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Abstract: Even if recent advances in public key cryptography tend to focus on algorithms able to survive the post quan-
tum era. At present, there is a urgent need to propose fast, low power and securely implemented cryptography
to address the immediate security challenges of the IoT. In this document, we present a new set of Binary
Edwards Curves which have been defined to achieve the highest security levels (up to 284-bit security level)
and whose parameters have been defined to fit IoT devices embedding 32-bit general purpose processors. We
optimized the choice of the point generator with the w-coordinate to save a multiplication in the addition and
doubling formulae. We manage to compute one step of the Montgomery Ladder in 4 multiplications and
4 squares. On top of the performance benefits, cryptography over such curves have some intrinsic security
properties against physical attacks.

1 Introduction

The rising amount of connectivity and number of
connected devices (with the associated services) has
given rise to the concept of the “Internet of Things”.
The technical challenges pertaining to the IoT are
daunting (Stankovic, 2014). Among those challenges,
there is the management of a massively huge network
(hundreds of billions by the next decade) and the even
bigger amount of associated data to manage, store
and analyse, the heterogeneity of today’s different
systems that have to co-exist, the resilience of such
systems, the openness of such an infrastructure and,
last but not least, security & privacy (Fournier et al.,
2014). Security and privacy have already been identi-
fied as vital issues of the IoT and as key to its adop-
tion and deployment (Skarmeta and Moreno, 2014)
(Rubens, 2014). The main difficulties with deploy-
ing security for the IoT come from the heterogeneity
of this “system of systems”, lack of standard for se-
curity and inter-device communications, lack of off-
the-shelf trusted IoT devices and tools (respecting all
power, size and security constraints) and lack of ap-
propriate business model (‘low end’ devices will po-
tentially be communicating with ‘high end’ ones. . . ).

One of the key aspects for such systems is that
end-to-end security has to be enforced, which means

that the end-nodes of an IoT infrastructure shall also
embed security features and applications. Asymmet-
ric cryptography is one of such security tools and
given the size, power and performance constraints
pertaining to IoT end-nodes (which are usually low-
end devices with limited resources) Elliptic Curves
Cryptography (ECC) is by far the best fit for such
use cases and this despite the recently growing fear
of quantum computers: since the latter are thought
to be able one day to efficiently solve the Discrete
Logarithm Problem (DLP), post-quantum cryptosys-
tems, like lattice based cryptography or cryptography
based on isogenies are currently being studied. How-
ever, these cryptosystems as they exist today, cannot
be used in the constrained IoT nodes due to the large
keys and long computing times. ECC is still, in our
opinion, the best short and mid term answer to address
the immediate security needs for the IoT.

1.1 Elliptic Curve Cryptography for the
IoT

ECC was introduced by Koblitz and Miller in
(Koblitz, 1987) (Miller, 1986) where the Elliptic
Curves Discrete Logarithm Problem (ECDLP) is pre-
sented and its exploitation for doing cryptography



over elliptic curves is explained. The main standard-
ization effort for ECC has been through the FIPS
186-4 (Information Technology Laboratory, 2013) by
the NIST. Alternative approaches have been proposed
like (Brainpool, 2005) which introduces Brainpool
curves, and more recently the Edwards curve intro-
duced in (Bernstein et al., 2011) by Bernstein et al.
based on works by Edwards (Edwards, 2007). The
latter pieces of work open a new vision in the land-
scape of applied elliptic curve cryptography.

The so-called “NIST curves” are largely deployed
in several devices with different goals in today’s IT
systems ranging from low power devices to modern
computers. However these curves were proposed in
1999 where “low power devices” were not as common
as today and hence these curves were not designed
for today’s IoT constraints. Elliptic Curves usually
used for cryptography are defined by the Weierstrass
equation

y2 +a1xy+a3y = x3 +a2x2 +a4x+a6

and defined over a prime field with large prime char-
acteristic or over binary extension fields of character-
istic 2. The underlying mathematics in each kind of
field have different arithmetics, each with its own ad-
vantages and drawbacks.

To start with, the arithmetics of the Weiesrtrass
form are not adapted to the low resource constraints
of IoT devices. Moreover those curves were nei-
ther designed nor chosen with the additional con-
straint of being resistant to side channel attacks and
fault attacks: for example, due to the incomplete law
group of these NIST curves, we have one formula for
adding points and another formula for doubling points
(except for the specific case Weierstrass curves over
prime fields with p > 3 where we have a new com-
plete formula for the addition (Renes et al., 2016)).
Such constructions introduce in an ECC implementa-
tion weaknesses exploited in Simple Power Analysis
(SPA) or Timing attacks (Fan et al., 2010a). In such
cases, adding countermeasures against side channel
attacks severely downgrade the performance and effi-
ciency of such ECC implementations, which can be a
heavy drawback for the IoT end-nodes. This is why
it would be more interesting to look for curves that
could avoid such weaknesses. For example curves
like Curve25519, (Bernstein et al., 2011) (Edwards,
2007) have a complete group law providing one same
formula for point addition and point doubling.

Another important aspect for an ECC implemen-
tation is the choice between curves over Fp or F2m .
Curves over large prime characteristics are usually
preferred to those over binary fields due to claims that
there may be sub-exponential algorithms for solving
the discrete logarithm problem for elliptic curves on

binary fields. However even if the best optimistic
conjectures of the DLP claim to have a complexity
of L2n( 2

3 )
1 or even L2n( 1

2 ), (Galbraith and Gaudry,
2016) recalls that they are still “hypotheses” and that
recent experiments “raise the doubt about the subex-
ponentiality claims”. One of the main advantages of
arithmetics in binary fields is the carry-less operation
because in practice managing carry propagations as
needed in operations over prime fields downgrades
computation times especially when it comes to imple-
menting dedicated hardware accelerators. Moreover
carry propagations can introduce weaknesses against
side channel attacks (Fouque et al., 2008b).

We have a large set of models on large prime
fields (Doche et al., 2006) (Edwards, 2007) (Castryck
et al., ) (Bernstein et al., 2015) (Hisil et al., 2009)
(Feng et al., 2010) (Moloney et al., ) (Bernstein et al.,
2008a).

1.2 Our approach and contribution

In (Edwards, 2007), Harold Edwards introduced a
very efficient model with a complete law group:

x2 + y2 = 1+dx2y2

However, with the aforementioned drawbacks of
working on curves in large prime fields, Bernstein et
al. (Bernstein et al., 2008b) introduced the binary ver-
sion of Edwards curves with also the advantage of a
complete law and obviously without the carry propa-
gation problems :

d1(x+ y)+d2(x2 + y2) = xy+ xy(x+ y)+ x2y2

Such a Binary Edwards Curve is, given the con-
straints of IoT devices, one of the best choices for
implementing ECC, resistant to physical attacks, in
current and future embedded devices : they are fast,
have a complete group law and the underlying carry-
less arithmetics would require low power and com-
pact dedicated hardware accelerators.

So far, only one such BEC has been proposed in
the literature, which does not even offer what is the
admitted reference of “128-bit security level”. Hence
our approach has been to generate other BECs, with
higher security levels and with parameters tailored to
fit the hardware constraints of IoT devices. To build
those new elliptic curves, we split the parameters of
the curve into three parts, each of which has been
optimized separately. The first part is the finite field
representation. The second is the curve’s parameters
which depend on the finite field representation and el-
liptic curve model chosen. The third part is the choice
of the point generator of the elliptic curve group.

1Lq(a) = ec log(q)a log log(q)1−a



In this paper we provide the newly-generated
BECs after explaining how they have been generated,
i.e. by detailing the constraints and optimisations
used in each of the three steps of the BECs genera-
tion. This new set of curves targets IoT implementa-
tions. Each curve was chosen to achieve from 112-bit
to 284-bit security levels and the associated parame-
ters have been chosen to be efficiently suited for hard-
ware architectures working on data paths of 32 bits or
64 bits like those traditionally found in off-the-shelf
IoT devices.

The methodology used for generating the curves
and their associated parameters is depicted in Fig-
ure 1. We split security requirements in two sets. The
first refers to criteria on the number of points of the
curve and its twist, which is critical in the selection of
a new elliptic curves. The second set of criteria con-
tains all remaining criteria in 3.3. These criteria are
checked after the construction of a optimized point
generator.

The rest of this paper is organised as follows. Sec-
tion 2 presents the concept of friendly polynomials
from (Scott, 2007) and the associated advantages. We
select a set of new binary fields to target different se-
curity levels to allow a good security/efficiency trade-
off. Section 3 introduces the Binary Elliptic Curves
as defined in (Bernstein et al., 2008b) with a focus
on those curves having efficient arithmetics. We also
review the different security requirements to select a
BEC. Section 4 details how we built the generator of
the elliptic curve subgroup used and how the choices
made provide performance gains. Section 5 summa-
rizes the expected intrinsic security properties of such
BEC-based implementations against physical attacks.
Some concluding remarks and perspectives are finally
provided in the last section of this paper. Finally, the
section 6 provides a first overview of performances of
this kind of curves. The complete set of newly gener-
ated curves and parameters are given in the appendix.

2 Optimal finite fields for efficient
binary field arithmetics

The first step for generating a new set of elliptic
curves for cryptography is to build “friendly” (i.e. for
which calculations can be done rapidly) finite fields
with an optimal arithmetic (i.e. for which some cal-
culation “tricks” can be used for fast and compact im-
plementations) for the targeted IoT devices. Arith-
metics over elliptic curves depend on the representa-
tion of the base finite field which in turn depends on
the choice of the modulus, represented under a poly-
nomial form, used to define the finite field. If we want

Trinomials and pen-
tanomials generation
with Scott’s method
(Scott, 2007)

BECs generation
with Bernstein’s
method (Bernstein
et al., 2008b)

Finding efficient
group generators

Selection and vali-
dation of BECs with
security criteria

Architecture
constraints
(data width)

First secu-
rity criteria
(Bernstein,
2009)

Second secu-
rity criteria
(Bernstein,
2009)

Modulus

BECs

Figure 1: Overview of the generation scheme of BEC.

to consider the constraints due to the hardware plat-
form used for the implementation (in our case, an IoT
device embedding a 32-bit processor), choosing an ir-
reducible polynomial at random, i.e. with a random
number of monomials, seems the wrong approach if
we want the best trade-off between performance and
security. The main operation in such implementations
is the reduction of a finite field element by the mod-
ulus and if we use a random polynomial, this oper-
ation could be expensive in terms of execution time
and power consumption. A choice usually made for
polynomials in binary fields F2n is a trinomial or a
pentanomial of the type:

p(x) = xn + xa +1, n > a > 0

p(x) = xn + xa + xb + xc +1, n > a > b > c > 0

The NIST (Information Technology Laboratory,
2013) for example selected its polynomials with the
ANSI X9.62 rules also provided by Certicom (John-
son et al., 2001). A trinomial with the minimal coef-
ficient a shall be selected if it exists. If no trinomial
exists a pentanomial is chosen with minimal coeffi-
cients a, b and c.
However, as suggested in (Scott, 2007), the construc-
tion of the binary field is important for the efficiency
of the implementation and this depends on the archi-
tecture used. Let w be the length in terms of bits of
the registers of the targeted architecture, Scott (Scott,
2007) then defines three kinds of polynomials:

• Lucky Trinomial: A trinomial with n− a ≡ 0
mod w.



• Lucky Pentanomial: A pentanomial with n −
a ≡ 0 mod w, n− b ≡ 0 mod w and n− c ≡ 0
mod w.

• Fortunate Pentanomial: A pentanomial with at
least two of these equations are verified : n−a≡ 0
mod w, n−b≡ 0 mod w and n− c≡ 0 mod w.

A lucky trinomial is rare and a lucky pentanomial
does not exit if 4|n or n ≡ ±3 mod 8. These kinds
of polynomials can save several shift operations com-
pared to a classical polynomial used in cryptogra-
phy. With a simple script in Sage (The Sage Develop-
ers, 2017) we searched all lucky trinomials and pen-
tanomials for fields of bit lengths between 163 and
571: we found only 6 lucky trinomials compliant with
a 32-bit architecture, i.e. whose representation is a
multiple of 32. As for pentanomials fitted for 32-bit
architectures, we have a larger number of them over
several finite fields.

In the case of the field F2257 , we found the lucky
trinomial x257 + x65 + 1, but on a 32-bit architecture
(or any other architecture actually), a field element
shall be stored onto 9 registers with only one bit in
the last (uppermost) register. We might “waste” many
store and load operations for only one bit. Such
choices could have severe drawbacks for implemen-
tation of ECC in IoT devices. So, we select our own
fields and polynomials to maximize the number of
bits in the last register so as to minimize the number
of load and store instructions used (even if we later
keep in the end F2257 as intermediate field between
F2223 and F2313 ).

We first selected a set of lucky trinomials for 32
architectures with different sizes to target different se-
curity levels. We split our searches/findings into lay-
ers of minimum security levels of 112, 128, 192, 224
and 256 bits.

We also realised that most of those polynomials
would also be compatible with 64-bit platforms (in
case we wanted to anticipate for the day when such
platforms would be available for IoT devices), except
for the trinomials of F2479 and F2521 . So we did the ad-
ditional effort of looking for polynomials compatible
with 64-bit data widths for the latter levels of security:
hence we ended up with two additional pentanomials
in F2487 and F2569 .

The list of polynomials hence generated is as fol-
lows:

F2223 : x223 + x159 +1

F2257 : x257 + x65 +1

F2313 : x313 + x121 +1

F2431 : x431 + x303 + x239 + x111 +1

F2479 : x479 + x255 +1

F2487 : x487 + x295 + x167 + x39 +1

F2521 : x521 + x489 +1

F2569 : x569 + x441 + x313 + x121 +1

Table 1 compares these polynomials with those
from the NIST in terms of number of logical opera-
tions (xor, shift, and) for a general purpose 32-bit ar-
chitecture. We targeted a generic 32-bit architecture
(excluding ARM-like architectures like where pre-
shift operations are available to replace the sequence
of logical instructions XOR-AND).

At this stage, we have selected a set of finite fields
to match different security levels from 112 to 256 bits.
With these selected binary fields we can now build the
corresponding Binary Edwards Curves.

3 Binary Edwards Curves

Among the recently proposed models of ellip-
tic curves for cryptography, Binary Edwards Curves
(BEC) exhibit several interesting properties, (Bern-
stein et al., 2008b) (Bernstein, 2009). First, these
curves favour implementations that will be intrinsi-
cally safe against a set of side channel and fault at-
tacks (see Section 5). In fact, these curves have a
complete group law and can be used with the Mont-
gomery ladder algorithm. Moreover, the binary field
arithmetics avoid leakages exploiting the carry prop-
agation. Second, these curves allow an efficient arith-
metic when using the correct coordinates’ representa-
tions and fast arithmetics in binary fields. Thanks to
the latter characteristics, BECs might, in our opinion,
be interesting candidates for IoT applications.

3.1 Construction and definition

In (Edwards, 2007), Harold Edwards introduced a
new model for elliptic curves allowing efficient com-
putations for the elliptic curves’ arithmetics. The
main interesting feature for us is the complete group
law on this curve giving one same formula for addi-
tion and doubling . The Edwards equation is:

x2 + y2 = 1+dx2y2



Security level Polynomials # logical operations # 32-bit registers
80 x163 + x7 + x6 + x3 +1 74 6
112 x223 + x159 +1 38 7

x233 + x74 +1 62 8
128 x257 + x65 +1 44 9

x283 + x12 + x7 + x5 +1 152 9
x313 + x121 +1 53 10

192 x409 + x87 +1 108 13
x431 + x303 + x239 + x111 +1 99 14

224 x479 + x255 +1 78 15
x487 + x295 + x167 + x39 +1 114 16

256 x521 + x489 +1 79 17
x569 + x441 + x313 + x121 +1 135 18

x571 + x10 + x5 + x2 +1 296 18
Table 1: Comparison (in terms of number of logical operations) between different polynomials as modulus (the ones in bold
characters are ours).

where d is not a square in Fp. In (Bernstein et al.,
2008b) (Bernstein, 2009), Bernstein et al. constructed
an equivalent to Edwards curves onto binary fields.
Definition 1. Binary Edwards Curves (BEC): Let K
be a field of characteristic 2 and let d1,d2 ∈ K with
d1 6= 0 and d2 6= d2

1 +d1. The Binary Edwards Curve,
with coefficients d1 and d2, is the affine equation:

Ed1,d2 : d1(x+y)+d2(x2+y2) = xy+xy(x+y)+x2y2

From this definition, we have the following interest-
ing proprieties. This curve is symmetric and we have
∀P ∈ E(K),P = (x,y)⇒ −P = (y,x). With this as-
sumption, we define the neutral point of the group law
by (0,0).
Definition 2. Projective closure: The projective clo-
sure of the BEC Ed1,d2 is:

d1(X+Y )Z3+d2(X2+Y 2)Z2 =XY Z2+XY (X+Y )Z+X2Y 2

The last important aspect of this construction is that
each BEC is birationally equivalent to a Weierstrass
form:

v2 +uv = u3 +(d2
1 +d2)u2 +d4

1(d
4
1 +d2

1 +d2
2)

We can hence define the mapping φ(x,y)→ (u,v) for
this equivalence by:

u = d1(d2
1 +d1 +d2)

x+ y
xy+d1(x+ y)

v = d1(d2
1 +d1 +d2)

(
x

xy+d1(x+ y)
+d1 +1

)
And the inverse mapping φ−1(u,v)→ (x,y) by:

x =
d1(u+d2

1 +d1 +d2)

u+ v+(d2
1 +d1)(d2

1 +d1 +d2)

y =
d1(u+d2

1 +d1 +d2)

v+(d2
1 +d1)(d2

1 +d1 +d2)

3.2 Arithmetics on BEC

There are special cases where the arithmetics asso-
ciated with the BEC can be optimised. For the case
where d1 = d2 we have the following equation for a
BEC:

d(x+ y+ x2 + y2) = xy+ xy(x+ y)+ x2y2 (1)

with the condition @t ∈ K⇒ d = t2+ t. In the follow-
ing sections, we consider this particular case of BECs.

Addition and doubling: Efficient arithmetics on el-
liptic curves depend on the choice for the coordinates’
representation. In the case of BECs, the projective w-
coordinate with differential additions and doublings
(Bernstein et al., 2008b) is the fastest way for do-
ing points addition and point doubling. The idea of
the differential w-coordinate is to represent a point
P(x,y) of the curve by w(P) = x + y. In this way,
we can compute w(2P) and w(Q + P) given w(P),
w(Q) and w(Q− P). Let P and Q be two points
of the curve, and let w(P) = W2/Z2, w(Q) = W3/Z3
and w(Q−P) = w1, we compute w(2P) =W4/Z4 and
w(Q+P) = W5/Z5 with Algorithm 1. This kind of
coordinates is well suited for implementing the Mont-
gomery ladder (see Algorithm 3) to compute the ex-
ponentiation of a point.

For an “Add and Double operation” we have only
5 field multiplications, 4 squares and 2 multiplica-
tions by d. The Montgomery ladder computes w(kP)
and w(kP + P) with an addition and a doubling at
each step. The use of w-coordinates appears to be the
best way to compute scalar exponentiations. In the
Algorithm 1 for the addition and doubling we use a
scalar w1 = w(Q−P). In the case of the Montgomery
ladder (Joye and Yen, 2002) as given in Algorithm



Algorithm 1 w-coordinates Adding and Doubling
Require: W2,Z2,W3,Z3,w1
1: C←W2.(Z2 +W2)
2: V ←C.W3.(Z3 +W3)
3: W4←C2

4: Z4← d(Z2
2)

2 +W4
5: Z5←V +d(Z2.Z3)

2

6: W5←V +Z5.w1
7: return W4,Z4,W5,Z5

3, the difference R1−R0 is invariant at each step of
the ladder. In other words the scalar w1 is a constant
scalar.

Recently, new formulae for w-differential adding
and doubling have been proposed to save a multipli-
cation by d (Kim et al., 2014) (Koziel et al., 2015):
an additional squaring can be saved with the Co-Z
trick which performs W2

Z + W3
Z = W4

Z′ and 2× W2
Z = W5

Z′ .
Finally, the addition and doubling operations can be
written as :

W4

Z′
=

(W2 +W3)
2 + 1

w1
(W2 +W3)

2

Z2 + 1
w1
(W2 +W3)2

W5

Z′
=

(W2(W2 +Z))2

dZ4 +(W2(W2 +Z))2

Algorithm 2 gives the computation of these coordi-
nates. In this case the Adding and Doubling opera-
tion takes 5 multiplications, 1 multiplication by d and
4 squarings.

Algorithm 2 w-coordinates Adding and Doubling re-
visited with the Co-Z trick.
Require: W2,W3,Z, 1

w1

1: C← (W2 +W3)
2

2: D← Z2

3: E← 1
w1

C
4: U ← E +C
5: V ← E +D
6: S← (W2(Z +W2))

2

7: T ← S+dD2

8: W4←UT
9: W5←V S

10: Z′←V T
11: return W4,W5,Z′

With this kind of coordinates (with the Co-Z
trick), we loose the completeness of the addition
group law in favour of an “almost” complete addition
law. In fact, if w(P−Q) = 0 we cannot define 1

w1
used

in the Algorithm 2. Recently, (Rezaeian Farashahi
and Hosseini, 2017) defined a new kind of coordi-
nates also “almost” complete with the same efficiency

Algorithm 3 Montgomery Ladder

Require: w(P),k = (kt−1, ...,k0)2
1: R0← O
2: R1← P
3: for j = t−1 to 0 do
4: if k j = 0 then
5: R1← R0 +R1
6: R0← 2R0
7: else
8: R0← R0 +R1
9: R1← 2R1

10: end if
11: end for
12: return R0 = w(kP),R1 = w(kP+P)

as the mixed differential w-coordinates with Co-Z
trick. However, (Rezaeian Farashahi and Hosseini,
2017) uses an advanced definition of w by w(x,y) =

x+y
d(x+y+1) and does not use the Co-Z trick. In this way,
to recover affine coordinates from the Montgomery
Ladder’s output we have to compute two inversions
against only one for mixed differential w-coordinates
with Co-Z trick.
Recovering the affine coordinates from the w-
coordinate: The Montgomery Ladder (Algorithm 3)
computes w2 = w(kP) and w3 = w(kP+P). We can
calculate the x coordinate of kP with the output of the
Montgomery Ladder and with P = (x1,y1) using the
following equation from (Bernstein et al., 2008b):

x2 + x =
w3(d +w1w2(1+w1 +w2)+w2

1w2
2)+d(w1 +w2)+(y2

1 + y1)(w2
1 +w2)

w2
1 +w1

This formula requires 1 inversion, 4 multiplications
and 4 squares. From there we have to solve a equa-
tion x2 + x = A if the trace of A is zero. For a fixed
generator point, we can save the inversion operation
if w2

1 +w1 is precomputed. We can also recover the y
coordinate with

y2 + y =
d(x+ x2)

d + x+ x2

3.3 Generating secure Binary Edwards
Curves

The first issue we wanted to resolve was to have
curves that provide the required level of security (i.e.
at minimum at 128-bit level of security as recom-
mended by the NIST since December 2015). So far,
to the best of our knowledge, the only BEC curve pro-
posed by Bernstein in (Bernstein, 2009) has a security
level of 125 bits.

The first things we started implementing were
methods and tools to generate and propose a set of
BECs with different field sizes for different security



levels in order to match a targeted device’s require-
ments and the best security/efficiency (power and per-
formance) trade-offs.
In (Bernstein, 2009) the authors enumerate the fol-
lowing security requirements for a BEC (and ECC in
general):

• Prime degree of the finite field extension: The
choice of the binary field extension is essential
for fast computing but an extension field with a
non-prime degree can be attacked by the GHS al-
gorithm (Gaudry et al., 2002). Moreover a large
prime degree has to be chosen due to the birthday
paradox and has to provide a sufficient level secu-
rity. We shall target a minimum security level of
128 bits. In this way we shall use fields with an
extension degree of at least 256 bits.

• Number of points: The curve E shall have a cardi-
nal of 2c p where p is a large prime and c shall be
small (1, 2 or 3).

• Number of points on the Twist: We have the same
requirement on the number of points of the twist
of the curve E in order to ensure resistance against
some fault attacks on the original curve.

• j-invariant: The j-invariant of the BEC, 1/d8,
shall generate the extension field.

• Avoiding small discriminants: The discriminant
∆E = Tr(E)2 − 4q shall be divisible by a large
prime exactly once.

• Avoiding pairing attack: The multiplicative order
k of 2m modulo the large prime of |E| shall be
large. We have the same condition with the prime
of the twist. k is called the embedding degree of
the subgroup of the elliptic curve. NIST advises
in (Information Technology Laboratory, 2013) to
have an embedding degree greater than 20. How-
ever with the recent improvements of index cal-
culus attacks (Galbraith and Gaudry, 2016), we
have to increase this requirement. Brainpool
curves (Brainpool, 2005) have an embedding de-
gree greater than l−1

100 , where l is the prime order
of big subgroup of the elliptic curve. This require-
ment is somehow “overrated”, but we choose to
check it anyway, as it is very easy for an elliptic
curve with a large subgroup of prime order to sat-
isfy this criterion.

Based on these requirements, we can check, for
each d, if a given curve is secure. In practice, we start
with parameters d with a small Hamming Weight, first
with binomials, trinomials, quadrinomials and finally
with pentanomials. Almost all tested curves fail to
the “number of points” criterion. Hence the principal
operation for generating & testing a BEC is to run a

point counting algorithm. We implemented the AGM
method (Cohen et al., 2006) to perform this counting.
Moreover, to avoid counting the number of points on
the twist, we use the relationship between a curve E
and its twist Etw such that |E|+ |Etw|= 2q+2 to de-
termine the number of points on the twist.

Using the above implemented algorithms, we
managed to build new BECs on alternative fields with
optimal finite field arithmetics and respecting all the
security requirements. We implemented this algo-
rithm in C language and based on the FLINT library
(FLINT, 2015). For our first trial, the program was
run over an Intel i5-6200 at 2.40GHz over a Linux
virtual machine on Windows. After two full days of
running, we built the following BEC on F2313 :

F2313 [t] =
F2[X ]

(X313 +X121 +1)

d = t38 + t33 + t28 +1

|E|= 22× (2311−23801035639178335780622897191462018186156241745)

|Etw|= 2× (2312 +47602071278356671561245794382924036372312483491)

This curve verifies all the above security requirements
as illustrated below:

• 313 is a prime number and avoids the GHS attack
on F2313 .

• The number of points of E in F313 is 4p1 where
p1 is a large prime.

• The number of points of the quadratic twist of E,
Etw, is 2p2 where p2 is a large prime.

• The j-invariant 1/d8 generates F2313 .

• (2313 + 1− 4p1)
2 − 2315 is divisible by a large

prime and avoids small discriminants.

(2313 +1−4p1)
2−2315

−1887935404880658993146706844859746511

• The multiplicative order of 2313 modulo p1 is not
small, exactly (p1− 1)/2. The multiplicative or-
der of 2313 modulo p2 is not small, exactly p2−1.

Likewise other curves with different sizes have
been generated as given in Appendix.

4 Optimal group generator

Now that we have set methods and tools for opti-
mal (i.e. respecting our security and 32-bit oriented
implementation constraints) field representations
and parameter d for a BEC, we have now to choose
a generator of the elliptic curve sub-group used to



perform an exponentiation. In this case, the security
of the protocol is based on the difficulty of the DLP
in this sub-group. In fact DLP is hard to solve onto
elliptic curves group. We selected a curve with a
large sub-group, i.e. with a number of points divisible
by a large prime. In our case we have curves with a
number of points n = 2c p with c = 1,2 or 3 and p a
large prime. So, we look for a point of the curve of
order p.

We can select a random point G of order p but,
in this case, the w-differential coordinate of G is a
random scalar. However in the “Add and Double”
formula of the BEC (Algorithm 2) we have a mul-
tiplication by the scalar 1

w1
. Due to the property of

the Montgomery Ladder, 1
w1

is invariant at each step
of the ladder. In this case, if we can find a generator
G with a 1

w(G) having a small Hamming Weight, we
can expect to reduce the number of multiplications
for the addition and doubling steps from 5 to 4
multiplications.

If we consider w = x+y, then from the equation 1
of a BEC with a parameter d, we have a new equation
of BEC:

d(w+w2) = x4 +(1+w+w2)x2 +(w+w2)x (2)

So, for a chosen w we can find an x coordinate from
the equation 2 and a y coordinate from the initial
equation 1. We choose an inverse w-coordinate for G
with a small Hamming Weight.

In the previous section we took as example the
BEC over F2313 with modulus x313 + x121 + 1 and
d = t38 + t33 + t28 +1. If we use this method to build
a friendly generator for this curve we find a generator
G with:

Gx =0x15c67e3024c7c27466e72a3391256e9a729fc15

8092053d89087c0f38408b214b0ade57363ea938

Gy =0x15c67e3024c7c27446e72a3391256e9a529fc15

8092053d8b087c0f38408b214b0ade57363ea938

G1/w = 0x10000000000000001

1
w is reduced to t64+1. So, the multiplication by w1 in
the “Add and Double” formula, Algorithm 2, is sim-
ply done using 9 XOR operations.

5 Considering physical attacks

We are working on a software implementation of
these new curves for a 32 bit RISC V architecture.
The implementation has been done keeping in mind

resistance to side channel and fault attacks, based
on several factors: the intrinsic choices made dur-
ing the curves’ and parameters’ generations, the al-
gorithms used for implementing some of the basic
operations and the additional countermeasures from
the literature. For example the completeness propri-
eties of BECs and the use of the Montgomery ladder
offer a first level of security against side channel at-
tacks. Moreover we have hard-coded the d parameter
of the curve and the 1

w parameter of the point gener-
ator to avoid any attack of invalid curve analysis and
invalid point analysis. Against attacks like Correla-
tion Power Analysis (CPA), Template Attacks, Hori-
zontal Attacks or Differential Fault Attacks (DFA) we
added countermeasures like randomization of the co-
ordinates and of the scalar (Fan et al., 2010a). Table 2
summarizes the theoretical advantages of the BEC
model with respect to Side Channel Attacks (SCA)
and Fault Attacks (FA).

6 Performances

We implemented this new set of elliptic curves
on a RISC V core running at 100 MHz. No spe-
cial instruction has been added to the RISC V, which
means that we have a software only implementa-
tion. We have decided to implement the differen-
tial w-coordinates system, as described above, with
two cases, one with the optimized generator and the
other with a random generator. We added the projec-
tive coordinates system for an interesting comparison
and to show how the w-coordinates could be useful
for ECC implementations. For the finite field mul-
tiplication in GF(2n) we use a López-Dahab multi-
plication (Aranha et al., 2010). The exponentiation
computation is performed by using a Powering Mont-
gomery Ladder (Joye and Yen, 2002). All functions
for the finite field arithmetics are written in Assem-
bly Language and functions for ECC arithmetics in
C language. The performances are given in Table 3
and the parameters of these new set of BECs are pro-
vided in the appendix. These performances are for a
computation of kP without countermeasures, even if
as explained in Section 5 and in Table 2, we are the-
oretically secure against against a set of side channel
attacks and fault attacks. First of all, the gap between
projective coordinates and w-coordinates is huge, of
the order of 355% between both coordinates system.
The gain in performance between an optimized gener-
ator and a random generator in w-coordinate is around
19%. In terms of absolute time, this gain is low for
small curves but for large curves this gain could be
very important, almost 100ms for the largest curve. In



Physical Attacks
Intrinsic Resistance Remaining vulnerability

Due to choice of parameters of
BEC

Due to implementation done Additional countermeasure im-
plemented

Timming Attack (Kocher, 1996) Unified arithmetics Use of Montgomery ladder -
SPA (Fan et al., 2010b) Constant time programming

DPA (Kocher et al., 1999) - - Randomization

Template Attack (Herbst and Med-
wed, 2008)

of coordinates (Coron, 1999)

Relative Doubling Attack (Yen
et al., 2005)

- - Blinded scalar (Coron, 1999)

RPA/ZPA (Akishita and Takagi,
2003)

w-coordinates arithmetics Direct implementation of the gener-
ator

-

Carry-based Attack (Fouque et al.,
2008b)

Binary curves chosen - -

Horizontal Attack (Clavier et al.,
2010)

- - Attack model to be tested

Safe error (Fan et al., 2010b) - Use of Montgomery ladder -
Invalid point analysis (Biehl et al.,
2000)

- - Verify that point in on the curve

Invalid curve analysis (Ciet and
Joye, 2005)

Curves’ parameters on Twist for eg Direct implementation of curve pa-
rameter

-

Twist Attack (Fouque et al., 2008a) Curves’ parameter for Twist - -
Differential Fault Attack (Biehl
et al., 2000)

- - Blinded scalar (Coron, 1999)

Table 2: SCA and Fault Attacks against BEC-based ECC

our opinion, the next step for better performance is to
add a carry-less multiplication instruction to the set of
the RISC V instructions. In fact, the finite field multi-
plication is the bottleneck for the computation of kP.
It is hard to compare these results with other results in
the literature. To the best of our knowledge, the per-
formances presented in this paper are the first public
results for a RISC V architecture. We can compare
with performances of MbedTLS on an ARM M3 run-
ning at 96MHZ presented in (Tschofenig et al., 2015).
For a security level of 128 bits, an ECDSA signature
(where the main operation is the kP operation) takes
122 ms with the standard secp256r1 curve, which is
to be compared to 46 ms (for the kP operation) in
our case. Note moreover that the performances in
(Tschofenig et al., 2015) are given for a sliding win-
dow implementation, which is very efficient in terms
of timing performances, but still vulnerable to side
channel and fault attacks.

7 Conclusion

In this paper, we described how we generated a
new set of Binary Edwards Curves which might be
efficient, secure and low power alternatives for imple-
menting elliptic curves cryptography in IoT devices.
The optimization of the w-coordinate of the point gen-

erator allows a speed up if these coordinates are used
with the Montgomery Ladder. This new set of curves
covers different security levels to offer the possibil-
ity of making the best trade-off between security and
execution time. These curves are built with a 32-bit
architecture in mind but they are also compliant with
smaller architectures (8 and 16 bits) and larger ones
(64 bits). Using Binary Edwards Curves might allow
to have some intrinsic protections against a set of side
channel and fault attacks. Future work will consist
in validating the expected “physical security” proper-
ties in practice. As the BEC model allows a complete
compliance with the Weierstrass model, we shall also
study how the use of BEC curves can be compliant,
in practice, with already deployed implementations of
ECDSA on Weierstrass curves. We shall also work on
the implementation of a dedicated hardware accelera-
tor in order to take advantage of the carry-less opera-
tions.
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APPENDIX

In this annex we propose a new set of binary el-
liptic curves with the finite field representation, BEC
parameter and the Weierstrass form, a “friendly” (i.e.
adapted to 32-bit architectures) generator G and co-
ordinates in Weierstrass form. Each curve was gener-
ated using the previously described methods and they
are composed of the following parameters:

• m is the size of the extension of F2.

• f is the modulus defining the representation of the
finite field.

• d is the parameter of the curve in BEC form, equa-
tion 1.

• Gx, Gy and G1/w are the coordinates of a
friendly generator in BEC form with G1/w the w-
coordinate such as G1/w = 1

w where w = Gx +Gy.

• n is the number of points of the curve.

• p is the prime order of the sub-group generated by
G

• h is the cofactor.

We make the choice of generating a curve over
223 bits which does not reach the 128 bits security
level due to the very interesting performance proper-
ties of such curves: in a very constrained environment
on a very low power devices, a trade off between se-
curity and efficiency could be done.

m = 223
f = x223 + x159 +1
d = t64 + t36 + t5 +1

Gx = 205bfedd71b0b0fdfeb3345af71cc721790e83
c4b88094e9a63f6d43

Gy = 205bfeddf1b0b0fd7eb3345af71cc721790e83
c4b88094e9a63f6d43

G1/w = 100000001
n = 134799733335753198973335075435098178

98877363662863184062623242975476
p = 336999333339382997433337688587745447

4719340915715796015655810743869
h = 4



m = 257
f = x257 + x65 +1
d = t65 + t31 + t14 +1

Gx = 16b46e24aa4b12ab2289fcd3417615387810f0
83f43419d8cae38ad9ac640d960

Gy = 16b46e24aa4b12aba289fcd3417615383810f0
83f43419d8eae38ad9ac640d968

G1/w = 1000000000000000000000000000000000000
000000000000

n = 231584178474632390847141970017375815706
332616967362709021140632923291797618908

p = 578960446186580977117854925043439539265
83154241840677255285158230822949404727

h = 4

m = 313
f = x313 + x121 +1
d = t38 + t33 + t28 +1

Gx = 15c67e3024c7c27466e72a3391256e9a729fc
158092053d89087c0f38408b214b0ade5736
3ea938

Gy = 15c67e3024c7c27446e72a3391256e9a529fc
158092053d8b087c0f38408b214b0ade5736
3ea938

G1/w = 10000000000000001
n = 166873987181321100187111070794496258

953336290808161456226545492179886000
18895406224309766337212

p = 417184967953302750467777676986240647
383340727020403640566363730449715000
4723851556077441584303

h = 4

m = 431
f = x431 + x303 + x239 + x111 +1
d = t83 + t66 + t17 +1

Gx = 4e1765c1f2f6140db17d5ef2f14c59a38a93e5
b65ba9acca547bf2cc34f3d55bd85ccf4daeaf
7ca1becaa8ee877b01f8d8acae12b210

Gy = 4e1765c1f2f6140d317d5ef2f14c59a30a93e5
b65ba9acca547bf2cc34f3d55b585ccf4daeaf
7ca13ecaa8ee877b01f8d8acae12b210

G1/w = 10000000000000001
n = 554533938824162971915682836828616740

687287415075163315034095916131188222
853620417205051641025857549800325003
9698819164222488620692

p = 138633484706040742978920709207154185
171821853768790828758523979032797055
713405104301262910256464387450081250
9924704791055622155173

h = 4

m = 479
f = x479 + x255 +1
d = t73 + t29 + t3 +1

Gx = 7bdd9f19e11e888e80d7c093092d208b4fe99
6e8fcbdffa28cc90173ece2c43673f1372e975
ba9dcd3a06332abf15dbe9b679f6c63e30b88
4ab93272

Gy = 3bdd9f19a11e888e40d7c093492d208b8fe99
6e8bcbdffa24cc90173ece2c436f3f1372e175
ba9dc53a063322bf15dbe1b679f6ce3e30b88
cab93272

G1/w = 10000000000000001
n = 15608742751579961156907986148965831

52874299071332485575429578479812685
86941544801971795445881886763046934
69803241139597788961643097959459945
58356

p = 390218568789499028922699653724145788
218574767833121393857394619953171467
353862004929488614704716907617336745
081028489944724041077448986498639589

h = 4

m = 487
f = x487 + x295 + x167 + x39 +1
d = t69 + t33 + t15 +1

Gx = 339b843c53c409543f396d39e57efde813f06
e3099735004b999b15776a75a4c3a22dcaf1e
91e261fe479b89a64d65103928195d727bd3
d157735b2071

Gy = 339b843c53c40954bf396d39e57efde893f0
6e30997350043999b15776a75a4c3a22dcaf
1e91e261fe479b89a64d6510b928195d727b
d3d1d7735b2071

G1/w = 10000000000000001
n = 3995838144404470056168444454135252871

3582056226111630730997209083204758260
1818621382266938545215444668253454986
755337077661569719769645413325977844

p = 9989595361011175140421111135338132178
3955140565279076827493022708011895650
4546553455667346363038611670633637466
88834269415392429942411353331494461

h = 4

m = 521
f = x521 + x489 +1
d = t66 + t29 + t28 +1

Gx = 16b369b497b805e6199a342909aa4608cdc
ecb10e0988ba73eb1f1186039c8b1f6d2a9
db39b1302d29d9d449b9aa459cc5d6bbb4e
33a1eb8fcc056ce724cde5aaa8

Gy = 16b369b4b7b805e6199a342909aa4608cdc
ecb10e0988ba73eb1f1186039c8b1f6d2a9
db39b1302d29d9d449b9aa459cc5d6bbb4e
33a1eb8fcc056ce724cde5aaa8

G1/w = 100000001
n = 686479766013060971498190079908139321

726943530014330540939446345918554318
339765708943950328983162243962653943
419778613112216264068985797800513224
0328602782204

p = 171619941503265242874547519977034830
431735882503582635234861586479638579
584941427235987582245790560990663485
854944653278054066017246449450128306
0082150695551

h = 4

m = 569
f = x569 + x441 + x313 + x121 +1
d = t56 + t45 + t41 +1

Gx = 195b22b2864ee08dd456bab1a95cdd8c7e3
fd330fddf630f9c3bb5c33f062b341c919c
6bb4cbf1d4335a344ed023b319585ea0e16
f03453cc5ba9a86a4b28b16e1c72ad75f11
41f

Gy = 195b22b2864ee08df456bab1a95cdd8c5e3
fd330fddf630f9c3bb5c33f062b341c919c
6bb4cbf1d4135a344ed023b319785ea0e16
f03453ce5ba9a86a4b28b16e1c72ad75f11
41f

G1/w = 10000000000000001
n = 193226876150862917234767594546599367

214946366485321749932861762572575957
114478021226803243121352042256909941
058335965554184749327731790508484922
4650340025220880067199309308

p = 483067190377157293086918986366498418
037365916213304374832154406431439892
786195053067008107803380105642274852
645839913885461873319329476271212306
162585006305220016799827327

h = 4

For each curve, we selected the one with the best
friendly generator among a set of generated curves.
Computations were done on a cluster of 80 cores run-
ning Scientific Linux 6 during one and a half month
generating 48 new curves of different sizes.


