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I'"CONVERGENCE OF NONCONVEX UNBOUNDED INTEGRALS IN
CHEEGER-SOBOLEV SPACES

OMAR ANZA HAFSA AND JEAN-PHILIPPE MANDALLENA

ABSTRACT. We study I'-convergence of nonconvex integrals of the calculus of variations in
the setting of Cheeger-Sobolev spaces when the integrands have not polynomial growth and
can take infinite values. Applications to relaxation and homogenization are also developed.
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1. INTRODUCTION

Let (X, d, ) be a metric measure space, where (X, d) is separable and complete and p is a
doubling positive Radon measure on X which satisfies the annular decay property, supporting
a weak (1, p)-Poincaré inequality with p > 1. Let m, N > 1 be two integers, let O < X be
a bounded open set such that u(O\O) = 0 and let (2, F,P) be a probability space. In this
paper we consider a family of stochastic integrals E; : H ﬁ’p (O;R™) x Q — [0, 0] defined by

Ei(u,w) = f Li(z, V,u(z), w)du(z), (1.1)
o)

where Ly : O x M x 0 — [0, 0] is a Borel measurable stochastic integrandﬂ depending on a

parameter ¢ > 0, not necessarily convex with respect to £ € IM, where IM denotes the space

of real m x N matrices, and possibly taking infinite values. The space H ;’p (O; R™) denotes

the class of p-Cheeger-Sobolev functions from 2 to R™ and V,u is the p-gradient of w.

The object of the present paper is to deal with the problem of computing the almost sure
[-convergence (see Definitions of the stochastic family {E; }i~0, as t — o0, to a stochastic
integral By, @ HP(O;R™) x © — [0, 0] of the type

Elim(u,w) = Jo L (2, V,u(z), w)dp(z) (1.2)

with Ly, : O x M x Q — [0, 0] not depending on the parameter ¢. When Ly, is indepen-
dent of the variable z, the procedure of passing from (1.1]) to (|1.2) is referred as stochastic
homogenization. If furthermore Ly, is independent of the variable w then FEy, is said to be
deterministic, otherwise Ej, is said to be stochastic. When {L,};~¢ is deterministic, i.e. L;
is independent of the variable w for all ¢ > 0, the procedure of passing from to is

referred as deterministic homogenization.

This I'-convergence problem was already studied in [AHMI17] in the case where L; has p-
growth. Here we treat the case where L; has not necessarily p-growth and can take infinite
values (see Sect. [2| for more details).

For related works in the Euclidean case, i.e. when (X,d,u) = (RY,|-— |, Ly) where Ly is
the Lebesgue measure on RY, we refer the reader to [Mar78|, Bra85, [DMMSE, [Mul87, [JTKO94,
MM94| BG95, BDIS| [AM02], [AM04, [AHM11, [AHLM11, [AHMZ15, DGI16L [AHCM17] and the

references therein.

One motivation for developing I'-convergence, and more generally calculus of variations, in
the setting of metric measure spaces comes from applications to hyperelasticity. In fact,
the interest of considering a general measure is that its support can be interpretated as
a hyperelastic structure together with its singularities like for example thin dimensions,
corners, junctions, etc. Such mechanical “singular” objects naturally lead to develop calculus
of variations in the setting of metric measure spaces. Indeed, for example, a low multi-
dimensional structures can be described by a finite number of smooth compact manifolds S;

IThroughout the paper, by a Borel measurable stochastic integrand L : O x M x  — [0, 0] we mean that
Lis (B(X)®B(M)®F, B(R))-measurable, where B(X), B(IM) and B(R) denote the Borel o-algebra on
X, M and R respectively.
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of dimension k; on which a superficial measure p; = H*i s, is attached. Such a situation leads
to deal with the finite union of manifolds S;, i.e. X = u;S;, together with the finite sum of
measures fi;, i.e. [t = Y. i;, whose mathematical framework is that of metric measure spaces
(for more examples, we refer the reader to [BBS97, [Zhi02, [CJLP02] and [CPSO7, Chapter 2,
§10] and the references therein).

Another motivation is the development of the calculus of variations on “singular” spaces,
which are of interest for geometers and physicists, like Carnot groups, glued spaces, Laakso
spaces, Bourdon-Pajot spaces, Gromov-Hausdorff limit spaces, spaces statisfying generalized
Ricci bounds (see [KM16] for more details). Indeed, all these spaces are examples of doubling
metric measure spaces satisfying a Poincaré inequality on which the theory of I'-convergence
on Cheeger-Sobolev spaces could be applied.

The plan of the paper is as follows. In Sect. [2] we state the main result of the paper, see
Theorem (and also Proposition whose proof is given at the end of Sect. . Theorem
is a [-convergence result of {F;}~¢ as t — o to Ey, in the setting of metric measure
spaces and in a unbounded framework. Classically, its proof is a consequence of Proposition
[2.6] (the lower bound) and Proposition (the upper bound). Sect. |3|is devoted to several
auxiliary definitions and results needed for understanding and proving our I'-convergence
result: in §3.1] we provide materials about Cheeger-Sobolev spaces; in §3.2] we recall the
concept of (family of) ru-usd] integrand(s) and its main properties that will be used in the
proof of Propositions [2.6] and [2.8 the proof of Proposition also needs the use of
the Viatli envelope of a set function which is recalled in §3.3] Sect. [ is devoted to the
proofs of Propositions and and Theorem Finally, applications to relaxation and

homogenization are developed in Sect.
Notation. The open and closed balls centered at x € X with radius p > 0 are denoted by:
B,(x) = {y € X d(z,y) < p};
By(z) = {y € X :d(z,y) < p}-
For x € X and p > 0 we set
0B,(x) i= Bp(@)\By(z) = {y € X : d(z,y) = p}.

For A ¢ X, the diameter of A (resp. the distance from a point x € X to the subset A) is
defined by diam(A) := sup, 4 d(7,y).
The symbol { stands for the mean-value integral

For F < M, where M denotes the space of real m x N matrices, the interior and the closure
of F are respectively denoted by int(F) and F.

2The abbreviation ru-usc means radially uniformly upper semicontinuous.
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2. THE ['-CONVERGENCE RESULT

We begin by recalling the definition of the almost sure I'-convergence. (For more details on
the theory of I'-convergence we refer to [DM93].)

Definition 2.1. We say that {E}};~o almost surely I'(LE)-converges as t — oo to the func-
tional Ey, : Hy?(O; R™) x Q — [0, 0] if there exists Q' € & with P(Q') = 1 such that for
every w € {2, one has:

P-lim: for every uw e H?(O; R™), T'(L%)-lim, ., Ey(u,w) > Ejm(u, w) with

F(Lﬁ)' h_m Et(u, CU) = inf {h_m Et(ut,w) SU— U in L'ﬁ(O, Rm)} :

t—o0 t—o0
or equivalently, for every u € H?(O; R™) and every {u};~0 = H.?(O; R™) such that
uy — u in L2(O; R™),

li_m Et<u67 w) = Elim(ua W),
t—00

[-lim: for every u e HP(O; R™), T'(L5)- limy o Ey(u,w) < By (u, w) with

F(Lﬁ)—tli_T?OEt(u,w) = inf {tli_%lo Ey(ug, w) :up — uwin L5 (O; ]Rm)} :
or equivalently, for every u € H?(O;R™) there exists {u;}-0 < H)?(O; R™) such
that u; — w in LP(O; R™) and

tli_m Ei(ug, w) < Ejm(u,w).
—00

Referring to the next section for any unfamiliar notation or definition, in what follows we
state the main results of the paper. Let m, N > 1 be two integers and let IM be the space
of real m x N matrices. Let G : M — [0, 0] be a Borel measurable integrand satisfying the
following conditions:

(Cq) there exists v > 0 such that for every £, € M and every 7 €]0, 1],
G(r&+ (1 —7)¢) <7(1+G(§) + G(Q));
(C2) 0 € int(G), where G denotes the effective domain of G, i.e. G :={{ e M : G(§) < oo}.

Remark 2.2. If (Cy) is satisfied then G is convex. If moreover (Cq) holds, then there exists
7 > 0 such that sup¢ o, G(§) < 0, see [AHM12Db], Lemma 4.1].

Let @,G : O x M — [0, 0] be defined by
p—0

0,G(x,€) = T in { J[B Gl Vy)duty) s we HLAB () RW)} ,

where the space H ;8 (B,(x); R™) is defined as the closure of

Lipy(B,(x); R™) := {u € Lip(O;R™) : uw = 0 on O\Bp(x)}
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with respect to the H)P-norm, where Lip(O;R™) := [Lip(O)]™ with Lip(O) denoting
the algebra of Lipschitz functions from O to R. (The integrand @,G is called the H i’p—
quasiconvexification of GG. For more details on the notion of H ;’p—quasiconvexity, we refer
to [AHM20a].) Denote the the effective domain of @,G(z,-) by @,G,. We further suppose
that:

(C3) for every z € O, 7Q,G, < int(Q,G,) for all T €]0, 1[;

(Cy) for every u € HyP(O;R™), if §, @,G(z,V,u(z))dp < oo and if V,u(z) € int(Q,G,)
for yra.a. x € O then {, G(V, u(z))dp < oo;

(Cs) for every z € O, Q,G(x,-) is lscﬂ on int(@Q,G,).

Remark 2.3. Under (Cy) and (Cy) if G = @,G, ie. G is HP-quasiconvex, then (C3) and
(C4) hold. In particular, since convexity implies H?-quasiconvexity (see [AHM20al), if G
is convex then (C3) and (Cy) hold.

Let (X,d, ) be a metric measure space, where (X, d) is separable and complete and p is a
doubling positive Radon measure on X which satisfies the annular decay property, supporting
a weak (1, p)-Poincaré inequality with

In(C,

P> K= n(Ca) where Cy > 1 is the doubling constant.

In(2)
Let O = X be a bounded open set such that x(O\O) = 0 and let (2, F,P) be a probability
space. Throughout the paper, we consider a family {L; : O x M x Q — [0,00]};=0 of
Borel measurable stochastic integrands depending on a parameter ¢ > 0 (destined to tend
to infinity) and satisfying the following conditions:

(Cg) {Li}i=0 is p-coercive, i.e. there exists ¢ > 0 such that for every ¢ > 0, every = € O,
every £ € M and every w € €2,

Lt('ra fv w) = C’€|p;

(C7) {Li}i=0 has G-growth, i.e. there exist a, § > 0 such that for every x € O, every £ € M
and every w € ),

aG (&) < Li(z, & w) < B(1+ G(9)).

Remark 2.4. If (C;) and (C7) hold then the effective domain L; .., of Li(z,-,w) is equal to
G and so is convex and does not depend on z and w.

The p-growth case, i.e. when G(&) = [£[P, was already studied in [AHMI7]. The object of
this paper is to deal with the G-growth case. For this, in addition, we need to suppose that

(Cg) for every w € €, {L;}4=0 is ru-usc at w, i.e. for every w € Q, there exists {a;(-,w)}i=o <
L1(0;]0, ]) with

lim | a;(z,w)du(r) < o (2.1)

t—0o0 1o

3The abbreviation lsc means lower semicontinuous.
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and

lim lim a(y,w)du(y) =: an(-,w) € LL(O) (2.2)

p=0E=0 J ()
such that
lim sup A} (1,w) <0,

T—=17 >0

where AT : [0,1] x Q —] — o0, 0] is given by

L — L
Atitt<7_’ w) ‘= sup sup t(xﬂ—faw) t(ﬁ,f,(ﬂ)

2.3
2€0 €€t 4 w at(l‘,w)+Lt($7§aw) ( )

with L; ,,, denoting the effective domain of L;(z, -, w).

For each ¢ > 0 and each p > 0, let Z/L; : O x M x Q — [0, 0] be defined by

Iy Li(v,§,w) = inf {J[B ( )Lt(%é’“ + Vw(y),w)du(y) : we Hy5(B,(x); Rm)} :

For each t > 0, let E;, : H;?(O;R™) x © — [0, 0] be defined by (L.I). The main result of
the paper is the following I'-convergence result.
Theorem 2.5 (I-lim). Assume that p > k. If (C1)—(Cs) hold and if

(Cy) there exists V' € F with P(2') = 1 such that for every w € Y, one has

lim lim 7Ly (x, &, w) = lim lim Z7 Ly(z, £, w)

=0 p—0t—00

for all x € O and all € Q,G,,
then {Ei}i~0 almost surely I'(LY)-converges as t — oo to the functional Eyy, : HyP(O; R™) x
Q — [0, 0] defined by (L.2) wzth Lijm : O x M x Q — [0, 0] given by

Lim(z,&,w) = lim hn(l] lim %”Lt(a: TE, W)

T—1- P

Theorem is a consequence of the following two propositions.

Proposition 2.6 (I'-lim). Assume that p > k. If (Cq), (Cz2) and (Cg)—(Cg) hold then, for
every w € §2, one has

(L) lim Fi(uo) > | lim Ty tim 727G 79 ). o))

t—00 T—1— p—0 ¢ S0 t—00

for allue HP(O;R™).

Proposition 2.7 (I'-lim). Assume that p > r. If (C1)~(Cg) hold then, for every w € Q, one
has

F(Lft)—m Ei(u,w) < fo lim lim lim X Li(v, TV u(), w)dp(z)

t—o0 71— pP—0t—00

for all we HYP(O;R™).
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Let Ly, : O x M x Q — [0, 0] be defined by

Lo(z, & w) = E@%jh(m,f,w).

(Note that if (Cy) is satisfied then L (-, -, w) = lim,_q lim;_, HLLy(+, - w) for P-ae. we )
Let Lo : O x M x © — [0, 0] be given by
-/[:OO(:E7§7W) = h_m Loo(x77£uw)

T—1—

and, for each z € O and each w € Q, let Ly (7, -,w) denotes the Isc envelope of Lo (z,-,w).
The following proposition makes more precise the formula of the limit integrand Ly, in
Theorem 2.5

Proposition 2.8. Assume that (Cs), (C7) and (Cg) hold.
(i) For every w € €,
lim Ly(z, 7€ w) if € Q,G,

Eoc(x,f,w) = lim Ly(x,7&,w) =< 7—1- .
v oo otherwise.

So, in Theorem we have Ly, = EOO.
(ii) Suppose furthermore that for every w € Q and every x € O, Ly(z,-,w) is lsc on
int(Q,G,). Then

L00<x7 57 w) fo € int(@MGﬂﬂ)
2\/C>O('r7 £, w) = Zoo(wa &, w) = Tli}l{lﬁ LOO(ZU, ¢, w) Zfé € (?@qu (24)
0 otherwise.

In such a case, in Theorem 25|, Ly, is given by (2.4)).

Proof of Proposition [2.8] From (Cg) and proposition , we can assert that for every
w € ), Ly is ru-usc at w. Moreover, by (Cy) it is easily seen that for every z € O and every
w € 1, the effective domain of L (z,-,w) is equal to @,G,. So, taking (Cs) into account,
Proposition 2.8 follows from Theorem ]

3. AUXILIARY RESULTS

3.1. Cheeger-Sobolev spaces. Let (X,d, i) be a separable and complete metric measure
space. Here and subsequently, we assume that p is doubling on X, i.e. there exists a constant
Cy; = 1 such that

1 (By(2)) < Can (By(a)) (3.1)

for p-a.a. x € X and all p > 0, and X supports a weak (1, p)-Poincaré inequality with p > 1,
i.e. there exist Cp > 0 and ¢ > 1 such that for py-a.e. x € X and every p > 0,

J[ u— J[ udp
By () Bp(z)

1

dp < pCp (J[ vpd,u) (3.2)
Bap(x)
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for every u € Lﬁ(O), every p-weak upper gradientﬁ veE Lﬁ(O) for u and every open set O < X
such that B,,(z) < O.

Remark 3.1. As pis doubling, for p-a.e. € X and every r > 0, we have (B, (x))/p( B, (7)) =

% (p/r)" for all x € B.(Z) and all 0 < p < r, where K := 111115(%) (see [Haj03| Lemma 4.7]).

We further assume that (X, d, ) satisfies the annular decay property, i.e. there exist § > 0
and Cy = 1 such that

1)
4 (Bor(2)\Bo(2)) < Ca (1 - 5) (Bor(2)) (33)

for all z € X, all r > 0 and all o €]1, o0[.

Remark 3.2. From [Buc99, Corollary 2.2] and [CM98, Lemma 3.3] (see also [Che99, Propo-
sition 6.12] and [HKSTT5|, Proposition 11.5.3 pp. 328]), under (3.1) and (3.2), if moreover
(X,d) is a length space, i.e. the distance between any two points equals infimum of lengths
of curves connecting the points, then (3.3|) holds.

Remark 3.3. If (3.3) holds then u(B,(z)\B,(z)) = 0 for all z € X and all r > 0, ie.

the boundary of any ball is of zero measure. Indeed, given x € X and r» > 0, we have

1> 5%:%3; > :L((BB;T((%)) > 1—Ca(1 —21)° for all o €]1,0[. Hence, by letting o — 1, we

obtain % =1,ie p(B. (7)) = u(B,(1)).

Let O < X be a bounded open set. Denote the algebra of Lipschitz functions from O to
R by Lip(O). (Note that, by Hopf-Rinow’s theorem (see [BH99, Proposition 3.7, pp. 35]),
the closure of O is compact, and so every Lipschitz function from O to R is bounded.) Let
Lip(O; R™) := [Lip(O)]™ and let V,, : Lip(O; R™) — L7(O; M) be given by
Duul
V,u = : with u = (ug, -, Up),

D,

where D, : Lip(O) — L?(O;RY) is the differential of Cheeger (see [Che99, Theorem 4.38]
and [Kei04, Definition 2.1.1 and Theorem 2.3.1] for more details). The p-Cheeger-Sobolev
space H }L’p (O;R™) is defined as the completion of Lip(O; R™) with respect to the norm

||U||H};P(o;1am = |l zzomm) + [Vt zomy- (3.4)

As [ Vyul pp o < HUHW;,p(O;Rm) for all u € Lip(O; R™), the linear map V,, from Lip(O; R™)
to L?(0O; M) has a unique extension to H?(O; R™) which will still be denoted by V,, and
will be called the u-gradient. For more details on the various possible extensions of the

4A Borel function v : O — [0, 0] is said to be an upper gradient for u : O — R if |u(c(1)) — u(c(0))| <
So ))ds for all continuous rectifiable curves ¢ : [0,1] — O. A function v € LE(O) is said to be a p-weak
upper gradlent for u € LE(O) if there exist {u,}, < LF(O) and {v,}, = L%(O) such that for each n > 1,
vy, is an upper gradient for u,, u, — w in L} (O) and v, — v in L% (O). For more details we refer to
[IK98, [Che99].
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classical theory of the Sobolev spaces to the setting of metric measure spaces, we refer to

[Hei0T], §10-14] (see also [Che99, [Sha00l [GT01l, Hajo3]).

The following proposition brings together useful known properties for dealing with calculus
of variations in the metric measure setting. (For a proof we refer to [HKST15] and [AHM20al,

§7].)

Proposition 3.4. Under (3.1)), (3.2) and (3.3)) the following properties hold:

(i) O satisfies the Vitali covering theorem, i.e. for every A = O and every family B of
closed balls in O, if inf{p > 0 : B,(x) € B} = 0 for all v € A (we say that B is a
fine cover of A) then there exists a countable disjoint subfamily B’ of B such that
(1(A\ Upes B) = 0; in other words, A < (Upeg B) U N with p(N) = 0;

(ii) the p-gradient is closable in H)P(O;R™), i.e. for every u € HyP(O;R™) and every
open set A < O, if u(x) =0 for p-a.a. v € A then V,u(z) =0 for p-a.a. x € A;

(iii) O supports a p-Sobolev inequality, i.e. there exists Cs > 0 such that

1 =

(j Ivl”du> < Cs (j rvuvwdu)
By(x) By ()

for all 0 < p < po, with pg > 0, and all v € H;:g(Bp(x); R™), where, for each open set
AcO, H;ZS(A; R™) is the closure of Lipy(A; R™) with respect to H,P-norm defined
mn with
Lipy(A; R™) := {u € Lip(O; R™) : u = 0 on O\A};
(iv) for every u € HyP(O;R™) and p-a.e. x € O there exists u, € HyP(O;R™) such that:
V,u.(y) = V,u(z) for p-a.a. ye O;

lim ~ s — ~0ifp>
pl_f)l(l)p U — Ug||LP (By(z)Rm) = Y Y P = K,

where Kk = 1?15(02‘3) with Cy = 1 given by the inequality (3.1));
(v) for every x € O, every p > 0 and every A €]0,1[ there exists a Urysohn function
¢ € Lip(O) for the pair (O\B,(z), BAp(x)) such that
0
D 0 (ORN) < ————
| u%pHL# (O;RN) p(1— )

for some 6 > 0;
(vi) for p-a.e. x € O,

im ]imMB’\—”(ZE)) — lim mN(BAp(x))

lim -1

A=1- o0 ((By(x))  A=1- =0 p(B,(2)) ’

SGiven a metric space (O, d), by a Urysohn function from O to R for the pair (O\V, K), where K < V < O

with K compact and V open, we mean a continuous function ¢ : O — R such that ¢(x) € [0,1] for all z € O,
o(x) =0 for all z € O\V and ¢(x) =1 for all z € K.
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(vii) for every u e HP(O;R™) and every ¢ € Lip(O),
Viulpu) = oV,u+ D,y @ u.

Remark 3.5. As p is a Radon measure and O satisfies the Vitali covering theorem, for every
open set A < O and every € > 0 there exists a countable family {B,. (z;)}:e; of disjoint open
balls of A with z; € A, p; €]0,¢[ such that u(A\ Uier By, (a:l)) = 0. By the annular decay
property, see (3.3), we also have (0B, (x;)) = 0 for all i € I (see Remark [3.3).

In the framework of the p-Cheeger-Sobolev spaces with p > k := In(Cy)/In(2), where Cyq > 1
is the doubling constant, we also have the following L7’-compactness result.

Theorem 3.6. Assume that p > r and p(O\O) = 0. If u € H?(O;R™) and {up}, <
HP(O;R™) are such that

lim fup = uf pomm) = 0 and sup |Vt 22 0mr) < 0, (3.5)

then, up to a subsequence,

lim Jup, —uf gz 0mm) = 0. (3.6)

Proof of Theorem [3.6l Since (X,d, u) is a complete doubling metric space, (X,d, ) is
proper, i.e. every closed ball is compact (see [HKSTT5, Lemma 4.1.14]), and so (O, d|5,5)
is compact. Thus, as (O\O) = 0 we can assert that (O, d|g,5, 1tlg) is a compact doubling
metric measure space supporting a weak (1,p)-Poincaré inequality. In what follows, to
simplify the notation we set (Y,8,v) := (0, d|5.5, 11l5)-

Step 1: two auxiliary lemmas. We need the following two lemmas (cf. Lemmas and

33).

Lemma 3.7. If p > k then for every r > 0 and v-a.e. T €Y there exists C(r,z) > 0 such
that
oly) — ula)| < CO5(0) ([ Waalrar)’
B

for allue HYP(Y;R™) and all y, z € B.(T), where o =1 is given by (3.2).

607"(-%)

Proof of Lemma [3.7l. From [Haj03| Theorem 9.7] we can assert that there exists ¢ > 0
such that

w(y) - w(e)| < erfot ) (f ()gzdv)p 37)

for all we H?(Y),all z €Y, all r > 0 and all y, z € B,(Z), where o > 1 is given by ({3.2)
and g, € L2(Y") denotes the minimal p-weak upper gradient for w. On the other hand, from
Remark it is easy to see that for every r > 0 and v-a.e. T € Y there exists 0(r,z) > 0
such that

V(B (%)) = 0(r,z)r".
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But g, < a|D,w| with a > 1 (see [Che99, §4]) and so §,  _ghdv < ap§360r(f)|Dl,w|pdy.
Thus, for every r > 0, v-a.e. T €Y and every y, z € B,.(z), (3.7) can be rewritten as follows

w(y) —w(z)| < C(r,z)d(y, 2)" " » ( L |Dyw’pdy>;,

60 (Z)
with C(r,z) = ca/0(r,z) > 0. It follows that for every r > 0 and v-a.e. T €Y, we have

WM—M@|<CWW%@%VZZ(LW@WWMWY

i=1

B =

< C(r,z)d(y,2) " r (fB Z ]Dl,ui|pdl/)

6or (i’) i=1

= C(r, 7)oy, 2)" 7 ( f \V,,u]pdy) !
B6a'r(i)

for all w e HYP(Y;R™) and all y, 2 € B,(¥), and the proof of Lemma [3.7|is complete. B

Denote the space of continuous functions from Y to R™ by C(Y;R™). As a consequence of
Lemma we have the following result.

Lemma 3.8. If p > k then HYP(Y;R™) continuously embeds into C(Y;R™), i.e.
HyP(Y;R™) < C(Y;R™)
and there exists Ko > 0 such that
lullewrm) < Kollul giry mom) (3.8)
for allue HYP(X;R™). Moreover, there exists K1 > 0 such that
[uy) = u(z)| < Kid(y,2)' "7 [ Voul i (3.9)
for allue HYP(Y;R™) and all y,z €Y.

Proof of Lemma [B.8. Applying Lemma [3.7| with » = diam(Y") and for a fixed T = xg € Y,
where diam(Y") = sup{d(y, z) : y,z € Y} < o0 because (Y, ) is compact, we see that

uly) —u(z)] < C(diam(Y), 20) 6(y, 2)' % [Voul poyaw
< O (diam(Y), zo) diam(Y)' ™7 |V, ul| .o v (3.10)

for all w € H?(Y;R™) and all y,2 € Y. Hence (8.9) holds with K; = C (diam(Y), zo)

and every u € HY?(Y;R™) is (1 — %)-Holder continuous. In particular, it follows that

HYP(YV;R™) <« C(Y;R™). On the other hand, given any u € H?(Y;R™) and any y € Y/,
we have |u(y)|P < 2P (Ju(y) — u(z)|P + |u(z)[?) for all z € Y, and consequently

1

) < 2% ([ ) - u@Pa )+ 2 ey (G0
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But, by (3.10) we have
(], 1t -~ wePan)) < )50 om0 (V) 5 Foulggrng (312)
Y
Hence, combining (3.11)) and (3.12]) we deduce that for every y € Y,

1 . . _= 21ty
lu(y)] < 2720 (diam(Y), zo) diam(Y)' ¥ | Vou| oy +

1 HUHL’;(Y;Rm)
v P
< Kollu| grey gm

1+

with Ky = sup {21+11>C’ (diam(Y'), z¢) diam (V) "5, 2( L }, and (3.8)) follows. W

Y)r

Step 2: end of the proof of Theorem As M(@\O) = 0, from (3.5 we deduce that

lim |u, — UHLIZ:(Y;Rm) =0 and sup HV,,unHLg(y;]M) < o,
n—oo n=1

and 50 sup,,>1 [tn| gro(y.gmy < 0. By Lemmawe can assert that sup,,~; [unllcyrm) < o0,
i.e. {up}, is bounded in C(Y; R™) with (Y, ) a compact metric space. Moreover, using ((3.9)
we see that {u,}, is equicontinuous. Consequently, up to a subsequence,

lim Hun — UHL?IC(Y;RWL) =0
n—:oo
by Arzela-Ascoli’s theorem, and (3.6 follows because ,u(a\O) =0. 0

3.2. Ru-usc integrands. Let (X,d, 1) be a metric measure space, let O < X be an open
set, let (2, #,P) be a probability space and let L : O x M x Q — [0, 0] be a Borel measurable
stochastic integrand. For each {a(-,w)}. < L (0;]0, 0]) we define A : [0, 1] x Q —]—c0, 0]
by
L(qu§7w> — L<$7£7w)
AY(T,w) :=sup su
L( ) wEEEEIwa a(x,w) + L(Iaévw)
where L, denotes the effective domain of L(z, -, w).

Definition 3.9. Let w € Q. We say that L is radially uniformly upper semicontinuous
(ru-usc) at w if there exists a(-,w) € L} (0;]0, ]) such that

lim A (r,w) < 0.

T—17

The concept of ru-usc integrand was introduced in [AHI0] and then developed in [AHMII],
AHM12al [AHM12bl, Man13, [AHM14, [AHMZ15, [AHM18§].

Remark 3.10. If L is ru-usc at w € Q then lim,_,- L(z, 7¢,w) < L(z,£,w) for all z € O and
all £ € L,,. On the other hand, given w € (2, if there exist z € O and & € L, ,, such that
L(z,-,w) is Isc at £ then, for each a(-,w) € L},(0;10,0]), lim, ;- A}(7,w) = 0, and so if in
addition L is ru-usc at w then lim,_;- A$(7,w) = 0 for some a(-,w) € L, (0;]0, x]).

Remark 3.11. Given w € €, if, for every x € O, L(z,-,w) is convex and 0 € L, ,,, then L is
ru-usc at w.
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The interest of Definition comes from the following theorem. (For a proof we refer to
[AHM11], Theorem 3.5] and also [AHMI12bl §4.2].) Let L : O x M x © — [0, 0] be defined
by

L(l‘, 57 UJ) = h_m L(ZE, 7'6, w)‘

T1-

Theorem 3.12. Let w e Q. If L is ru-usc at w with a(-,w) and if for every x € O,
7Ly < int(LL, ) for all T €]0, 1],

where L, ,, denotes the effective domain of L(x,-,w), then:

{jg{L@ﬂfAO if € € Laow

(i) L(z,&w) := lim L(z,7¢w) =
o0 otherwise;

T—17
(i) L is ru-usc at w with a(-,w).

If moreover L(zx,-,w) is lsc on int(LL, ) then:

L(z,&, w) if € € int(L, )
(iii) L(z,6,w) = { lim Lz, 7¢w) if £ € Olay
o0 otherwise;

(iv) for every z € O, lAl(a:, -, w) 1is the Isc envelope of L(x,-,w).

The following definition extends Definition to a family {L;};~¢ of Borel measurable sto-
chastic integrands L; : O x M xQ — [0, 0]. (When L; = L for all ¢ > 0 we retrieve Definition

3-9)

Definition 3.13. Let w € Q. We say that {L;};~¢ is ru-usc at w if there exists {a;(-,w)}i=0 <
L,(0;]0,0]), satisfying (2.1)) and (2.2), such that

lim sup A7 (1,w) < 0.
T—=17 t>0

For each ¢t > 0 and each p > 0, let Z L, : O x M x Q — [0, 0] be defined by

By(z)

Z'Li(z,§,w) ;= inf {J[ Li(y, &+ V,w(y),w)du(y) :w e Hi:g(Bp(x); Rm)} :

where the space H l];jg(Bp(x); R™) is defined as the closure of
Lipo(B,(x); R™) := {u € Lip(O; R™) : uw =0 on O\Bp(x)}

with respect to the H)P-norm, where Lip(O;R™) := [Lip(O)]™ with Lip(O) denoting the
algebra of Lipschitz functions from O to R. Let Ly : O x M x Q — [0, 0] be given by
Lo (x,&, w) := lim lim £ Ly(x, &, w). (3.13)
p—0t—00
The following proposition shows that ru-usc is conserved under the operation characterized
by .

Proposition 3.14. Let w e Q. If {L;}1=0 is ru-usc at w with {a;(-,w)}i=o then Ly is Tu-usc
at w with ax(-,w) given by (2.2)).
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Proof of Proposition [3.14, Fix any 7 € [0, 1], any € O and any ¢ € Lo, ., where Lo,
is the effective domain of Ly (7,-,w). Then Ly (x, &, w) = lim, o lim; .o, HPLi(v, & w) < o0
and without loss of generality we can suppose that %/ L:(v,§,w) < o for all p > 0 and all
t > 0. Fix any p > 0 and any ¢ > 0. By definition, there exists {wy}, < H;:g(Bp(:v);Rm)
such that:

%prt(xvgaw) = hIIOlo Lt<y7£ + v#w”(y)7w)dﬂ(y)7 (314)
n- Bp(x)
E+ V,w,(y) €Ly, for all n > 1 and pra.a. y € By(x), (3.15)

where L, , ,, denotes the effective domain of L;(y, -,w). Moreover, for every n > 1,

L. 76) < (€ V) ) ()
By(x
since Tw, € H;:g(Bp(x); R™), and so

) (2, §,w) < lim ( )(Lt(w(f + Vuwn(y)), w) — Li(y, € + Vywa(y),w))du(y)  (3.16)
n—0o0 Bp T
with 6] (2,8, w) 1= Z L Li(v, 7§, w) — F L Li(r,§,w). Taking (3.15) into account, for every
n =1 and p-a.e. y € B,(x), one has
My, 6 w) < AT (T, w (at )+ Li(y, & + V,wa(y), w)),
)

with A7, (y, &, w) := Ly (y, 7(§ + Vwa(y)), w) Lt(y £ + V0, (y),w), hence

fooNangwn < ou(y )i+ § Ll €+ F,ny), )
Bﬂ(I) Bp(x Bp(x)
for all n > 1. Letting n — oo and using (3.14] D and -, it follows that

5;773(.13, 57 w) < (J[B (y) + %;Lt<m7 gv w))

< A1, w) (J[B o ar(y,w)du(y )Jr%lth(a:,f,w)) (3.17)

for all p > 0 and all ¢ > 0, where A(7,w) := sup,., A7 (7,w). By letting ¢ — o0 and p — 0
in (3.17)), we get

LOO('I7 757 w) - LOO(‘rv gv w) < A(7—7 w) (Cloo($, (,U) + Loo($, 57 w))

with ay (-, w) € L,(0;]0,0]) given by (2.2), which implies that A7 (7,w) <

e [0,1]. As {L;}i~0 is Tu-usc at w with {a;(-,w)}i=0, i.e. lim,_;- A(T,w) <

(

that lim,_;- A}* (7,w) < 0 which means that L is ru-usc at w with ay,

Remark 3.15. In the proof of Proposition we do not need (2.1) . In fact, (2.1]) will be
used in the proof of the I'-convergence result (see Sect. .

A(T,w) for all
0, we conclude
Lw). A
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3.3. Integral representation of the Vitali envelope of a set function. What follows
was first developed in [BEM9S8| [BB00| (see also [AHM16l, [AHM17, [AHCMI17, [AHM18]). Let
(O, d) be a metric space, let O(0O) be the class of open subsets of O and let u be a positive
finite Radon measure on O. We begin with the concept of the Vitali envelope of a set
function.

For each ¢ > 0 and each A € O(O), we denote the class of countable families {B; := B,, (%) }ier
of disjoint open balls of A with z; € A, p; €]0, e[ and p(@B;) = 0 such that p(A\ U, B;) =0
by Z:(A).

Definition 3.16. Given & : 6(0) — [0, o], for each £ > 0 we define §° : 6(0) — [0, 0] by

§°(A) := inf {2 S(B;) : {Bj}ier € %(A)} .

1€l
By the Vitali envelope of & we call the set function §* : O(O) — [—o0, 0] defined by
S*(A) :=supS°(A) = lir% S°(A).

e>0
The interest of Definition comes from the following integral representation result. (For
a proof we refer to [AHMIS| §3.3] or [AHCMI17, §A .4].)

Theorem 3.17. Let § : 0(0O) — [0,0] be a set function satisfying the following two condi-
tions:
(i) there ezists a finite Radon measure v on 2 which is absolutely continuous with respect
to pu such that S(A) < v(A) for all A e 6(0);
(i) & is subadditive, i.e. S(A) < §(B)+ S(C) for all A,B,C € 6(0) with B,C < A,
BnC=¢ and u(A\Bu C) = 0.

Then lim,_q igg;’g)); € L,,(0) and for every A e 6(0), one has
S(

o [ i B
5 = |l oy e

4. PROOFS
4.1. Proof of the lower bound. Here we prove Proposition

Proof of Proposition 2.6l Fix w e Q. Let u € H*(O; R™) and let {u;};~0 = H,P(O;R™)
be such that |u; — u| Lz omm) — 0. We have to prove that

lim Fy(uy,w) = J lim lim lim XY Ly(x, 7V u(r), w)dp(r). (4.1)
t—00 07r—1-P0t—0
Without loss of generality we can assume that lim, | Fy(u;, w) = limy_.o Ey(u, w) < o0, and
SO

sup Ey(u, w) < o0, (4.2)

t>0
In particular, sup,.q |V u| 2z o) < 0 because {Li}s-o is p-coercive, see (Cg). Then

V,u(xz) € G for all t > 0 and p-a.a. € O (4.3)
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and, up to a subsequence,

u — uin H,?(O;R™). (4.4)
As G is convex, see (Cq) and Remark 2.2] from (4.3)) and (.4 it follows that
V,u(x) € G for pra.a. z €O, (4.5)

As ||Ut_u‘|Hj*P(O-Rm) — 0, sup;-g |Vyue| 2 0m) < 0 and p > &, from Theoremﬁwe deduce
that, up to a subsequence,
lue = uf Lz 0mmy — 0. (4.6)

Step 1: localization. For each ¢ > 0, we define the (positive) Radon measure v, on O by
Vy = Lt(', qut(),UJ)dlU/

From (|4.2)) we see that sup,.,v4(0O) < o0, and so there exists a (positive) Radon measure v
on O such that, up to a subsequence, v, — v weakly. By Lebesgue’s decomposition theorem,

we have v = v* + v® where v* and v* are (positive) Radon measures on O such that v* «
and v° L p. Thus, to prove (4.1)) it suffices to show that

v* > lim lim lim Z/L,(-, 7V u(-), w)dp. (4.7)

T—1— =00

From Radon-Nikodym’s theorem we have v* = f(-)du with
B.(-
70y o= tim A20) ¢ 11010, cop),

and so to prove (4.7) it is sufficient to establish that for p-a.e. zg € O,

f(zo) = lim Y(By(z0)) > lim lim lim %7 L;(zo, 7V u(x0), w). (4.8)

=0 p(By(x0)) ~ 7= 0w

Fix zy € O\N where N < O is a suitable set such that u(N) = 0. As v(0O) < oo, without
loss of generality we can assume that v(0B,(x¢)) = 0 for all p > 0, which implies, by
Alexandrov’s theorem, that v(B,(x¢)) = limy_.o 14(B,(x¢)). Consequently, to prove it
suffices to show that

lim lim Li(z, V,u(z),w)dp > lim lim lim ) Li(xo, TV u(z0),w). (4.9)

p=0t=%0 J B (24) r—1- P00

On the other hand, as G is convex, see (C;) and Remark 2.2 and 0 € int(G), see (Cs), from
(4.3) we can assert for every o €]0, 1],

oV, u(x) € G for all t > 0 and for p-a.a. z € 0.
Hence, given any 7 €]0, 1[, we see that for every ¢t > 0 and every p > 0,

J[B( )Lt(:c,TV”ut(:r),w)du < (1—|—A(T,w))J[ Li(x,V, u(x),w)dp

Bp(Z’O)

+A(T,w)Jf o1 (. w)dp

Bp(l“O)
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with A(7,w) = sup;.q A7 (1,w), where A7 (7,w) is given by (2.3)). Letting ¢ — oo and
p — 0 we obtain

lim lim Li(z, 7V, u(z),w)dp < (14 A(r,w)) lim lim Li(x, V,u(x),w)dp

0120 By (wo) 0120 By (wo)

+MMA(T7(A))J[ ai(x,w)du.
By (z0)

p—0t—0o0

But, from (Cg) we have

and, by (2.2)),

with &Bp(xo)at(x,w)du > 0, hence

7—1— p—0t—00

Tim Tim T A<T,W>Jf an(z,w)dp < 0,
By (z0)
and consequently

lim lim lim Li(x, 7V u (), w)dp < lim lim Li(x,V u(x),w)dpu.

T—1— ,U—’O t—0o0 Bp(xo) p—>0 t—0o0 BP(IO)

Thus, to prove (4.9) it is sufficient to show that

lim lim lim Li(z, 7V u(z),w)dp > lim lim lim Y Li(xo, TV u(z0),w). (4.10)
7—1— p—0t—00 By(x0) ro1- P70 o

Step 2: cut-off method. Fix any ¢t > 0, any 7 €|0, 1, any o €|, 1[, any A €]0,1[ and
any p > 0. By Proposition [3.4(v) there is a Uryshon function ¢ € Lip(O) for the pair
(O\B,(z¢), Bx,(70)) such that IDppllLzomny < ﬁ for some # > 0 (which does not
depend on p). Define v, € H)?(O; R™) by

vy 1= oup + (1= @)Uy = Py — Usy) + Uy
with u,, € H?(O;R™) given by Proposition (iv). (Note that V,ug,(x) = V,u(zg) for
p-a.a. x € O.) Then
TV — TUyg, € H;:g(Bp(xo); R™) (4.11)
and, using Proposition [3.4](vii),

TV in Bi,(z0)

TVl = { (o Vi + (1 =)oV ,u(zg)) + (1= Z) Uy, in B,(x0)\Bay(zo) (4.12)
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with W, , := 7= D, ® (u; — Uy,). Using the right inequality in (C7) it follows that

1
Li(z, 7V v, w)dp = —f Li(z, 7V juy, w)dp
fBP(xO) t e /’L(BP(IO)) Exp(cc()) ' e

el
M(Bp(xo)) By (20)\Bap (o)

< J[ Li(x, 7V jup,w)dp + ﬁ'u
By (z0)

LB f
N(Bp(xo)) By (20)\Bap (o)

On the other hand, taking (4.12)) into account and using (C;) and the left inequality in (C5),
we have

+ Li(x, 7V v, w)dp

(B,,(:EO)\EAP(%))
1(By(x0))

G(TV , v)dp. (4.13)

G(tV,v) < a1+ G(oV,u) + GoV,u(zg)) + G(Vy,))

1
< (1 + aLt(x, oV, up,w) + G(oV , u(z)) + G(\I/tp)) (4.14)

with ¢; := 2(y +~?) > 0. Note that from (Cy) and ([£.5]) we can assert that oV, u(zo) € G,
and so

G(oV u(xg)) < .

Moreover, it is easy to see that

ot 1
[WeplLzB,@omy < Ty ;Hu = Uay | L (B, (@o)mm)
TR LA
p(1— ) —n) T HEem
where
. ot 1
il_r)% (1 _ I)(l _ )\) ;Hu o ufEOHLfLC(Bp(iBO);Rm) =0 (415>

by Proposition (iv), ie., lim, o ,%HU — uﬂ?oHLfF(Bp(:vo);IRM) 0, and
ot

2 — urpomm) =0 4.16

tl)rf.lo p(l _ g)(l —_ )\) Hut UHLH (O;R™) ( )

by (4.6)), i.e., lim¢ o |us — ul| L2 (0.rm) = 0. From (Ci) and (Cy) there exists r > 0 such that

¢y :=sup G(§) < o
l€l<r
(see Remark . By (4.15) there exists p > 0 such that %%Hu—um\h}o‘o(&(m)mm) <3z
for all p €]0, p|. Fix any p €]0, p[. Taking (4.16)) into account we can assert that there exists
t, > 0 such that

G(¥,,) < cp for all t €]0,¢,]. (4.17)



I'-CONVERGENCE OF UNBOUNDED INTEGRALS IN CHEEGER-SOBOLEV SPACES 19

Thus, from (4.13)), (4.14) and (4.17)) we deduce that
By

][ Li(x, 7V v, w)dp < J[ Li(x, 7V jup,w)dp + c3(0)ypn + — i pre
Bp(l"O) BP(IO) o

for all t €]0, t,[ with:
1
c3(0) == By (1 + -+ G(oV u(xo)) + CQ) €]0, o[ ;
1

M(Bp(xo)\gkp(x())) .
M(Bp($0)> 7
1
Ft,p,A,U = m pr(:vo)\BAp(IO))

But, taking (4.11)) into account, we see that

YoX =

Li(x,0V jug, w)dp.

X Li(o, TV u(z0),w) < :f ( )Lt(x, TV v, w)dp,
By(zo
hence, for every p > 0, every t €]0,¢,[, every X €]0, 1[, every 7 €]0, 1| and every o €], 1], we
have
c
Z,; Li(wo, TV u(z0),w) < J[B ( )Lt($7Tqut7w)dM +c3(0) v + %Ft,p,x,m (4.18)
p\Zo

Step 3: passing to the limit. Lettingt — 0, p -0, A —- 17,0 —- 1" and 7 — 1" in
(4.18), we obtain

lim lim lim %/ Ly(20, 7V u(20),w) < lim lim lim Li(x, 7V juy, w)dp
r—1- P00 7—17 p—0t—00 B, (x0)
* A eslo) i g e
Y Bn EmEn .. (419)

a o—1= A—1- p—0t—©

Substep 3-1: proving that limy_,;- Hp_,o Yor = 0. As the boundary of any ball is of
zero measure (see Remark [3.3)), we have

. (By(x0))
oA =By (w0)
hence

— . 1(Bxp(20))
lim =1-lim —————-~,
p—>0rYp’)\ p—0 /,L(Bp<fl/’0))

and so, by using Proposition (3.4))(vi),
lim lim~,, = 0. (4.20)

A—1— p—0
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Substep 3-2: proving that lim,_,;- lim)_,;- ﬁ,,_,o limy o Tipare = 0. For every t €]0,¢,],
we have

Vi (Bp(0)\Bxp(0)))
p(B,(x0))

Fipre < (1+A(a,w))

1

+A(o,w)——— J
1(Bp(20)) JB,20)\By, (@0))

ay(x,w)du. (4.21)

But lim,_,;- A(o,w) < 0 by (Cg), and by we have

o 1 o

lim lim lim J at(z,w)dp < lim lim ay(x,w)dp < o

A== p=0t= (1(B,(20)) JB,(x0)\Bay (x0)) =025 ) B, (@)

: 1
With 75 o) $5, 00\ B (oo @t (4 @) > 0, hence
T Tim Tim Tim A0, w)—— f (2, ) < 0 (4.22)
im lim lim lim A(o,w)——— ay(z, w)dp < 0. :

oc—1= A—=1— p—0t—0 [,L(Bp(l'(])) Bp(l'o)\g,\p(l’o))

Since (X,d, u) is a complete doubling metric space, (X,d, ) is proper, i.e. every closed

ball is compact. Hence B,(zq) is compact, and so B,(xo)\Bx,(z¢) is compact because

B,(20)\Ba,(70) © B,(wo). As v — v weakly, by Alexandrov’s theorem, we have

lim v (B, (20)\Bay(wo) ) < v (By(w0)\Bag(20))

t—o0

and consequently

Tim v, (B,(20)\Bap(xo)) < v (Bp(;po)\ap(xo)) . (4.23)

t—o0

As B,(10)\Bx,(z0)  B,(0) = O\supp(r*), where supp(v*) denotes the support of v*, we
have

v (B Bas(e)) = v (Bylia) Boglan)) = | fl)dp. (4.24)

By (x0)\Baxp(zo)

But B,(w0)\Ba,(0)\ (Bp(l’o)\g,\p(l'())) = (Ep(xo)\Bp(xo)) U (E,\p(m)\B,\p(xo)), hence

2 (Bp(xo)\EAp(xo)\ (Bp(xo)\gxp(io))) < p (Bp(20)\By(20)) + 1t (Bap(z0)\Bap(z0)) ,

and so, since the boundary of any ball is of zero measure,

p (Bo(w0)\ By )\ (By(0)\ Bgla)) ) = 0. (4.25)
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From (4.23)), (4.24) and (4.25)) (and by using again the fact that the boundary of any ball is

of zero measure) it follows that
- v, (Bp(xo)\ﬁ,\p(xo)) 1

um TR (o))
=0 p(By(z0)) 1(Bp(z0)) Lmo)\sxpwo)
1

J[Bp(xo)f(x)dﬂ - M Bp(930)) fBAp(xo) fw)dy

(
B [
J[Bp(xo)f(x>du M(Bp(l'o)) :fBAp(Io)f< )dﬂ

f(x)dp

Thus, recalling that f € L,(O; [0, o[),

Ve (By(w0)\Bap(20)) , o u(Bo(xo))
e #(Bp(o)) = EL% Bp(mo)f(x)dﬂ iljné 11(By (1)) 1512% fBAp(xo)f(x)dM

- (- ) e

and so, by using Proposition (3.4))(vi),

lim Lm Gm U (Bp(mo)\gz\p(x()))

=0.
A—1- p—0 t—0 p(B,y(z0))

1. vt(Bp(20)\Bxp(xo) :
with ( #(;p(x:)) ) > (. Consequently, by using (Cs),
_ - B B
fim lim Tim T (1 + Ao, w))yf( (@0)\Brp(a0)) (4.26)
o1~ A=1— p—0 t—0 p(B,(x0))
From (4.21)), (4.22)) and (4.26)) we deduce that
lim lim lim lim Ty, , = 0. (4.27)

oc—1= A—=1— p—0t—0

Substep 3-3: end of the proof. Combining (4.20)) and (4.27)) with (4.19) we obtain (4.10)),

and the proof of the lower bound is complete. l

4.2. Proof of the upper bound. Here we prove Proposition

Proof of Proposition [2.7} Fix w € Q. For each u € H*(O;R™), let M, : 0(0) — [0, x]
be defined by
M, (A) := lim m!, (A).

t—00

with, for each t > 0, m{ , : ©(O) — [0, 0] given by

ml, ,(A) = inf { L Lu(e, V,0(x), w)du(z) v —u e HYB(A, Rm)} | (4.28)

For each ¢ > 0 and each A € O(O), we denote the class of countable families { B; := B,, () }ier
of disjoint open balls of A with z; € A, p; €]0, e[ and p(0B;) = 0 such that p(A\ U,er B;) =0
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by Zz(A), and we consider T, , : O(O) — [0, ] given by

m;, (A mf{me ) {B; }Zde%(A)}

1€l
and we define m}, , : 0(0) — [0, 0] by
m (A):= supm JA) = lir%m;w(A).

U,w
e>0

The set function m; , is called the Vitali envelope of m,,, (see §3.3).

Step 1: link between I'-lim and Vitali envelope. Let u € Hi’p(O; R™). We are going
to prove that
L(LY)- th_rn Ey(u,w) <m: (0). (4.29)
—00 )

Without loss of generality we can assume that m;; ,(O) < oo. Fix any € > 0. By definition
of m;, ,(O) there exists {B;}icr € 72(O) such that

N, (B) <, (0) + = (4.30)

2
el

Fix any t > 0. For each i € I, by definition of m/, ,(B;) there exists v; € H,?(O;R™) such
that v/ —u € H}L:g(Bi; R™) and

| 2o Vi) duto) < i (8 + 5
B;

Define u; : O — R™ by

(4.31)

[
u; 1=

u in O\ U B;

) 1€l
’U; in Bz

Then u§ —u € H;;g(o; R™). Moreover, because of Proposition ( i), Vui(z) = V,vi(x)

for p-a.a. r € B;. From (4.31]) we see that

Eu(uf,w) < 3o,

el
hence limy_... E(uf,w) < ,(O) + € by using (£30)), and consequently
lim lim Et(ut,w) <m, (0). (4.32)

e—0t— fatid

On the other hand, we have

lui = ullZp o.m) =J |uf — uf’dp = ZJ v} — |’ dp.

el

As O supports a p-Sobolev inequality, see Proposition [3.4{(iii), and p; €]0, e[ for all i € I, we

have
ZJ v — uf’dp < z—:pC'pi Vi = V.l dp

iel iel
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with C's > 0, and so

Juf = ulZy gy < 2°2°C (2 f v, Ut|pdu+f v, u|pd,u) (4.33)

el

Taking (Cg), (4.30) and (4.31) into account, from (4.33)) we deduce that

— L,
thﬂrg) |ug — u||Lp (ORm) S < 2PePCY (E( L(0) +¢) f IV, u|pd,u)

with ¢ > 0, which gives

ll_r%thm Jug — “Hiﬁ(o;mm) =0 (4.34)

because lim. oy, ,(O) =m;j ,(O) < . According to (4.32)) and (4.34), by diagonalization

there exists a mapping ¢ — 6;, with ¢, — 0 as t — o0, such that:

tllr& ws — u||Lp ©ommy = 0 (4.35)
lim Ey(w;, w) <1m;,(0) (4.36)
—00

with w; = ui*. By (4.35) we have F(Lﬁ)—mt_)oo Ey(u,w) < limy_o Ey(wy,w), and -
follows from (4.36]).

Step 2: diﬁ'erentiation with respect to p. Let u € H?(O;R™) be such that &(u) :=

o G( x))du(x) < oo. We are going to prove that
— My (By(r))
m, (0) = J lim —=—P 2 d (). (4.37)
A= P B ) M

According to Theorem , to prove it suffices to establish that m,,,, is subadditive
and there exists a finite Radon measure v on O which is absolutely continuous with respect
to p such that

m,(A4) < v(A4) (4.38)
for all Ae O(0O). For each t > 0, from the definition of mi,w in (4.28)), it is easy to see that
for every A, B,C € 6(0) with B,C < A, Bn C = & and u(A\B u C) = 0, one has

my, ,(4) <y, (B) +my,,,(C),

and so
lim m!, ,(A) < lim m}, ,(B) + lim m/, ,(C),

t—on W t—0o0 t—o0
ie.
My, (A) < MWy w(B) + mw(C),
which shows the subadditivity of m,,. On the other hand, given any ¢ > 0, by using the
right inequality in (C;) we have

() < [ 51+ G(T,ula))duta).

Thus (4.38) holds with the Radon measure v := (1 + G(V,u(-)))p which is necessarily
finite since &(u) < c0.
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Step 3: cut-off method. Let 7 €]0,1[, let o €]7,1[ and let u € H,?(O;R™) be such that
Z(ou) < co. We are going to prove that for p-a.e. x € O,

i e (Bo(@)) g M (B (@) (4.39)

=0 u(By(x)) e=0 p(B,())
where u, € H?(€;R™) is given by Proposition (iv).

Remark 4.1. For p-a.e. x € O, one has

w(Bp :L‘)) _ llm hm %th(J: ™V U( ) )

P u(By(r) proe

Remark 4.2. 1f €(tu) < oo then & (1u,) < o for p-a.a. x € O, and so, by the step 2,

gy Tl Do)y Mo Ble) g i Moo B, Mo (Bl

70 (B,(r)) om0 p(B,(x) 0 u(By(w) o0 u(B,())

Fix any ¢ > 0, any A €]0,1[, any p > 0 and any ¢ > 0. By definition of m’, (Bx,(z)) in
(4.28), there exists w € H*(O; R™) such that

TW — TUy € H;:g(B)\p(x); R™) (4.40)

and

JB L T0(0), )ay) <l (Bag(e) + el By(a) (4.41)

By Proposition (V) there is a Urysohn function ¢ € Lip(Q) for the pair (Q\B,(z), Bx,(z))
such that

0
D 0 —_

for some 6 > 0 (which does not depend on p). Define v € H)?(O;R™) by

vi=pu, + (1 —p)u = p(u, —u) + u.
Then
TV — TU € H;;g(Bp(x); R™). (4.42)
and, using Proposition 3.4(iv), i.e. V,u,(y) = V,u(z) for p-a.a. y € O, and Proposition
5Avii),
RV { TV u(z) in FAp(xo)_
’ g(cpavuu(x) + (1 - gp)avﬂu) + (1 — g) U, in B,(x¢)\Bx,(o)

with ¥, := =D, ® (u; — u). From (4.40) and (4.42) we have 7v + (Tw — Tu,) — Tu €
HEL:’S(B,,(.Q:); R™). Noticing that ;1(0By,(x)) = 0 (see Remark and, because of Proposition

(4.43)



I'-CONVERGENCE OF UNBOUNDED INTEGRALS IN CHEEGER-SOBOLEV SPACES 25

B-4) (i), V. (rw — Tu,)(y) = 7V, w — 7V u, = 0 for p-a.a. y € B,(x)\By,(x), we see that

m’, ,(By(2)) 1 f Ly (570 7V v d
——— £ — Yy, TV, 0 + 7V, w — 7V U, w) du
p(Bxy(z)) 1(Bxo()) Jp, () ' ! g g

1

= — Ly (y, 7V, u(x) + 7V, 0w — 7V u(x), w) du
B Jg ) 10T £ V0 ).

1

(B, (7)) JBp(x)\BAp(ﬂ?)

o)
= —=— Ly (y, 7V,w,w) du
1(Bxp(2)) Js,, @) ' g

+ Li(y, 7V v, w)dp

1

|
1(Bxp(2)) JB,2)\By, ()

Li(y, 7V v,w)dp.

From (4.41) and the right inequality in (C7) it follows that

e, (By() _mbyu(By(x) _ miy,(B(@))

u(By(x))  — p(Bn(r) T u(Ba(e))
mesel |

M(BAp(ﬁ)) By (z)\Bx,(z)

On the other hand, taking (4.43)) into account and using (C;) and the left inequality in (Cy),

we have

M(Bp(x)\EAp(x))
1(Bxp())

G(TV , v)dpu. (4.44)

+e+p3

_l’_

G(tV,w) < c(1+G(oV,u(z)) +G(oV,u) +G(Y,)) (4.45)

with ¢; := 2(y + +?) > 0. Moreover, it is easy to see that

0 z): S —||U — Ug|| [ 2):R™),
PILE (Bp(z);M) (1 o g)(l _ )\) ) Ly (Bp(z);R™)
where
Ot 1
l‘lll - - T [o'e] z):Rm) — O 446
pl 0 (1 _ g)(l _ )\) pHU’ U HLH (BP( )7IR ) ( )

by Proposition (3.4(iv), i.e., lim, o |u — s |re(B,@)mm) = 0. From (Cy) and (Cp) there
exists 7 > 0 such that

¢y :=sup G(§) < w©

[El<r

(see Remark . By (4.46) there exists p > 0 such that (kgﬁ%]\u — quLf?(Bp(z);Rm) <r
for all p €]0, p|. Fix any p €]0, p[. We then have

G(¥,) < co. (4.47)
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From (4.45) and (4.47)) it follows that

o)
1(Bxp(2)) JB,@)\B, ()

1(By(x)\Bay())
G(rV)dp < Ba(l+GoV,u(z)) + c) 1(Bxy())
B

#(B(2)) Lpu)\faw@) AoV ulo)anty).

But

L()\B ()G(UWU(y))du(y) < w(By(x)) B’?gavuu(y))—G(Uvuu(m)ﬂd,u(y)
+u(Bp(x)\g,\p(a:))G(Uvuu(w)),

hence

5 . o B Baye)
B ) Lff%f&?d” < fer(l+2G0EV,u@) + a) = p- )

p(B, () Y s
#es pE T, 1GT) ~ GV lduty). (449

From (4.44) and (4.48]) we deduce that

mf’u,w(BP('r)) < mf’uz,w(B)\P<'r))
w(By(z))  — u(Byy(@))

+Bc <1 + cll +2G(0Vyu(z)) + C2> MB:((?A\/)?;\;)@))
1(B,(x))

WJ[BP(m)|G(UVMu(y)) — G(oV,u(z))|duly).  (4.49)

As G(ou) < o, ie., G(oV,u(-)) € L,(O), (and p is a doubling measure) we can assert that:

+ €

+Bci

G(oV,u(r)) < oo; (4.50)
iy ( )|G(0Vuu(y)) — G(oV,u(z))ldp(y) = 0. (4.51)

As the boundary of any ball is of zero measure (see Remark , we have

= #(By(x)\Bxp(x)) _ = <1 B ,U(L(f))) i MBy(x))

=0 p(Bxy(x)) p—0 1(Bho(z)) p—0 1(Bxp(x))’
and so, by using Proposition (3.4)(vi),
lim T $1(B,(x)\B,(1)) _0. (4.52)

A (B (@)
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Moreover, we have:

ErE T mfru,w(‘BP('r)) _ 1_ mru,w(Bp(x))
MBI T B @) A (B, () (4.53)
T T e (Br(®)) e e 0, 0 (Bp(®)) e M, (B () (4.54)

P p(Bogle)) s u(B@) e u(B,)

Letting ¢ — o0, p — 0 and A\ — 17 in (4.49) and using (4.50), (4.51f), (4.52), (4.53]) and
(4.54) we conclude that

Tim My (B,(7)) < Tim M7y, w(By(7))
=0 p(By(z)) e=0 p(B,(x))
and (4.39) follows by letting ¢ — 0.

Conclusion of the steps 1, 2 and 3. As a direct consequence of (4.29)), (4.37)) and (4.39))
together with Remarks [4.1] and we have the following lemma.

Lemma 4.3. For every 7 €]0,1[ and every u € H,?(O;R™) such that €(tu) < o and
E(ou) < oo for some o €]t,1[, one has

+ &,

P(L5)- Tn By (ru,w) < fo lim lim 77 Li(z, 7V (), w)dp ().

t—o0 p—0t—o0

Step 4: end of the proof. Let u € Hi’p(O; R™). We have to prove that

I(L%)- th—>_I£10 Ei(u,w) < Jo Tli_ri }E} EO ZPLi(, TV ju(w), w)dp(z). (4.55)
Without loss of generality we can assume that
Jo Tli_l{lﬁ l;ijl%}i_)_rgo%;f[’t(% TV, u(r),w)du(z) =: Eyim(u,w) < o0, (4.56)
Then, by Proposition [2.8[(i) we have
V,u(r) € @,G, for p-a.a. z€0 (4.57)
and
Tli%?_})ijr% ,}L_r?o%lth(I’ TV, u(z),w) =Tlir{1_£i?g) }LT?O%MPLt(x, TV, u(z),w) forp-a.a.x € O. (4.58)

Substep 4-1: proving (4.55) under the constraint V,u(z) € int(@,G,) for p-a.a.
x € 0. Assume that

V,u(z) € int(Q,G,) for p-a.a. z € O. (4.59)

Then, since (Cs) implies that 7V u(z) € int(Q,G,) for all 7 €]0, 1 and for p-a.a. z € O, by
(C5) we have

lim Q,G(x, 7V, u(z)) = Q,G(x, V,u(x)) for p-a.a. x € O. (4.60)

T—1"



28 OMAR ANZA HAFSA AND JEAN-PHILIPPE MANDALLENA

Using (4.60) and the left inequality in (C7) we see that
1—
aEhm(u,w) > J lim Q,G(x, 7V u(z))dp > fo 0,G(z,V,u(z))dp =: Q,%(u),

O71—1"
hence, by (I50),

0,8 (u) < w. (4.61)
Taking (C,) into account, from (4.59)) and (4.61) it follows that
Y (u) < (4.62)

But, by (C;) we see that for every 7 €]0, 1[, €(7u) < yu(O)(1 + G(0)) + v€(u), hence, by
(Cy) and - ) < o for all 7 €]0,1[, and so, by Lemma [4.3] we have

[(L})- hm Ei(tu,w) < fo lim lim Z P Li(x, TV ju(z), w)dp(z) for all 7 €]0, 1[. (4.63)

p—0 t—c0
On the other hand, from the right inequality in (C7) we see that for every 7 €]0, 1],
ilir%)tlirg%th(x ™V,u(),w) < B(1+Q.G(x,7Vu(-)))
< B+ G(EVu(),
and consequently, by using (C;),
lim lim Z7L,(z, 7V ,u(-),w) < B(1 + G(0) + G(V,u(:)) := f(:) for all 7 €]0,1]

p—0t—0

with f € LL(O) by (Cz) and (4.62)). Taking (4.58)) into account, from Lebesgue’s dominated
convergence theorem we deduce that

lim | lim lim ZPLi(v, TV u(r), w)dp(z) =J lim lim lim ZPLi(, TV ju(w), w)dp(z).
o)

T—1" Op_)Ot_)OO r—1- pP0t—=0

From (4.63) we conclude that

lim T'(L%)- lim E(Tu,w) < f lim lim lim Z'Li(x, 7V u(z), w)dp(r),
o

T—1— t—oo r—1- P0t—®

and (4.53)) follows because I'(LE)- limy o By, w) is Lr-lsc and 7u — u in LE(O;R™) as
T—1".

Substep 4-2: proof of (4.55)). First of all, from (Cs) and Proposition we can assert
that Lo, = hmp_,o limy ., # Lt is Tu-usc at w with ay (-, w) given by (2.2)). Moreover, by

(Cr) we see that for every x € O the effective domain of L (z, -,w) is equal to @,G,. Taking
(Cs) into account, from Theorem 3.12((ii) it follows that

ZOO hm hH(l) 1thm ! Ly is Tu-usc at w with ax(-,w). (4.64)
_,1- p—0t—0
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From (4.56) we see that V, u(z) € Iﬁoo,w for p-a.a. x € O, where Iﬁoo’x,w denotes the effective
domain of Le(z,-,w). Hence, for every 7 €]0, 1],

f Eoo(x,TVHu(x),w)du < (1 +A%°;(T, w))f f/oo(x,vuu(x),w)du
o) )

+A%°;‘ (1, w) f Ao (T, w)dp

o)
3 Qoo R ~ Ew(vang)_iw(xvng) 3
with Aiw (T, w) i= SUPyeo SUPgef, i T ) e
Bl (T, w) < (1 + A%” (T, w))Ehm(u,w) + A%"C (1,w) J Ao (T, w)dp (4.65)
0 o0 O

for all 7 €]0,1[. Using (4.56) and (2.2), i.e. ax € L,,(O), we see that

Bl (Tu,w) < oo for all 7 €]0, 1. (4.66)
On the other hand, from (4.57)) and (C3) we deduce that
V. (tu)(x) € int(Q,G,) for all 7 €]0, 1] and p-a.a. z € O. (4.67)

According to (4.67) and (4.66)), from the substep 4-1 we can assert that
[(L})- lim B, (Tu,w) < Fym(Tu, w)
t—o0

for all 7 €]0, 1[, and so, taking (4.65]) into account,

[(LE)- lim FE,(Tu, w) < (1 + A%"O (T, w))Elim(u, w) + A%OO (1,w) Jo Ao (2, w)dp (4.68)

t—00 0 0

for all 7 €]0, 1[. Moreover, by (4.64) we have lim,_,- A%OO (1,w) < 0. Hence, letting 7 — 1~
in (4.68)) we conclude that
lim I'(LF)- lim Ey(1u,w) < Eym(u,w),

T—17 t—0

and (4.55)) follows because T'(L%)- lim; o By, w) is LP-lsc and T7u — w in LP(O;R™) as
T—1". 1

4.3. Proof of the I'-convergence result. Here we prove Theorem
Proof of Theorem 2.5 Fix w e Q. By (C7) we see that
0@,G(z,§) < lim lim 77 Ly(v, €, w) < lim lim #7Li(z,§,w) < B(1 + €,G(x,€))
p—0t—00

p—0¢ 0

for all z € O and all £ € M. So, for every x € O, one has

dom (hm lim 7 Ly (x, )> = dom (hm lim 7 Ly (x, )> =a0,G,,

=050 p—0t—00
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where dom (lim, o lim, ., HPLi(x,-,w)) (resp. dom (lim,—o lim; .o P Li(x,-,w))) denotes
the effective domain of E,HO lim, %lth(x, -, w) (resp. MIHO limyop ?//th(x, -, w)). From
(Cy) it follows that

lim lim #7L,(z, ¢, w) = lim lim 7 Ly(x, €, w)

—0: o p—0t—0o0
for all x € O and all £ € M, and consequently
lim lim lim %7 Ly(z, 7€, w) > lim lim lim %L (x, 7€, w)

T—1~ P—0¢ o0 T—1— p—0t—00

for all x € O and all £ € M. From Propositions [2.6] and [2.7] we deduce that

D(LE)- lim Ey(u,w) = L lim Iim lim %7 Ly(x, 7V u(), w)dp(z)

t—o0 T—1— =0 S0

> f lim lim lim Z Li(x, TV ju(z), w)dp(z)
0

r1- p—0t—0

> F(Lﬂ)—tll}rg Ei(u,w).
for all w e H'*(O; R™). Hence

P(L2)- lim By (u, w) = L lim lim lim #7Ly(z, 7V ,u(z), w)dp(z)

t—0o0 r—1—- p—0t—00

for all w € H,;?(O;R™). A

5. APPLICATIONS

In this section we give some applications of Theorem and Proposition

5.1. Relaxation. In case Li(z,{,w) = L(z,§), and so FEi(-,w) = E(-), we retrieve the
relaxation theorem established in [AHMI8, Theorem 2.7]. More precisely, denoting the lsc
envelope of E with respect to the strong topology of Liz(Q; R™) by E, as a direct consequence
of Theorem and Proposition we have the following result.

Corollary 5.1. Assume that the hypotheses of Theorem are satisfied with Ly(z,&, w) =
L(z,&). Then

B(u) = L Gl (z, V,u(x))dp(z)
for all we HP(O;R™) with @/u\L :0 x M — [0, 0] given by

Fiz.c) = { lim @,L(z,7€) if € € QG

o0 otherwise,

where @, L : O x M — [0, 0] is defined by

QuL(x,§) := El)inf {J[B ( )L(y,é + Vaw(y))dp(y) : w e HyH(B,(x); ]Rm)} :
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If moreover @,L(zx,-) is lsc on int(Q,G;) for all x € O then

Q,L(x,¢§) if € € int(Q,G,)
QuL(z,§) = @,L(x,§) = { 1m &,L(z,7¢) if &€ 0Q,G,
o0 otherwise,

where, for each x € O, Q,L(x,-) denotes the lsc envelope of @, L(x,-).

5.2. Homogenization. Homogenization of integrals of the calculus of variations in non-
euclidean settings has been studied for the first time in [AHMIT7] (see also [DDMMZ20,
AHM20b]) for integrands having p-growth. In this paragraph, we attempt to develop a
framework to deal with integrands which have not necessarily p-growth and can take infinite
values, by using (the I'-convergence result) Theorem together with Proposition and
subadditive theorems that we proved in [AHM20b] (see Theorems [5.3| and [5.4).

5.2.1. Homogenization framework. Roughly speaking, once we have established a I'-
convergence result as Theorem [2.5] we can deduce homogenization theorems (see §5.2.3)) by
the use of suitable subadditive theorems (see §5.2.2)) allowing to establish the condition (Cg)
in Theorem [2.5. To apply this process, we need an appropriate framework with which we
can work in the setting of metric measure spaces. In what follows, we adopt the following
notation:

e we denote by Z(X) the class of Borel subsets of X;

e we denote by By the class of A € B(X) such that u(A) < o and u(dA) = 0 with

0A = A\A, where A (resp. A) is the closure (resp. the interior) of A;

e we denote by Homeo(X) the group of homeomorphisms on X;

e we denote by Ba(X) the class of open ball of X.
Note that by Remark we have u(0B) = 0 for all B € Ba(X), and so Ba(X) < %,. In

order to deal with homogenization in the framework of metric measure spaces, we need to
introduce the quadruple (g, {Tg}geg, U, {ht}t>0) with:

(O1) G a subgroup of Homeo(X) such that p is G-invariant, i.e. gfu = p for all g € G
which means that for every g € G and every A € B(X),

(g~ (A)) = u(A);

(O2) {74}4eq @ group of P-preserving transformations on (2, #,P), i.e.

Ty i1s F-mesurable for all g € G
Tg0Ty = Tgoy and 7,1 = 7, for all g, f € G
P(1,(A)) =P(A) for all Ae & and all g € G;

(0O3) U € %y such that u(U) > 0;

(04) {hi}t=0 < Homeo(X),
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where U can be interpretated as the “unit cell” with respect to X and {h;};~o as a family of
“dilations” in X. Let # < 3B, be given by

S = {gé}Hgl (h(U)) : ke N*, H € D(h(U)) and |H| < oo}

with
D (hi(U)) = {H =6 {g (L)}, is disjoint}.

(Theses sets are of interest for the development of subadditive theorems in the setting on
measure spaces with acting group, see [AHM20b|] for more details.) To obtain homogeniza-
tion results in the framework of metric measure spaces, we need to refine it by assuming
that:

(F1) (X, B(X), p) is G-meshable with respect to {h;(U)}, ., i.e. for each k € IN* there
is Gr € D(I(U)) with the property that for each ¢ € IN* there exist G, < G, €
Ps(Gyr) such that

U g (h(U)) < he(U) = v g7 (A (D))

- +
QEGq,k QEGq,k

: _ o u(hi(U))

tim |G\, [AD)

P G Gl ) =

(F3) (X, SB(X), n) is strongly G-meshable with respect to {hk(IU)}ke]N*, e (X,B(X),n
is G-meshable with respect to {hk(U)}ke]N* with the additional property that G =
Uken* G where every Gy is a countable discrete amenableﬁ subgroup of G;

(F2) for every B € Ba(X), {h(B)}i~o is asymptotically G-regular, i.e. there exist two
G-regular familied] {J, }1=0, {Jt}t=0 < F such that

J, e hy(B) < J,forallt >0
J\J

lim 2t (Ji\J,)

=0 p(hy(B))

(F3) for every B € Ba(X), {h(B)}i=o is asymptotically strongly G-regular, i.e. there exist
two strongly G-regular familie {Ji}i=0, {Jt}=0 < F satistying (5.1));

SLet % — G be a subgroup and let P(9) denote the class of finite subsets of #. We say that #f is
amenable if for each F € P(H) and each ¢ > 0 there exists F' € P(H) such that,| FAEF| < 6|F|, where |- |
denotes the counting measure on G, A is the symmetric difference of sets and EF = {gof : (g, f) € E x F}.
(For more details on the theory of amenable groups, see [Kre85, §6.4] and [DZ15] §2].)

"Given {J;}1=0 € £, for each t > 0, J; = Ugerr, g~ (hq, (U)) with H; € D(h,, (U)). We say that {J;};~0 is
G-regular if lim;_, o, ¢; = 00 and for every ¢ > 0 and every k € IN* there exist g, € N*, g1, € G and Fy, €
P1(Gr) such that G;kat = gt_,li(h’(?t‘k(U)) = YreGr  H, r~1(h(U)) and lim;_, |Ft7k||G;:7kHt|*1 =1.

8We say that {Ji}t=0 is strongly G-regular if it is G-regular with the additional assumption that
for each k¥ € IN* and each i € {—, +}, {th,kHt}t>0 is of Fglner-Tempelman type with respect to
Gr, ie. limg o |ng1t,kHtAth,kHt‘|th,k:Ht|71 = 0 for all g € Gr (Fglner’s condition) and | Up<s<t
(G, WH)(G: (Hy)| < M|GE ( Hyl for all t > 0 and some M > 0 (Tempelman’s condition). (For more
details on these conditions, see [Lin99, Lin01l DGZ14].)

o (5.1)
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(F3) for each t > 0, ((hs)~Y)*u = u(he(U))u, i.e. for every A e B(X),
p(he(A)) = p(he(U))u(A);

(F4) for every g € G and every B € Ba(X), there exists a bijective map .7, p from
H'P (g1 (B);R™) to H;:g(B;]Rm) such that V,.7, p(w) = V,wog™! for all w €

;LO

H,5(g7 (B); R™) and V,.(Z,5) " (v) = Vwog for all ve Hyb(B;R™);

(F5) for every t > 0 and every B € Ba(X), there exists a bijective map 4 p from
H,5(h(B); R™) to H,B(B;R™) such that V, 4 p(w) = V,woh, for all w e
Hlp(ht(B); R™) and V(4 5)" (v) = V,vo (k)" for all ve H b (B;R™).

Remark 5.2. From (F3) we see that p(h(U)) > 0 and (he)f = (u(he(U))) "ty for all £ > 0.
Moreover, as u(D\U) = 0 we have u(U) = x(U) and so u(h(U)) = p(hy(U)) for all t > 0.

5.2.2. Subadditive theorems. In what follows, we recall subadditive theorems that we
proved in [AHM20b, Theorem 2.19]. Let & : By x Q@ — [0,0] be such that §(A,-) €
LY, F,P) for all A€ %By. In Theorems and below we need the following properties
on d§:

(S1) there exists C' > 0 such that for every A € %, and every w € (2,
S(A,w) < Cu(A);

(S2) & is subadditive, i.e. for every A, B € %, with A n B = ¢J and every w € (Q,
S(Au B,w) < S(A,w) + S(B,w);

(S3) & is G-covariant, i.e. for every A € %By, every g € G and every w € (2,
S (971(A),w) = $(A,74(w))
and, when & is deterministic, i.e. §(-,,w) = S(),
(S3) & is G-invariant, i.e. for every A € B, and every g € G,
S (97'(A) = S(A).

Theorem 5.3 (deterministic case). Under (O1), (O3), (O4), (F1), (F2) and (S1)—(Ss), for
every B € Ba(X), one has

i S(B) . S(hi(U))
= p(hy(B)) ket p(hy(U))

Let 5 = {A e F : P(1,(A)AA) = Oforall g € G} be the o-algebra of invariant sets
with respect to (2, F,P, {7,}4e5). Recall that (Q, F P, {1,}4e4) is said to be ergodic if
P(A) € {0,1} for all Ae 7.
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Theorem 5.4 (stochastic case). Under (O1)—(0y4), (F3), (F5), (S1), (S2) and (S3), there
exists O € F with P(Y') = 1 such that for every w € Q' and every B € Ba(X), one has

i SG(B).w) _ B[S ((D), )](w)
t=o  i(he(B)) keN* p(h(0)) ’

where B[S (hy(U), )] denotes the conditional expectation of 8(hy(U),-) over F with respect
to P. If moreover (0, F,IP, {7,}4eq) is ergodic then

lim é)(ht(B)’w) — in E[§(hk(U)>)]
=0 p(h(B))  wens (D)

where B[S (h(U), )] denotes the expectation of (hg(U),-) with respect to P.

5.2.3. Homogenization theorems. In what follows, we establish deterministic and sto-

chastic homogenization theorems of nonconvex unbounded integrals in the setting of metric
measure spaces according to our framework in §5.2.1| (see Theorems and [5.10]). Let
L:X xM x Q — [0,0] be a Borel measurable stochastic integrand such that:

(Hy) L is p-coercive, i.e. there exists ¢ > 0 such that for every z € X, every £ € M and
every w € €2,

Lz, &,w) = clg);

(Hs) L has G-growth, i.e. there exist «, 5 > 0 such that for every x € X, every £ € M and
every w € €2,

aG(§) < L(z, & w) < B(1 + G(S))
with G : M — [0, oo] satisfying (Cq)-(Cs);

(H3) L is G-stationary with respect to {7,}4eq, i.e. for every x € X, every £ € M, every
g € G and every w € (),

L(g'(2),&,w) = L(z,€,7y(w))
and, when L is deterministic, i.e. L(z,§,w) = L(x,§),
(H3) L is G-periodic, i.e. for every x € X, every £ € M and every g € G,
L(g'(x),€) = L(z,¢).
For each t > 0, we consider L; : X x M x Q — [0, c0] given by
Li(z,&,w) := L(h(z), & w). (5.2)

Then, under (H;) and (Hs), it is easy to see that {L;};~( satisfies (Cg) and (C7). Homog-
enization of integrals was already studied in [AHMI7] and [AHM20b, §3] in the p-growth
case, i.e. when G(§) = [£|P. Here we are concerned with the G-growth case. For this, we
need to suppose that
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(Hy) for every w € Q, L is ru-usc at w with respect to {h;}io, i.e. for every w € Q, there
exists a(-,w) € L,(X; 0, c0]) with

lim | a(h(z),w)du(x) < o

t—0o0 X
and
lim lim a(hi(y), w)dp(y) € L,,(X)
P=0E=0 J By
such that

lim AY(r,w) <0,

T—1~
where A¢ : [0,1] x Q —] — o0, 00] is given by
L(ZE, T&a w) _ L(‘Ta 57 w)
A% (T,w) :=sup su
L( ) QTG)I? §€lfw CL(.T7(,<)) + L(ZE‘, 57 CU)

with L, denoting the effective domain of L(z, -, w).

Lemma 5.5. Let w e Q. If L is ru-usc at w with respect to {h;}i~o with a(-,w), then {L;}i=o
is ru-usc at w with {a(hy(-),w)}i=o-

Proof of Lemma [5.5. Set a;(-,w) := a(h4(+),w) for all ¢ > 0. For any 7 € [0, 1], any ¢ > 0,
any = € 2 and any & € L, ,, one has

Li(w, 7€, w) — Ly(x,§,w)  L(hy(x), 7€, w) — L(h(),§, w)
at(.T,CU) +Lt(‘7‘:>§7w> - aJ(h't('r)vw) +L(ht(x)7€7w>
As Ly 2w = L, (a),0 and hy(x) € X we see that

L(ht(x)7 7_57 w) 7 L(ht(x)7 ga UJ) < L(y7 7_57 w) 7 L(yv ga UJ)
< sup sup
a(ht(m)a w) + L(ht(l‘)7 57(")) yeX €Ly w Cl(y, w) + L(ya 57("})

and from ([5.3) we deduce that
sup A7 (1,w) < A% (T, w) (5.4)

t>0

(5.3)

= Af(1,w),

for all 7 € [0,1]. But L is ru-usc at w with a(-,w), i.e. lim, ;- A%(7,w) < 0, and so, letting
7 — 17 in (5.4)), we obtain lim,_,;- sup,.q A7 (7,w) < 0 which means that {L;};~o is ru-usc
at w with {a:(-,w)} =0 = {a(h(-),w)}i=o. A

Lemma shows that (H,) implies (Cs). So, according to Theorem and Proposition
, to prove Theorems and below, it is sufficient to establish the condition (Cy) in
Theorem [2.5] For this, we consider the following assumption:

(Hs) for every £ € Uye0@,G,, there exists C¢ > 0 such that for every A € %,

it { [ Gle+ Tuu)dntr) s w e AR | < Conl),
A

Remark 5.6. It is clear that if @,G, = G for all y € O, then (Hjs) is satisfied with C¢ = G(§).
(In particular, (Hs) holds when G is H P-quasiconvex.)
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For each £ € M, let &5 : By x Q — [0, 0] be defined by

£ w) :=in w w cwe HYP(A-R™) Y
SE(A,w) f{ [ 26+ V) witut) s we g R >}

As M is separable, also is Uye0@,G,. Let D < U,0Q,G, be a countable set such that
D = Uye0@,G,. In the stochastic case, we need the following two additional assumptions:

(H3) for every € € Uye0@,G, and every A e By, 85 (A,-) is F-mesurable;
(H3) there exist ¢ : [0, 0[— [0,00] and 0 : Uye0@,G, x D — [0, co] with
lim 6(r) = 0
{ sup{@(ﬁ,(’) :(eDand [(] < M} <
such that for every A € %y, every w € Q, every & € U,c0Q,G, and every ( € D,

SE(A,w) B S5 (A,w)
1(A) 1(A)

< 0(¢,Q)o(|E — <.

The following two propositions are consequences of Theorems and respectively. We
only give the proof of the stochastic proposition. The deterministic proposition can be proved
by the same method.

Proposition 5.7 (deterministic case). Under (Oy), (O3), (O4), (F1)—(F5), the right inequal-
ity in (He) and (H3)-(Hs), for every p > 0, every x € O and every § € Q,G,, one has

im Z°L. (. €) = lim CSDE (he (B,(x))) _ ‘0 5§(hk(U))
tlaoo%MLt( 75) - tlﬂoo [L(ht (Bp(QT))) - ke]l\ﬁ* ,U(hk(U)) 9

which implies (Cy).

Proposition 5.8 (Stochastic case). Under (O1)—(0y), (F3), (F5), (F3)—(F5), the right in-
equality in (Hy), (HS), (Hy), (Hs), (H}) and (HS), there exists O € F with P(Q') = 1 such
that for every w e Y, every p > 0, every x € O and every £ € Q,G,, one has

71 i SO B @) B SE(0),)])
ML S T TG B @) ST wm@)

where B denotes the conditional expectation over F with respect to P, with 5 being the
o-algebra of invariant sets with respect to (Q, F,P,{7y}geq). If moreover (Q, F, P, {7,}4eq)
1s ergodic then

e SE((B) W) . ELSE(u(U). )]
R HI 6 = B T e (B@) ke (D)

where E denotes the expectation with respect to P. Consequently (Cq) holds.
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Proof of Proposition [5.8 First of all, from (H3) we see that for every w € 2, every k € IN*,
every § € Uye0@,G, and every ¢ € D,
St (7 (U), w) Sp(h(U),w) _ Si(u(U),w)
p(hi(U)) 11(hi,(U)) p(hi(U))

and so, passing to the conditional expectation E” and then to the infimum on k,

e TS ((U), )]w) L ET[S](h(U), )] ()
ket p(hy(U)) kenve p(hi(U))

—0(&,Q)o(lE = ¢l) < +0(8,O)o(|€ = ¢l),

< 0(¢,Q)o(E — <.

Taking the properties of ¢ and € in (H3) into account, we obtain

i BTISE((U) )Nw) o B[S (D), )] (w)
D3¢ —¢ keN* p(hy(0)) kelN* (R (0))

(5.5)

for all w e 2 and all £ € UEE@,G,. Fix any ( € D. From the right inequality in (H) and
(Hs) we have §§(A,w) < B(1 + Co)u(A) for all w € Q and all A € By, and so, by (H3),
S$(A,-) e LN, &F,P) for all A e By. Moreover, from (O,), (Fs) and (H3) it easily seen that
the set function oS’é is G-covariant, and oS’E is also subadditive because, for each A, B € %,,
p(AUB\(A U B)) = 0since AU B\(A U B) € 94 U 0B and u(0A) = pu(0B) = 0. Then,
by Theorem , there exists (% € F with P();) = 1 such that for every w € { and every
B e Ba(X), one has
Sp(h(B),w) _ . E7[S} (h(U), )] (w)

M B AT @y o0

Now, set (' 1= N¢epf. Since D is countable, P(Q2') = 1. Fix any w € ', any § € U,00,G,
and any B € Ba(X). From (H?) we see that for every ¢ > 0 and every ( € D,

St(h(B),w) B S(he(B),w) _ Sp(ha(B),w)
) A T ) R ()
and so, letting ¢ — oo and using , we obtain:

o B[Sl (U), )](w) o < i SEU(B), @)
kle%* M(hk(U>) 9(€,C)¢(|€ <|) = L—OO M(ht(B» !
= S5 (h(B).w) _ . B[8 (V). )](w) .

By the properties of ¢ and 6 in (H3) and (5.5)), letting D 5 ( — &, it follows that:

e BSE () ))(w) _ (. SE(u(B),w).
relv* 11(hi(0)) i w((B))
— Si(h(B).w) _ o E7[Si(m(U),)](w)

lim

i u(h(B)) - kens 1u(ho(0))

+0(¢, Qo(I€ = ¢I),
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Consequently, for every w e (¥, every £ € U,e0Q,G, and every B € Ba(X),
o Si(B),w) B[S (i (U), )] ()
t=o p(he(B)) ke 11(hi(U))

Finally, fix € O and £ € Q,G, (then £ € U,0Q,G,). Taking (5.2) into account, from (O3)
and (F3), we see that for every w € (¥, every B € Ba(X), and every ¢t > 0, one has

(5.7)

S (h(B).w) = inf{ | L<y,§+v#w<y>,w>du<y>:weH;:a’(ht(B);Rm)}
hi(B)

— inf { JB L(hu(y

- k(o) |

~—

4 V(b)) @) uly) - w e HE(hy(B): RW)}
L€+ ynlhu(o)))dly)  w € HI (B R’“)} .

But u(h(U))u(B) = (hy ') u(B) = u(hy(B)) by using (F3), and so from (F5) we obtain

8¢ (h(B),w) = p(hy(B))inf {J[BLt(y,f + V,w(y),w)du(y) s w e Hi”g(B; Rm)}

for all w e ', all B € Ba(X) and all ¢t > 0. Consequently, for every w € €' and every p > 0,
we have:

, . St (h(By(x)),w)
lim #Z7L;(z, &, w) = lim —& £ ;
fan 77 Ll &) = T = 0 T )
—_ T 56 (ht<B (33)),0))
lim #Z7L;(z, &, w) = lim —& - )
pug ZiLelr &) = i =0 s @)

and the proposition follows by using (5.7) with B = B,(z). B

For each t > 0, let E; : H*(O;R™) x Q — [0,%0] be defined by (LI with L, given by
(5.2). Taking Theorem [2.5| and Proposition .§| into account, from Propositions [5.7] and
respectively, we deduce the following two homogenization theorems.

Theorem 5.9 (deterministic case). Assume that p > k. Under (O1), (O3), (O4), (F1)—(F5)
and (Hy)—(Hs), one has

t—o0

D(LL)- i B (u) = f Linom (V () dps()
o
for allwe HP(O;R™) with Lyem : M — [0,00] given by
T

li inf
Liom(§) = { 721 keN+  u(hy(U)) =
o0 otherwise.
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Theorem 5.10 (stochastic case). Assume that p > k. Under (O1)-(0y), (F3), (F5), (F3)-
(F5), (H1), (Hy), (H3), (Hy), (Hs), (H}) and (H3), there exists ' € F with P(Y) = 1 such
that for every w € ', one has

[(L7)-lim By (u, w) = fo Lyom (V,u(z), w)dp(x)

t—00
for all we HyP(O;R™) with Lyem : M x Q — [0, 0] given by
E7[S7¢ (h(U), )} () SOR A

Lhom(ga W) = TILI?* klell}\?* /,L(hk([U)) ng © yKEJO @uGy
o0 otherwise,

where B denotes the conditional expectation over F with respect to P, with 5 being the
o-algebra of invariant sets with respect to (Q, F,P,{7y}geq). If moreover (Q, F, P, {7,}4es)
15 ergodic then Lyoy s deterministic and is given by

b g EISE(u(U), )]

Lhom(f) = T—1— keIN* M(hk<U)) ng © ng @HGy
o0 otherwise,

where E denotes the expectation with respect to P.
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