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ON I'-CONVERGENCE AND HOMOGENIZATION OF NONCONVEX
UNBOUNDED INTEGRALS IN CHEEGER-SOBOLEV SPACES

OMAR ANZA HAFSA AND JEAN-PHILIPPE MANDALLENA

ABSTRACT. We study I'-convergence of nonconvex integrals of the calculus of variations in
the setting of Cheeger-Sobolev spaces when the integrands have not polynomial growth and
can take infinite values. Homogenization in such a framework is also developed.
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1. INTRODUCTION

Let (X, d, 1) be a metric measure space, where (X, d) is complete, supporting a weak (1, p)-
Poincaré inequality with p > 1 and such that p is a doubling positive Radon measure on X
which satisfies the annular decay property (see . Let m > 1 be an integer, let Q ¢ X
be a bounded open set such that pu(Q\Q) = 0, let O(Q) be the class of open subsets of

Key words and phrases. I'-convergence, Deterministic homogenization, Stochastic homogenization, Non-
convex unbounded integral, Ru-usc, General growth conditions, Metric measure space, Cheeger-Sobolev

space, Amenable group.
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and let (3, F,P) be a probability space. In this paper we consider a family of variational
stochastic integrals E; : H)P(Q;R™) x O(Q2) x ¥ — [0, 0] defined by

Ei(u, A, w) = J Li(z,V,u(z),w)du(z), (1.1)
A

where L; :  x M x 3 — [0, 0] is a Borel measurable stochastic integrandﬂ depending on
a parameter t > 0 and not necessarily convex with respect to & € M, where M denotes the
space of real m x N matrices. The space H ;’p (€; R™) denotes the class of p-Cheeger-Sobolev
functions from 2 to R™ and V,u is the p-gradient of u (see §3.1).

We are concerned with the problem of computing the almost sure I'-convergence (see Defi-
nitions and of the stochastic family {F;};~o, as t — 0, to a variational stochastic
integral Eo, : HP(Q;R™) x O(Q) x ¥ — [0, 0] of the type

Eo(u, A,w) L Loo (2, V,u(z), ) du(z) (12)

with Ly, :  x M x 3 — [0, 0] not depending on the parameter t. When L, is indepen-
dent of the variable z, the procedure of passing from (|1.1]) to is referred as stochastic
homogenization. If furthermore L. is independent of the variable w then E is said to be
deterministic, otherwise F, is said to be stochastic. When {L;};~¢ is deterministic, i.e. L;
is independent of the variable w for all ¢ > 0, the procedure of passing from to is
referred as deterministic homogenization.

Our motivation for developing I'-convergence, and more generally calculus of variations, in
the setting of metric measure spaces comes from applications to hyperelasticity. In fact,
the interest of considering a general measure is that its support can be interpretated as
a hyperelastic structure together with its singularities like for example thin dimensions,
corners, junctions, etc. Such mechanical singular objects naturally lead to develop calculus
of variations in the setting of metric measure spaces. Indeed, for example, a low multi-
dimensional structures can be described by a finite number of smooth compact manifolds S;
of dimension k; on which a superficial measure y; = H*|g, is attached. Such a situation leads
to deal with the finite union of manifolds S;, i.e. X = u,;S;, together with the finite sum of
measures fi;, i.e. = Y. f;, whose mathematical framework is that of metric measure spaces
(for more examples, we refer the reader to [BBS97, [Zhi02, [CJLP02] and [CPS07, Chapter
2, §10] and the references therein). In this way, having in mind the two basic conditions of
hyperelasticity, i.e. “the non-interpenetration of the matter” and “the necessity of an infinite
amount of energy to compress a finite piece of matter into a point”, it is then of interest to
study I'-convergence of nonconvex integrals of type when the integrands do not have
p-growth and can take infinite values: this is the general purpose of the present paper. Note
that although our framework needs some “convexity” assumptions (see especially which
implies that domain of L(z,-,w) is convex) it is consistent with the two above conditions of
hyperelasticity (see [AHMI1, §2.2] and [AHMZ15, §9]). Nevertheless, this dose of convexity

1Throughout the paper, by a Borel measurable stochastic integrand L : Q@ x M x ¥ — [0, 0] we mean
that L is (B(X) ® B(M) ® F, B(R))-measurable, where B(X), B(M) and B(R) denote the Borel o-algebra
on X, M and R respectively.
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makes our framework not consistent with another condition of hyperelasticity that is “frame-
indifference” (see [AHMZI5, Remark 9.1]). (For more details on the theory of hyperelasticity
we refer the reader to [MH94].)

Such a I'-convergence problem in such a metric measure setting was studied for the first
time in [AHMI17] when the family {L;}:~o is deterministic and has p-growth, i.e. there exist
a, f > 0 such that

algl” < Li(z,§) < B(1 +[¢]7) (1.3)
for all t > 0, all £ € M and all x € Q, where it is proved (see [AHMI17, Theorem 2.2]) that if
(1.3) holds then:

[(L2)- lim By (u, A) > LE lim Hj, L(z, Vyu(x))dp();

t—00 =0t 0

(L) iy Eul 4) = | i Fo L, ¥,

A p—0t—00

for allu € H*(Q; R™) and all A € O(€2), where I'(L%)- lim and I'(L%)- lim denote respectively
the I-liminf and the I-limsup with respect to the strong convergence of LI (;R™) (see
Definition and, for each t > 0 and each p > 0, Hf L; : Q x Ml — [0, c0] is given by

HI Ly(z,§) := inf {J[
Qp(x)

where @,(z) denotes the open ball with radius p > 0 and the space H;:g(Qp(a:); R™) is the
closure of

Li(y, &+ V,w(y))du(y) - we Hlifg(Qp(x);]Rm)} (1.4)

Lipo(Qp(e);R™) = {u € Lip(@R™) : w = 0 on 2\Q,(x)}

with respect to the HjP-norm, where Lip(Q;R™) := [Lip(Q)]™ with Lip(Q) denoting the
algebra of Lipschitz functions from € to R. In particular (see [AHMI17, Corollary 2.3]), if
moreover, for every x € (), every p > 0 and every £ € M, one has

t—00 t—o0
then
D(LL)- im Ei(u, A) = f Lo (2, V() dp() (1.6)
- A
for all w € H,?(Q;R™) and all A e O(Q2), where Ly, : Q x M — [0, 0] is given by
e b aup
Loo(,€) = lim lim H7Ly(, ). (1.7)

This was illustrated in [AHMI7] in the case of deterministic homogenization where it is
proved (see [AHMI17, Theorem 2.20]) that in the p-growth context and under additional as-
sumptions on the metric measure space (X, d, i), the equality is verified independently
of the open ball Q,(z) and so holds with the integrand L., in (1.7)) which does not
depend on the variable x, i.e. Ly(x,&) = Lypom(§) with

Lyom (&) := kié[ll\lf* inf {J[h (@)L(’y,{ + V,w(y))du(y) - w e Hi:g <hk (U),Rm> } , (1.8)
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where U < X is the “unit cell” (with U denoting the interior of U) and, for each k € N*, hy
is a homeomorphism on X (see for more details).

In this paper, we extend our previous results in [AHM17] to the unbounded case, i.e. to the
case where the integrands L, in ([I.1)) do not have p-growth and can take infinite values (see

, , and for more details).

Our main contribution (see Theorem [2.11)) is to prove that for p > k, with k :=

In(Cy)
In(2)
Cy = 1 is the doubling constant, see (2.1)), if, for P-a.e. w e 3, {L;};>0 is radially uniformly

upper semicontinuous (ru-usc) at w, i.e. there exists {a;(-,w)}=0 = L (€;]0,0]), with

where

limg o0 §, ae(@,w)dp(z) < o0 and lim,_q lim;_.o &Qp(x)at(y,w)du(y) < oo for pra.a. x € 9,
such that

m supsup sup Lt(‘ra 7—57 w) - Lt(‘ra §7w>
T=17 >0 2eQ ey o0 at(a:, W) + Lt($a f,w)

where L; , ,, denotes the effective domain of L;(x, -, w) and if {L;};~¢ has G-growth, i.e. there
exist a, 8 > 0 such that for P-a.e. we X,

aG(§) < Li(z,§,w) < B(1 + G(6)),

for all t > 0, all z € Q and all £ € M, where G : M — [0, 0] is Borel measurable, p-coercive
and verifies some “convexity” assumptions, see (2.6) and (2.7), then for P-a.e. w € ¥, one
has:

<0,

[(LE)- lim Ey(u, A,w) > JA lim lim lim M4 L(z, 7V u(z), w)dpu(z);

t—00 T—1- p—0 t—00

[(L7)- lim Ey(u, A,w) = f lim lim lim H4 Ly(2, 7V u(z), w)dpu(x)
t—o0 AT—l— p—0t—00

for all w € & and all A € O(f2), where & denotes the effective domain of the functional

u— §, G(V,u(z))dp(x). This establishes (see Corollary [2.15) that if moreover

lim HZLt(fE, £, w) = lim HZLt(xa &, OJ)
t—00 t—0o0
for P-a.a. we X, all z € 0, all p > 0 and all £ € G, where G denotes the effective domain of
G and Hf Ly(x, €, w) is given by (L.4) with “L;(z,{,w)” instead of “Ly(z,)”, then for P-a.e.
w € X, one has

F(Lﬁ)—tlim Ei(u,Qw) = J zm(x,vuu(x),w)du@) (1.9)

—00 Q

for all u € &, where L., : © x M x ¥ — [0, 0] is defined by

Loo(w,&,w) i= lim Ly(x, 7€,w)
T—1"
with Le(x, 7€, w) given by (1.7) with “L(x, 7€, w)” instead of “L;(x,£)”. We also show that
under suitable assumptions the equality ([1.9)) can be extended to the whole space H ;’p(Q; R™)
(see Corollaries [2.16], 2.17| and [2.18)).

Our I'-convergence results apply to homogenization (see Theorems and and Corol-
laries [2.26} [2.27], [2.28 [2.35] [2.36| and [2.37]). Generally speaking, for a measurable dynamical
G-system (2,7, P,{7,},ec) (see Definition [3.38), where G is a subgroup of Homeo(X) with
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Homeo(X) denoting the group of homeomorphisms on X, and under some additional as-
sumptions on the triple ((X, d, 1), G, {ht}t>0) (see for more details), when

Li(x,§,w) = Lhe(x), & w),
where {h;}~0 € Homeo(X) and L : X x M x 3 — [0, 0] is ru-usc and satisfies
L(g~'(2),w) = L(z, -, 74(w))
for all g € G, we prove that holds with
Loo(2,€,w) = Liom (&, w)
with Lpom : M x ¥ — [0, 0] given by

keN*

Lom (&, w) := inf E* [inf {J[h (@)L(y,f + V,w(y), )du(y) : w e H;:g <h;C (U),Rm> }] (w),

where E? denotes the conditional expectation over Z with respect to P, with Z being the
o-algebra of invariant sets with respect to (X, 7T, P, {7,}sec). If in addition (X, 7, P, {7,}4ec)
is ergodic (see Definition [3.40)), then Ly, is deterministic and is given by

keN*

Lyom(§) := inf E [inf {J[h (@)L(y,g + V,w(y), )du(y) - w e H;:g (hk(U),Rm>}

where [E denotes the expectation with respect to P. When L is deterministic, Loy, is given
by ().

For related works in the Euclidean case, i.e. when (X,d,u) = (RY, |- —-|, Ly) where Ly is
the Lebesgue measure on RY | we refer the reader to [Mar78, [Bra85, [DMMS6, [Mul87, [JTKO94,
MM94| BG95, BDIS| [AM02, [AM04, AHM11, [AHLM11, [AHMZ15, DG16, [AHCMI17] and the

references therein.

The plan of the paper is as follows. In Sect. I 2| we state the main results of the paper (see The-
orems [2.11}in §2.3|for I'-convergence and Theorems [2.26} Ha 2.27|in 3‘- for homogenization)
and thelr consequences (see Corollaries [2.15] 2.16], [2.17] and [2.18 in §2.3| for I'-convergence
and Corollaries [2.26] [2.27] [2.28] [2.35] [2.36] and [2.37] in - for homogemzatlon Sect. [4]
is dedicated to the proof of Theorem [2.11] and Theorems [2.26] and [2.27] are proved in Sect.
B, whereas the proofs of their corollaries are given in §2.3] and respectively. Sect.
is devoted to several auxiliary results needed for proving Theorems [2.11], [2.26| and [2.27] In
the appendix we give the proof of the integral representation of the Vitali envelope of a set
function, that is used in the proof of Theorem [2.11] as well as the proofs of subadditive
results in the setting of metric measure spaces, that are used to establish Theorems and
2.2

Notation. The open and closed balls centered at x € X with radius p > 0 are denoted by:
Qp(x) := {y € X :d(z,y) < p};
Q@)= {ye X :d@,y) < pf.
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For z € X and p > 0 we set
0Q(x) = Qu(@)\Qp(x) = {y < X : d(w,) = p}.

For A c X, the diameter of A (resp. the distance from a point x € X to the subset A) is
defined by diam(A) := sup, 4 d(7,y) (resp. dist(z, A) := infyeq d(x,y)).
The symbol { stands for the mean-value integral

2. MAIN RESULTS

2.1. Setting of the problem. Let (X,d, u) be a separable and complete metric measure
space. Here and subsequently, we assume that p is doubling on X, i.e. there exists a constant
Cy = 1 (called doubling constant) such that

Q) < Car (Q3 () 21)

for p-a.a. z € X and all p > 0, and X supports a weak (1,p)-Poincaré inequality with
1 < p < o, i.e. there exist Cp > 0 and ¢ > 1 such that for p-a.e. x € X and every p > 0,

1
][ f- J[ fdp|dp < pCp (J[ gpdu> (2.2)
Qp(x) Qp(z) Qop(x)

for every f e LL(Q), every p-weak upper gradient g € L (§2) for f and every open set 2 = X
such that Q,,(x) < €. (For the definition of the concept of p-weak upper gradient, see
Definition [3.2]) As y is doubling, for p-a.e. € X and each r > 0, we have

u(Qp(ﬂ_C)) e <£>“ (2.3)
(@ (7)) r
for all z € Q,.(z) and all 0 < p < r, where k := % (see [Haj03, Lemma 4.7]). We further

assume that (X, d, u) satisfies the annular decay property, i.e. there exist 6 > 0 and Cy > 1
such that

é
Qo @u(0) < Ca (1= 1) 4(@urle) 2.4)
for all z € X, all r > 0 and all o €]1, o0[.

Remark 2.1. From [Buc99, Corollary 2.2] and [CM98| Lemma 3.3] (see also [Che99, Propo-
sition 6.12] and [HKST15, Proposition 11.5.3 pp. 328)]), if moreover (X, d) is a length space

then (2.4]) holds.

Remark 2.2. 1f (2.4) holds then u(Qr(x)\QT(x)) = (0 for all z € X and all » > 0, i.e.
the boundary of balls is of zero measure. Indeed, given x € X and r > 0, we have 1 >

(@) /(@) > @)/ @or(2)) > 1~ Call — 1 for all o €1, . Henee, by
letting 0 — 1, we obtain u(Q,(2))/u(Q,(z)) =1, i.e. w(Q,(x)) = p(Q,(x)).
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From now on, we suppose p > &, we fix a bounded open set @ = X such that u(Q\Q) =0
and an integer m > 1, and we denote the class of open subsets of {2 by O(f2).

Let us recall the definition of I'-convergence and a.s I'-convergence. (For more details on the
theory of I'-convergence we refer to [DM93].)

Definition 2.3. For each t > 0, let E, : H,P(Q;R™) x O(Q) — [0,0] and let E :
H P R™) x O() — [0,00]. We say that {E;},- I'-converges with respect to the strong
convergence of LF(; R™), or simply I'(LE)-converges, to Ey, as t — oo if

[(L})- lim Ey(u, A) > By (u, A) > T(L})- Iim E,(u, A)
t—00 —00
for any u e H,?(Q;R™) and any A € O(1), with:

F<Lﬁ)‘ lim Fy(u, A) := inf {h_m Ei(ug, A) - uy i U} ;

t—00 t—00

(L) g B, ) inf { i B3, 4) .
—00

t—00

Then we write

F<Lﬁ)_th—>1£lo Ei(u,A) = Ey(u, A).

Let (X, F,P) be a probability space. Almost sure I'-convergence is defined from Definition
2.3 as follows.

Definition 2.4. For each t > 0, let E; : Hy?(Q;R™) x O() x ¥ — [0,00] and let Ey, :
HP(Q;R™) x O(Q) x X — [0,00]. We say that {E;};-0 almost sure I'-converges with respect

to the strong convergence of LE(€;R™), or simply almost sure I'(L#)-converges, to Eqy, as
t — oo if for P-a.e. w € X, one has

[(LE)- tlim Ei(u, A,w) = Ex(u, A,w).
—00
for any u e H,?(Q;R™) and any A € O(1).
For each t > 0, let E, : HP(Q;R™) x O(Q) x ¥ — [0, 0] be defined by

Ei(u, Ayw) = JA Li(z, V,u(z), w)du(z).

The object of the paper is to compute the almost sure I'(LL )-convergence of { £}~ as t — o0
in the case where the family {L;};~¢ does not have p-growth and can take infinite values.

2.2. Growth and ru-usc conditions. Let G : M — [0, 0] be a Borel measurable integrand
such that G is p-coercive, i.e. there exists ¢ > 0 such that for every z € ) and every & € M,

G(&) > clep. 2.5)
We also assume that there exists » > 0 such that
sup G(§) < oo, (2.6)

lEl<r
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and there exists v > 0 such that for every z € Q, every 7 €]0, 1] and every &, ( € M,
G(r€+ (1 =7)¢) < 7(1+ G(§) + G(Q)). (2.7)
Remark 2.5. If (2.7]) holds then G is convex, where G denotes the effective domain of G.

Remark 2.6. If (2.7)) is satisfied and if 0 € int(G) then (2.6) holds, see [AHMI12b, Lemma
4.1].

Let G,G : HP(Q; R™) — [0, 0] be the functionals defined by:
I

Glu) = j G(V ) dpu(x): 2.8)
G(u) := inf {7111_1(130 G(uy) : up b U} : (2.9)

(The functional G is the lower semi-continuous envelope of G with respect to the strong
convergence of L?(Q;R™).) Let us denote the effective domains of G and G by & and &*
respectively. It is clear that & < &'5°. We futhermore assume that

TG < & for all 7 €]0,1]. (2.10)

Remark 2.7. If "¢ < & and if (2.6) holds (and so 0 € &) and (2.7)) is satisfied (and so & is
convex) then ([2.10]) holds.

Remark 2.8. If G is p-coercive, lLe. ([2.5) holds, and if (2.7) is satisfied then &'*° = &, where
& denotes the closure of & with respect to the norm of H }L’p(Q;Rm). Thus, if moreover

0 € int(&), where int(&) denotes the interior of & with respect to the norm of H,?(Q;R™),

then (2.10) holds.

Throughout the paper, we assume that {L;},~o has G-growth, i.e. there exist «, > 0 such
that for every x € Q, every £ € M and P-a.e. w e X,

aG (&) < Ly(z, & w) < B(1+ G(9)). (2.11)

Remark 2.9. Givenw € ¥, if (2.7) and (2.11)) hold then the effective domain IL; , , of L;(z, -, w)
is equal to G and so is convex.

Remark 2.10. Given w € X, if (2.11) is satisfied then the effective domains of the functionals
D(LE)-lim, ., Ey(-,Q,w) and D(LF)-limy_ Ey(-,Q,w) are both equal to &*.

When G(&) = [¢£]P, we say that {L;};~¢ has p-growth. The p-growth case was already studied
in [AHM17]. The object of this paper is to deal with the G-growth case. For this, in addition,
we need to suppose that for P-a.e. w € X, {L;};~¢ is radially uniformly upper semicontinuous
(ru-usc) at w with {a,(-,w)}=0 < L,(€;]0,0]), i.e.

lim sup A(ztt("w) (1) <0 (2.12)

T—=17 >0

with ACIZ("W) . [0,1] —] — 00, 0] given by

. Li(x, 78, w) — Ly(x, &, w)
A1) = qup su 0o s —
L ( ) $€£ ﬁe]LtE,w at('ra w) + Lt(l‘v ga (U)
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with the additional assumptions that

lim | a;(z,w)du(z) < o (2.13)
t—o0 Q
and
lim lim ai(y,w)du(y) < oo (2.14)

p—0t—0o0 Qp(x)

for p-a.a. x € Q. (For more details on the concept of ru-usc, see )

2.3. I'-convergence. In what follows u(ﬁ\Q) =0, p > Kk, where x := hfé((’;f;) with Cy > 1
given by the inequality (2.1), and m > 1. For each t > 0 and each p > 0, let HfL; :

Q' x M x ¥ — [0,00] be defined by

HI Ly(7,§,w) = inf {J[

where @,(z) denotes the open ball with radius p > 0 and the space H;jg(Qp(x); R™) is the
closure of

o )Lt(y,f + Vyuw(y),w)du(y) : w e Hijé’(Qp(x);Rm)}

Lipo(Qp(e);R™) = {u € Lip(@R™) s w = 0 on 2\Q, (x)}

with respect to the HP-norm, where Lip(€;R™) := [Lip(Q)]™ with Lip(Q2) denoting the
algebra of Lipschitz functions from Q to R (see for more details). The main result of
the paper is the following.

Theorem 2.11. If (2.5), (2.6), (2.7), (2.11), (2.12), (2.13)) and (2.14) hold then for P-a.e.

w € X, one has:

D(LE)-lim By (u, A, w) = JA lim lim lim H Ly(z, 7V u(z), w)dp(z); (2.15)

t— r—1- P70t

F(Lﬁ)-}i_rgloEt(u,A,w) = J lim lim lim M5 Ly(z, 7V u(z), w)dp(z) (2.16)

ATl p—0t—00
for allue & and all A e O(Q).
Assume furthermore that for P-a.e. w € X, every x € €2 and every p > 0, one has

lim H Ly(z, &, w) = th_m HELy(2,€,w) for all { € G (2.17)

t—00

and let Lo : Q0 x M x & — [0, 0] be defined by
EOO(I,S,W) = lim LOO(:L‘7T§7W)

T—1—

with Ly @ Q x M x 3 — [0, 0] given by
Loo(x7£7w> = }E)EOHZLA%’&’M) (218>
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Let Q,G : M — [0, ] be defined by

Q,G(€) := lim inf {J[Q ( )G(ﬁ + Vaw(y))duly) - w e Hijé’(Qp(x);Rm)}

p—0
(Note that Q,G is in fact given by (2.18) with “G” instead of “L,”.)

Remark 2.12. The integrand Q,G is called the H i’p—quasiconvexiﬁcation of G. (For more
details on the notion of H)?-quasiconvexity, we refer to [AHMI9al.)

The following proposition, which make precise the representation of iw, will be useful in our
framework.

Proposition 2.13. Given w € X, assume that (2.11)) is verified and {L;}~o is ru-usc at
w with {a:(-,w)}i=0 satisfying (3.20). If Q,G is convex and 0 € int(Q,G) with int(Q,G)
denoting the interior of Q,G and Q,G being the effective domain of Q,G, then:

(a) L is ru-usc at w;

(b) zw(:v,f,w) = lir{l_ Lo (z, 7€, w) for all x € Q and all £ € M.

If moreover Lo (x,-,w) is lsc on int(Q,G) for all x € Q then:

Loo(z, & w) if € Q and § € int(Q,G)
() [Ajw(%g’w) — Th:{lf Ly(x, 7€, w) ifreQ and { € 09,G
0 otherwise;

(d) for everyx € Q, Ew(x, -, w) is the Isc envelope of Ly (z, -, w). In particular ZALOO(-, Lw) <
Loo ('7 K W) :

Proof of Proposition [2.13| From Proposition [3.17| we can assert that L., is ru-usc at w,

and from (2.11)) we see that L, ., = Q,G for all z € Q. On the other hand, Q,G is convex

and 0 € int(Q,G), hence 79,G < int(Q,G) for all 7 €]0, 1|, where Q,,G denotes the closure
of Q,G, and the proposition follows from Theorem [3.14, W

Remark 2.14. Let w € ¥ be satisfying all the assumptions of Proposition|2.13, By Proposition
2.13{(a) we see that L, is ru-usc at w, and by Proposition [2.13(d) we can assert that for every
z €, Lo(r,,w) is Isc and Loy © Lo g © Lo aw. But, for each 7 € Q, Ly, = Q,G

~

and, for each 7 €10, 1[, 7Q,G < int(Q,G), hence TEOOJW < int(Lo 4 ). Applying Theorem
3.14(a) and (d) with L(-,,w) = L (-, -,w) we deduce that

Eoo(x,f,w) = lim Lo(z, 7€, w) = Los(2, €, w)

T—1—

for all z € Q and all £ € M, where Ly : Q x M x & — [0, 50] is defined by

-/[:Oo<xa§7w) = h_m EOO(LU,Té,W).

T—1"

The following result is a consequence of Theorem [2.11
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Corollary 2.15. Under the assumptions of Theorem [2.11|, if (2.17)) is satisfied then for
P-a.e. w e X, one has

F(LZ)_}H?O Ei(u,Q,w) = L Lo(z, V,u(x), w)dp(z) (2.19)

forallue ®.

Proof of Corollary Let w € X be suitably fixed and let u € &. Then, for p-a.e.
z e, V,u(r) e G. But G satisfies (2.7)) and so G is convex. Moreover, by ({2.6) we have
0 € G. Hence 7V, u(z) € G for all 7 €]0,1[. From (2.17) it follows that

lim H: Ly(z, 7V u(r),w) = @HﬁLt(x, ™V, u(z),w)

t—00

for all p > 0 and all 7 €]0, 1[, and so, taking (2.18]) into account,
lim lim lim HLi(z, 7V, u(z),w) = lim lim lim H”, b Lz, 7V u(r),w)

T—1- p—0 t—a0 T—1— p—01—00

= lim lim lim H? L;(z, 7V u(z), w)

T—1— p—0t—00

= ZALOO(J; V,u(z),w)

for pra.a. z € Q, and (2.19) follows by using and (2.16).

From Corollary 2.15 we deduce the followmg two results.

Corollary 2.16. Under the assumptions of Corollary if & < & then for P-a.e.
w € X, one has

T : Isc
T(L7)- lim Ey(u, 2,w) = L L@, Viul), w)dule) fue® (2.20)
e 0 if ue HiP(Q; R™)\&",

Proof of Corollary Let w € ¥ be suitably fixed. Since "¢ < &, from Corollary
2.15 we deduce that

~

F(Lz)‘thm Ey(u, Qw) = J Loo(, V,u(x),w)dp(z) for all u e &
—00 Q

On the other hand, from (2.11]) we see that:
aG(u) < D(LE)-lim Ey(u, Q,w) < B(1 + G(u));

t—00

aG(u) < I(L%)- th_m Ey(u,Q,w) < B(1+G(u))
—00
for all u e H»*(Q; R™), where G is defined by (2.9). Hence
['(L})- im Ey(u, Q,w) = F(Lﬁ)_tli_I?OEt(u’ Q,w) =0 for all u € H}L’p(Q;Rm)\@BC,

t—o0

and the proof is complete. B
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Corollary 2.17. Under the assumptions of Corollary 2.15], if (2.10) is satisfied then for
P-a.e. w e X, one has

if u e B

if ue HP(Q;R™)\&" (2.21)

PY_ _ ,
[(LE) thnolo Ei(u,Q,w) = {

with Z(-,w) : HP(Q;R™) — [0, 0] given by

Z(u,w) = lim Z(ru,w),
where I(-,w) : HYP(Q;R™) — [0, 0] is defined by

T(u,w) = JQ fm(:ﬂ, V,u(x), w)dp(z).

Proof of Corollary Let w € X be suitably fixed. From Corollary we see that
F(Lﬁ)— limy o Ey(u, Q,w) = Z(u,w) for all u e &. As {L;}4~0 is ru-usc at w it is easily seen
that {E;(-, €, ) }=0 is ru-usc on & at w. Hence, since (2.10) holds, from Corollary we
deduce that

[(L})- tlim Ei(u,Q,w) = f(u,w) for all u e &".
—0
On the other hand, taking (2.11)) into account, it is clear that if u ¢ &' then
[(L)- lim Ey(u, Q,w) = F(Lﬁ)-}LT?OEt(u, Q,w) = o,

t—00

and (2.21)) follows. W
As a consequence of Corollary we have the following result.

Corollary 2.18. Under the assumptions of Corollary if (3.20) is satisfied and if Q,G
is convez, 0 € int(Q,G) and Ly (z,-,w) is lsc on int(Q,G) for P-a.a. we ¥ and all x € Q,

then (2.20) holds for P-a.a. w e X.
Proof of Corollary By Corollary (2.21)) holds, and so it suffices to prove that

A~

Z(u,w) = Z(u,w) for all u € &, First of all, we claim that & = J,,, where J,, denotes the
effective domain of Z(-,w). Indeed, let u € &. Using the right inequality in (2.11)) we have

N

[ ot Vo dnte) < (100 + [ Q.G utainte))

A

o191+ | GTat)au)
— B9l + 6(w) <,

and the claim follows because Eoo(-, -,w) < Lo (-, -,w) by Proposition [2.13(d). On the other
hand, as (3.20]) holds, from Proposition we deduce that L., is ru-usc at w, hence L,
is ru-usc at w by Proposition (a), and so Z is ru-usc at w. Consequently, we can assert
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that Z is ru-usc at w on & because & J,. From the second part of Theorem it follows
that

~ Z(u,w) ifue®
L(u,w) = hI{{ I(tu,w) if ue B™\B.

We are thus reduced to show that Z(u,w) = lim,_;- Z(Tu,w) for all u € S"\&. Let
u € B5\®. Taking Remark into account and using Fatou’s lemma we see that

lim Z(tu,w) = lim Em(x,TV“u(x),w)du(x)

T—1— =17 Jo

> J lim ioo(:v,TVMu(ﬂf),w)dﬂ(x)
Q

T—1"

_ JQ Lo (2, 7Y yu(x), w)dp(z)

= Z(u,w).

Hence, if Z(u,w) = oo then lim, ;- Z(7u,w) = o0. Assume that Z(u,w) < o0. Then

Loo(-, V,u(),w) € LL(9). (2.22)
As Zoo is ru-usc at w we have

i T AGoo(hw)
Aw) := Tlir{l_ Aioc (1) <0 (2.23)

with A%O;‘("w) (T) := Sup,eq SUPeer, L‘;ﬁ;i;‘ﬁ%i?ﬁi; ) and

Qo (-, w) € Li(Q;]O, 0]). (2.24)

By (2.23) there exists 1 €]0, 1] such that A(zw("w)(T) < A(w) + 1 for all 7 € [1p,1[. Conse-

Lo
quently, we have

>

Loy V() 0) < Lo, Vi), w) + AFC(7) (@) + Lo, V() ) )
Loy Viu(),0) + () + 1) (o(50) + Lo, Vyu(),w) ) = f()
for all 7 € [7y, 1[. Moreover, f(-,w) € L,(Q) by and and from Remark we

see that for every x € €, lim,_,;- Eoo(x,rvuu(x),w) = Eoo(:c, V,u(x),w), and so by using
Lebesgue’s dominated convergence theorem we conclude that

N

lir? IZ(tu,w) = hI{l Em(x,TV“u(x),w)du(x)
- | BalorVyule).w)duto
Q
= Z(u,w),

which completes the proof. B
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Remark 2.19. In case Li(z,&,w) = L(x,§), and so E(-,Q,w) = E(-,Q), we retrieve the
relaxation theorem established in [AHMIS8, Theorem 2.7]. More precisely, denoting the
lower semi-continuous envelope of E(-,€2) with respect to the strong topology of Lk (2;R™)

by E(-,Q), as a direct consequence of Corollaries [2.15| [2.16{ and [2.17 we have the following
result.

Corollary 2.20. Assume that the hypotheses of Theorem are satisfied with L(z,&,w) =
L(z,¢).

(a) For every u e &, one has

B(w.9) = | QuLfe. Vyu(a)du(o)

where éu\L :Q x M — [0,00] is defined by
Q,L(,¢) = lim Q,L(z,T¢).

T—1—

with Q,L : Q@ x M — [0, 0] given by

Q,L(x, &) := lim inf {J[ L(y, &+ Vuw(y))du(y) - w e Hﬁj’é(Qp(x);Rm)} :
Qp ()

p—

(b) If ®¢ = & then

B ) - Lémx,vuu@s))du(x) ifue Bk .
% if ue HYP(Q R™)\ 6.
(c) If holds then
_ lim f O (e, 7V () dpu(x) if ue &
Q

E('U/, Q) = T—1—
i if e HP(QR™)\ &k,

If moreover Q,G is conver, 0 € int(Q,G) and Q,L(x,-) is lsc on int(Q,G) for all
x € Q, then (2.25) holds.

2.4. Homogenization. In order to deal with homogenization, it is necessary to make some
refinements on our general setting, see (H;)-(Hs)-(H3)-(HY) for the deterministic case and
(Hy)-(Hz)-(Hs)-(H5)-(Hs) for the stochastic case. These refinements are an attempt to de-
velop a framework for dealing with homogenization in the setting of metric measure spaces.
(Such a development was attempted for the first time in [AHM17].)

Let B(X) be the class of Borel subsets of X, let B, o(X) denote the class of Q) € B(X) such
that u(Q) < o0 and w(0Q) = 0 with 0Q = Q\Q and let Ba(X) be the class of open balls Q
of X. As (X, d, p) satisfies the annular decay property, i.e. (2.4), we have ;(6Q) = 0 for all
@ € Ba(X) (see Remark [2.2). Hence Ba(X) < B, o(X).

Let Homeo(X) be the group of homeomorphisms on X, let G be a subgroup of Homeo(X)
such that
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(H;) the measure y is G-invariant, i.e. g*u = p for all g € G,
where ¢g*11 denotes the image measure of u by g, and let {h;};~0 = Homeo(X) be satisfying
the following two conditions.
(Hy) There exists U € B,,o(X) with x(U) > 0 such that (h; ") = p(hy(U))p for all t > 0.
(Hs) For each t > 0 and each open set A < X with u(A) > 0, there exists a bijective
map H; 4 : Hi:g(ht(A) R™) — Hlp(A R™) such that V,H; a4(w) = V, woh; (resp.
V. H, 1j(v) = Vywoh ') for all we Hlp(ht(A); R™) (resp. v € HFIL:‘S(A;RT")).
Remark 2.21. From (Hy) it is easy to see that for each t > 0, u(h(U)) > 0 and hip =
e
Remark 2.22. As p(U\U) = 0 we have u(U) = w(U) and, under (H,), for each t > 0,

1(he(U)) = p(hy(U)) because h, € Homeo(X) and hip = (htl(U) L.

As in , we suppose that u(ﬁ\Q) =0, p > Kk, where K := ) with Cy = 1 given by the

inequality (2.1), and m > 1
2.4.1. The deterministic case. Let G : Ml — [0, 0] be a Borel measurable integrand satis-

fying (2.5, (2.6) and (2.7) and let L : X x M — [0,00] be a Borel measurable integrand
having G-growth, i.e. there exist o, § > 0 such that

)

aG(§) < L(z,§) < (1 + G(¢)) (2.26)

for all x € X and all £ € M, and assumed to be G-invariant, i.e.
Lig~(x),§) = L(x,£) (2.27)
for all x € X, all £ e M and all g € G. For each t > 0, let L, : X x M — [0, o] be given by

(Then, we have L; ((h; fog™'oh,)(z),&) = Li(,€) for all z € X, all £ € M, all ¢ > 0 and all
geG.)

Definition 2.23. Such a {L;}~0, defined by (2.27)-(2.28)), is called a (G, {hs}+~o)-periodic

family of integrands modelled on L.

Remark 2.24. If (2.26)) holds then (2.11)) is satisfied with L; given by (2.28)).

We further assume that L is ru-usc, i.e.

lim A4 (1) <0 (2.29)
T—1"
with A7 (7) := sup,cy Supgr,, %, where @ € L, (X;]0,00]), and we consider the

following condition on the triple ((X, d, ), G, {ht}t>0).

(HY) For each Q € Ba(X), {h(Q)}+=0 is weakly G-asymptotic with respect to {hy(U)}en=
(see Definition (3.31]).

The following result is a consequence of Corollary and Theorem [3.33|
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Theorem 2.25. Assume that (X, d,pn) satisfies (Hy), (Hy), (Hs) and (HY), and consider
)

{Li}i=0 a (G, {hi}i=0)-periodic family of integrands modelled on L. If (2.5)), (2.6), (2.7) (2.26
and ([2.29) are satisfied and if (2.13)) and (2.14)) hold with a; = aohy, where a € L, (X;]0, ]

is given by (2.29), then

D(Lp)- lim Ey(u, ) = L Enom (V () )dpa()

~—

for all u € &, where Ehom : M — [0, 0] is defined by

Liom(€) := lim Ly (7€)

T—1"
with Lpem : M — [0, 00] given by
— inf . Lp T . TPm
Lyom(§) = klerg* inf {J[hk(mL(x,f + Vyw(r))du(r) - we H, g (hk (U);R )} .
From Theorem [2.25| we deduce the following two results.
Corollary 2.26. Let assumptions of Theorem hold. If & < & then
T ; Isc
F(Lz)‘ lim Et(u, Q) = JQ Lhom(VMU(i))dlu(x) fued (2.30)
o 0 if ue HiP(Q;R™)\&",

Proof of Corollary This follows by the same method as in the proof of Corollary
by using Theorem [2.25] instead of Corollary and replacing “Lo, by “Lyon” . B

Corollary 2.27. Let assumptions of Theorem hold. If (2.10) is satisfied then

i 7 ; Isc
P(L)- lim Ey(u, ) = { A0 L Liom(rV,ul@))dp(z) - ifue®
o 0 if ue HP(Q;R™)\&",

Proof of Corollary This follows by the same method as in the proof of Corollary
by using Theorem [2.25] instead of Corollary and replacing “Lo, by “Lyom”, and by
remarking that, since L is ru-usc, {L(h(+), ) }+=0 is ru-usc (see Remark [3.16]). B

Let ZG : M — [0, 0] be defined by

ZG(§) ;= inf {fU G+ V,w(y)dp(y) - w e Hijg(l[oj; Rm)} : (2.31)

As a consequence of Corollary we have the following result.

Corollary 2.28. Under the assumptions of Corollary[2.27) if (3.26]) holds with {Ay}renx =
{he(U)}ren and a € L) (X;]0,00]) given by ([2.29), and if ZG is conver, 0 € int(ZG) and
Liom s Isc on int(ZG), where ZG denotes the effective domain of ZG, then (2.30) holds.
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Proof of Corollary From (2.11)) we see that Lyom = Gpom with Lyom and Gpen
denoting the effective domain of Lyoy, and Ghem respectively, where Gpom : M — [0, 0] is
given by

keN*

Grom(€) := inf inf { Jf (E)G(g + V() dp(z) we HY (hk (@);Rm) } .
hye (0
But, for each £ € M, by using (Hy) and (Hs), we see that

G (€)=, it { [ G+ Tyt i) 0 135 (1 (0): ) |

— inf inf { J@ G(& + Vyw(hi(@))du(e) s w e HYE (I (®)9Rm)}

keN*
. . Lp (7. om
:k1€r11\1f* inf {f[ﬁ G(& + Vyw(z))du(z) - we H G (U; R )} :

hence Gypom = ZG, and consequently Ly, = ZG. Arguing as in the proof of Proposition
2.13| with “Lyon” instead of “L,” and “ZG” instead of “Q,G”, and by using Proposition
3.18] instead of Proposition |3.17, we see that Proposition [2.13]is valid with “Ly,,” instead
of “Ly,” and “ZG” instead of “Q,G”. Thus, by the same method as in Remark we can

assert that

hI{lﬁ Zhom(Tf) = 2\-Jhom(f)a

and the rest of the proof runs as in the proof of Corollary with “Lyem” instead of “Lg,”
and by using Corollary instead of Corollary 2.17] W

Remark 2.29. To prove Theorem (see Sect. []), by using Theorem [3.33] we establish
that for all x € (2 and all p > 0, one has

lim HY Ly(7,§) = Lyom(§) for all £ € G.

t—o0

Hence Lpom (&) = Loo(x,§) for all x € Q and all £ € G. Thus, if Q,G = G then Lyom = Lo,
and s0 Ly, = Lyom = Gpom = ZG = G. So, in such a case, Corollaries[2.26] and 2.27) are direct
applications of Corollaries and respectively, and Corollary can be restated as
the following result which is a direct application of Corollary [2.18]

Corollary 2.30. Under the assumptions of Corollary if (3.20) holds with a; = aohy,
where a € L},(X;]0,0]) is given by [2.29), and if Q,G = G, 0 € int(G) and Lyom is Isc on
int(G), then (2.30) holds.

2.4.2. The stochastic case. In what follows, we assume that (X, T, P, {7,},e¢) is a measurable

dynamical G-system. Let L : X xMx ¥ — [0, o] be a Borel measurable stochastic integrand
having G-growth, i.e. there exist «, f > 0 such that for P-a.e. w e X,

aG(§) < L(z,§,w) < B(L + G(E)) (2.32)
for all x € X and all £ € M with G : Ml — [0, 0] satisfying (2.5)), (2.6) and (2.7)), and

assumed to be G-covariant, i.e.

L(g™"(2),&,w) = L(x, &, 7y(w)) (2.33)
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for all x € X, all £ e M and all g € G. For each ¢ > 0, let L; : X x M x ¥ — [0, 00| be given
by

Lt(x7€7w> = L(ht(x),f,w). (234)
(Then , we have L; ((h; 'og~ ohy)(x), &, w) = Li(,&,74(w)) for all x € X, all £ € M, all
t>0,all ge G and P-a.a. weX.)

Definition 2.31. Such a {L;};~¢, defined by (2.33)-(2.34)), is called a (G, {h;};~o)-stochastic
family of integrands modelled on L.

Remark 2.32. If (2.32) holds then (2.11)) is satisfied with L, given by ([2.34)).

We further assume that for P-a.e. w € X, L is ru-usc at w, i.e.

lim A () <0 (2.35)
T—1"
with AZ("W)(T) I= SUD,cy SUDge, , Lf(’fj’)“jr);é(gf’)w), where a(-,w) € L,(X;]0,00]), and we

consider the following conditions on the triple ((X,d, 1), G, {h:}t=0).

(H5) For each @ € Ba(X), {h(Q)}s>0 is strongly G-asymptotic with respect to {hg(U)}gen+
(see Definition (3.37)).

(Hs) The metric measure space (X,d,u) is meshable with respect to {hy(U)}gen+ (see
Definition [3.34]).

Remark 2.33. From Definitions and we see that (Hj) implies (HY).
The following result is a consequence of Corollary and Theorem [3.42]

Theorem 2.34. Assume that (X,d, u) satisfies (Hy), (Ha), (Hs), (H}) and (Hs), and con-
sider {Li}i=0 a (G, {h}i=0)-stochastic family of integrands modelled on L. If (2.5)), (2.6),

(2.7) (2.32) and (2.35)) are satisfied and if (2.13)) and (2.14]) hold with a;(-,w) = a(h(),w),

where a(-,w) € L},(X;10,0]) is given by (2.35), then for P-a.e. w e X, one has
D(Lp)- lim B (u, Q) = L Enom (¥ att(), ) dp()

for all u € &, where Liom : M x & — [0, 0] is defined by
2ihom(ﬁ;“u) = h_m Lhom(’rgaw)
T—1"
with Lyom : M x 3 — [0, 0] given by

0)

Liom (&, w) := ki&f* E? [inf {J[h . Ly, &+ V,w(y), )du(y) - we H;:g <hk (@);Rm> }] (w),

where EZ denotes the conditional expectation over T with respect to P, with T being the o-
algebra of invariant sets with respect to (X, T, P, {1,}gec). If in addition (X, T,P, {1,}sec) is
ergodic, see Definition then Lyom is deterministic and is given by

Lpom(§):=inf E [inf {J[h . L(y, &+ V,w(y), )du(y) - we H}L:g (hk([fJ);Rm) }] , (2.36)

keN* U)

where £ denotes the expectation with respect to P.
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As in the deterministic case (see §2.4.1) we can establish the following three results. Corol-
laries and below are consequences of Theorem [2.34]

Corollary 2.35. Let assumptions of Theorem hold. If ¢ < & then for P-a.e. we Y,

one has

T ; Isc
F(Lz)_ hm Et(u, 97 (JJ) _ JQ Lhom(vuu(‘r)’ (.U)d,u(x) qu € 6 (237)
o o0 if ue HiP(Q;R™)\&,

If in addition (X, T, P, {1,}gec) is ergodic, then Lyoy is deterministic and is given by (2.36)).
Corollary 2.36. Let assumptions of Theorem hold. If (2.10) is satisfied then for P-a.e.

w € X, one has

1 T ; Isc
D(LE)-lim By, 2,0) = { 1 L Lhon (rV,ul@), w)dp(z) if ue ®
—00

o0 if ue HLP(Q;R™)\&".
If in addition (X, T,P,{7,}gec) is ergodic, then Lyom, is deterministic and is given by ([2.36).
From Corollary we deduce the following result.

Corollary 2.37. Under the assumptions of Corollary[2.36], if (3.26) holds with {Ay}ren+ =
{hi(U) }rens and a(-,w) € L,(X;]0,0]) given by (2.35), and if ZG is convez, 0 € int(ZG)
and Lyom(-,w) is lsc on int(ZG) for P-a.a. w € 3, where ZG denotes the effective domain
of ZG : M — [0, 0] given by (2.31)), then holds. If in addition (X, T ,P,{7,}sec) is
ergodic, then Lyoy s deterministic and is given by .

Remark 2.38. As in the deterministic case (see Remark [2.29)), when Q,G = G, Corollaries

and are direct applications of Corollaries and [2.17, and Corollary can be
restated as the following result which is a direct application of Corollary

Corollary 2.39. Under the assumptions of Corollary 2.36, if (3.20) holds with a;(-,w) =
a(hy(-),w), where a(-,w) € L},(X;]0,0]) is given by ([2.35), and if Q,G = G, 0 € int(G) and
Liom (-, w) is lsc onint(G) for P-a.a. w € 3, then holds. If in addition (X, T, P, {7,}ec)
1s ergodic, then Lyon 1S deterministic and is given by .

3. AUXILIARY RESULTS

In this section we give the auxiliary results that we need for proving the I'-convergence and
homogenization theorems.

3.1. The p-Cheeger-Sobolev space. Let p > 1 be a real number, let (X, d, ) be a metric
measure space, where (X, d) is complete, supporting a weak (1, p)-Poincaré inequality, see
, and such that p is a doubling positive Radon measure on X, see , which satisfies
the annular decay property, see (2.4), and let Q2 < X be a bounded open set. We begin with
the concept of upper gradient introduced by Heinonen and Koskela (see [HK9S]).

Definition 3.1. A Borel function g : Q — [0, o0] is said to be an upper gradient for f : Q —
R if |f(c(1)) — f(e(0))] < Sé g(c(s))ds for all continuous rectifiable curves ¢ : [0, 1] — €.
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The concept of upper gradient has been generalized by Cheeger as follows (see [Che99,
Definition 2.8]).

Definition 3.2. A function g € L7(€2) is said to be a p-weak upper gradient for f € LF(Q)
if there exist {f,}, = LL(Q) and {gn}, = LE(S2) such that for each n > 1, g, is an upper
gradient for f,,, f, — fin LF () and g, — g in LL(Q).

Denote the algebra of Lipschitz functions from Q to R by Lip(£2). (Note that, by Hopf-
Rinow’s theorem (see [BH99, Proposition 3.7, pp. 35]), the closure of  is compact, and so
every Lipschitz function from €2 to R is bounded.) From Cheeger and Keith (see [Che99,
Theorem 4.38] and [Kei04], Definition 2.1.1 and Theorem 2.3.1]) we have the following result.

Theorem 3.3. There exists a countable family {(Q, £¥)}i of p-measurable disjoint subsets
Q. of Q with u(Q\ Ur ) = 0 and of functions &8 = (&F, .- ,fjkv(k)) : Q — RNW with
EF e Lip(Q) satisfying the following properties:

(a) there exists an integer N = 1 such that N(k) € {1,--- N} for all k;

(b) for every k and every f € Lip(2) there is a unique Dy f € LZO(Q;C;RN(’C)) such that
for p-a.e. x ey,

1

lim ~|f — felro0,2) = 0,

plg%pl\f Joll L @p @)

where f, € Lip(Q) is given by f.(y) := f(x) + D/’jf(:c) (&5 (y) — €¥(x)); in particular
Dﬁfz(y) = DZf(m) for p-a.e. y € Q;
(c) the operator D, : Lip(Q) — L7 (4 RY) given by
D.f =Y 1x,Dif.
2

where 1g, denotes the characteristic function of €, is linear and, for each f,g €
Lip(Q2), one has
Du(fg) = fDug + gDuf?
(d) for every f € Lip(Q), D, f = 0 p-a.e. on every p-measurable set where f is constant.

Let Lip(Q; R™) := [Lip(22)]™ and let V,, : Lip(Q; R™) — L7 (Q; M) given by

D#ul
V,u = : with u = (ug, -+, Up).
Dy,
From Theorem (c) we see that for every u € Lip(2; R™) and every f € Lip(Q2), one has
V.(fu) = fV,u+ D,f ®u. (3.1)

Definition 3.4. The p-Cheeger-Sobolev space H }L’p (€; R™) is defined as the completion of
Lip(£2; R™) with respect to the norm

HUHH};P(Q;Rm) = HUHL{’L(Q;R’") + HvuuHLﬁ(Q;M)- (3.2)
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Taking Proposition (3.6(a) below into account, since |Vyulrzom) < HUHHj*P(Q;Rm) for all
u € Lip(€2;R™) the linear map V,, from Lip(€;R™) to L?(€2; M) has a unique extension to
H ;,p (Q; R™) which will still be denoted by V,, and will be called the p-gradient.

Remark 3.5. When € is a bounded open subset of X = RY and p is the Lebesgue measure on
RY, we retrieve the (classical) Sobolev spaces HP(£2;R™). For more details on the various
possible extensions of the classical theory of the Sobolev spaces to the setting of metric
measure spaces, we refer to [Hei07, §10-14] (see also [Che99, [Sha00, [GT01, [Haj03]).

The following proposition (whose proof is given below, see also [AHM15, [AHM17, [AHM18])
provides useful properties for dealing with calculus of variations in the metric measure setting.

Proposition 3.6. We have the following results:
(a) the p-gradient is closable in HyP(Q;R™), i.e. for every u € HP(;R™) and every
AeOQ), if u(z) =0 for p-a.a. x € A then V,u(z) =0 for p-a.a. x € A;
(b) Q supports a p-Sobolev inequality, i.e. there exists Cs > 0 such that

1 1

(f Ivl”du) < Cs (j mwdu) (3.3)
Qp() Qp ()

for all 0 < p < po, with pg > 0, and all v € H;:g(Qp(a:);Rm), where, for each A €
0Q), Hﬁ:g(A;Rm) is the closure of Lipy(A; R™) with respect to H*-norm defined
in (3.2) with
Lipy(4; R™) := {u € Lip(Q; R™) : u = 0 on Q\A};

(c) Q satisfies the Vitali covering theorem, i.e. for every A < Q and every family F
of closed balls in Q, if inf{p > 0 : Qp(x) € F} =0 for all x € A then there exists
a countable disjoint subfamily G of F such that p(A\ Ugeg @) = 0; in other words,
Ac (Ugeg Q) u N with p(N) = 0;

(d) for every u e HyP(Q;R™) and p-a.e. x € Q there exists u, € HP (€ R™) such that:

V,u,(y) = Vyu(z) for p-a.a. y e (3.4)
.1 :
i 2l = ez @p@mmy = 0 4 p > (3.5)

where Kk 1= % with Cyq = 1 given by the inequality (2.1));

(e) for every x € Q, every p > 0 and every A €]0,1] there exists a Urysohn function
@ € Lip(2) for the pair (N\Q,(z), Q)\p(x)) such that
0
D (0 < —
H HQDHLH (Q,RN) p(l . )\)

for some 6 > 0;

2Given a metric space (€, d), by a Urysohn function from Q to R for the pair (Q2\V;, K), where K ¢ V < Q
with K compact and V open, we mean a continuous function ¢ : @ — R such that ¢(z) € [0,1] for all z € Q,
o(x) =0 for all z € Q\V and p(z) =1 for all z € K.



22 OMAR ANZA HAFSA AND JEAN-PHILIPPE MANDALLENA

(f) for p-a.e. x €,
p(Qxp(2)) 7 (Qx(2))

VR Q) T AT p(Qy(a)
Remark 3.7. As u is a Radon measure, if §2 satisfies the Vitali covering theorem, i.e. Propo-
sition [3.6{c) holds, then for every A € O() and every ¢ > 0 there exists a countable family
{Qp, (%) }ier of disjoint open balls of A with z; € A, p; €]0, e[ such that p1(A\UierQp,(z;)) = 0.
By the annular decay property, see ([2.4), we also have u(0Q,,(z;)) = 0 for all i € I (see Re-
mark [2.2)).

Proof of Proposition [3.6] Firstly,  satisfies the Vitali covering theorem, i.e. the prop-
erty (c) holds, because p is doubling on € (see [Fed69, Theorem 2.8.18]). Secondly, the
closability of the p-gradient in Lip(Q; R™), given by Theorem [3.3(d), can be extended from
Lip(Q; R™) to H,?(Q;R™) by using the closability theorem of Franchi, Hajlasz and Koskela
(see [FHK99, Theorem 10]). Thus, the property (a) is satisfied. Thirdly, according to [BB11],
Corollary 4.24 pp. 93], since p is doubling on Q and Q supports a weak (1, p)-Poincaré in-
equality, we can assert that € supports a weak (p,p)-Poincaré inequality, i.e. there exist
¢, > 0 and A > 1 such that for p-a.e. x € {2 and every p > 0,

N :
(f r—f  ran du) < p6y (J[ g%)
Qp() Qp(x) Qxp(x)

for all f € L (€2) and all p-weak upper gradient g € L (€2) for f. Hence, by using the Sobolev
inequality in [BB11, Theorem 5.51 pp. 142], it follows that there exists ¢ > 0 such that for

every 0 < p < pg, with py = 0 and every v € H;:g(Qp(:c);Rm),

1 1
<Jf Ivlpdu) < pe (} \gv|pdu> , (3.7)
Qp(x) Qp(x)

where g, is the minimal p-weak upper gradientﬂ for v. Moreover (see [Che99l §4] and also
[BB11), §B.2, pp. 363], [Bjo00] and [GH13, Remark 2.15]), there exists # > 1 such that for
every w € Hy?P(Q) and prae. x € €,

1
59u(2) < [Dw(a)| < gu(a)

~1. (3.6)

where g,, is the minimal p-weak upper gradient for w. As for v = (v;)iz1,... m € HP(;R™)
we have V,v = (D,v;)i1,... m, it follows that

2102 < [V,0(2)] < Olgux) (38)

3From Cheeger (see [Che99, Theorems 2.10 and 2.18]), for each w € H)P(Q) there exists a unique p-
weak upper gradient for w, denoted by g, € Lz(Q) and called the minimal p-weak upper gradient for
w, such that for every p-weak upper gradient g € LE(Q) for w, gu(r) < g(v) for p-aa. z € Q. For
v = (V;)i=1,..m € Hi’P(Q; R™), gy := (Gu; )i=1,.-. m is naturally called the minimal p-weak upper gradient for
.
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for p-a.a. x € ). Combining (3.7) with (3.8) we obtain the property (b). Fourthly, from
Bjorn (see [Bjo00, Corollary 4.6(ii)] we see that for every k, every u € H,?(Q;R™) and p-a.e.
X € Qk,

V,uz(y) = V,u(z) for p-a.a. y e Q,
where u, € H?(€;R™) is given by

Uz (y) = u(x) + Vyu(z) - (€(y) — £ (x)),
and if p > r then u is L7-differentiable at z, i.e.
1
lim — — Uy (0. (z)Rm) = 0.
plgg)pHU(y) Uz (Y) | 2 (@ (2)iRm)

Hence the property (d) is verified. Fifthly, given p > 0, A €]0, 1[ and z € €, there exists a
Urysohn function ¢ € Lip(2) for the pair (X\Q,(z)), @,,(x)) such

1
Li o) < ————,
|Lipe| re () PTESY
where for every y € €2,

. =— |p(y) — o(2)]
L = Tim 2
ipp(y) )

But, since p is doubling and 2 supports a weak (1, p)-Poincaré inequality, from Cheeger (see
[Che99, Theorem 6.1]) we have Lipp(y) = g,(y) for p-a.a. y € €2, where g, is the minimal
p-weak upper gradient for ¢. Hence

6
| Dl oy < ———=
PETEEEED = p(1 =0

because |D,o(y)| < 0]g,(y)| for p-a.a. y € Q. Consequently the property (e) holds. Finally,
given z € , by using the annular decay property (2.4) with r = Ap and ¢ = $, where p > 0
and A €]0, 1[, we see that

#(Qp(x)\Qxp(7)) < Call = X)°p(Qp())
for all p > 0 and all A €]0, 1[ with C'4 > 1 given by ([2.4)), and the property (f) follows. B

In the framework of the p-Cheeger-Sobolev spaces with p > k, we have the following L7-
compactness result.

Theorem 3.8. Assume that p(0\Q) = 0. If p > & and if u € HyP(QGR™) and {ug}, <
H.P(Q;R™) are such that

lim |un — ul| gp(mmy = 0 and sup IV | 22y < 00, (3.9)

then, up to a subsequence,
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Proof of Theorem 3.8 Since (X,d, u) is a complete doubling metric space, (X,d, ) is
proper, i.e. every closed ball is compact (see [HKST15, Lemma 4.1.14]), and so (2, d[g,5)
is compact. Thus, as p(Q\Q) = 0 we can assert that (Q, d|q,q, 1t|g) is a compact doubling
metric measure space supporting a weak (1,p)-Poincaré inequality. In what follows, to
simplify the notation we set (Y,d,v) := (9, d|g.q, itlg)-

Step 1: two auxiliary lemmas. We need the following two lemmas (cf. Lemmas and
3.10).

Lemma 3.9. If p > k then for every r > 0 and every T € Y there exists C(r,z) > 0 such
that

for allue HYP(Y;R™) and all y, 2z € Q,(T), where o =1 is given by (2.2).

Proof of Lemma [3.9. From [Haj03, Theorem 9.7] we can assert that there exists ¢ > 0
such that

lw(y) —w(z)| < ervd(y,z) " » (J[Q (_)gﬁjdy> ’ (3.11)

for all we HX?(Y),all z €Y, all r > 0 and all y, z € Q,(Z), where ¢ > 1 is given by (2.2)
and g,, € L2(Y") denotes the minimal p-weak upper gradient for w. On the other hand, from
(2.3)) it is easy to see that for every r > 0 and every T € Y there exists 6(r, z) > 0 such that

(@ (7)) = 0(r, 7)r".
But ¢, < a|D,w| with a > 1 (see [Che99, §4]) and so §Q6 () Judv < 041’&26 (£)|Dyw|pdl/.
Thus, for each r > 0, each z € Y and each y, z € Q,(Z), (3.11)) can be rewritten as follows

w(y) —w(z)| < C(r2)s(y, )" (f bor @) 'Dvwipd”);

with C(r,z) =

e(cfaz) > (. It follows that for every » > 0 and every Z € Y, we have

uy) - u(z)] < c<r,x>6<y,z>122(f |Dyui|pdu)p
i=1 Q6or(T)

C(r,z)d (J Z |D,, ullpdy>
QGUT

- i ([ W)
Q60T(§)
for all w e HYP(Y;R™) and all y, z € Q,(7), and the proof of Lemma is complete. W

N

Denote the space of continuous functions from Y to R™ by C(Y;R™). As a consequence of
Lemma we have the following result.
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Lemma 3.10. If p > x then H?(Y;R™) continuously embeds into C(Y;R™), i.e.
HY(Y;R™) < C(Y;R™)

and there exists Ko > 0 such that

lulloemmy < Kollul giryzm) (3.12)
for all v e HYP(X;R™). Moreover, there exists Ky > 0 such that
[uy) = u(2)| < Kid(y, =)' "7 | Voul spovm (3.13)

for allue HYP(Y;R™) and all y,z€ Y.

Proof of Lemma [3.10. Applying Lemma[3.9 with r = diam(Y) and for a fixed 7 = g € Y/,
where diam(Y) = sup{d(y, 2) : y,z € Y} < o0 because (Y, ) is compact, we see that

u(y) —u(z)] < C(diam(Y), z0) 6(y, 2)' 7 |Voul oy
< O (diam(Y), zo) diam(Y)' 7|V, ull Lo yan (3.14)

for all w € H?(Y;R™) and all y,2z € Y. Hence (3.13) holds with K; = C (diam(Y’), zo)
and every u € HYP(Y;R™) is (1 — ~)-Holder continuous. In particular, it follows that

H!?(Y;R™) = C(Y;R™). On the other hand, given any u € H!?(Y;R™) and any y € Y, we
have |u(y)|P < 2P (Ju(y) — u(2)[? + |u(2)|P) for all z € Y, and consequently
1
)] < 2% ([ ) - u P )+ 2 e (319)
Y
But, by (3.14) we have
(J lu(y) — u(z)|pdu(z)) < V(Y)%C (diam(Y), zo) diam(Y)k%HVVuHLg(y;M). (3.16)
Y

Hence, combining (3.15)) and (3.16]) we deduce that for every y € Y,
1 . . _E 21+%
u(y)] < 270 C (diam(Y), zo) diam(Y)' "7 [V, ul 1z + Tl ulze o mm)
UV P

< Kolul vy mm

+

with Ky = sup {21+11°C’ (diam(Y'), ) diam(Y)' ™5, 22

2(1 : }; and (3.12)) follows. W
v(Y
Step 2: end of the proof of Theorem . As ,u(ﬁ\Q) =0, from (3.9) we deduce that

T}glolo | — U”L’;(Y;Rm) = 0 and sup HvuunHLﬁ(Y;M) < 90,

n=1
and so sup,,1 ||Un 10y gmy < 0. By Lemma we can assert that sup,~ ||un /oy rm) <

0, i.e. {u,}, is bounded in C(Y;R™) with (Y, ) a compact metric space. Moreover, using
(3.13]) we see that {u,}, is equicontinuous. Consequently, up to a subsequence,

Jim Jlup =tz (ygm) =0

by Arzela-Ascoli’s theorem, and (3.10)) follows because p(Q\Q) = 0. W



26 OMAR ANZA HAFSA AND JEAN-PHILIPPE MANDALLENA

3.2. Ru-usc integrands. Let (X,d, 1) be a metric measure space, let 2 € X be an open
set, let (X, F,P) be a probability space and let L : Q x M x ¥ — [0, 0] be a Borel measurable
stochastic integrand. For each w € ¥ and each z € ), we denote the effective domain of
L(z,-,w) by L, and, for each a(-,w) € L, (2;]0,%0]), we define A9 [0,1] =] — o0, 0]
by

. L(z,7¢,w) — L(z,&,w)
AU (1) .= sup su - —
L ( ) :ceSI))gE]wa CL(.T,CU) + L(ZL’,f,CU)

Definition 3.11. Let w € ¥. We say that L is radially uniformly upper semicontinuous
(ru-usc) at w if there exists a(-,w) € L(€;]0, 00]) such that

lim A (r) <0.

T—1—

The concept of ru-usc integrand was introduced in [AHI0] and then developed in [AHMTT],
AHM12al [AHM12bl, Man13l, [AHM14, [AHMZ15, [AHM18§].

Remark 3.12. If L is ru-usc at w € ¥ then lim,_;- L(z, 7€, w) < L(z, &, w) for all 2 €  and
all £ € L,,. On the other hand, given w € X, if there exist x € Q and ¢ € L, such that
L(z,-,w) is Isc at £ then, for each a(-,w) € L} (€;]0,0]), lim - AaL("w)(T) > 0, and so if in
addition L is ru-usc at w then lim, ;- A% (7) = 0 for some a(-,w) € L, (;]0,0]).

Remark 3.13. Given w € X, if, for every = € , L(z,-,w) is convex and 0 € L, then L is
ru-usc at w.

The interest of Definition comes from the following theorem. (For a proof we refer to
[AHM11], Theorem 3.5] and also [AHMI12b|, §4.2].) Let L:QxMxY¥ — [0, 00] be defined
by

L(z,&,w) == lim L(z, 7 w).

T—1~
Theorem 3.14. Let w e . If L is ru-usc at w and if for every x € €,
7L, < int(L,,,) for all T €]0, 1],
then:

(a) L is ru-usc at w;
(b) L(x,& w) := lir{{ L(xz,7&,w) for all x € Q and all § € M.

If moreover L(zx,-,w) is Isc on int(LL, ) then:

L(z,& w) if € € int(L,,,)
(c) L(z,6,w) = { Jim L(z,7€,w) if &€ Lay,
o0 otherwise;

(d) for every x € €, E(x, -, w) is the lsc envelope of L(x,-,w).

The following definition extends Definition to a family {L:};~0 of Borel measurable
stochastic integrands L; : Q@ x M x 3 — [0,00]. (When L; = L for all t > 0 we retrieve
Definition [3.11} )
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Definition 3.15. Let w € 3. We say that {L;};~¢ is ru-usc at w if there exists {a;(-,w)}i=0 <
L}, (€;]0, 0]) such that

lim sup AaLtt("w) (1) <0.

T—=17 >0
Remark 3.16. Let L : X x Ml x ¥ — [0, 0] be a Borel measurable stochastic integrand and,
for each t > 0, let Ly : Q x M x ¥ — [0,0] be given by L;(z,§,w) = L(h(x),&, w) with
hy : X — X. Given w € %, if L is ru-usc at w with a(-,w) € L)(X;]0,0]) then {L};~¢ is
ru-usc at w with {a;(-,w)}=0 = {a(hi(:),w)}i=0. Indeed, for any 7 € [0, 1], any ¢ > 0, any
reQand any € € L, with L; , , denoting the effective domain of L;(x, -, w), one has

Lt(ma Tf,bd) B Lt(fﬂ,f,W) _ L(ht(z)>7-£7w) — L(ht(x)>€7w) (3 17)
ar(r,w) + Ly(v, &, w) a(hy(r),w) + L(h(2),§,w0) '

As Ltz = Lp,(2)w Where, for each y € X, L, denotes the effective domain of L(y, -, w),
and h;(x) € X, we see that

L(ht($),T§,w) — L(ht(‘r)7€7w) L(yﬂ—é?w) — L(y7€7w> a(-,w)

< sup su =A T),
alhl@).w) + L@ €w) b Talyw) + Ly bw)  E )
and from (3.17)) we deduce that
sup AP (1) < A (7) (3.18)

t>0

for all 7 € [0,1]. But L is ru-usc at w with a(-,w), i.e. lim,_;- A% (7) <0, and so, letting
7 — 17 in (3.18), we get lim,_;- sup,—, AaLtt("w) (1) < 0 which means that {L;};~¢ is ru-usc
at w with {a;(-,w)}i=0 = {a(h(*),w)}e=0-

For each ¢ > 0 and each p > 0, let Hf L; : Q2 x M x 3 — [0, 0] be defined by

Hy Ly(7,§,w) = inf {f@ ( )Lt(y,£ + V,w(y),w)du(y) - w e H;:g(Qp(a:);Rm)} :

Let Lo, : 2 x M x ¥ — [0, 0] be given by
Loo(x,&,w) := /l)i_r)x(l)}i_)rg HiLi(v, &, w). (3.19)

The following proposition shows that, under a suitable condition, ru-usc is conserved under
the operation characterized by (3.19)).
Proposition 3.17. Let w e ¥ and let {a;(-,w)}e=0 < L, (€;]0,0]) be such that

lim lim ay(y,w)du(y) =: ax(-,w) € L, (€;]0,]). (3.20)

p=0t=0 J Q,()
If {Li}i=0 is ru-usc at w with {a;(-,w)}i=o then Ly is ru-usc at w with ax(-,w).

Proof of Proposition [3.17] Fix any 7 € [0, 1], any x € Q and any £ € Lo, ;. ,, where Lo 4
is the effective domain of L (2, -, w). Then L (z, & w) = lim, o limy e HOLy(7,€,w) < o0
and without loss of generality we can suppose that ”HZLt(J:, &, w) < o for all p > 0 and all
t>0.
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Fix any p > 0 and any ¢ > 0. By definition, there exists {wy}, < Hlp(Qp( ); R™) such that:

WL ) = i f Ly, €+ Vo). () (3:21)
§+ V,wn(y) €Ly, for all n > 1 and p-a.a. y € Q,(x), (3.22)

where L, , ,, denotes the effective domain of L;(y, -,w). Moreover, for every n > 1,
HOLi(w, 78, w) < J[ ( )Lt(y,T(f + Vuwn(y)),w)d,u(y)
Qp z
since Tw,, € Hlp(Qp( );R™), and so

6, (z,&,w) < lim (Le(y, 7(€ + Vwn(y)), w) — Le(y, € + Vwn(y),w))du(y)  (3.23)

=0 J Qp(z)
with 07, (2, &, w):=HE Li(x, 7€, w) —HE Li(2, §, w). Taking (3.22)) into account, for every n > 1
and p-a.e. y € Q,(x), one has

Ny €w) < AL () (a0y,@) + Ly € + Viwon (), w)).
with )\Z—,n(y7 57 (,4)) = Lt (y7 T(é + v#wn(y))7 LU) - Lt (yug + vuwn(y)a (,U), hence

Jf N (y, € w)dp < AYC) (7) (} ay(y, w)dp +J[ Li(y, € + vuwn<y>,w>du)
Qp(z)

Qp(z) Qp(z)
for all n > 1. Letting n — o0 and using and (3.23)), it follows that

67,6 w) < AaLtt(.,w)(T) (J[Q ( )at(y,w)d,u(y) + HfLLt(x,§,w)>

< Au(7) GQ ( )at(y,w)dﬂ(y) + %ZLt(w,&w)) (3.24)

for all p > 0 and all ¢ > 0, where A, (7) := sup,., A“LS’S("“’) (7). By letting ¢ — o0 and p — 0
in (3.24), we get
Los(2, 76, w) — Loo (2, &, w) < Ay(7) (a0 (2, w) + Lo (2, &, w))
with ag (-, w) € L1, (€10, 0]) given by (3.20), which implies that Aaw “)(7) < Ay(7) for all
€ [0,1]. As {L;}s~0 is ru-usc at w with {a;(-,w)}s0, i.e. lim, ;- A (1) < 0, we conclude
that lim,_;- AQLO;("LU) (1) < 0 which means that Ly is ru-usc at w with a,(,w). B

Given L : X x M x ¥ — [0,0] and {Ag}ren+ a sequence of open subsets of X such that
w(Ag) >0, let Lyom : M x ¥ — [0, 0] be defined by

Lyom(&,w) := ki%f inf {J[ L(z,& + V,w(z),w)du(z) s we H;’g (Ak;]Rm)} : (3.25)
eN* Ay ’

The following result shows that, under a suitable condition, ru-usc is conserved under the
operation characterized by (3.25)).
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Proposition 3.18. Let w e ¥ and let a(-,w) € L, (Q;10,0]) be such that
J[ a(x,w)du(x) = a(w) €]0, 0| for all k e N*, (3.26)
A

If L is ru-usc at w with a(-,w) then Lyom s ru-usc at w with a(w).

Proof of Proposition [3.18] Fix any 7 € [0,1] and any & € Lyom ., where Liom,, denotes
the effective domain of Ly, (-,w). By definition, there exist {k,}, < N* and {w,}, <
H;:g(Akn; R™) such that:

Lyom(&,w) = lin(}o L(z,& + V,w,(x),w)du(x); (3.27)
n— A,
£+ Vyw,(x) €Ly, forall n > 1 and p-a.a. x e Ay,. (3.28)

Moreover, for every n > 1,
Lipom (7€, w) < f Lz, 7(& + V,wy(2)), w)du(z)
A,
because Tw, € H;:g(Akn; R™), hence
Lhom(T€7 w) - Lhom(£7 w) < h_m (L(%’, T(£ + vuwn(x)>7 w) - L(%, f + v,uwn(x)a w))d,u(x)
n—aoo Akn

But, taking (3.28]) into account, since L is ru-usc with a € Lb(X ; 10, 00]), for every n > 1
and p-a.e. x € Ay, , one has

Lz, 7(€ + Vwa(2)), ) — Lz, € + V,wn(x),w) < AL (1) (a(z,w) + Lz, € + V,w,(7),w)
and so, by using (3.26)) and (3.27)), we deduce that
Liom (7€, @) = Liom (€, ) < A4 (1) (@(w) + Liom (&, w)),

which implies that Ai(::zn (1) < A%("w)(T) for all 7 € [0, 1], and the proof is complete. B

3.3. Ru-usc functionals. Let (X, d, 1) be a metric measure space with the same properties
as in , let 2 < X be a bounded open set, let (X, F,P) be a probability space and let
J : HP(Q;R™) x ¥ — [0,0] be a functional. For each w € X, we denote the effective
domain of J(-,w) by J,. As for the case of integrands, we have the following definition.

Definition 3.19. Let w € . Given ® < J,, we say that J is ru-usc on ® at w if there
exists a(w) €]0, oo[ such that
lim A%9(r) <0

T—1"

with Aaj(%) :[0,1] —] — 00, 00] defined by

a(w) L j(TU,w) — j(“? w)
2ol I )+ )
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(For more details on the notion of ru-usc functional we refer to [AHM12bl §4.2] and [AHM14].)
As for the case of integrands, the interest of definition [3.19|comes from the following theorem

which is the analogue of Theorem [3.14] Let 7 : HP(Q;R™) x X — [0,0] be defined by

j(uvw) = lim j(TU,u)).

T—17

When © = J, we simply say that J is ru-usc at w.
Theorem 3.20. Let we X. Given © < J, and € D3 such that
7€ C D for all T €]0,1], (3.29)

if J is ru-usc on ® at w and if J(-,w) is Lb-lsc on D, i.e. lim, T (un,w) = J(u,w) for
all we ® and all {up}, =D such that u, — w in LE(;R™), then:

A~

(a) 7©(u,w) = J(u,w) for all u € €, where 79(-,w) c HP(Q;R™) — [0, 0] is defined

by
7D(u,w) = inf{li_m T (U, w) : D 3 u, L u} ;
~ J (u,w) ifue®
(b) J(u,w) = { lir?_ J(tu,w) ifue E\D.

(For a proof of Theorem we refer to [AHM12bl, Theorem 4.1], see also [AHM14].) For
each t > 0, let & : H ;’p(Q;Rm) x 3 — [0,0] be a functional depending on a parameter
t and, for each w € X, let &;,, denote the effective domain of &(-,w). As for the case of
integrands, the following definition extends Definition [3.19

Definition 3.21. Let w € ¥ and, for each t > 0, let ®; < &;,,. We say that {&;};~ is ru-usc
on {®D,;}1~0 at w if there exists {a;(w)}e=0 =]0, 00 with lim,_4 a;(w) < o such that

lim sup Agz(gz(T) <0.

T—17 >0 ’
When ©; =D for all ¢t > 0 (and so ® < Ny=06;,,) we say that {&}i~0 is ru-usc on © at w,
and when ©; = &;, for all ¢t > 0 we simply say that {&:}:~¢ is ru-usc at w.

The following result is an extension of Theorem [3.20}

Theorem 3.22. Let w € ¥ and let © < n=0S;, and € D D be such that (3.29) holds.
Assume that {€,}~0 is Tu-usc on ® at w and there exists T(-,w) : HyP(Q;R™) — [0, 0] such
that {&;(-,w)}i=0 T(LE)-converges to Z(-,w) on D, i.e.

F(Lﬁ)—tlim E(u,w) =Z(u,w) for allue D (3.30)
—00
Then
F(LZ)—tli_m Elu,w) < I(u,w) < Lo (LF)-lim & (u,w) for all u e € (3.31)
—o t—00
with

FQ(LZ)_h—m Ei(u,w) = inf {11_111 Ei(ug) + D 3wy Li u} )

t—00 t—00
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If moreover T is ru-usc on ® at w then

2 Z(u,w) ifue®
(u,w) = hq{ I(tu,w) ifue E\D. (3.32)

Proof of Theorem [3.22l Fix v € €. By (3.29), for any 7 €]0, 1[, we have 7u € ©. From
([3-30) it follows that Z(ru,w) = T'(L7)-lim; e E(Tu,w) = T(L7)- limy ., & (7u,w) for all
7 €]0, 1], and consequently

Z(u,w) = lim Z(Tu,w) = lim [(LY)- lim & (u,w) = T(LY)- lim & (u,w),

T—1— T—1— t—o t—00

which gives the left inequality in (3.31)). Let us now prove the right inequality in (3.31)). Let
{us}i=0 < ® be such that:

LP

U —5 u; (3.33)
tlim Ei(ug,w) = To(Lh)- lim & (u, w). (3.34)

t—o0

By (3.29), for any 7 €]0, 1, we have 7u; € © for all ¢ > 0. Hence Tu, B by (3.33)), and
lim & (Tup,w) = T(LE)- lim &(Tu, w) = Z(Tu,w)

t—o0 t—00

for all 7 €]0, 1. It follows that
lim lim & (Tup,w) = Z(u,w). (3.35)
7—1— t—00

On the other hand, since {u;};~0 = D, for every 7 €]0, 1| and every t > 0, we have

Elrunw) < (1+ ALY (1)) E(unw) + a(w) AL (1)

< <1 + sup A’ u))( )> Ei(ug,w) + ag(w )supA S(w (1),

s>0

and so, by letting t — o0 and by using (3.34)), we get

lim & (Tus, w) < (1 + sup A;S%) (7’)) lim & (uy, w) + lim a;(w) sup AZS(;)(T)
t—00 s>0 o §—00 t—00 >0 2

- (1 + sup Agj(g) (7-)) Lo (L7)- lim & (u,w) + hm as(w) sup A;S(g)(T).
s s>0 >

s>0 t—0o0

As {E}1=0 is Tu-usc on D at w, i.e. lim,_;- sup,., AZ(S) (1) < 0 (and limy_ a;(w) < o),

letting 7 — 1~ we conclude that

lim lim & (7u,,w) < Tp(LL)- lim & (u, w), (3.36)

717 >0 t—0

and the right inequality in (3.31)) follows by combining (3.35) with (3.36)).

From (3.30) we see that Z(-,w) is L-lsc on ©, and (3.32)) follows from Theorem W(b) [

The following result is a consequence of the first part of Theorem [3.22]
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Corollary 3.23. Letw € X, let © < H P(Q;R™) be such that ® = &, for all t > 0 and let
¢ 5 D be such that (3.29) holds. Assume that {&}i=o is ru-usc on ® at w and there exists
Z(-,w): HpP(QR™) — [0, 0] satisfying (3.30). Then

A~

F(Lﬁ)'}ij& E(u,w) = T(u,w) for all u e €.

Proof of Corollary As D = &, for all t > 0 we have
F@(Lﬁ>_ h_m gt('ﬂ C«J) = F(Lﬁ)' h_m gt('> w)>
t—0o0 t—0o0

and the corollary follows from the first part of Theorem (3.22] Bl

3.4. The De Giorgi-Letta lemma. Let Q@ = (€, d) be a metric space, let O(Q2) be the
class of open subsets of X and let B(2) be the class of Borel subsets of 2, i.e. the smallest
o-algebra containing the open (or equivalently the closed) subsets of 2. The following result
is due to De Giorgi and Letta (see [DGLT77] and also [But89, Lemma 3.3.6 pp. 105]).

Lemma 3.24. Let S : O(Q) — [0, 0] be an increasing set function, i.e. S(A) < S(B) for
all A, B € O(Q) such A c B, satisfying the following four conditions:

(a) S() = 0;
(b) S is superadditive, i.e. S(A U B) = S(A) + S(B) for all A,B € O(Q) such that
AnB=;

(c) S is subadditive, i.e. S(Au B) < S(A) + S(B) for all A, B € O(Q);

(d) there exists a finite Radon measure v on € such that S(A) < v(A) for all Ae O(Q).
Then, S can be uniquely extended to a finite positive Radon measure on £ which is absolutely
continuous with respect to v.

3.5. Integral representation of the Vitali envelope of a set function. What follows
was first developed in [BEM98, BB00| (see also [AHMI16]). Here we only recall what is
needed for proving Theorem [2.11] Let (€2, d) be a metric space, let O(€2) be the class of open
subsets of 2 and let p be a positive finite Radon measure on 2. We begin with the concept
of differentiability with respect to u of a set function.

Definition 3.25. We say that a set function © : O(Q2) — R is differentiable with respect to

wif (0.(@)
-— lim —: Qp(a
d,0(z) : /1) b (0, (@) (3.37)

exists and is finite for p-a.e. x € Q.

Remark 3.26. It is easy to see that the limit in (3.37) exists and is finite if and only if
—0 <dfO <d;© <o, where d;0 : Q — [~00, o[ and d}© : Q —] — o0, 0] are given by:

d,O(z) = })iir(l] d,©(z, p) with d,O(z, p) := inf {% : @ € Ba(Q, z, p)} ; (3.38)
d;O(x) = ,lgig(l) d;O(x, p) with dfO(x, p) := sup {% : Q € Ba(Q, x,p)} . (3.39)

where Ba(f2, z, p) denotes the class of open balls @ of € such that = € @, diam(Q) €]0, p[
and p(0Q) = 0, where 0Q := Q\Q. We then have d,0 = d,©=d;0.
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Remark 3.27. In (3.38) and (3.39) we can replace Ba({2, z, p) by Ba(A,z, p) whenever A €
O(Q) and x € A.

For each ¢ > 0 and each A € O(Q), we denote the class of countable families {Q; :=
Qp; (i) }ier of disjoint open balls of A with x; € A, p; = diam(Q;) €]0,¢[ and u(0Q;) = 0
such that p(A\ Uier @Q;) = 0 by V.(A).

Definition 3.28. Given O : O(Q2) — R, for each £ > 0 we define ©° : O(Q)) — [—o0, 0] by

@myzm{Z@@wamMemm%. (3.40)

1€l
By the Vitali envelope of © we denote the set function ©* : O(2) — [—o0, 0] defined by
©*(A) :==sup©°(A) = lin% O°(A). (3.41)

e>0

The interest of Definition [3.28| comes from the following integral representation result whose
proof is postponed in Appendix [A.T]

Theorem 3.29. Let © : O(Q2) — R be a set function satisfying the following two conditions:
(a) there exists a finite Radon measure v on S which is absolutely continuous with respect
to p such that |©(A)| < v(A) for all Ae O(Q);
(b) © is subadditive, i.e. ©(A) < O(B) + O(C) for all A,B,C € O(Q2) with B,C < A,
BnC =g and n(A\B u C) = 0.
Then © s differentiable with respect to p, d,© € L},() and

O(4) = | d®le)dn(z)
for all Ae O(Q).

As a direct consequence, we have

Corollary 3.30. Let © : O(Q2) — R be a set function satisfying the assumptions (a) and
(b) of Theorem m Then © and ©* are differentiable with respect to u and d,©0* = d,0.

3.6. Subadditive theorems. What follows was first developed in [AHMI17, [AHM19b]. Let
(X,d, ;1) be a metric measure space with p a positive Radon measure on X. Let B(X) be
the class of Borel subsets of X and let B, ¢(X) denote the class of @ € B(X) such that
w(Q) < w0 and p(dQ) = 0. Let Homeo(X) be the group of homeomorphisms on X and let
G be a subgroup of Homeo(X) for which p is G-invariant, i.e. g*u = u for all g € G, where
g*u denotes the image measure of y by g. From now on, we consider {Uy}ren+ = Byo(X)
with u(Ug) > 0 for all £ € N* and, for each k € N* we consider the class Uy (G) defined by

mﬂn;{HcG:WAww&HB&wm@.

In what follows, |- | denotes the counting measure on G and, for any H < G, P¢(H) denotes
the class of finite subsets of H.
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3.6.1. The deterministic case. The following definition sets a framework, in the setting of
metric measure spaces, for establishing a subadditive theorem in the deterministic case and

(see Theorem (3.33]).

Definition 3.31. Let {Q:}i>0 < B, 0(X). We say that {Q;};~¢ is weakly G-asymptotic with
respect to {Ug}ren+ if for each k& € N* there exists Hy € Ux(G) with the property that for
each t > 0 there exist m;y € N*, g, € G and Fy, H,,, H:k € Pr(Hy) such that:

U g (Un)c Qe v g ' (Up); (3.42)

QEHt’k QEH;k
w o w0 o o)

li QEHt,k 9€Ht,k 0 (3 43>
111 =0 .
=00 u(Qy)
H;rk c Fyx, and geg kg_l(Uk) = gt_’kl([Umt’k); (3.44)
— |F

| tf‘ <L (3.45)
t—00 ‘Ht,k}

Let us recall the definition of a subadditive and G-invariant set function.

Definition 3.32. Let S : B, ¢(X) — R be a set function.
(a) The set function S is said to be subadditive if
S(AuB)<S(A)+S8(B).

for all A, B € B, o(X) such that An B = &.
(b) The set function S is said to be G-invariant if

S(g~'(A4)) = S(4)
for all Ae B, (X) and all g € G.

The following result is used in the proof of Theorem m It was established in [AHM19b),
Theorem 2.3| (see also [AHMI17, Theorem 2.17]). For the convenience of the reader its proof

is given in §A.2.7]

Theorem 3.33. Let S : B, o(X) — R be a subadditive and G-invariant set function with
the following boundedness condition:

S(Q)] < en(Q) (3.46)

for all Q € B, o(X) and some ¢ > 0, and assume that v is G-invariant. Then, for each
{Q:i}1=0 < Bo(X) which is weakly G-asymptotic with respect to {Uy}rens, one has
S(Q) . ¢ S(Ug)

lim =<t/ STk

1 = 1 .
t=o pu(Qr) kel pu(Uy)
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3.6.2. The stochastic case. We begin with the following definition.

Definition 3.34. The metric mesaure space (X, d, u1) is said to be meshable with respect to
{Up}renx if for each k € N* there exists Hy € Uy (G) with the property that for each n € N*
there exist H, ,, H, € Pr(IHy) such that:

u g U cU,c u g HUy); (3.47)
geH, geH;k

u( o @y o)
l o il 0 (3.48)
11m = U. .
o 1(Un)

The interest of Definition comes from the following proposition (which is used in the
proof of Theorem [3.42)).

Proposition 3.35. Let S : B, o(X) — R be a subadditive and G-invariant set function
satisfying (3.46). If (X, d, ) is meshable with respect to {Uy}ren+ then
lim S(Un) = in S(U)
n—a p(Up) kel 1u(Uy)

. (3.49)

Proof of Proposition |3.35 First of all, it is clear that %:; > inf ey iég:)) for all n € N*,

and so S(U,) Sy
lim = > inf -t 3.50
n—oo {(Un) ~ keNr p1(Uy) (3:50)
On the other hand, fix any k£ € N* and any n € N* and set:
U= v g ' (Uyp);
QEHn,k
U:z_,k =V g_l(Uk)a
geH;,k

where H,, and H, € Py(H;) with H given by Definition W By the left inclusion in
([3.47) we have U, , =< U, and so U, = U, , v (Un\U;’k). Hence

S(U,) <8 (U, ,) +S (U\U, )
because S is subadditive, and consequently
S(U,) - S (U;,k) K (Uﬁ,k> S (Un\UfL,k)
1(Uy) M(U;k) 1(Un) 1(Uy)

Using again the subadditivity of S and its G-invariance (resp. the G-invariance of p) we
have

S (Unx) < [Hoi[S(UL)
(resp. 1 (U;k) = ‘H;k’u(Uk))

Moreover, U, < U}, by the right inclusion in (3.47), which implies that U,\U, , < Uy ,\U, ,
and so

S (U\U,,,) < cep (U U, L)
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with ¢ > 0 given by (3.46]). It follows that
SWU) _ SU)AUn)  cn(Unp\Uny)

1(Un) 1 (Uk) p(Uy) 1(Un)
_ S (Uy)  en (UF,\U; )
h 2 ([Uk) M(Un>

because p (U;k) < u(U,) since U, = U,. Letting n — o0 and using (3.48)), and then
passing to the infimum on k, we obtain

lim < in ,
n—w p(Up) ket g (Ug)

and (3.49) follows by combining (3.50) with (3.51)). W

In what follows, A denotes the symmetric difference of sets, i.e. EAF := (E\F) u (F\FE)
for any E, F' c G, and we adopt the following notation: EF := {gof : (g, f) € E x F} and
E7'F :={g7'of : (g9, f) € E x F} and, for any g € G, gF := {gof : f € F}. From now on,
for each k € N*, we consider the class U (G) defined by

(3.51)

U (G) = {]H € Ux(G) : H is countable, discrete and amenable group},

where amenability of H means that for each E' € P¢(H) and each 6 > 0 there exists F' € P¢(H)
such that

|[FAEF| < 6|F|.
(For more details about the theory of amenability, we refer to [Gre69, [(OWS87, [Pat88|, [Tem92,
AABT10, [DZ15] and the references therein, see also [Kre85| §6.4].)

The property of Fglner-Tempelman stated in the definition below is needed to use both
Lindenstrauss’s ergodic theorem (see Theorem |A.3)) which is valid for general amenable
groups, and a maximal inequality (see Lemma [A.4)) which is valid for countable discrete
amenable groups. (These two results are used in the proof of Theorem m)

Definition 3.36. Let H € UZ(G) and let {Gi}i=o = Pr(H). We say that {Gi}iso is of
Fglner-Tempelman type with respect to H if it satisfies the following two conditions:

(a) Folner’s condition: for every g € H, one has
jim 99AG]_
t—0o0 |Gt| ’

(b) Tempelman’s condition: there exists M > 0, which called the Templeman constant
associated with {G;};~0, such that for every ¢ > 0, one has

) GsGt

O<s<t

Together with Definition [3.34] the following definition set a framework for establishing a
subadditive theorem in the stochastic case and in the setting of metric measure spaces (see

Theorem [3.42)).

< M|G,|.
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Definition 3.37. Let {Q:}i=0 © Buo(X). We say that {Q:}i~0 is strongly G-asymptotic
with respect to {Ujy}rens if there exists {Gglren+ with Gi € UZ(G) for all £ € N* and
Uken+ G, = G such that for each & € N* and each ¢t > 0 there exist m;, € N*, g, € G
and Fiy, Gy, Gl € Pe(Gy) such that (3.42), (3.43), (3.44) and are satisfied with
the additional assumption that {G; };~0 and {G/, }i=0 are of Fglner-Tempelman type with
respect to Gg. 7 7

Let (X, 7,P) be a probability space and let {7, : ¥ — X} ¢ be satistying the following three
properties:

(mesurability) 7, is 7-mesurable for all g € G;

(group property) 7,07f = Tyop and 7,1 = 7,7 for all g, f € G;

(mass invariance) P(1,(E)) = P(E) for all E € T and all g € G.

Definition 3.38. Such a {7,}4,¢ is said to be a group of P-preserving transformation on
(X, 7,P) and the quadruplet (X, 7, P, {7,}4ec) is called a measurable dynamical G-system.

Remark 3.39. If (3,7 ,P, {7,},ec) is a measurable dynamical G-system then, for any sub-
group H of G, (2,7, P, {7,},en) is a measurable dynamical H-system.

Let Z:={E e T : P(r,(E)AE) = 0 for all g € G} be the o-algebra of invariant sets with
respect to (X, T, P, {7,}4ec). (For any subgroup H of G, we denote the o-algebra of invariant
sets with respect to (X, T, P, {7, },enn) by Zm.)

Definition 3.40. When P(E) € {0,1} for all £ € Z, the measurable dynamical G-system
(X, 7T,P, {7y} 4ec) is said to be ergodic.

In what follows, we assume that (X, 7, P, {7,},ec) is a measurable dynamical G-system. Let
us recall the definition of a subadditive process.

Definition 3.41. A set function S : B,,0(X) — L'(X, T, P) is called a subadditive process
if it is subadditive in the sense of Definition [3.32)(a) and G-covariant, i.e.

S(g7'(A)) = S(A)or,

for all A € B,o(X) and all ¢ € G. If in addition the measurable dynamical G-system
(X, 7T,P,{7,}4ec) is ergodic, then S is called an ergodic subadditive process.

The following result is used in the proof of Theorem m It was established in [AHM19b),
Theorem 2.11]. For the convenience of the reader its proof is given in §A.2.2]

Theorem 3.42. Assume that (X,d, ) is meshable with respect to {Uy}rens and consider
S:B,o(X) — LY, T,P) a subadditive process satisfying (3.46). Then, for each {Qi}i=0
B,.o(X) which is strongly G-asymptotic with respect to {Uy}rens, one has

S@)w) _ . o EF[S(Up)](w)

lim ———— = inf ——————= for P-a.a. we X,

t—o0 N(Qt) keN* /J(Uk)
where BX[S(Uy)| denotes the conditional expectation of S(Uy) over T with respect to P. If
in addition (3, T ,P,{1,}4ec) is ergodic, then

lim M = inf w for P-a.a. we X,

t—a0 N(Qt) kel ,u(Uk)
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where E[S(Uy)] denotes the expectation of S(Uy) with respect to P.

4. PROOF OF THE I'-CONVERGENCE THEOREM
This section is devoted to the proof of Theorem [2.11| which is divided into five steps.

Proof of Theorem [2.11]. Let w € X be satisfying all the assumptions of Theorem [2.11]

Step 1: integral representation of the I'-limit inf and the I'-limit sup. For each
ue HyP(Q;R™) we consider the set functions S, S, : O(Q) — [0, 0] given by:

wr Cuw

Spu(A) = F(Lﬁ)— lim Ey(u, A, w);
t—00

St (A) = F(Lﬁ)-gl_rgoEt(u,A, w).

Recall that & is the effective domain of the functional u — §, G(V  u(z))du(z).

Step 1 consists of proving the following lemma.

Lemma 4.1. If (3), €5), @), @11, @12) and @I3) hold then:
Sp(A) = j Ao (@) dia(e);

Siald) = [ Nl@duta)

for allue & and all Ae OQ) with A, ,, A}, € L,(Q) given by:

u, = lim M‘
Al = Q)
)\:,w<x) = lim S“v‘”(QP(x))

=0 pu(Qp(z))
Proof of Lemma 4.1l Fix u € &. Using the right inequality in (2.11]) we see that:

Siold) < Bn(A) + 8 | GV ,ule)dn(o); (4.1

S5o(A) < Bu(A) + 8 f G(V () du(x)

for all A € O(f2). Thus, the condition (d) of Lemma is satisfied with v = S(1 +
G(V,u(-)))p (which is absolutely continuous with respect to ). On the other hand, it is
easily seen that the conditions (a) and (b) of Lemma are satisfied. Hence, the proof is
completed if we prove the condition (c) of Lemma .

S,u(AuB)<S, (A)+8,,(B)forall A, B e O(%); (4.2)
Si.(AuB) <S8, (A)+ 8, ,(B) forall A, Be O(Q). (4.3)

Indeed, by Lemma 3.24] the set function S, (resp. S ,) can be (uniquely) extended to
a (finite) positive Radon measure which is absolutely continuous with respect to u, and
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the theorem follows by using Radon-Nikodym’s theorem and then Lebesgue’s differentiation
theorem.

Remark 4.2. Lemma shows that ['(L2)-lim, ., Ey(u,-,w) and T'(L2)-limy_q Ey(u, -,w)
can be uniquely extended to a finite positive Radon measure on {2 which is absolutely con-
tinuous with respect to pu.

Substep 1-1: an auxiliary result for proving Lemma [4.1} To show (4.2)) (resp. (4.3))
we need the following lemma.

Lemma 4.3. IfU,V,Z,T € O(Q) are such that Z < U and T <V, then:
Su(ZuT)< S, ,WU)+S8,,(V) (4.4)
S;fw(ZuT) <S;:w(U)+SJ,w(V). (4.5)

Proof of Lemma [4.3l As the proofs of (4.4)) and (4.5)) are the same, we only give the proof
of (4.4)). Let {u;};~0 and {v:}4~0 be two sequences in H;’p(Q;]Rm) such that:

lue — ul rz @mmy — 0; (4.6)

vy — uf 2 (rmy — O;

tlim Li(z, V,u(x),w)dp(z) = S, ,(U) < oo; (4.8)
—00 U ’
lim | Ly(z, V,u(r),w)du(r) = S, (V) < 0. (4.9)

t—00 s

Since {L;}s~¢ is p-coercive (see (2.5)) and the left inequality in ( - from ( and (4.9]
we see that SUPs- |V utel| Lo pey < 0 and SUP;~g | Ve oy < 0. As P> K, takmg |

and ( into account, by Corollary |3.8| we can assert, up to a subsequence, that:
|lue — ul 22 @ mmy — 0; (4.10)

lvy — ul Lo (;rm) — 0. (4.11)
Fix § €]0, dist(Z, oU)[ with oU := U\U, fix any ¢ = 1 and consider W,”, W, < Q given by:
W, = {x e Q:dist(z,Z2) < 2+ _(“1)5};

7 3q

W {:ce Q:8 41 < dist(x,Z)},

where i € {1,--- ,q}. For every i € {1,--- ,q} there exists a Urysohn function ¢; € Lip(Q)
for the pair (W;*, W;”). Fix any ¢t > 0 and define wj € H}?(Q;R™) by

)

wi = piuy + (1 — i)y (4.12)
Fix any 7 €]0, 1[. Setting W; := Q\(W,” U W,") and using Theorem (d) and ({3.1]) we have
’ . TV Uy in W;”
Vu(rw)) =7V, =3 (1 =7)75Dupi @ (up — v) + 7(0i Ve + (1 — ) Vo) in W,

TV .0 in W'
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Noticing that Z 0T = ((Z o T) "W, ) o (W nW;) u (T n W) with (ZuT)nW; cU,
TAaWHcVand W :=Tn{zelU:3<dst(r,Z) < 2} we deduce that for every
2.6{1,--' ,Q},

f Li(z, 7V wi,w)dp < f
ZuT

Li(x, 7V jup, w)dp + J Li(x, 7V v, w)dp
U

\%4

+J Li(x, 7V ,w), w)dpu. (4.13)
WﬁWi

Fix any i € {1, -+ ,¢}. From the right inequality in (2.11]) and the inequality (2.7) we see
that

J Ly(z, 7V wp,w)dp < Bu(W W) + 8 G(TVw})dp
WﬁWi WﬁWi

< BA+ (W W)

+B7f G(iVyug + (1 — 3) Vo) dp
WﬁWi

—I—ﬁ’yf G ( T D, i @ (uy — Ut)) du,
WﬁWi

1—17

and by using again the inequality (2.7) and the left inequality in (2.11]) we obtain

| nrVabeds < B+ 0w
WﬁWZ‘
B
+— Li(x,V ug, w)dp + Li(x,V v, w)dp
« WnW; WnWw;

+B’yf G (%Du%‘ ® (uy — vt)> dp. (4.14)
WAWw; -7

On the other hand, we have

.
1—7

T

1—7

D) © (o) = (o) < |

'DwummM—WL%mM

for pra.a. x € Q. But lim o [us — velrermy = 0 by (4.10) and (4.11), hence for each
7 €]0,1] and each i € {1,--- , g} there exists ¢,; > 0 such that

‘ T

1_ TDMOZ’@) ® (ue(w) — Ut(x))‘ <r

for p-a.a. x € Q and all t > ¢, ; with » > 0 given by (2.6). Hence

f G <1LDM301- ® (up — vt)) dp < f sup G(§)dp
WAW; -7 w

AW [€l<r

= pu(W nW,;)sup G(§) (4.15)

lgl<r
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for all ¢t > T, with T, , = max{t,; : i€ {1,--- ,¢}}. Moreover, we have
fU Li(z, 7V u,w)dp < fU Ly(x, V,up, w)dp
—i—A‘Z("w) (1) <JU ag(x,w)du(x) + JU Li(x, V ,uy, w)du)
< JU Li(x,V up,w)dp
+A,(7) (JU ay(x,w)du(x) + JU Li(z,V u, w)du) (4.16)

with A, (7) := sup,- AaLSS("“’)(T), where {a,(-,w)}ss0 © L,(2;]0,0]) is given by (2.12). In

the same way, we have

JLt(Jc,TVﬂvt,w)du < JLt(x,Vuvt,w)du
v v

+A,(T) <J ay(z,w)dp(x) +J Ly(x, V#vt,w)d,u) . (4.17)
v v
Taking (4.15) into account and substituting (4.14)), (4.16) and (4.17)) into (4.13)) and then

averaging these inequalities, it follows that for every ¢ > 1, every 7 €]0, 1 and every t > T,
there exists i;,, € {1, -+ , ¢} such that

J Ly(x, V, (rw;" ™), w)dp < J Lt(x,Vuut,w)du—Ff Li(x,V v, w)dp
ZuT U v
+A,(T) <f as(z, w)dp(x) —i—f Lt(x,vuut,w)d,u>
U U
+A,(T) (f as(z, w)dp(x) +J Lt(m,Vuvt,w)du)
v v

p(§2) sup G(§)

§l<r

(J Li(x,V uy, w)dp + J Ly(x, Vuvt,w)d,u)
U 1%

+

_.I_

RO QIO

with ¢ = max{8(1 + v + 7% + 1,/%2}, where limy .o §, a¢(z,w)dp < oo by [2:13) and
supj¢<, G(§) < o0 by (2.6). As lim, ;- A,(7) <0, letting t — o0, 7 — 1~ and ¢ — oo and
using (4.8) and (4.9)), we get

lim Iim Iim Li(x, Vu(rwy™™),w)dp < Sy, (U) + Sy (V). (4.18)

q—0 71—1— t—0 Z0T
On the other hand, taking (4.12)) into account and using (4.6|) and (4.7)) we see that

. . . it,T, o
R L
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By diagonalization, there exist increasing mappings t — 7, and t +— ¢, with 7, — 17 and
q; — o0 such that:

lim Li(z,V iy, w)dp < lim Ly(x,V b, w)dp
t—oo JzuT =% JzoT

< lim lim lim Li(z, V. (tw," ™), w)dpy;
q—0 71—1— t—00 70T

tan’wl H'lZ]t — UHLﬁ(Q;Rm) = O,

A Ut,T¢,
where w; := rw, "

. Hence

S,,(ZuT) < lim lim lim Li(x, V,, (rw;"™), w)dp,

q—0 71—1— t—00 VASUS

and (4.4) follows from (4.18]). W

Substep 1-2: end of the proof of Lemma _We now prove (4.2). Fix A, B € O(2).
Fix any € > 0 and consider C, D € O(2) such that C' < A, D < B and

Bu(E) + 3 L G(V u(z))dp(z) < ¢

with E:= AuB\C U D. Then S, ,(E) < ¢ by ([&1). Let C', D € O(2) be such that C' = C,
CcA DcDandDc B. Applying Lemmaﬁwith U=CuD,V =T = E and
Z=CuD (resp. U=A,V =B, Z=C and T = D) we obtain

S,u(AuB) < SJW(CA' UD)+e (resp. S;w(é’ uD) < S.,(A) +S,.,(B)),

and (4.2) follows by letting ¢ — 0. B

Step 2: other formulas for the I'-limit inf and the I'-limit sup. Consider the varia-
tional functionals E ,, Eq,, : HyP(Q;R™) x O(Q) — [0, 0] given by:

O,w>

By, (u, A) := inf {h_m Ei(u, A, w) - Hi:g(Q;]Rm) Sur—u ] 0} ;

t—00

Ef (u, A) := inf {th_m Ei(uy, A, w) - Hi’g(Q;Rm) Sup—u Ly 0} .
: . :

As Hifg(Q;]Rm) c Hﬁ’p(Q;Rm) it is clear that:

SuwlA)

Uw

Suw(A)

B (u, A); (4.19)
Eg(u, A) (4.20)

for all uw e H?(€;R™) and all A€ O(f2). On the other hand, we have the following lemma.
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Lemma 4.4. If (2.5)), (2.6), (2.7), (2.11), (2.12)) and (2.13)) hold then for every u € &, every

A e OQ) and every T €]0, 1[, one has:

By (tu,A) < (1 + Aw(T))Suw(A) + thm A, (T )J a(z,w)du(x); (4.21)
; s N
Eq(tu, A) < (14 Au(7)) S/ (A) + th_m Aw(T)J ay(z,w)dp(x), (4.22)
; : mn N
with Ay (T) := sup,. AaLs("w) (1), where {a(-,w)}s=0 < is given by (2.12)) and
satisfies (2.13)). As a consequence (4.19)- - and - we hcwe
L(LY)-lim Ey(u, A,w) = lim Eq ,(Tu, A); (4.23)
+—00 T—1—
P(LZ)_}L)_HC}O Et(u’v A, w) = TILI{E E(Iw (Tua A)

for allue & and A e O(Q).

Proof of Lemma [4.4. Fix u € & and A € O(Q). As the proofs of (4.21)) and (4.22)) are the
same, we only prove ([4.21). Let {u;}=0 < H?(€;R™) be such that:

lue — ull 2z @mmy — 0; (4.24)
1tlim Li(x,V,u(x),w)du(z) = S, ,(A) < . (4.25)
—o )y »

Since {L;}~0 is p-coercive (see (2.5) and the left inequality in (2.11))), from (4.25)) we see
that sup,. |V, ue| Lz < 0. As p > k, taking (4.24) into account, by Corollary we
can assert, up to a subsequence, that:

Hut - UHL;:C(Q;R’”) — 0. (426)

Fix § > 0 and set A; := {z € A : dist(x,0A) > 6} with 0A := A\A. Fix any ¢ > 0 and any
q =1 and consider W7, W," < Q given by

7

W = {a: e dist(x A;) < é + w};

7 3q

Wt = {x cO: < dist(z, A5)}

7

where i € {1,--- ,q}. (Note that W,” < A.) For every i € {1,---,q} there exists a Urysohn
function ¢; € Lip(2) for the pair (W,*, W.7). Define w} : Q — R™ by

wi = sy + (1 — @;)u. (4.27)
Then w} —u € Hlp(A R™). Fix any 7 €]0, 1[. Setting W; := X\(W,” u W,") < A and using
Theorem [3.3|(d) and (3.1)) we have
. ’ TV Uy in W,
Vu(tw)) =7V, ={ (1 =7)7=Dup; @ (up — u) + 7(¢; Vg + (1 — ;) Vyu) in W
TV, u in W.*.
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Fix any ¢ > 0. Noticing that A = W,” UW,;U(AnW,") we deduce that for every i € {1,--- , q},

(2

JLt(a:,TVuwi,w)d,u < J
A

Ly(x, 7V juy, w)dp + f Ly(x, 7V u,w)dp
A

AnW;t

—i—f Li(z, 7V ,w}, w)dpu. (4.28)
Wi

Fix any ¢ € {1, -+ ,q}. From the right inequality in (2.11)) and the inequality (2.7) we see
that

| LerVauiwdn < suv) 45 | GV
W W,
< B+ )W)
+57f G(oiVyuu + (1 — i) Vu)du
Wi

-
w1 [ 6(FDume ) e (029)
W, 1—7
and by using again the inequality (2.7) and the left inequality in (2.11]) we obtain

j Lz, 7Vl w)di < B(L+7 +22)u(W))
W.

+5—72 <JW Li(z, V up, w)dp + J

(6] W

Li(z,V u, w)d,u)
+8v fw- G <LDN% ® (up — u)> dj. (4.30)

1—17

Remark 4.5. Since u € &, from ([2.11)) we see that lim,_4 SE Li(x,V, u,w)dp < oo for all
Ee0O().

On the other hand, we have

D)8 (o) — e <

1—71

T
1—

for pra.a. © € Q. But limy_o [|uy; — UHL%}(Q;RM) = 0 by (4.26)), hence for each i € {1,--- ¢}
there exists t; > 0 such that

| IDwlsg@ v~ ulzgiazn

.
<r

Dyupi(x) ® (ui(x) — uf))

1—7
for p-a.a. x € Q and all ¢ > ¢; with > 0 given by ([2.6). Hence

J G (%Dugpi ® (ug — u)) dp < J sup G(§)du (4.31)
W; T Wi

§l<r

= p(W;) sup G(€)

lEl<r
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for all ¢t > T, with T, = max{t; : i € {1,--- ,¢}}. Moreover, we have:

JLt(a:,TVMut,w)du < th(a:,Vuut,w)d,u
A A
+A,(7) <J a(x,w)du +J Lt(x,vuut,w)d,u) ; (4.32)
A A

JLt(I,TVMu,w)du < f Li(z,V u,w)dp
A Arﬂ/V;r

AWt

+A,(7) (J ay(z, w)dp +J Lt(x,Vuu,w)du> . (4.33)
Ar\W;r AmWi+

Taking (4.31)) into account and substituting (4.30)), (4.32) and (4.33) into (4.28) and then

averaging these inequalities, it follows that for every ¢ > 1 and every ¢t > T,, there exists
irqg € {1, ,q} such that

J Lt(:r,Vu(Tw?’q),w)du < f Ly(x,V u,w)dp
A A

+A,(T) (L a(r,w)du + L Li(x, V uy, w)du)

1
+—f Li(z,V u,w)dp
qJa

%Aw(f) (L ay(x, w)dy + L Li(x, V u, w)du>

+S4(A) sup G(€)
q l¢|<r

+- (J Li(x,V u,w)dp +J Lt(w,Vuu,w)du)
q \Ja A

o

with ¢ = max{8(1 + v + %) + 1,’6%2}, where limy .o §, ai(z,w)dp < oo by [2:13) and
SUD|¢|<r G(€) < o0 by (2.6). Thus, letting ¢ — o0 and ¢ — o0 and using (4.25)), we get

lim Im | L(z, V,(rw"), w)dp < (1+ Au(1)S,,(A) + Iim Aw(T)J at(z,w)dp. (4.34)
A

q—00 t—00 A ’ t—00
On the other hand, taking (4.27)) into account and using (4.24) we see that

. . it, -
oy Ji i = rul g @y =0,

By diagonalization, there exists an increasing mapping ¢ — ¢; with ¢, — oo such that:

lim [ Ly(z, Vb, w)dp < lim | Ly(z, Vb, w)dp < lim Im | Ly(z, Vu(Twit’q),w)du;

t—oo JA t—0 A q—0 t—0 A

tlino}) H’lIJt — U”Lﬁ(Q;Rm) = O,
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where 0, := Tw,"" is such that 0, — Tue H ;:g(A; R™). Hence
Eg,(tu, A) < lim lim | Ly(z, V. (tw""), w)dp,

q—00 t—00 A
and (4.21) follows from (4.34). o
As lim, ;- A,(7) < 0 we have lim, ;- limy o Ay(7) §, as(2,w)dpu(z) < 0, and so from
(4.21)) we deduce that
lim Ey,(tu, A) < SF,(A).

T—17

Moreover, from (4.19)) we have
SE(4) < lim S

ruw(A) < lm Eg (Tu, A),
which gives (4.23)). B

T—1~ t—1—
Step 3: using the Vitali envelope. For each u € H ﬁ’p (©; R™) we consider the set functions
m, . m’  : O(Q) — [0,0] defined by:

() = Tm m,,,(4)

==TU,W
T—1—

M, ,(A) == Tm T,y (A). (4.35)

T—1—
where, for each z € H*(€;R™), m_ ,, ., : O() — [0, 0] are given by:

mz,w(A) ;= lim inf {Et(U,A,w) 1V — 2z € Hi:%]’(A;Rm)};

t—00

mz,w(A) := lim inf {Et(v, Aw):v—=ze€ H;:g(A;Rm)},

t—00

For each ¢ > 0 and each A € O(Q2), we denote the class of countable families {Q; :=
Qp,(x;)}ier of disjoint open balls of A with z; € A and p;, = diam(Q;) €]0,¢[ such that
w(A\ Uier Q;) = 0 by V.(A), we consider ﬁi,w : O(Q) — [0, 0] given by

ﬁ;w(A) = inf {Zﬁuw(Qz) {Qitier € VE(A)} )

el
and we define ﬁzw : O(Q2) — [0, 0] by

mn, (A) :=supm, (A) = limm, _(A).
U,w s u, e Ww

The set function ﬁzw is called the Vitali envelope of M, see for more details.

Remark 4.6. For any {Q;}ier € V-(A), as the annular decay property, see (2.4]), holds we have
1(0Q;) = 0 for all i € I, see Remark 2.2

Remark 4.7. As () satisfies the Vitali covering theorem, see Proposition (C), we have
V.(A) + @& for all Ae O(Q) and all € > 0.

Step 3 consists of proving the following lemma.
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Lemma 4.8. If [£3), €0), 7)., @11), @&12) and @I3) hold then:

[D(LE)-lim Ey(u, A,w) = m, ,(A); (4.36)
t—0o0
F(Lﬁ)_ }i}_rglo Et(ua A> w) = ﬁz,w (A) (437)

for allue ® and all A e O(Q).
Proof of Lemma [4.8] Fix u e &. Given any A € O(Q), it is easy to see that:

ruw(A) < By (Tu, A);

m <
Myyw(A) < an(Tu, A)

for all 7 €]0, 1[, hence:

iuw(‘A) hm mfuw(A) 11I{1 EOw(Tu A) (Lﬁ)_ h_m Et(ua A7 CU),
’ T—1" T—1" t—00

Ty,(A) = lim M, (4) < lim Eq,,(tu, A) = F(Lﬂ)—tlim Ei(u, A, w)
T—1— T—1~ —00

by Lemma and consequently

*

m, (A) < L(LE)- Tim By(u, A, w)

U,w

because in the proof of Lemma it is established that I'(LP)-limy o Ey(u, -, w) can be
uniquely extended to a ﬁnlte pOSlthG Radon measure on €2, see Remark - Hence
holds and, to establish ( , it remains to prove that

D(LE)- Tim EBy(u, A,w) <, (A) (4.38)

with ﬁzw(A) < oo. Fix any € > 0. By definition of ﬁiw(A) there exists {Q;}icr € V-(A)
such that

el

Fix any ¢ > 0 and define m{, , : O(Q) — [0, ] by

m! _(U) = inf {Et@, Uyw):v—ze HE(U; Rm)}. (4.40)

(Thus My, (-) = limy—.,o mf, ,(-).) Fix any 7 €]0, 1[. For each i € I, by definition of m!,,(Q;)
there exists v} . € HLP(Q; R™) such that vf, — u € H,5(Q;; R™) and

B0l Qr) Q) + s (1.41)

Define ug, : @ — R™ by
- { Tu in Q\A

'U;T in QZ
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Then u;, — Tu € Hijg(A;Rm). Moreover, because of Proposition (a), Vui (z) =
Vv - (z) for pra.e. x € Q;. From (@.41]) we see that

9
E ut‘r? y W Zm‘ruw Ql _7

i€l
hence lim, ;- limy—.o E(u§ ., A,w) < ﬁs (A) + € by using (4.39)), and consequently
lim lim lim B (u; ,, A,w) < o, (A). (4.42)

U,w
e—071—1— t—00 ?

On the other hand, we have

5, = ulpiommy < 2 (65, = Tl g + 170 =l o)

= (J lug , — TulPdp + (1 —7)P HUHLP QRm)>
= <Zf |v” — TulPdp 4 (1 —7)° H“”LP Q]Rm)>

el

As Q supports a p-Sobolev inequality, see Proposition [3.6(b), and diam(Q;) €]0, [ for all

1€ I, we have
ZJ vy, — TulPdp < 57’0pi Vi, — 7V ulPdp

el el

with Cs > 0 given by (3.3 -, hence

ZJ vy, — TulPdp < 2PePCY (ZJJ IV, vtT|pdu+Tpf Y u|pdu>

el el

and consequently

Juf, — ully gy < 27PCE (2 f v, vt7|pdu+rpf v UI”du>

el

+20(1 —7)" HuHLp QRm) (4.43)
Taking (2.5)), the left inequality in (2.11)), (4.39) and ( into account, from (4.43) we

deduce that
1 ~e
hm lim [u;, — UHZL)’Z(Q;Rm) < 2P(CPeP (&(ﬁu’w(/l) +¢e) + JA |V#U|Pd,u> :

—17 t—©

which gives
=0 (4.44)

lim lim hm s, —
t—o0

e—0r—1—

because lim,_q ﬁzjw(A) = ﬁ;w(A) < o0. According to (4.42)) and (4.44), by diagonalization
there exist mappings t — 7; and ¢t — &;, with ; — 17 and ¢, — 0 as t — o0, such that:

=0; (4.45)

-

Q
I E(wy, A,w) < m, (A) (4.46)
—00 ’
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with wy = wu;’,. By (4.45) we have F(Lﬁ)-mt_m Ey(u, A,w) < limy_p Ey(wy, A, w), and
inequality (4.38) follows from (|4.46[). B

Step 4: differentiation with respect to p. Using Lemma [4.1, Remark [£.2] and Lemma
4.8] it is easily seen that

Y- Tim B (. A o Eﬁu,w(Qp(ﬂc)) e [ m,,,(Qy(2)) ).
F(LH)')LTOEt( VA, )>LL0—M(Q,)(93)) dy () LLoLl— 00 du(w); (4.47)

C() T B A.0) = [ty P2

for all w € & and all A € O(Q2). The goal of Step 4 is to apply Theorem m (with © = ﬁu,w
where u € &) for proving the following lemma.

Lemma 4.9. If (3), (8), €7, E&TI). and hold then

hd _ im ﬁu,w(Qp (7)) "
o) = |l Bt 9

for allu e & and all Ae O(). As a consequence, we have

dp(x) (4.48)

PY-lim Fy(u, A,w) = im _Hl—u’w(Q”(x)) ) = im Tm My, (Qp(7)) .
L(Ly)- im E,(u, A,w) LLO 2(0,(2)) dp(z) L}Hoil 00 dp(z) (4.50)

for allue & and all A e O(Q).

Proof of Lemma [4.9. Fix u € &. The integral representation of I'(L?)-limy_o, By (u, -, w)

in (£.50) follows from (.49), (4.48) and the definition of T, in (%.35). So, we only need to
establish (4.49). For this, it is sufficient to prove that m,, is subadditive and there exists a
finite Radon measure v on {2 which is absolutely continuous with respect to p such that

T, (A) < v(A) (4.51)

for all A € O(2), and then to apply Theorem [3.29] For each ¢ > 0 and each 7 €]0,1],
from the definition of mf,  in (4.40)), it is easy to see that for every A, B,C € O(Q) with

TU,W

B,CcA BnC =g and u(A\Bu C) =0,
m!, (A)<m’ (B)+m’, (C),

TU,W TU,W

and so
lim limm!, (A4) < lim limm’, (B)+ lim lim m’, (O),
1 t—0 ’ 1 t—m ’ 1 t—m ’
ie.
Ty (A) < Ty (B) + MW (0), (4.52)

which shows the subadditivity of ﬁu,w.

Remark 4.10. As, in general, the limit inf of the sum is not smaller than the sum of the
limit inf, we cannot assert that (4.52)) holds for m, , instead of m,, and so that m,, is
subadditive.

w
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On the other hand, given any ¢ > 0 and any 7 €]0, 1[, by using the right inequality in (2.11)
we have

o 4) < Gp(A) + 8 | Gr,u(o)dno)

But, from we see that G(7V u(z)) < (1 + G(V,u(z)) + G(0)) for p-a.a. x € Q, hence
my,.(4) < Bu(A) + Byu(A) + By (J G(Vyu(z))du(r) + M(A)G(0)>
A
< Buld)+ BriA) + Bra(A)GIO) + By | GITale))du(o).
Letting ¢ — o0 and 7 — 1~ we conclude that
i (4) < ¢ (50) + | GTate)iute))

with ¢ := B(1+y+7G(0)). Thus (4.51)) holds with the Radon measure v := ¢(1+G(V u(-)))
which is necessarily finite since u € ® and G(0) < co by (2.6). H

Step 5: establishing the I'-limit inf and the I'-limit sup formulas. According to

(4.47) and (4.50]), the proof of Theorem will be completed (see Substep 5-2) if we prove
that for each u € & and p-a.e. x € ), we have

M, Q@) _ (@)

I oy = @) S B (@, @) (453)
and

. . mTuz-,w(Qp(x)) o 1m ﬁu,w(Q0($))

i = 0@ S Q) (4.54)

N e mrux,w(Qp(x)) im ﬁu7w<Qp(I)) .

PN TUQ W) T uQuo) )

lim EmT’U/xWJ(QP(x)) > mu,w(@p(x)) (4.56)

T—17 p—0 M(QP(ZL’)) p—0 /,L(Qp(l'))
where u, € H,?(€;R™) is given by Proposition (d) (and satisfies (3.4]) and (3.5))).

Substep 5-1: proofs of (4.53)), (4.55) and (4.56)). We only give the proof of (4.53). As
the proofs of (4.55)) and (4.56) use the same method, the details are left to the reader.

First of all, by diagonalization there exists a mapping o — 7, with 7, — 17 as ¢ — 1~ such
that:

lim 22 — 1;
o—1— O
m Tm A, (1) < Tim A, (l)

T—1" c—1— g o—1— g
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where A,(+) := sup,., A‘zss("w)(') with {as(-,w)}s=0 © L)(2;]0,00]) given by (2.12). But
lim, ;- A, (r) < 0, hence

Tm Tim A, (1) <0. (4.57)

T—1" 0—1— g
Fix any € > 0. For each 7 €]0, 1] there exists o, €]7, 1] such that
A, <T> < Tm A, (T) + < (4.58)
o o—1- 2
for all o € [0, 1[. In the same way, there exists 7 €]0, 1[ such that
Tim A, (1) < Tm Tm A, (I) v < (4.59)
o—1— o T—17 o—1" g 2

for all 7 € [79, 1], and from (4.57)), (4.58) and (4.59) we deduce that

T

A, (;) <e (4.60)

for all 7 € [0, 1] and all o € [0, 1].
Fix u € &. Fix any t > 0, any A €]0,1[, any p > 0, any 7 € [, 1] and any o € [0, 1].
By definition of m}, ,(Qx,(z)) in (4.40), there exists w : © — R™ such that w — ou €

HYB(Qap(a); R7) and
jQ a0 V0(0), i) < (Qa(0)) + (@) (4.61)

By Proposition (e) there is a Urysohn function ¢ € Lip(Q2) for the pair (Q\Q,(z), Q,,(z))
such that

0
HDM‘PHL?;(Q;RN) < m (4.62)

for some 6 > 0 (which does not depend on p). Define v € H,?(Q,(z); R™) by

T T
vi=pout (1-— gp);ux.

Then v — Zu, € Hlp(Qp( ); R™). Using Theorem (d) and we have
| Vu(tu) in Qy,(z)
Vilov) = { TD,p ® (1 —uz) + 0 (9ZV,u + (1 - 9)2V,u(2)) in Q(2)\Qy,(x)
_ { Vu(Tu) in @)\p(.ﬂj)_
(1= 75D ® (u—te) + 7(¢Vyu + (1 = 9)Vyu())  in Qy(2)\Q),(2)-
As Tw—Tu € H 0(@xp(); R™) we have ov+(Zw—Tu)—Tu, € (Qp( ) ™). Noticing that

((9@,\,)( ) = 0 (see Remark and, because of Proposmon ( ), Vu(Zw —1u)(y) =0
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for pra.a. y € Q,(x)\Q,,(x), we sce that

M7y, o(Qp(2)) 1 T
MGENE) < O] pr(x) Ly (y, V,u(ov) + VM<;w — Tu>,w> dp

L, (y, Vu(tu) + V“<gw — Tu>,w) du

1
- /L(Qx—p(fv))f@,,(x)
1
- m JQp(ﬂC)\Q)\p(gC)
1 T
= — Lt )y ’ d
M(QAp(x» fop(m) <y Uvuw w> !
werl
1(@xp(2)) J@,2)\@rp(@)

Ly (ya VH(O'U), w)d,u

+

Lt (ya VM(O'U), w)d,u

It follows that

(@) _ 1
P @)

o (#Qe) [ | N
() (M%(w)ﬂ[ T 5 g 0 T W)

Lt(y7 vll((jv)v w)d:u

J Lt(y7v,uwaw)d:u
Qp(x)

Sl
+—
1(@x(2)) Jg,2)\@rp(@)

Taking (4.61)), (2.7) and the right inequality in (2.11]) into account we deduce that

m7,, (@) TV [ Mouew(@rp(2))
1(Qx()) s <1 A (;)> ( N(Q/\p?x)) " 6)

o <g> :(g;p(g))) J[ Qp<r>at(y’w)du

c T
4 - G D,o® (u—uy ) d
M(QA/)(@")) J‘Qp(m)\QAp(w) (1 - T ne ( ))

+m J~Q/7(90)\pr(m) (G(VMU(y)) * G(v”u(x)))dﬂ

()
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with ¢ := 8+ v+ 572, where v > 0 and 8 > 0 given by (2.7) and ([2.11)) respectively. Thus,
taking (4.60]) into account, noticing that pu(Q,(x)) = u(Qx,(z)), we obtain

miuz,w(QP(x)) < . mf)’u,w(QAp<x>) .
W@,y S T )< 1Oy (1) *)

pQ) [
“m@xp(x)))[ o

L c J G( !
(@0 () Jo,@n@u@ \1—T

Dyp® (u—u,) ) di

EWE) LM\QMW FAVuly))an
1(Qp()) _ wlz
“(m@Ap(x» 1) GVuu())
Q)
“(m@wn 1)‘ (4.63)

On the other hand, by (4.62)) we have

.
1—7

T
1—

Dw(y)®(U(y)—um(y))‘ < ‘ | [Duel gz ol = ol @ aymemy

x —||U Ug || [0 z):Rm
(1-7)1—=Np L (Qp(z);R™)

for p-a.a. y € Q,(x)\Qxp(x). But, since p > &, lim, g %Hu - UIHLZO(QP(I);RM) = 0 by (3.5)),
hence there exists pp > 0 (which depends on 7 and \) such that

‘ 1 - —Dyply) © (uly) - ux(y))‘ <

for pra.a. y € Q,(2)\Qxo(z) and all p €]0, po| with r > 0 given by (2.6). Hence

f G (LD#@ ® (u— um)) du < J sup G(§)du
Qp(@)\Qrplz) N1 —T Qp(2)\Qap (@) lEl<r

= WQp()\@up()) sup G(E)  (4.64)

§l<r

for all p €]0, po[. Moreover, it easy to see that

G(Vyu(y))dp < M(Qp(“?))J(Q ( )1G(VW(?J)) — G(V,u(w))|du

1 (Qp(2)\Qxp () G(V uu(x)). (4.65)

JQp(ﬂ?)\pr(ﬂf»‘)
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Taking (4.64)) and (4.65) into account, from (4.63) we deduce that

wl (@) _ (@)
wQ,my S U )< 1(On(@)) *)

u(Q,())
Q1)) f oy )

+¢

H(Qy(r) o
T T CTH ) = G, )
pQe)
(o 1) et
p(@Qp(2))
+2c ( Q@) 1) G(V,u(z))
(@)
e (ieaen - o
Asue &, ie G(Vyu()) e L, (), (and u is a doubling measure) we can assert that
lim o )|G(VMU(?J)) — G(V,u(x))|du(y) =0, (4.67)
and by we have
lim lim a(y,w)du(y) =: ag(x,w) € [0, ool (4.68)

p—0t—00 Qp(x)

Letting t — o0, 0 — 1~ and p — 0 in and using and - we see that

My, o(Qp(7)) _m—uw(QP< z)) -
Q) O )(Lo W@, @) )
o Bl

p—0 M(Q/\p( )) *
o T 1@p(2)) b &
i ( 1) \élg ©)

p—0 M(Q)\p(x))
1(@Q,(2)) »
e <i~0u<@m<x>> 1) Vi)
u(@Q, ()
(flﬂ%u(@p( ) (4.69)

Letting 7 — 17 and A — 17 in (4.69) and using we conclude that

—Tuz,w(QP(x» < 'I’Il :uw(QP< ))
JE? =0 - 0t >(,L0 u(Q, (@)

and (4.53) follows by letting ¢ — 0.

+ &?) + cap(z,w),  (4.70)
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Substep 5-2: end of the proof of Theorem u Combining (4.47) with ( - and

- with - we get:

(L) lim Ew A) > | lin Tog %dm;
(L) e A = [ it P Q) g )
T—1" p

for all u € & and all A€ O(Q). On the other hand, given any u € &, it is easily seen that:

—Tu w(QP(x))
lim lim —/=“2 277 — lim lim lim Hpy Li(x, TV u(r),w);
o Q) iy i ML TV (), )
M7y w(Qp(x))
lim hm””’— = lim lim lim ’H”L x, 7V, u(r),w
T—1" p—0 M(QP(I)) T—1— p—0t—00 t( ( ) )

for p-a.a. x € Q, and (2.15) and ({2.16]) follow. H

5. PROOFS OF THE HOMOGENIZATION THEOREMS

As the proof of Theorem follows by the same method as in the proof of Theorem [2.34],
by using Theorem [3.33| instead of Theorem [3.42, we only give the proof of Theorem [2.34]

Proof of Theorem [2.34. The proof consists of applying Corollary [2.15] First of all, taking

Remarks [2.32 and [3.16] into account, it is easy to see that ( . . . - -,

(2.13) and ([2.14) are satisfied. So, we only need to prove that for P-a.e. w € ¥ and every
x € €, one has

lim H. Ly(z,§,w) = hm HLi(7,§,w) = Lyom(§,w) for all £ € G. (5.1)

t—00

Let £ € G and let 8¢ : B, o(X) — L'(3, T,P) be defined by

S = i { | 206+ V) o) w e HB(AR)}

where by we have 0 < §%(4)(w) < c,u(fol) < cu(A) for all Ae B,o(X) and all w e ¥
with ¢ 1= B(1 + G(£)) (¢ < o because £ € G). In particular S¢ satisfies the boundedness
condition in . On the other hand, taking into account, from (Hsy), we see that
for any @ € Ba(X), any ¢ > 0 and any w € X, one has

8 (h(Q) () = mf{ | (Q)L@,swuw(y),w)du(y):weH;;fgmt(@;Rm)}
- inf{ fQLmt(y),uvuw<ht<y>>,w>d<hgl>ﬂu<y> we H'I(h(Q): R >}

= pu(hy(U))inf {JQ Li(y, &+ V,w(h(y)), w)du(y) - w e Hi:g(ht(Q); Rm)} :
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But u(h(U)u(Q) = (hy ) u(Q) = u(hi(Q)) by using again (Hs), and so from (Hz) we obtain
S* ((Q)) (w) = p(h(Q)) inf {J[QLt(y,é + Vw(y),w)dp(y) : w e Hﬁjg(Q;Rm)}

for all @ € Ba(X), all ¢ > 0 and all w € ¥. Consequently, we have:
S (he(Qp(2))) (w).

pm kol &) = i = G0, w) 52)
o S Q) @)
L A GAE)) o9

for all z € Q, all p > 0 and P-a.a. w € X. Moreover, from (H;) and (2.33)) it easily seen
that the set fuglction S¢ is G-covariant, and S¢ is also subadditive because, for each A, B €
B,o(X), (AU B\(A U B)) = 0since AU B\(AU B) € 94 U 0B and p(0A) = u(0B) = 0.
Thus, taking (H}) and (Hs) into account, for every z €  and every p > 0, we can apply
Theorem with {pk}keN* = {h(U)}gen+ and {Qi}i=0 = {hi(Q,(2))}i=0, and, noticing

—_—
o

that p(he(U)) = p(he(U)) = p(he(U)) for all & € N*| we conclude that
S @) @) . F[S ()] )

T (@) T (D))
— inf EZ [w] (w)
b | (D)
= Lhom(€7w)7

for P-a.a. we X, and (5.1)) follows from (j5.2)) and (5.3). W

A. APPENDIX

A.1. Proof of the integral representation of the Vitali envelope of a set function.
In this appendix we prove Theorem [3.29|

Proof of Theorem [3.29 First of all, from (a) we see that —d,v < d,0 < d}© < d,v.
Hence d,0,d; O € L}L(Q) because v is a finite Radon measure which is absolutely continuous
with respect to the finite Radon measure p. So A7 (A), A*(A) € R for all A € O(Q2), where
A7, AT 0(Q) — R are given by:

A (4) = | dBl)dula)
AT(A) = JA dyO(x)du(x).

In what follows, we consider 8" : O(€2) — R defined by

0% (4) := ix;gsup {Z O(Q;) : {Qi}icr € VE(A)} . (A.1)

el
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(It is clear that ©* < 0. In fact, we are going to prove that under the assumptions (a)
and (b) of Theorem we have ©*(A) = ©7(A) = §,d,0(x)du(z) for all Ae O(R).) We
divide the proof into three steps.
Step 1: proving that ©* = A~ and ©" = A*. Define 6,6 : O(Q) — R by:

0= (A) :=0(A) — /\*(A);

07(A) := ©(A) — AT(A).
In what follows, 0* (resp. ') is defined by (3.41 (3-41) (resp. (A.1)) with © replaced by 6~ (resp.
0").
Substep 1-1: an auxiliary lemma.

Lemma A.1. Under the assumption (a) of Theorem we have 6* = 0" = 0.

Proof of Lemma [A.1l We only prove that #* = 0. (The proof of g = 0 follows from
similar arguments and is left to the reader.)
First of all, from the assumption (a) it is clear that

67 (A)] < v(A) (A.2)

for all A € O(Q2), where v := v + |v| is absolutely continuous with respect to p (with |v|
denoting the total variation of v).
Secondly, we can assert that

d, 0 =0, (A.3)
where for any set function s : O(Q) — R, the function d;s: Q — [-o0, [ (resp. djs: Q —
| — 0, 0]) is defined by (B.38) (resp. - with © replaced by s. Indeed, for any re X,
it is easﬂy seen that

for all p > 0, and letting p — 0, we obtain
d,O(x) —diA"(z) <d 0" (v) <d,O(x) —d,\"(x).

o
But d;A\"(z) = df A\~ (v) = d;O(x), hence d;0~(r) = 0.

Finally, to conclude we prove that (A.2) and (A.3) imply 6* = 0. For this, we are going to
prove the following two assertions:

if d;0~ <0 then 6% <0; (A.4)
under (A.2), if d 6~ > 0 then 6* > 0. (A.5)
Proof of (A.4). Fix A e O(Q). Fix any ¢ > 0. Then d 6~ < ¢, and so in particular
lim, .od,; 0 (z,p) < ¢ for all ¥ € A. Hence, for each x € A there exists {p;n}n <]0, [ with
pzn — 0 as n — oo such that d;@‘(x,pm,n) < ¢ for all n > 1. Taking Remark into

account, it follows that for each z € A and each n > 1 there is Q,, € Ba(A4, z, p,,) such
that for each x € A and each n > 1,

07 (Qun)
—M(Qx,n) < €. (A.6)
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Moreover, since diam(@w,n) = diam(Qyn) < pun for all x € A and all n > 1, we have

inf {diam (@xn) in = 1} = 0 (where @xn denotes the closed ball corresponding to the open
ball Q,,). Let Fo be the family of closed balls of © given by

Fo = {@%n:xeAandn} 1}.

As Q satisfies the Vitali covering theorem, from the above we deduce that there exists a
disjoint countable subfamily {Q;}icr, of closed balls of Fy (with @; = A, u(dQ;) = 0 and
diam(Q;) €]0,¢[) such that p(A\ Uses, Q;) = 0, which means that {Q;}ier, € V-(A). From
(A.6) we see that 0~ (Q;) < eu(Q;) for all i € Iy, hence

Z 07 (Qi) <e Z 1(Q:) = ep(A).

iely ST
Consequently 07°(A) < eu(A) for all € > 0, where 07° is defined by (3.40) with © replaced
by 67, and letting € — 0 we obtain 6*(A) < 0.

Proof of (A.5). Fix A € O(Q2). By Egorov’s theorem, there exists a sequence {B,}, of
Borel subsets of A such that:

lim pu(A\B,) = 0; (A7)
lii% EeuB;i |d, 0" (z) —d,; 0" (x,¢)] = 0 for all n > 1. (A.8)
As 7 is absolutely continuous with respect to u, by we have
T}I_I)EIO v(A\B,) = 0. (A.9)
Moreover, as d, 0~ > 0, from (A.8) we deduce that
i_n(l)xieann d, 0" (v,e) =0 foralln > 1. (A.10)
Fix any n > 1 and any € > 0. By definition of 67, there exists {Q;}icr € V-(A) such that
0(A) > > 67 (Qi) — e (A.11)

el
Set [, := {z el :Q;nB,+ @}. Using we have
D07Q)=D,0(Q)+ D, 07(Q) = D0 (Q)— ), Q)

i€l i€ly e\, iely, i€\l
0~ (Q:) . ( )
= wQ) —v| v Qi,
iEZI;L w(Q;) (C:) i\,

and, choosing z; € Q; N B, for each i € I, and noticing that Uepnz, Qi © A\B,, it follows
that

207Q) = 3 d 0 (wi,e)n(Qi) — H(A\By)

> inf d,0 (v,2) > p(Q:) — D(A\B,).

x€By,
i€l,
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Taking ({A.11)) into account, we conclude that
0<(A) > inf d, 0 (z,2) > u(Q;) — D(A\B,) — ¢
2€Bn i€l

for all ¢ > 0 and all n > 1, which gives 8*(A) > 0 by letting ¢ — 0 and using (A.10) and
then by letting n — oo and using (A.9). W

Substep 1-2: using Lemma [A.1] As A\~ and At are absolutely continuous with respect
to u, it is easy to see that:

fz* = O* -\
0 =0 — A"
Hence ©* = A\~ and ©° = A\* by Lemma .

Step 2: proving that ©* = 0. We only need to prove that ©" < ©*. For this, it is
sufficient to show that for each open ball @ of Q with x(0Q) = 0, one has

6(Q) < 6*(Q). (A12)
Fix any € > 0. By definition of ©¢, there exists {Q;}icr € V-(Q) such that
D10(Q) < O°(Q) +e. (A.13)
iel
Since ,u(Q\ Uiel Qi) = 0 there is a sequence {I,}, of finite subsets of I such that
(@, @) =t (L, @) =0 (A1

Fix any n > 1. As O is subadditive by assumption (b), we have

G <k; QZ-) <> 0(Q).

i€l,
Moreover, 11 (Q\[(Vier, Qi) U (Q\Vier,@:)]) = 0 because p(0Q;) = 0 for all i € I,,, so that
0(Q) <O <.u Qi) + 0 (Q\Au Qi)
i€l, 1€ln
by using again the subadditivity of ©, and consequently
S6@)=0Q) -0 (Q ;@)

i€l,

Thus, using the assumption (a), we get

2.0@Q) = ), Q)+, 6(Q)

el i€l\In €l
> Y e+ e -6 (e a)
ieN\In "

WV
2
>
|
N
A~
C
O
N
|
N
A/~
Q
=
C
O
N

icl,
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But, v(0Q;) = 0 for all i € I,, because v is absolutely with respect to p, so that
v (@\-;;n @i) = (@\ . @z) = (% Qi) ’

>10(Q) = 6(Q) —zy( U Qi). (A.15)

ol i€\In

Combining (A.13)) with (A.15) we conclude that
0(Q) < ©°(Q) +2v ( U Qi) + ¢,
i€l\Ip

and (A.12)) follows by letting n — oo and using (A.14) and then by letting € — 0.
Step 3: end of the proof of Theorem [3.29, From steps 1 and 2 we have

L d,O(r)du(z) = ©%(Q) = o' (N) = JX dy O (x)du(x).

Thus §,(d;O(x) — d,;O(z))du(xr) = 0. But df© > d,0, ie. d:© —d;© > 0, hence
di®—d;©=0,ie dfO =d O, and the proof of Theorem is complete. W

and thus

A.2. Proofs of the subadditive theorems. In this appendix we prove Theorem m (see

§A.2.1) and Theorem [3.42 (see §A.2.2)).

A.2.1. The deterministic case. Here we prove Theorem [3.33

Proof of Theorem [3.33l First of all, let {k;},en+ be such that

lim S(Ukj) = inf S(Uy)
=0 p(Ug;)  ken* pu(Uy)

. (A.16)

We divide the proof into three steps.

Step 1: establishing lower bound and upper bound. Fix any 7 € N* and any ¢ > 0
and set:

ng = v gfl(Ukj);

eG,
9 tkj

Q= u g (Uy),

gEGij
where G;kj, thkj € Pr(Gy,;) with Gy, € Uy, (G) given by Definition w
Substep 1-1: lower bound. By the right inclusion in (3.42) we have Q; = Q; ; and so
Q;fj = QU (QZj\Qt). Hence
S (Q:j) <S(Q)+S (QZj\Qt) ;

and consequently

§(Q5) _S@) , S(Qi\@)
p(@5) " r@Q) 7 @)
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As Q,; © @ by the left inclusion in ([8.42), we see that Q;\Q; = Q;;\Q;; and so

S(Qi\Q) < e (Q;\Qr ;)
with ¢ > 0 given by . It follows that
S (@) L S(@)  cn (@Q4,\Qy)
p(Qf;)  n(@) 1 (Qr)
Letting ¢ — o0 and using we obtain
+
lj = lim (Qt]) < lim S(Qt) —
t—oo U (Qtj> t—o0 N(Qt)

Substep 1-2: upper bound. By the left inclusion in (3.42) we have @, ; < @; and so
Qr = Q;; U (Q\Q; ;). Hence

(A.17)

S(@Q) <S5 (Quy) + 8 (@) -
and consequently

S@Q) _ S(Qry) 1(Qry) LS (Qt\Qt_,j)'
(Qt) (Qt_j) w(Qy) Q)
As Q; < @Q; by the right inclusion in (3-42), we see that Q\Q;; © Q;\Q;; and so
S(Q\Qy;) < e (Q;\Qry)
with ¢ > 0 given by (3.46]). It follows that
(Qt < S (Qpy) 1 (th) n cp (Qi;\Qr )
N (Q;]) :u (Qt)
(Q;]) cu (erj\Qt])
i (@) @)
because p (ng) < (@) since Q;; = Q. Letting t — oo and using we obtain
; S@Q) _—5@Q) _ 5
[ := lim < li o= ;.
S Q) S Q)

(A.18)

Step 2: we prove that [ = I. It is sufficient to prove that for each £ > 0, one has
[—1l<e. (A.19)

Fix & > 0. From (A.17) and (A-18)) we see that [ — [ < I, — L;. So, to prove (A.19) it suffices

to show that there exists j € N* such that

li—1 <e. (A.20)
Let S; : Pi(Gy,) — R be defined by
L 1 -1 _
@wy_mmﬂkgég@%» wwww} (A.21)
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As S is subadditive, we can assert that S; is negative, i.e.

1
M([Ukj>
for all £ € Pt(Gy,;). Moreover, it is easily seen that S; is decreasing, i.e. for all E, F' €

Pi(Gy,), if E < F then S;(E) > S;(F). Consider myy, € N*, g, € G and Fyy, € Pr(Gy,)
given by Definition m From (3.44) it follows that

$)(E) =~ |S( 5,97 0u)) - BIS(0,) | <0 (A2

1 -1
5 (6) > (in) = gy |30,z 0710) <l
1 _
= 0 [ Un,) ~ [ Fus | (0.
Hence, since | Gi ks Z 1m0 F " and S and p are G-invariant, we get
s; (G, . -
’sz] > |G:kj|N(Ukj) [S(gt,kzj (Umt,kj)) B ‘E7kj| S(Uk]-)]
T | By |n(Uy) \G }M(Uk])
0t W) |G | 1T,
_ S(Un, k]-> |Fik,| S(Us,)
#(Unm,,) 1G] (U
o i S \thj] S(U;

Letting ¢t — oo and taking (3.45)) into account, we deduce that

S <G+k-> S(U

lim % > inf S(U) _ 5 kf). (A.23)
t—0o0 }Gt,kj‘ keN* ,U(Uk> ,U(Ukj)

By (IA.16) we can assert that there exists j. € N* such that for all j > j., one has

SUy) . S _

— in A24
W(0r,)  # (T) (A-24)
Combining (A.23)) with (A.24) we conclude that
S (G;kj)
lim ——% > —¢ (A.25)

t— ‘Gt:kj‘
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for all 7 = j.. On the other hand, by using (A.21)) with E = G:fkj and (A.22) with F = G;kj
we get:

s@Q) sw,)  S(G)
P = - : (A.26)
M(Q ) /L(Uk]) |Gt,kj
S(Uy,
$(@y) SO (A.27)
(Qt,j) /’L(Ukj)
Letting ¢t — oo in ((A.26)) and (A.27)) and taking (|A.25)) into account, we deduce that:
S(Uy,) S
L=, 5 > —¢ for all j > j; (A.28)
- SU)
l; — < 0 for all j € N*, A.29
) 42
and ([A.20) follows with j = j.. We set [ :=[ =1 and 7 := infjens igg}’:;
Step 3: we prove that | = . Combining (A.18) with - we see that [ < ( 5 ) for

all j e N* and so [ < 7 by letting 7 — o and using . On the other hand, comblmng
(A.17) with (A.28)) we see that [ > —¢ + TS (U ) for all j = j.. Letting j — oo and using
(A.16|) we deduce that | > —e + v for all ¢ > (), and so [ =~ by lettinge — 0. B

A.2.2. The stochastic case. Here we prove Theorem [3.42]

Proof of Theorem [3.42l. The proof is divided into four steps.

Step 1: establishing lower bound and upper bound. Fix any £ € N* and any ¢ > 0
and set:
Q= v g (U
gEGt %
QZk =V g (Uk)v
gEGt %
where G, G} € Pr(Gy) with Gy, € UR(G) given by Definition [3.37] n Arguing as in Step 1 of
the proof of Theorem [3.33] for each w € ¥, we get:

i SQ) @) L S@)w)
T Ten) S e T (4.30)
iy i S@Q)W) i S(Qu) @) L
l(w) : —tlﬂoo (O <thﬂrgj M(ng) =: [p(w). (A.31)

Remark A.2. Arguing as in Step 1-1 of the proof of Theorem [3.33] we see that we also have

= (Q)

for all w e 3. (This is used in Step 3.)

< l(w) (A.32)



64 OMAR ANZA HAFSA AND JEAN-PHILIPPE MANDALLENA

Step 2: we prove that l(w) = l(w) for P-a.a. w e X. It is sufficient to prove that for each
a > 0, one has

i ({w ey (W) — l(w) > a}) ~ 0. (A.33)
Fix a > 0. From (A.30) and (A.31]) we see that for each k € N*, one has

{w eY: l(w) —l(w) > a} c {w ey h(w) — I (w) > oz} =: Wi o (A.34)
So, to prove (|A.33) it suffices to show that for each € > 0 there exists k € N* such that
P(Wia) < —¢, (A.35)

where M, > 0 is the Tempelman constant associated with {G;rk}bo. Fix e > 0.

Substep 2-1: constructing a decreasing negative subadditive process on P;(Gg).
Let Ag : Pe(Gi) — L' (X, T,P) be defined by

AL(E) = Z S (Uy) o7,

geE

where G € U (G) is (a countable discrete and amenable subgroup of G) given by Definition
3.37, and let S : Pr(Gy) — L'(X, T,P) be defined by

Su(E) i= s [S(ggEg_l W) - Ak(E)] | (A.36)

As S is subadditive and G-covariant (and so Gg-covariant) and A is additive and Gy-
covariant, we can assert that S, is a subadditive processﬂ on P¢(Gy) which is negative, i.e.

SUEN) = = [5( 0,97 00) @) - A | <0 (A.37)

for all £ € P¢(Gy) and all w € 3. Moreover, it is easily seen that Sy, is decreasing, i.e. for all
E,F e Pi(Gy), it E < F then Sg(E) = Si(F'). Consider my;, € N*, g, € G and Fy . € Pr(Gy)
given by Definition m From (3.44)) it follows that

Si (Gfr) = Sk (Fip) = M(éjk) [8<ge§f)ﬁ,k g (Uk)> — Ay, (Ftk)]
1

[S (92 (Um,)) = A (Fip)] -

4The set function Sy : P¢(Gr) — L'(%,T,P) is said to be a subadditive process on P;(Gy) if it is
subadditive, i.e. Sg(F U F) < Si(E) + Sk (F) for all E, F € P¢(Gy,) such that En F = &, and Gy-covariant,
ie. Sp(Eg) = Sk(E)ory for all E € Py(Gy) and all g € G.
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By using the G-covariance of § we see that

[Lsetem) @) = g | [ S On)) @) - [ AF) @)

- b5 | [ s @ - |Fles ]
E [S(Umt,k)] _ ‘ k‘E[S (Uk)]
1 (Uk) P (Uy)
Consequently, si | G |> ﬁ and p is G-invariant, we get
BLS,(G4)) _ B[S(Un)] [Pl EISW)
Ghl T n(Un)  [GE] (U

L ESW,)] Rl ESW)
T omenr pu(Un) |G w(U)
Letting t — o0 and taking into account, we deduce that
i PG EIS(UA)] EIS(UW]
e e "u(Un) ()
As S is subadditive and G-covariant, we see that the set function E[S(-)] is subadditive and

G-invariant. From Proposition [3.35| it follows that there exists k. € N* such that for all
k = k., one has

(A.38)

E[SWy] . o E[S(Un)]
— — Iinf ———= <e¢. A.39
W) mite (D) 43
Combining (A.38)) with (A.39) we conclude that
— E[Si(Gi)]

lim

— A.40
t—00 }G::k = € ( )

for all £ > k..

Substep 2-2: using Lindenstrauss’s ergodic theorem. We need the following pointwise
additive ergodic theoremﬂ due to Lindenstrauss (see [Lin01, Theorem 1.2] and also [DGZ14],
Theorem 2.1]).

Theorem A.3. Let © € L'(3,T,P) and let {Gi}i=o = Pi(Gi). If {Gili=o is of Faolner-
Tempelman type with respect to Gy then

tli)rg) |Gt\ Z = Ef:[O](w) for P-a.awe %,

9eGt

where Lg, is the o-algebra of invariant sets with respect to (3, T,P, {T,}seq,) and EX:[O]
denotes the conditional expectation over Lg, with respect to IP.

Lindenstrauss’s ergodic theorem is established under the weaker condition that {Gi}i=¢ is of tempered
Fglner type (see [Lin01l Definition 1.1] and [DGZ14, §2] for more details). The tempered Fglner condition
implies the Fglner-Tempelman condition, but the converse is not true (see [Lin01, [DGZ14]).
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As {G;}}i=0 and {G/} }i=0 are of Fglner-Tempelman type with respect to Gy, applying The-
orem with © = S(Uy) we deduce that there exists S e T with P(i) = 1 such that

lim M — lim A (Gi) @) _ E%6+ [S(U)](w) for all w e 3. (A.41)
A e |GG
On the other hand, by using with F = sz, and with E' = G, we get:
S(Q::k:) (w) 1 Ay, (G:_k><w) _ Sk(G:k)(W) i Sk (G:k)(w)
p@h) U0 |G Gl 0 |G
S(Q;k)@}) 1 Ay, (Gt_k> (w)
1(Qr) p(Ue) |Gyl
for all w e ¥. Letting ¢t — o0 we deduce that:

o) - EESW0I) L S(Gh) @

1(Uy) " >0 ‘G:k|
Ip(w) — 7 Ei%i’;)](w)

In what follows, without loss of generality, we assume that 5=

(A.42)

<0

for all k € N* and all w € &; (A.43)

<Oforall ke N* and all we 5. (A.44)

Substep 2-3: using a maximal inequality. We need the following lemma (see [DGZ14]
Lemma 3.5] and also [AKS81, Theorem 4.2]).

Lemma A.4. Let K : P(Gy) — LY(X,T,P) be a negative subadditive process and let
{Gi}i=0 € Pi(Gy). Fiz o> 0 and consider VX e T given by

vk .= {weZ:infM < —a}.

« t>0 |Gt’
If {G\}i=0 is of Folner-Tempelman type with respect to Gy, then
M — E[K(Gy)]
P(VF) < —— lim ——~—4
(Vi) o o |G

where M > 0 is the Templeman constant associated with {G4}i=o.

As Sy : Pi(Gy) — L'Y(3, T,P) defined by (A.36]) is a negative subadditive process, we can
apply Theorem with I = Sk. Hence, since {G;r . }t=0 is of Fglner-Tempelman type with
respect to Gg, one has

where M > 0 is the Templeman constant associated with {G;r . }t=0. Consequently, taking
(A.40) into account, we get

M,
P (V) < —Ee for all k > k.. (A.45)
0%
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Substep 2-4: end of Step 2. From ({A.43)) and (A.44) it follows that

_ Se(Gy
I — 1, < i SGi)
t>0 ’sz‘

Hence Wy, = V. where Wy, is defined in (A.34). From (A.45) we conclude that (A.35])
is satisfied with k = k..

— g
In what follows we set [ ;=1 =1 and v := ki%f Ve With v 1= ]E’C([—U’“)] for all £ e N*.
ceN*

Step 3: we prove that l(w) = y(w) for P-a.a. w e X. First of all, from (A.31]) and (A.44]
we see that [(w) < g (w) for P-a.a. w e X and all k € N* and so

l(w) < y(w) for P-a.a. we X. (A.46)

On the other hand, letting ¢ — oo in (A.42) and using (A.41]) we get
— S(Qik) W) — Se(G) (W)

lim ——————~—— — w) = lim
t—0o0 M(sz) fyk( ) t—0o0 |sz

and so, taking (A.32)) into account, one has

l(w)_»ykgtli_%low

for P-a.a. we X

for P-a.a. we .
Gl

It follows that

| i) el b > | Fm

dP(w).
t—0o0 |Gt,k

But, by using Fatou’s lemma and m we see that for any k > k., one has

— Sk (w)
ST AP (W) > —e, (A.47)
tﬂoo
= tk

and consequently
f l(w)dP(w) = Ye(w)dP(w) — e
b

=

g

Y(w)dP(w) —e.
Letting ¢ — 0 we deduce that

L 1) — ()] dB(w) > (A18)
and the result follows by combining (A.46)) with ( -

In what follows, we set % := kirllwf v with vF = W for all k e N*.
eN*
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Step 4: we prove that l(w) = 4% (w) for P-a.a. w e . Since 4}, is Zg, -measurable for all
ke N*, v = infiens Yk 1S NiensZg,-measurable. But npen+Zg, = Z because Ugen+Gy = G,
hence 7 is Z-measurable and so [ is Z-measurable by Step 3. It follows that

EL(1] = L. (A.49)
As T c Ig, for all k e N* we also have
EX[y;] = # for all k € N*, (A.50)

Arguing as in Step 3, for each k € N*, we have [ < ;, hence EZ[I] < Ef[;] and so | <~ by
using (A.49) and (A.50). Consequently

1<t (A.51)
Fix any F' € Z. Arguing again as in Step 3 we see that for any k > k., one has

| ) = | i) -

But §, vi(w = (L E ) (w d]P’( ) by definition of the conditional expectation, hence

PRAC dP( ) S Vi (w)dP(w) by (A.50), and so

[t > [ Fere -
B
> | i) -
E
Letting ¢ — 0 we get
f l(w)dP(w) = f v (w)dP(w) for all E € T. (A.52)
B E
Combining (A.51)) with (A.52)) we deduce that
J l(w)dP(w) = f v (w)dP(w) for all E e T,
B B

which implies that [ = EZ[y%] by unicity of the conditional expectation. But ~% is Z-
measurable because 7# is Z-measurable for all k € N*, hence EZ[y?] = 4 and consequently
I=~+7. 1
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