: Priced timed automaton corresponding to the global goal of the attacker.

Figure 7 :

 7 Figure 7: TTCN-3 Architecture (Lahami et al., 2016).

 the rules to use to derive TTCN-3 tests from abstract test cases. These rules are concisely explained below: • R1: This rule generates a new TTCN-3 module for each abstract test suite; • R2: This rule transforms each test sequence into a TTCN-3 test case; • R3: This rule associates a TTCN-3 timer with each abstract timed behavior; • R4: This rule transforms each test sequence into a TTCN-3 function; • R5: This rule transforms the abstract channels into TTCN-3 templates.

Table 1 :

 1

	R#	Abstract Concepts TTCN-3 Concepts
	R1	Test Suite	TTCN-3 Module
	R2	Single Trace	TTCN-3 Test Case
	R3	Timed Behavior	TTCN-3 Timer
	R4	Test Sequence	TTCN-3 Function
	R5	Channel	TTCN-3 Template

It is worth noting that the two previous cases can be easily extended to the situation where a parent node has more than two children.