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ON ΓΓΓ-CONVERGENCE AND HOMOGENIZATION OF NONCONVEX
UNBOUNDED INTEGRALS IN CHEEGER-SOBOLEV SPACES

OMAR ANZA HAFSA AND JEAN-PHILIPPE MANDALLENA

Abstract. We study Γ-convergence of nonconvex integrals of the calculus of variations in
the setting of Cheeger-Sobolev spaces when the integrands have not polynomial growth and
can take infinite values. Homogenization in such a framework is also developed.
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1. Introduction

Let pX, d, µq be a metric measure space, where pX, dq is complete, supporting a weak p1, pq-
Poincaré inequality with p ą 1 and such that µ is a doubling positive Radon measure on X
which satisfies the annular decay property (see §2.1). Let m ě 1 be an integer, let Ω Ă X
be a bounded open set such that µpΩzΩq “ 0, let OpΩq be the class of open subsets of Ω

Key words and phrases. Γ-convergence, Deterministic homogenization, Stochastic homogenization, Non-
convex unbounded integral, Ru-usc, General growth conditions, Metric measure space, Cheeger-Sobolev
space, Amenable group.
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and let pΣ,F ,Pq be a probability space. In this paper we consider a family of variational
stochastic integrals Et : H1,p

µ pΩ;Rmq ˆOpΩq ˆ Σ ! r0,8s defined by

Etpu,A, ωq :“

ż

A

Lt
`

x,∇µupxq, ω
˘

dµpxq, (1.1)

where Lt : Ω ˆM ˆ Σ ! r0,8s is a Borel measurable stochastic integrand1 depending on
a parameter t ą 0 and not necessarily convex with respect to ξ P M, where M denotes the
space of real mˆN matrices. The space H1,p

µ pΩ;Rmq denotes the class of p-Cheeger-Sobolev
functions from Ω to Rm and ∇µu is the µ-gradient of u (see §3.1).

We are concerned with the problem of computing the almost sure Γ-convergence (see Defi-
nitions 2.3 and 2.4) of the stochastic family tEtutą0, as t ! 8, to a variational stochastic
integral E8 : H1,p

µ pΩ;Rmq ˆOpΩq ˆ Σ ! r0,8s of the type

E8pu,A, ωq “

ż

A

L8
`

x,∇µupxq, ω
˘

dµpxq (1.2)

with L8 : Ω ˆM ˆ Σ ! r0,8s not depending on the parameter t. When L8 is indepen-
dent of the variable x, the procedure of passing from (1.1) to (1.2) is referred as stochastic
homogenization. If furthermore L8 is independent of the variable ω then E8 is said to be
deterministic, otherwise E8 is said to be stochastic. When tLtutą0 is deterministic, i.e. Lt
is independent of the variable ω for all t ą 0, the procedure of passing from (1.1) to (1.2) is
referred as deterministic homogenization.

Our motivation for developing Γ-convergence, and more generally calculus of variations, in
the setting of metric measure spaces comes from applications to hyperelasticity. In fact,
the interest of considering a general measure is that its support can be interpretated as
a hyperelastic structure together with its singularities like for example thin dimensions,
corners, junctions, etc. Such mechanical singular objects naturally lead to develop calculus
of variations in the setting of metric measure spaces. Indeed, for example, a low multi-
dimensional structures can be described by a finite number of smooth compact manifolds Si
of dimension ki on which a superficial measure µi “ Hki |Si is attached. Such a situation leads
to deal with the finite union of manifolds Si, i.e. X “ YiSi, together with the finite sum of
measures µi, i.e. µ “

ř

i µi, whose mathematical framework is that of metric measure spaces
(for more examples, we refer the reader to [BBS97, Zhi02, CJLP02] and [CPS07, Chapter
2, §10] and the references therein). In this way, having in mind the two basic conditions of
hyperelasticity, i.e. “the non-interpenetration of the matter” and “the necessity of an infinite
amount of energy to compress a finite piece of matter into a point”, it is then of interest to
study Γ-convergence of nonconvex integrals of type (1.1) when the integrands do not have
p-growth and can take infinite values: this is the general purpose of the present paper. Note
that although our framework needs some “convexity” assumptions (see especially (2.7) which
implies that domain of Lpx, ¨, ωq is convex) it is consistent with the two above conditions of
hyperelasticity (see [AHM11, §2.2] and [AHMZ15, §9]). Nevertheless, this dose of convexity

1Throughout the paper, by a Borel measurable stochastic integrand L : Ω ˆM ˆ Σ ! r0,8s we mean
that L is pBpXq b BpMq b F ,BpRqq-measurable, where BpXq, BpMq and BpRq denote the Borel σ-algebra
on X, M and R respectively.
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makes our framework not consistent with another condition of hyperelasticity that is “frame-
indifference” (see [AHMZ15, Remark 9.1]). (For more details on the theory of hyperelasticity
we refer the reader to [MH94].)

Such a Γ-convergence problem in such a metric measure setting was studied for the first
time in [AHM17] when the family tLtutą0 is deterministic and has p-growth, i.e. there exist
α, β ą 0 such that

α|ξ|p ď Ltpx, ξq ď βp1` |ξ|pq (1.3)

for all t ą 0, all ξ PM and all x P Ω, where it is proved (see [AHM17, Theorem 2.2]) that if
(1.3) holds then:

ΓpLpµq- lim
t!8

Etpu,Aq ě

ż

A

lim
ρ!0

lim
t!8

Hρ
µLtpx,∇µupxqqdµpxq;

ΓpLpµq- lim
t!8

Etpu,Aq “

ż

A

lim
ρ!0

lim
t!8

Hρ
µLtpx,∇µupxqqdµpxq

for all u P H1,p
µ pΩ;Rmq and all A P OpΩq, where ΓpLpµq- lim and ΓpLpµq- lim denote respectively

the Γ-liminf and the Γ-limsup with respect to the strong convergence of LpµpΩ;Rmq (see
Definition 2.3) and, for each t ą 0 and each ρ ą 0, Hρ

µLt : ΩˆM ! r0,8s is given by

Hρ
µLtpx, ξq :“ inf

#

´

ż

Qρpxq

Ltpy, ξ `∇µwpyqqdµpyq : w P H1,p
µ,0pQρpxq;Rm

q

+

(1.4)

where Qρpxq denotes the open ball with radius ρ ą 0 and the space H1,p
µ,0pQρpxq;Rmq is the

closure of

Lip0pQρpxq;Rm
q :“

!

u P LippΩ;Rm
q : u “ 0 on ΩzQρpxq

)

with respect to the H1,p
µ -norm, where LippΩ;Rmq :“ rLippΩqsm with LippΩq denoting the

algebra of Lipschitz functions from Ω to R. In particular (see [AHM17, Corollary 2.3]), if
moreover, for every x P Ω, every ρ ą 0 and every ξ PM, one has

lim
t!8

Hρ
µLtpx, ξq “ lim

t!8
Hρ
µLtpx, ξq (1.5)

then

ΓpLpµq- lim
t!8

Etpu,Aq “

ż

A

L8px,∇µupxqqdµpxq (1.6)

for all u P H1,p
µ pΩ;Rmq and all A P OpΩq, where L8 : ΩˆM ! r0,8s is given by

L8px, ξq :“ lim
ρ!0

lim
t!8

Hρ
µLtpx, ξq. (1.7)

This was illustrated in [AHM17] in the case of deterministic homogenization where it is
proved (see [AHM17, Theorem 2.20]) that in the p-growth context and under additional as-
sumptions on the metric measure space pX, d, µq, the equality (1.5) is verified independently
of the open ball Qρpxq and so (1.6) holds with the integrand L8 in (1.7) which does not
depend on the variable x, i.e. L8px, ξq “ Lhompξq with

Lhompξq :“ inf
kPN˚

inf

#

´

ż

hkpŮq
Lpy, ξ `∇µwpyqqdµpyq : w P H1,p

µ,0

´

hk
`

Ů
˘

;Rm
¯

+

, (1.8)
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where U Ă X is the “unit cell” (with Ů denoting the interior of U) and, for each k P N˚, hk
is a homeomorphism on X (see §2.4 for more details).

In this paper, we extend our previous results in [AHM17] to the unbounded case, i.e. to the
case where the integrands Lt in (1.1) do not have p-growth and can take infinite values (see
§2.1, §2.2, §2.3 and §2.4 for more details).

Our main contribution (see Theorem 2.11) is to prove that for p ą κ, with κ :“ lnpCdq
lnp2q

where

Cd ě 1 is the doubling constant, see (2.1), if, for P-a.e. ω P Σ, tLtutą0 is radially uniformly
upper semicontinuous (ru-usc) at ω, i.e. there exists tatp¨, ωqutą0 Ă L1

µpΩ; s0,8sq, with

limt!8

ş

Ω
atpx, ωqdµpxq ă 8 and limρ!0 limt!8´

ş

Qρpxq
atpy, ωqdµpyq ă 8 for µ-a.a. x P Ω,

such that

lim
τ!1´

sup
tą0

sup
xPΩ

sup
ξPLt,x,ω

Ltpx, τξ, ωq ´ Ltpx, ξ, ωq

atpx, ωq ` Ltpx, ξ, ωq
ď 0,

where Lt,x,ω denotes the effective domain of Ltpx, ¨, ωq and if tLtutą0 has G-growth, i.e. there
exist α, β ą 0 such that for P-a.e. ω P Σ,

αGpξq ď Ltpx, ξ, ωq ď βp1`Gpξqq,

for all t ą 0, all x P Ω and all ξ P M, where G : M ! r0,8s is Borel measurable, p-coercive
and verifies some “convexity” assumptions, see (2.6) and (2.7), then for P-a.e. ω P Σ, one
has:

ΓpLpµq- lim
t!8

Etpu,A, ωq ě

ż

A

lim
τ!1´

lim
ρ!0

lim
t!8

Hρ
µLtpx, τ∇µupxq, ωqdµpxq;

ΓpLpµq- lim
t!8

Etpu,A, ωq “

ż

A

lim
τ!1´

lim
ρ!0

lim
t!8

Hρ
µLtpx, τ∇µupxq, ωqdµpxq

for all u P G and all A P OpΩq, where G denotes the effective domain of the functional
u 7!

ş

Ω
Gp∇µupxqqdµpxq. This establishes (see Corollary 2.15) that if moreover

lim
t!8

Hρ
µLtpx, ξ, ωq “ lim

t!8
Hρ
µLtpx, ξ, ωq

for P-a.a. ω P Σ, all x P Ω, all ρ ą 0 and all ξ P G, where G denotes the effective domain of
G and Hρ

µLtpx, ξ, ωq is given by (1.4) with “Ltpx, ξ, ωq” instead of “Ltpx, ξq”, then for P-a.e.
ω P Σ, one has

ΓpLpµq- lim
t!8

Etpu,Ω, ωq “

ż

Ω

pL8px,∇µupxq, ωqdµpxq (1.9)

for all u P G, where pL8 : ΩˆMˆ Σ ! r0,8s is defined by

pL8px, ξ, ωq :“ lim
τ!1´

L8px, τξ, ωq

with L8px, τξ, ωq given by (1.7) with “Ltpx, τξ, ωq” instead of “Ltpx, ξq”. We also show that
under suitable assumptions the equality (1.9) can be extended to the whole spaceH1,p

µ pΩ;Rmq

(see Corollaries 2.16, 2.17 and 2.18).

Our Γ-convergence results apply to homogenization (see Theorems 2.25 and 2.34 and Corol-
laries 2.26, 2.27, 2.28, 2.35, 2.36 and 2.37). Generally speaking, for a measurable dynamical
G-system pΣ, T ,P, tτgugPGq (see Definition 3.38), where G is a subgroup of HomeopXq with
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HomeopXq denoting the group of homeomorphisms on X, and under some additional as-
sumptions on the triple

`

pX, d, µq,G, thtutą0

˘

(see §2.4 for more details), when

Ltpx, ξ, ωq “ Lphtpxq, ξ, ωq,

where thtutą0 Ă HomeopXq and L : X ˆMˆ Σ ! r0,8s is ru-usc and satisfies

Lpg´1
pxq, ¨, ωq “ Lpx, ¨, τgpωqq

for all g P G, we prove that (1.9) holds with

L8px, ξ, ωq “ Lhompξ, ωq

with Lhom : Mˆ Σ ! r0,8s given by

Lhompξ, ωq :“ inf
kPN˚

EI

«

inf

#

´

ż

hkpŮq
Lpy, ξ `∇µwpyq, ¨qdµpyq : w P H1,p

µ,0

´

hk
`

Ů
˘

;Rm
¯

+ff

pωq,

where EI denotes the conditional expectation over I with respect to P, with I being the
σ-algebra of invariant sets with respect to pΣ, T ,P, tτgugPGq. If in addition pΣ, T ,P, tτgugPGq
is ergodic (see Definition 3.40), then Lhom is deterministic and is given by

Lhompξq :“ inf
kPN˚

E

«

inf

#

´

ż

hkpŮq
Lpy, ξ `∇µwpyq, ¨qdµpyq : w P H1,p

µ,0

´

hk
`

Ů
˘

;Rm
¯

+ff

,

where E denotes the expectation with respect to P. When L is deterministic, Lhom is given
by (1.8).

For related works in the Euclidean case, i.e. when pX, d, µq “ pRN , | ¨ ´ ¨ |,LNq where LN is
the Lebesgue measure on RN , we refer the reader to [Mar78, Bra85, DMM86, Mül87, JKO94,
MM94, BG95, BD98, AM02, AM04, AHM11, AHLM11, AHMZ15, DG16, AHCM17] and the
references therein.

The plan of the paper is as follows. In Sect. 2 we state the main results of the paper (see The-
orems 2.11 in §2.3 for Γ-convergence and Theorems 2.26 and 2.27 in §2.4 for homogenization)
and their consequences (see Corollaries 2.15, 2.16, 2.17 and 2.18 in §2.3 for Γ-convergence
and Corollaries 2.26, 2.27, 2.28, 2.35, 2.36 and 2.37 in §2.4 for homogenization). Sect. 4
is dedicated to the proof of Theorem 2.11 and Theorems 2.26 and 2.27 are proved in Sect.
5, whereas the proofs of their corollaries are given in §2.3 and §2.4 respectively. Sect. 3
is devoted to several auxiliary results needed for proving Theorems 2.11, 2.26 and 2.27. In
the appendix we give the proof of the integral representation of the Vitali envelope of a set
function, that is used in the proof of Theorem 2.11, as well as the proofs of subadditive
results in the setting of metric measure spaces, that are used to establish Theorems 2.26 and
2.27.

Notation. The open and closed balls centered at x P X with radius ρ ą 0 are denoted by:

Qρpxq :“
!

y P X : dpx, yq ă ρ
)

;

Qρpxq :“
!

y P X : dpx, yq ď ρ
)

.
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For x P X and ρ ą 0 we set

BQρpxq :“ QρpxqzQρpxq “
!

y P X : dpx, yq “ ρ
)

.

For A Ă X, the diameter of A (resp. the distance from a point x P X to the subset A) is
defined by diampAq :“ supx,yPA dpx, yq (resp. distpx,Aq :“ infyPA dpx, yq).

The symbol ´
ş

stands for the mean-value integral

´

ż

B

fdµ “
1

µpBq

ż

B

fdµ.

2. Main results

2.1. Setting of the problem. Let pX, d, µq be a separable and complete metric measure
space. Here and subsequently, we assume that µ is doubling on X, i.e. there exists a constant
Cd ě 1 (called doubling constant) such that

µ pQρpxqq ď Cdµ
´

Q ρ
2
pxq

¯

(2.1)

for µ-a.a. x P X and all ρ ą 0, and X supports a weak p1, pq-Poincaré inequality with
1 ă p ă 8, i.e. there exist CP ą 0 and σ ě 1 such that for µ-a.e. x P X and every ρ ą 0,

´

ż

Qρpxq

ˇ

ˇ

ˇ

ˇ

ˇ

f ´´

ż

Qρpxq

fdµ

ˇ

ˇ

ˇ

ˇ

ˇ

dµ ď ρCP

˜

´

ż

Qσρpxq

gpdµ

¸
1
p

(2.2)

for every f P LpµpΩq, every p-weak upper gradient g P LpµpΩq for f and every open set Ω Ă X
such that Qσρpxq Ă Ω. (For the definition of the concept of p-weak upper gradient, see
Definition 3.2.) As µ is doubling, for µ-a.e. x̄ P X and each r ą 0, we have

µpQρpxqq

µpQrpx̄qq
ě 4´κ

´ρ

r

¯κ

(2.3)

for all x P Qrpx̄q and all 0 ă ρ ď r, where κ :“ lnpCdq
lnp2q

(see [Haj03, Lemma 4.7]). We further

assume that pX, d, µq satisfies the annular decay property, i.e. there exist δ ą 0 and CA ě 1
such that

µ pQσrpxqzQrpxqq ď CA

ˆ

1´
1

σ

˙δ

µpQσrpxqq (2.4)

for all x P X, all r ą 0 and all σ Ps1,8r.

Remark 2.1. From [Buc99, Corollary 2.2] and [CM98, Lemma 3.3] (see also [Che99, Propo-
sition 6.12] and [HKST15, Proposition 11.5.3 pp. 328]), if moreover pX, dq is a length space
then (2.4) holds.

Remark 2.2. If (2.4) holds then µ
`

QrpxqzQrpxq
˘

“ 0 for all x P X and all r ą 0, i.e.
the boundary of balls is of zero measure. Indeed, given x P X and r ą 0, we have 1 ě
µ
`

Qrpxqq{µpQrpxq
˘

ě µpQrpxqq{µpQσrpxqq ě 1 ´ CAp1 ´
1
σ
qδ for all σ Ps1,8r. Hence, by

letting σ ! 1, we obtain µpQrpxqq{µ
`

Qrpxq
˘

“ 1, i.e. µpQrpxqq “ µ
`

Qrpxq
˘

.
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From now on, we suppose p ą κ, we fix a bounded open set Ω Ă X such that µpΩzΩq “ 0
and an integer m ě 1, and we denote the class of open subsets of Ω by OpΩq.
Let us recall the definition of Γ-convergence and a.s Γ-convergence. (For more details on the
theory of Γ-convergence we refer to [DM93].)

Definition 2.3. For each t ą 0, let Et : H1,p
µ pΩ;Rmq ˆ OpΩq ! r0,8s and let E8 :

H1,p
µ pΩ;Rmq ˆOpΩq ! r0,8s. We say that tEtutą0 Γ-converges with respect to the strong

convergence of LpµpΩ;Rmq, or simply ΓpLpµq-converges, to E8 as t! 8 if

ΓpLpµq- lim
t!8

Etpu,Aq ě E8pu,Aq ě ΓpLpµq- lim
t!8

Etpu,Aq

for any u P H1,p
µ pΩ;Rmq and any A P OpΩq, with:

ΓpLpµq- lim
t!8

Etpu,Aq :“ inf

"

lim
t!8

Etput, Aq : ut
Lpµ
! u

*

;

ΓpLpµq- lim
t!8

Etpu,Aq :“ inf

"

lim
t!8

Etput, Aq : ut
Lpµ
! u

*

.

Then we write

ΓpLpµq- lim
t!8

Etpu,Aq “ E8pu,Aq.

Let pΣ,F ,Pq be a probability space. Almost sure Γ-convergence is defined from Definition
2.3 as follows.

Definition 2.4. For each t ą 0, let Et : H1,p
µ pΩ;Rmq ˆ OpΩq ˆ Σ ! r0,8s and let E8 :

H1,p
µ pΩ;RmqˆOpΩqˆΣ ! r0,8s. We say that tEtutą0 almost sure Γ-converges with respect

to the strong convergence of LpµpΩ;Rmq, or simply almost sure ΓpLpµq-converges, to E8 as
t! 8 if for P-a.e. ω P Σ, one has

ΓpLpµq- lim
t!8

Etpu,A, ωq “ E8pu,A, ωq.

for any u P H1,p
µ pΩ;Rmq and any A P OpΩq.

For each t ą 0, let Et : H1,p
µ pΩ;Rmq ˆOpΩq ˆ Σ ! r0,8s be defined by

Etpu,A, ωq :“

ż

A

Lt
`

x,∇µupxq, ω
˘

dµpxq.

The object of the paper is to compute the almost sure ΓpLpµq-convergence of tEtutą0 as t! 8

in the case where the family tLtutą0 does not have p-growth and can take infinite values.

2.2. Growth and ru-usc conditions. Let G : M ! r0,8s be a Borel measurable integrand
such that G is p-coercive, i.e. there exists c ą 0 such that for every x P Ω and every ξ PM,

Gpξq ě c|ξ|p. (2.5)

We also assume that there exists r ą 0 such that

sup
|ξ|ďr

Gpξq ă 8, (2.6)
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and there exists γ ą 0 such that for every x P Ω, every τ Ps0, 1r and every ξ, ζ PM,

Gpτξ ` p1´ τqζq ď γp1`Gpξq `Gpζqq. (2.7)

Remark 2.5. If (2.7) holds then G is convex, where G denotes the effective domain of G.

Remark 2.6. If (2.7) is satisfied and if 0 P intpGq then (2.6) holds, see [AHM12b, Lemma
4.1].

Let G,G : H1,p
µ pΩ;Rmq! r0,8s be the functionals defined by:

Gpuq :“

ż

Ω

Gp∇µupxqqdµpxq; (2.8)

Gpuq :“ inf

"

lim
n!8

Gpunq : un
Lpµ
! u

*

. (2.9)

(The functional G is the lower semi-continuous envelope of G with respect to the strong
convergence of LpµpΩ;Rmq.) Let us denote the effective domains of G and G by G and Glsc

respectively. It is clear that G Ă Glsc. We futhermore assume that

τGlsc
Ă G for all τ Ps0, 1r. (2.10)

Remark 2.7. If Glsc Ă G and if (2.6) holds (and so 0 P G) and (2.7) is satisfied (and so G is
convex) then (2.10) holds.

Remark 2.8. If G is p-coercive, i.e. (2.5) holds, and if (2.7) is satisfied then Glsc Ă G, where
G denotes the closure of G with respect to the norm of H1,p

µ pΩ;Rmq. Thus, if moreover

0 P intpGq, where intpGq denotes the interior of G with respect to the norm of H1,p
µ pΩ;Rmq,

then (2.10) holds.

Throughout the paper, we assume that tLtutą0 has G-growth, i.e. there exist α, β ą 0 such
that for every x P Ω, every ξ PM and P-a.e. ω P Σ,

αGpξq ď Ltpx, ξ, ωq ď βp1`Gpξqq. (2.11)

Remark 2.9. Given ω P Σ, if (2.7) and (2.11) hold then the effective domain Lt,x,ω of Ltpx, ¨, ωq
is equal to G and so is convex.

Remark 2.10. Given ω P Σ, if (2.11) is satisfied then the effective domains of the functionals
ΓpLpµq- limt!8Etp¨,Ω, ωq and ΓpLpµq- limt!8Etp¨,Ω, ωq are both equal to Glsc.

When Gpξq “ |ξ|p, we say that tLtutą0 has p-growth. The p-growth case was already studied
in [AHM17]. The object of this paper is to deal with the G-growth case. For this, in addition,
we need to suppose that for P-a.e. ω P Σ, tLtutą0 is radially uniformly upper semicontinuous
(ru-usc) at ω with tatp¨, ωqutą0 Ă L1

µpΩ; s0,8sq, i.e.

lim
τ!1´

sup
tą0

∆
atp¨,ωq
Lt

pτq ď 0 (2.12)

with ∆
atp¨,ωq
Lt

: r0, 1s!s ´ 8,8s given by

∆
atp¨,ωq
Lt

pτq :“ sup
xPΩ

sup
ξPLt,x,ω

Ltpx, τξ, ωq ´ Ltpx, ξ, ωq

atpx, ωq ` Ltpx, ξ, ωq
,
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with the additional assumptions that

lim
t!8

ż

Ω

atpx, ωqdµpxq ă 8 (2.13)

and

lim
ρ!0

lim
t!8

´

ż

Qρpxq

atpy, ωqdµpyq ă 8 (2.14)

for µ-a.a. x P Ω. (For more details on the concept of ru-usc, see §3.2.)

2.3. Γ-convergence. In what follows µ
`

ΩzΩ
˘

“ 0, p ą κ, where κ :“ lnpCdq
lnp2q

with Cd ě 1

given by the inequality (2.1), and m ě 1. For each t ą 0 and each ρ ą 0, let Hρ
µLt :

ΩˆMˆ Σ ! r0,8s be defined by

Hρ
µLtpx, ξ, ωq :“ inf

#

´

ż

Qρpxq

Ltpy, ξ `∇µwpyq, ωqdµpyq : w P H1,p
µ,0pQρpxq;Rm

q

+

where Qρpxq denotes the open ball with radius ρ ą 0 and the space H1,p
µ,0pQρpxq;Rmq is the

closure of

Lip0pQρpxq;Rm
q :“

!

u P LippΩ;Rm
q : u “ 0 on ΩzQρpxq

)

with respect to the H1,p
µ -norm, where LippΩ;Rmq :“ rLippΩqsm with LippΩq denoting the

algebra of Lipschitz functions from Ω to R (see §3.1 for more details). The main result of
the paper is the following.

Theorem 2.11. If (2.5), (2.6), (2.7), (2.11), (2.12), (2.13) and (2.14) hold then for P-a.e.
ω P Σ, one has:

ΓpLpµq- lim
t!8

Etpu,A, ωq ě

ż

A

lim
τ!1´

lim
ρ!0

lim
t!8

Hρ
µLtpx, τ∇µupxq, ωqdµpxq; (2.15)

ΓpLpµq- lim
t!8

Etpu,A, ωq “

ż

A

lim
τ!1´

lim
ρ!0

lim
t!8

Hρ
µLtpx, τ∇µupxq, ωqdµpxq (2.16)

for all u P G and all A P OpΩq.

Assume furthermore that for P-a.e. ω P Σ, every x P Ω and every ρ ą 0, one has

lim
t!8

Hρ
µLtpx, ξ, ωq “ lim

t!8
Hρ
µLtpx, ξ, ωq for all ξ P G (2.17)

and let pL8 : ΩˆMˆ Σ ! r0,8s be defined by

pL8px, ξ, ωq :“ lim
τ!1´

L8px, τξ, ωq

with L8 : ΩˆMˆ Σ ! r0,8s given by

L8px, ξ, ωq :“ lim
ρ!0

lim
t!8

Hρ
µLtpx, ξ, ωq. (2.18)
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Let QµG : M ! r0,8s be defined by

QµGpξq :“ lim
ρ!0

inf

#

´

ż

Qρpxq

Gpξ `∇µwpyqqdµpyq : w P H1,p
µ,0pQρpxq;Rm

q

+

(Note that QµG is in fact given by (2.18) with “G” instead of “Lt”.)

Remark 2.12. The integrand QµG is called the H1,p
µ -quasiconvexification of G. (For more

details on the notion of H1,p
µ -quasiconvexity, we refer to [AHM19a].)

The following proposition, which make precise the representation of pL8, will be useful in our
framework.

Proposition 2.13. Given ω P Σ, assume that (2.11) is verified and tLtutą0 is ru-usc at
ω with tatp¨, ωqutą0 satisfying (3.20). If QµG is convex and 0 P intpQµGq with intpQµGq
denoting the interior of QµG and QµG being the effective domain of QµG, then:

(a) pL8 is ru-usc at ω;

(b) pL8px, ξ, ωq :“ lim
τ!1´

L8px, τξ, ωq for all x P Ω and all ξ PM.

If moreover L8px, ¨, ωq is lsc on intpQµGq for all x P Ω then:

(c) pL8px, ξ, ωq “

$

&

%

L8px, ξ, ωq if x P Ω and ξ P intpQµGq
lim
τ!1´

L8px, τξ, ωq if x P Ω and ξ P BQµG
8 otherwise;

(d) for every x P Ω, pL8px, ¨, ωq is the lsc envelope of L8px, ¨, ωq. In particular pL8p¨, ¨, ωq ď
L8p¨, ¨, ωq.

Proof of Proposition 2.13. From Proposition 3.17 we can assert that L8 is ru-usc at ω,
and from (2.11) we see that L8,x,ω “ QµG for all x P Ω. On the other hand, QµG is convex

and 0 P intpQµGq, hence τQµG Ă intpQµGq for all τ Ps0, 1r, where QµG denotes the closure
of QµG, and the proposition follows from Theorem 3.14. �

Remark 2.14. Let ω P Σ be satisfying all the assumptions of Proposition 2.13. By Proposition

2.13(a) we see that pL8 is ru-usc at ω, and by Proposition 2.13(d) we can assert that for every

x P Ω, pL8px, ¨, ωq is lsc and L8,x,ω Ă pL8,x,ω Ă L8,x,ω. But, for each x P Ω, L8,x,ω “ QµG
and, for each τ Ps0, 1r, τQµG Ă intpQµGq, hence τ pL8,x,ω Ă intppL8,x,ωq. Applying Theorem

3.14(a) and (d) with Lp¨, ¨, ωq “ pL8p¨, ¨, ωq we deduce that

p

pL8px, ξ, ωq “ lim
τ!1´

pL8px, τξ, ωq “ pL8px, ξ, ωq

for all x P Ω and all ξ PM, where
p

pL8 : ΩˆMˆ Σ ! r0,8s is defined by

p

pL8px, ξ, ωq :“ lim
τ!1´

pL8px, τξ, ωq.

The following result is a consequence of Theorem 2.11.
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Corollary 2.15. Under the assumptions of Theorem 2.11, if (2.17) is satisfied then for
P-a.e. ω P Σ, one has

ΓpLpµq- lim
t!8

Etpu,Ω, ωq “

ż

Ω

pL8px,∇µupxq, ωqdµpxq (2.19)

for all u P G.

Proof of Corollary 2.15. Let ω P Σ be suitably fixed and let u P G. Then, for µ-a.e.
x P Ω, ∇µupxq P G. But G satisfies (2.7) and so G is convex. Moreover, by (2.6) we have
0 P G. Hence τ∇µupxq P G for all τ Ps0, 1r. From (2.17) it follows that

lim
t!8

Hρ
µLtpx, τ∇µupxq, ωq “ lim

t!8
Hρ
µLtpx, τ∇µupxq, ωq

for all ρ ą 0 and all τ Ps0, 1r, and so, taking (2.18) into account,

lim
τ!1´

lim
ρ!0

lim
t!8

Hρ
µLtpx, τ∇µupxq, ωq “ lim

τ!1´
lim
ρ!0

lim
t!8

Hρ
µLtpx, τ∇µupxq, ωq

“ lim
τ!1´

lim
ρ!0

lim
t!8

Hρ
µLtpx, τ∇µupxq, ωq

“ pL8px,∇µupxq, ωq

for µ-a.a. x P Ω, and (2.19) follows by using (2.15) and (2.16). �

From Corollary 2.15 we deduce the following two results.

Corollary 2.16. Under the assumptions of Corollary 2.15, if Glsc Ă G then for P-a.e.
ω P Σ, one has

ΓpLpµq- lim
t!8

Etpu,Ω, ωq “

$

&

%

ż

Ω

pL8px,∇µupxq, ωqdµpxq if u P Glsc

8 if u P H1,p
µ pΩ;RmqzGlsc.

(2.20)

Proof of Corollary 2.16. Let ω P Σ be suitably fixed. Since Glsc Ă G, from Corollary
2.15 we deduce that

ΓpLpµq- lim
t!8

Etpu,Ω, ωq “

ż

Ω

pL8px,∇µupxq, ωqdµpxq for all u P Glsc.

On the other hand, from (2.11) we see that:

αGpuq ď ΓpLpµq- lim
t!8

Etpu,Ω, ωq ď β
`

1` Gpuq
˘

;

αGpuq ď ΓpLpµq- lim
t!8

Etpu,Ω, ωq ď β
`

1` Gpuq
˘

for all u P H1,p
µ pΩ;Rmq, where G is defined by (2.9). Hence

ΓpLpµq- lim
t!8

Etpu,Ω, ωq “ ΓpLpµq- lim
t!8

Etpu,Ω, ωq “ 8 for all u P H1,p
µ pΩ;Rm

qzGlsc,

and the proof is complete. �
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Corollary 2.17. Under the assumptions of Corollary 2.15, if (2.10) is satisfied then for
P-a.e. ω P Σ, one has

ΓpLpµq- lim
t!8

Etpu,Ω, ωq “

"

pIpu, ωq if u P Glsc

8 if u P H1,p
µ pΩ;RmqzGlsc (2.21)

with pIp¨, ωq : H1,p
µ pΩ;Rmq! r0,8s given by

pIpu, ωq :“ lim
τ!1´

Ipτu, ωq,

where Ip¨, ωq : H1,p
µ pΩ;Rmq! r0,8s is defined by

Ipu, ωq :“

ż

Ω

pL8px,∇µupxq, ωqdµpxq.

Proof of Corollary 2.17. Let ω P Σ be suitably fixed. From Corollary 2.15 we see that
ΓpLpµq- limt!8Etpu,Ω, ωq “ Ipu, ωq for all u P G. As tLtutą0 is ru-usc at ω it is easily seen
that tEtp¨,Ω, ¨qutą0 is ru-usc on G at ω. Hence, since (2.10) holds, from Corollary 3.23 we
deduce that

ΓpLpµq- lim
t!8

Etpu,Ω, ωq “ pIpu, ωq for all u P Glsc.

On the other hand, taking (2.11) into account, it is clear that if u R Glsc then

ΓpLpµq- lim
t!8

Etpu,Ω, ωq “ ΓpLpµq- lim
t!8

Etpu,Ω, ωq “ 8,

and (2.21) follows. �

As a consequence of Corollary 2.17 we have the following result.

Corollary 2.18. Under the assumptions of Corollary 2.17, if (3.20) is satisfied and if QµG
is convex, 0 P intpQµGq and L8px, ¨, ωq is lsc on intpQµGq for P-a.a. ω P Σ and all x P Ω,
then (2.20) holds for P-a.a. ω P Σ.

Proof of Corollary 2.18. By Corollary 2.17, (2.21) holds, and so it suffices to prove that
pIpu, ωq “ Ipu, ωq for all u P Glsc. First of all, we claim that G Ă Iω, where Iω denotes the
effective domain of Ip¨, ωq. Indeed, let u P G. Using the right inequality in (2.11) we have

ż

Ω

L8px,∇µupxq, ωqdµpxq ď β

ˆ

|Ω| `

ż

Ω

QµGp∇µupxqqdµpxq

˙

ď β

ˆ

|Ω| `

ż

Ω

Gp∇µupxqqdµpxq

˙

“ β p|Ω| ` Gpuqq ă 8,

and the claim follows because pL8p¨, ¨, ωq ď L8p¨, ¨, ωq by Proposition 2.13(d). On the other

hand, as (3.20) holds, from Proposition 3.17 we deduce that L8 is ru-usc at ω, hence pL8
is ru-usc at ω by Proposition 2.13(a), and so pI is ru-usc at ω. Consequently, we can assert
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that pI is ru-usc at ω on G because G Ă Iω. From the second part of Theorem 3.22 it follows
that

pIpu, ωq “

#

Ipu, ωq if u P G
lim
τ!1´

Ipτu, ωq if u P GlsczG.

We are thus reduced to show that Ipu, ωq “ limτ!1´ Ipτu, ωq for all u P GlsczG. Let
u P GlsczG. Taking Remark 2.14 into account and using Fatou’s lemma we see that

lim
τ!1´

Ipτu, ωq “ lim
τ!1´

ż

Ω

pL8px, τ∇µupxq, ωqdµpxq

ě

ż

Ω

lim
τ!1´

pL8px, τ∇µupxq, ωqdµpxq

“

ż

Ω

pL8px, τ∇µupxq, ωqdµpxq

“ Ipu, ωq.

Hence, if Ipu, ωq “ 8 then limτ!1´ Ipτu, ωq “ 8. Assume that Ipu, ωq ă 8. Then

pL8p¨,∇µup¨q, ωq P L
1
µpΩq. (2.22)

As pL8 is ru-usc at ω we have

∆pωq :“ lim
τ!1´

∆
pa8p¨,ωq
pL8

pτq ď 0 (2.23)

with ∆
pa8p¨,ωq
pL8

pτq :“ supxPΩ supξPpL8,x,ω
pL8px,τξ,ωq´pL8px,ξ,ωq

pa8px,ωq`pL8px,ξ,ωq
and

pa8p¨, ωq P L
1
µpΩ; s0,8sq. (2.24)

By (2.23) there exists τ0 Ps0, 1r such that ∆
pa8p¨,ωq
pL8

pτq ď ∆pωq ` 1 for all τ P rτ0, 1r. Conse-

quently, we have

pL8p¨, τ∇µup¨q, ωqď pL8p¨,∇µup¨q, ωq `∆
pa8p¨,ωq
pL8

pτq
´

pa8p¨, ωq ` pL8p¨,∇µup¨q, ωq
¯

ď pL8p¨,∇µup¨q, ωq ` p∆pωq ` 1q
´

pa8p¨, ωq ` pL8p¨,∇µup¨q, ωq
¯

“: fp¨, ωq

for all τ P rτ0, 1r. Moreover, fp¨, ωq P L1
µpΩq by (2.22) and (2.24) and from Remark 2.14 we

see that for every x P Ω, limτ!1´
pL8px, τ∇µupxq, ωq “ pL8px,∇µupxq, ωq, and so by using

Lebesgue’s dominated convergence theorem we conclude that

lim
τ!1´

Ipτu, ωq “ lim
τ!1´

ż

Ω

pL8px, τ∇µupxq, ωqdµpxq

“

ż

Ω

pL8px, τ∇µupxq, ωqdµpxq

“ Ipu, ωq,

which completes the proof. �
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Remark 2.19. In case Ltpx, ξ, ωq “ Lpx, ξq, and so Etp¨,Ω, ωq “ Ep¨,Ωq, we retrieve the
relaxation theorem established in [AHM18, Theorem 2.7]. More precisely, denoting the
lower semi-continuous envelope of Ep¨,Ωq with respect to the strong topology of LpµpΩ;Rmq

by Ep¨,Ωq, as a direct consequence of Corollaries 2.15, 2.16 and 2.17 we have the following
result.

Corollary 2.20. Assume that the hypotheses of Theorem 2.11 are satisfied with Ltpx, ξ, ωq “
Lpx, ξq.

(a) For every u P G, one has

Epu,Ωq “

ż

Ω

zQµLpx,∇µupxqqdµpxq,

where zQµL : ΩˆM ! r0,8s is defined by

zQµLpx, ξq “ lim
τ!1´

QµLpx, τξq.

with QµL : ΩˆM ! r0,8s given by

QµLpx, ξq :“ lim
ρ!0

inf

#

´

ż

Qρpxq

Lpy, ξ `∇µwpyqqdµpyq : w P H1,p
µ,0pQρpxq;Rm

q

+

.

(b) If Glsc Ă G then

Epu,Ωq “

$

&

%

ż

Ω

zQµLpx,∇µupxqqdµpxq if u P Glsc

8 if u P H1,p
µ pΩ;RmqzGlsc.

(2.25)

(c) If (2.10) holds then

Epu,Ωq “

$

&

%

lim
τ!1´

ż

Ω

zQµLpx, τ∇µupxqqdµpxq if u P Glsc

8 if u P H1,p
µ pΩ;RmqzGlsc.

If moreover QµG is convex, 0 P intpQµGq and QµLpx, ¨q is lsc on intpQµGq for all
x P Ω, then (2.25) holds.

2.4. Homogenization. In order to deal with homogenization, it is necessary to make some
refinements on our general setting, see (H1)-(H2)-(H3)-(Hw

4 ) for the deterministic case and
(H1)-(H2)-(H3)-(Hs

4)-(H5) for the stochastic case. These refinements are an attempt to de-
velop a framework for dealing with homogenization in the setting of metric measure spaces.
(Such a development was attempted for the first time in [AHM17].)

Let BpXq be the class of Borel subsets of X, let Bµ,0pXq denote the class of Q P BpXq such

that µpQq ă 8 and µpBQq “ 0 with BQ “ QzQ̊ and let BapXq be the class of open balls Q
of X. As pX, d, µq satisfies the annular decay property, i.e. (2.4), we have µpBQq “ 0 for all
Q P BapXq (see Remark 2.2). Hence BapXq Ă Bµ,0pXq.
Let HomeopXq be the group of homeomorphisms on X, let G be a subgroup of HomeopXq
such that
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(H1) the measure µ is G-invariant, i.e. g7µ “ µ for all g P G,

where g7µ denotes the image measure of µ by g, and let thtutą0 Ă HomeopXq be satisfying
the following two conditions.

(H2) There exists U P Bµ,0pXq with µpUq ą 0 such that ph´1
t q

7µ “ µphtpUqqµ for all t ą 0.

(H3) For each t ą 0 and each open set A Ă X with µpAq ą 0, there exists a bijective
map Ht,A : H1,p

µ,0phtpAq;Rmq ! H1,p
µ,0pA;Rmq such that ∇µHt,Apwq “ ∇µwoht (resp.

∇µH
´1
t,Apvq “ ∇µv oh´1

t ) for all w P H1,p
µ,0phtpAq;Rmq (resp. v P H1,p

µ,0pA;Rmq).

Remark 2.21. From (H2) it is easy to see that for each t ą 0, µphtpUqq ą 0 and h7tµ “
1

µphtpUqqµ.

Remark 2.22. As µpUzŮq “ 0 we have µpŮq “ µpUq and, under (H2), for each t ą 0,

µphtpŮqq “ µphtpUqq because ht P HomeopXq and h7tµ “
1

µphtpUqqµ.

As in §2.3 , we suppose that µ
`

ΩzΩ
˘

“ 0, p ą κ, where κ :“ lnpCdq
lnp2q

with Cd ě 1 given by the

inequality (2.1), and m ě 1.

2.4.1. The deterministic case. Let G : M ! r0,8s be a Borel measurable integrand satis-
fying (2.5), (2.6) and (2.7) and let L : X ˆM ! r0,8s be a Borel measurable integrand
having G-growth, i.e. there exist α, β ą 0 such that

αGpξq ď Lpx, ξq ď βp1`Gpξqq (2.26)

for all x P X and all ξ PM, and assumed to be G-invariant, i.e.

Lpg´1
pxq, ξq “ Lpx, ξq (2.27)

for all x P X, all ξ PM and all g P G. For each t ą 0, let Lt : X ˆM ! r0,8s be given by

Ltpx, ξq “ Lphtpxq, ξq. (2.28)

(Then, we have Lt
`

ph´1
t og´1ohtqpxq, ξ

˘

“ Ltpx, ξq for all x P X, all ξ P M, all t ą 0 and all
g P G.)

Definition 2.23. Such a tLtutą0, defined by (2.27)-(2.28), is called a pG, thtutą0q-periodic
family of integrands modelled on L.

Remark 2.24. If (2.26) holds then (2.11) is satisfied with Lt given by (2.28).

We further assume that L is ru-usc, i.e.

lim
τ!1´

∆a
Lpτq ď 0 (2.29)

with ∆a
Lpτq :“ supxPX supξPLx

Lpx,τξq´Lpx,ξq
a`Lpx,ξq

, where a P L1
µpX; s0,8sq, and we consider the

following condition on the triple
`

pX, d, µq,G, thtutą0

˘

.

(Hw
4 ) For each Q P BapXq, thtpQqutą0 is weakly G-asymptotic with respect to thkpUqukPN˚

(see Definition 3.31).

The following result is a consequence of Corollary 2.15 and Theorem 3.33.



16 OMAR ANZA HAFSA AND JEAN-PHILIPPE MANDALLENA

Theorem 2.25. Assume that pX, d, µq satisfies (H1), (H2), (H3) and (Hw
4 ), and consider

tLtutą0 a pG, thtutą0q-periodic family of integrands modelled on L. If (2.5), (2.6), (2.7) (2.26)
and (2.29) are satisfied and if (2.13) and (2.14) hold with at “ aoht, where a P L1

µpX; s0,8sq
is given by (2.29), then

ΓpLpµq- lim
t!8

Etpu,Ωq “

ż

Ω

pLhomp∇µupxqqdµpxq

for all u P G, where pLhom : M ! r0,8s is defined by

pLhompξq :“ lim
τ!1´

Lhompτξq

with Lhom : M ! r0,8s given by

Lhompξq :“ inf
kPN˚

inf

#

´

ż

hkpŮq
Lpx, ξ `∇µwpxqqdµpxq : w P H1,p

µ,0

´

hk
`

Ů
˘

;Rm
¯

+

.

From Theorem 2.25 we deduce the following two results.

Corollary 2.26. Let assumptions of Theorem 2.25 hold. If Glsc Ă G then

ΓpLpµq- lim
t!8

Etpu,Ωq “

$

&

%

ż

Ω

pLhomp∇µupxqqdµpxq if u P Glsc

8 if u P H1,p
µ pΩ;RmqzGlsc.

(2.30)

Proof of Corollary 2.26. This follows by the same method as in the proof of Corollary
2.16 by using Theorem 2.25 instead of Corollary 2.15 and replacing “L8 by “Lhom”. �

Corollary 2.27. Let assumptions of Theorem 2.25 hold. If (2.10) is satisfied then

ΓpLpµq- lim
t!8

Etpu,Ωq “

$

&

%

lim
τ!1´

ż

Ω

pLhompτ∇µupxqqdµpxq if u P Glsc

8 if u P H1,p
µ pΩ;RmqzGlsc.

Proof of Corollary 2.27. This follows by the same method as in the proof of Corollary
2.17 by using Theorem 2.25 instead of Corollary 2.15 and replacing “L8 by “Lhom”, and by
remarking that, since L is ru-usc, tLphtp¨q, ¨qutą0 is ru-usc (see Remark 3.16). �

Let ZG : M ! r0,8s be defined by

ZGpξq :“ inf

"
ż

Ů

Gpξ `∇µwpyqqdµpyq : w P H1,p
µ,0pŮ;Rm

q

*

. (2.31)

As a consequence of Corollary 2.27 we have the following result.

Corollary 2.28. Under the assumptions of Corollary 2.27, if (3.26) holds with tAkukPN˚ “
thkpUqukPN˚ and a P L1

µpX; s0,8sq given by (2.29), and if ZG is convex, 0 P intpZGq and
Lhom is lsc on intpZGq, where ZG denotes the effective domain of ZG, then (2.30) holds.
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Proof of Corollary 2.28. From (2.11) we see that Lhom “ Ghom with Lhom and Ghom

denoting the effective domain of Lhom and Ghom respectively, where Ghom : M ! r0,8s is
given by

Ghompξq :“ inf
kPN˚

inf

#

´

ż

hkpŮq
Gpξ `∇µwpxqqdµpxq : w P H1,p

µ,0

´

hk
`

Ů
˘

;Rm
¯

+

.

But, for each ξ PM, by using (H2) and (H3), we see that

Ghompξq“ inf
kPN˚

1

µphkpŮqq
inf

"
ż

Ů
Gpξ `∇µwphkpxqqqdph

´1
k q

7µpxq : w P H1,p
µ,0

´

hk
`

Ů
˘

;Rm
¯

*

“ inf
kPN˚

inf

"
ż

Ů
Gpξ `∇µwphkpxqqqdµpxq : w P H1,p

µ,0

´

hk
`

Ů
˘

;Rm
¯

*

“ inf
kPN˚

inf

"
ż

Ů
Gpξ `∇µwpxqqdµpxq : w P H1,p

µ,0

`

Ů;Rm
˘

*

,

hence Ghom “ ZG, and consequently Lhom “ ZG. Arguing as in the proof of Proposition
2.13 with “Lhom” instead of “L8” and “ZG” instead of “QµG”, and by using Proposition
3.18 instead of Proposition 3.17, we see that Proposition 2.13 is valid with “Lhom” instead
of “L8” and “ZG” instead of “QµG”. Thus, by the same method as in Remark 2.14 we can
assert that

lim
τ!1´

pLhompτξq “ pLhompξq,

and the rest of the proof runs as in the proof of Corollary 2.18 with “Lhom” instead of “L8”
and by using Corollary 2.27 instead of Corollary 2.17. �

Remark 2.29. To prove Theorem 2.25 (see Sect. 5), by using Theorem 3.33, we establish
that for all x P Ω and all ρ ą 0, one has

lim
t!8

Hρ
µLtpx, ξq “ Lhompξq for all ξ P G.

Hence Lhompξq “ L8px, ξq for all x P Ω and all ξ P G. Thus, if QµG “ G then Lhom “ L8,
and so L8 “ Lhom “ Ghom “ ZG “ G. So, in such a case, Corollaries 2.26 and 2.27 are direct
applications of Corollaries 2.16 and 2.17 respectively, and Corollary 2.28 can be restated as
the following result which is a direct application of Corollary 2.18.

Corollary 2.30. Under the assumptions of Corollary 2.27, if (3.20) holds with at “ aoht,
where a P L1

µpX; s0,8sq is given by (2.29), and if QµG “ G, 0 P intpGq and Lhom is lsc on
intpGq, then (2.30) holds.

2.4.2. The stochastic case. In what follows, we assume that pΣ,T,P, tτgugPGq is a measurable
dynamical G-system. Let L : XˆMˆΣ ! r0,8s be a Borel measurable stochastic integrand
having G-growth, i.e. there exist α, β ą 0 such that for P-a.e. ω P Σ,

αGpξq ď Lpx, ξ, ωq ď βp1`Gpξqq (2.32)

for all x P X and all ξ P M with G : M ! r0,8s satisfying (2.5), (2.6) and (2.7), and
assumed to be G-covariant, i.e.

Lpg´1
pxq, ξ, ωq “ Lpx, ξ, τgpωqq (2.33)
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for all x P X, all ξ PM and all g P G. For each t ą 0, let Lt : X ˆMˆΣ ! r0,8s be given
by

Ltpx, ξ, ωq “ Lphtpxq, ξ, ωq. (2.34)

(Then , we have Lt
`

ph´1
t og´1ohtqpxq, ξ, ω

˘

“ Ltpx, ξ, τgpωqq for all x P X, all ξ P M, all
t ą 0, all g P G and P-a.a. ω P Σ.)

Definition 2.31. Such a tLtutą0, defined by (2.33)-(2.34), is called a pG, thtutą0q-stochastic
family of integrands modelled on L.

Remark 2.32. If (2.32) holds then (2.11) is satisfied with Lt given by (2.34).

We further assume that for P-a.e. ω P Σ, L is ru-usc at ω, i.e.

lim
τ!1´

∆
ap¨,ωq
L pτq ď 0 (2.35)

with ∆
ap¨,ωq
L pτq :“ supxPX supξPLx,ω

Lpx,τξ,ωq´Lpx,ξ,ωq
ap¨,ωq`Lpx,ξ,ωq

, where ap¨, ωq P L1
µpX; s0,8sq, and we

consider the following conditions on the triple
`

pX, d, µq,G, thtutą0

˘

.

(Hs
4) For each Q P BapXq, thtpQqutą0 is strongly G-asymptotic with respect to thkpUqukPN˚

(see Definition 3.37).

(H5) The metric measure space pX, d, µq is meshable with respect to thkpUqukPN˚ (see
Definition 3.34).

Remark 2.33. From Definitions 3.31 and 3.37 we see that (Hs
4) implies (Hw

4 ).

The following result is a consequence of Corollary 2.15 and Theorem 3.42.

Theorem 2.34. Assume that pX, d, µq satisfies (H1), (H2), (H3), (Hs
4) and (H5), and con-

sider tLtutą0 a pG, thtutą0q-stochastic family of integrands modelled on L. If (2.5), (2.6),
(2.7) (2.32) and (2.35) are satisfied and if (2.13) and (2.14) hold with atp¨, ωq “ aphtp¨q, ωq,
where ap¨, ωq P L1

µpX; s0,8sq is given by (2.35), then for P-a.e. ω P Σ, one has

ΓpLpµq- lim
t!8

Etpu,Ω, ωq “

ż

Ω

pLhomp∇µupxq, ωqdµpxq

for all u P G, where pLhom : Mˆ Σ ! r0,8s is defined by

pLhompξ, ωq :“ lim
τ!1´

Lhompτξ, ωq

with Lhom : Mˆ Σ ! r0,8s given by

Lhompξ, ωq :“ inf
kPN˚

EI

«

inf

#

´

ż

hkpŮq
Lpy, ξ `∇µwpyq, ¨qdµpyq : w P H1,p

µ,0

´

hk
`

Ů
˘

;Rm
¯

+ff

pωq,

where EI denotes the conditional expectation over I with respect to P, with I being the σ-
algebra of invariant sets with respect to pΣ, T ,P, tτgugPGq. If in addition pΣ, T ,P, tτgugPGq is
ergodic, see Definition 3.40, then Lhom is deterministic and is given by

Lhompξq:“inf
kPN˚

E

«

inf

#

´

ż

hkpŮq
Lpy, ξ `∇µwpyq, ¨qdµpyq : w P H1,p

µ,0

´

hk
`

Ů
˘

;Rm
¯

+ff

, (2.36)

where E denotes the expectation with respect to P.
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As in the deterministic case (see §2.4.1) we can establish the following three results. Corol-
laries 2.35 and 2.36 below are consequences of Theorem 2.34.

Corollary 2.35. Let assumptions of Theorem 2.34 hold. If Glsc Ă G then for P-a.e. ω P Σ,
one has

ΓpLpµq- lim
t!8

Etpu,Ω, ωq “

$

&

%

ż

Ω

pLhomp∇µupxq, ωqdµpxq if u P Glsc

8 if u P H1,p
µ pΩ;RmqzGlsc.

(2.37)

If in addition pΣ, T ,P, tτgugPGq is ergodic, then Lhom is deterministic and is given by (2.36).

Corollary 2.36. Let assumptions of Theorem 2.34 hold. If (2.10) is satisfied then for P-a.e.
ω P Σ, one has

ΓpLpµq- lim
t!8

Etpu,Ω, ωq “

$

&

%

lim
τ!1´

ż

Ω

pLhompτ∇µupxq, ωqdµpxq if u P Glsc

8 if u P H1,p
µ pΩ;RmqzGlsc.

If in addition pΣ, T ,P, tτgugPGq is ergodic, then Lhom is deterministic and is given by (2.36).

From Corollary 2.36 we deduce the following result.

Corollary 2.37. Under the assumptions of Corollary 2.36, if (3.26) holds with tAkukPN˚ “
thkpUqukPN˚ and ap¨, ωq P L1

µpX; s0,8sq given by (2.35), and if ZG is convex, 0 P intpZGq
and Lhomp¨, ωq is lsc on intpZGq for P-a.a. ω P Σ, where ZG denotes the effective domain
of ZG : M ! r0,8s given by (2.31), then (2.37) holds. If in addition pΣ, T ,P, tτgugPGq is
ergodic, then Lhom is deterministic and is given by (2.36).

Remark 2.38. As in the deterministic case (see Remark 2.29), when QµG “ G, Corollaries
2.35 and 2.36 are direct applications of Corollaries 2.16 and 2.17, and Corollary 2.37 can be
restated as the following result which is a direct application of Corollary 2.18.

Corollary 2.39. Under the assumptions of Corollary 2.36, if (3.20) holds with atp¨, ωq “
aphtp¨q, ωq, where ap¨, ωq P L1

µpX; s0,8sq is given by (2.35), and if QµG “ G, 0 P intpGq and
Lhomp¨, ωq is lsc on intpGq for P-a.a. ω P Σ, then (2.37) holds. If in addition pΣ, T ,P, tτgugPGq
is ergodic, then Lhom is deterministic and is given by (2.36).

3. Auxiliary results

In this section we give the auxiliary results that we need for proving the Γ-convergence and
homogenization theorems.

3.1. The p-Cheeger-Sobolev space. Let p ą 1 be a real number, let pX, d, µq be a metric
measure space, where pX, dq is complete, supporting a weak p1, pq-Poincaré inequality, see
(2.2), and such that µ is a doubling positive Radon measure on X, see (2.1), which satisfies
the annular decay property, see (2.4), and let Ω Ă X be a bounded open set. We begin with
the concept of upper gradient introduced by Heinonen and Koskela (see [HK98]).

Definition 3.1. A Borel function g : Ω ! r0,8s is said to be an upper gradient for f : Ω !
R if |fpcp1qq ´ fpcp0qq| ď

ş1

0
gpcpsqqds for all continuous rectifiable curves c : r0, 1s! Ω.
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The concept of upper gradient has been generalized by Cheeger as follows (see [Che99,
Definition 2.8]).

Definition 3.2. A function g P LpµpΩq is said to be a p-weak upper gradient for f P LpµpΩq
if there exist tfnun Ă LpµpΩq and tgnun Ă LpµpΩq such that for each n ě 1, gn is an upper
gradient for fn, fn ! f in LpµpΩq and gn ! g in LpµpΩq.

Denote the algebra of Lipschitz functions from Ω to R by LippΩq. (Note that, by Hopf-
Rinow’s theorem (see [BH99, Proposition 3.7, pp. 35]), the closure of Ω is compact, and so
every Lipschitz function from Ω to R is bounded.) From Cheeger and Keith (see [Che99,
Theorem 4.38] and [Kei04, Definition 2.1.1 and Theorem 2.3.1]) we have the following result.

Theorem 3.3. There exists a countable family tpΩk, ξ
kquk of µ-measurable disjoint subsets

Ωk of Ω with µpΩz Yk Ωkq “ 0 and of functions ξk “ pξk1 , ¨ ¨ ¨ , ξ
k
Npkqq : Ω ! RNpkq with

ξki P LippΩq satisfying the following properties:

(a) there exists an integer N ě 1 such that Npkq P t1, ¨ ¨ ¨ , Nu for all k;
(b) for every k and every f P LippΩq there is a unique Dk

µf P L
8
µ pΩk;RNpkqq such that

for µ-a.e. x P Ωk,

lim
ρ!0

1

ρ
}f ´ fx}L8µ pQρpxqq “ 0,

where fx P LippΩq is given by fxpyq :“ fpxq `Dk
µfpxq ¨ pξ

kpyq ´ ξkpxqq; in particular

Dk
µfxpyq “ Dk

µfpxq for µ-a.e. y P Ωk;

(c) the operator Dµ : LippΩq! L8µ pΩ;RNq given by

Dµf :“
ÿ

k

1XkD
k
µf,

where 1Ωk denotes the characteristic function of Ωk, is linear and, for each f, g P
LippΩq, one has

Dµpfgq “ fDµg ` gDµf ;

(d) for every f P LippΩq, Dµf “ 0 µ-a.e. on every µ-measurable set where f is constant.

Let LippΩ;Rmq :“ rLippΩqsm and let ∇µ : LippΩ;Rmq! L8µ pΩ;Mq given by

∇µu :“

¨

˝

Dµu1
...

Dµum

˛

‚ with u “ pu1, ¨ ¨ ¨ , umq.

From Theorem 3.3(c) we see that for every u P LippΩ;Rmq and every f P LippΩq, one has

∇µpfuq “ f∇µu`Dµf b u. (3.1)

Definition 3.4. The p-Cheeger-Sobolev space H1,p
µ pΩ;Rmq is defined as the completion of

LippΩ;Rmq with respect to the norm

}u}H1,p
µ pΩ;Rmq :“ }u}LpµpΩ;Rmq ` }∇µu}LpµpΩ;Mq. (3.2)
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Taking Proposition 3.6(a) below into account, since }∇µu}LpµpΩ;Mq ď }u}H1,p
µ pΩ;Rmq for all

u P LippΩ;Rmq the linear map ∇µ from LippΩ;Rmq to LpµpΩ;Mq has a unique extension to

H1,p
µ pΩ;Rmq which will still be denoted by ∇µ and will be called the µ-gradient.

Remark 3.5. When Ω is a bounded open subset of X “ RN and µ is the Lebesgue measure on
RN , we retrieve the (classical) Sobolev spaces H1,ppΩ;Rmq. For more details on the various
possible extensions of the classical theory of the Sobolev spaces to the setting of metric
measure spaces, we refer to [Hei07, §10-14] (see also [Che99, Sha00, GT01, Haj03]).

The following proposition (whose proof is given below, see also [AHM15, AHM17, AHM18])
provides useful properties for dealing with calculus of variations in the metric measure setting.

Proposition 3.6. We have the following results:

(a) the µ-gradient is closable in H1,p
µ pΩ;Rmq, i.e. for every u P H1,p

µ pΩ;Rmq and every
A P OpΩq, if upxq “ 0 for µ-a.a. x P A then ∇µupxq “ 0 for µ-a.a. x P A;

(b) Ω supports a p-Sobolev inequality, i.e. there exists CS ą 0 such that
˜

ż

Qρpxq

|v|pdµ

¸
1
p

ď ρCS

˜

ż

Qρpxq

|∇µv|
pdµ

¸
1
p

(3.3)

for all 0 ă ρ ď ρ0, with ρ0 ą 0, and all v P H1,p
µ,0pQρpxq;Rmq, where, for each A P

OpΩq, H1,p
µ,0pA;Rmq is the closure of Lip0pA;Rmq with respect to H1,p

µ -norm defined
in (3.2) with

Lip0pA;Rm
q :“

 

u P LippΩ;Rm
q : u “ 0 on ΩzA

(

;

(c) Ω satisfies the Vitali covering theorem, i.e. for every A Ă Ω and every family F
of closed balls in Ω, if inftρ ą 0 : Qρpxq P Fu “ 0 for all x P A then there exists
a countable disjoint subfamily G of F such that µpAz YQPG Qq “ 0; in other words,
A Ă

`

YQPG Q
˘

YN with µpNq “ 0;
(d) for every u P H1,p

µ pΩ;Rmq and µ-a.e. x P Ω there exists ux P H
1,p
µ pΩ;Rmq such that:

∇µuxpyq “ ∇µupxq for µ-a.a. y P Ω; (3.4)

lim
ρ!0

1

ρ
}u´ ux}L8µ pQρpxq;Rmq “ 0 if p ą κ, (3.5)

where κ :“ lnpCdq
lnp2q

with Cd ě 1 given by the inequality (2.1);

(e) for every x P Ω, every ρ ą 0 and every λ Ps0, 1r there exists a Urysohn function
ϕ P LippΩq for the pair pΩzQρpxq, Qλρpxqq

2 such that

}Dµϕ}L8µ pΩ;RN q ď
θ

ρp1´ λq

for some θ ą 0;

2Given a metric space pΩ, dq, by a Urysohn function from Ω to R for the pair pΩzV,Kq, where K Ă V Ă Ω
with K compact and V open, we mean a continuous function ϕ : Ω ! R such that ϕpxq P r0, 1s for all x P Ω,
ϕpxq “ 0 for all x P ΩzV and ϕpxq “ 1 for all x P K.
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(f) for µ-a.e. x P Ω,

lim
λ!1´

lim
ρ!0

µpQλρpxqq

µpQρpxqq
“ lim

λ!1´
lim
ρ!0

µpQλρpxqq

µpQρpxqq
“ 1. (3.6)

Remark 3.7. As µ is a Radon measure, if Ω satisfies the Vitali covering theorem, i.e. Propo-
sition 3.6(c) holds, then for every A P OpΩq and every ε ą 0 there exists a countable family
tQρipxiquiPI of disjoint open balls of A with xi P A, ρi Ps0, εr such that µ

`

AzYiPIQρipxiq
˘

“ 0.
By the annular decay property, see (2.4), we also have µpBQρipxiqq “ 0 for all i P I (see Re-
mark 2.2).

Proof of Proposition 3.6. Firstly, Ω satisfies the Vitali covering theorem, i.e. the prop-
erty (c) holds, because µ is doubling on Ω (see [Fed69, Theorem 2.8.18]). Secondly, the
closability of the µ-gradient in LippΩ;Rmq, given by Theorem 3.3(d), can be extended from
LippΩ;Rmq to H1,p

µ pΩ;Rmq by using the closability theorem of Franchi, Haj lasz and Koskela
(see [FHK99, Theorem 10]). Thus, the property (a) is satisfied. Thirdly, according to [BB11,
Corollary 4.24 pp. 93], since µ is doubling on Ω and Ω supports a weak p1, pq-Poincaré in-
equality, we can assert that Ω supports a weak pp, pq-Poincaré inequality, i.e. there exist
cp ą 0 and λ ě 1 such that for µ-a.e. x P Ω and every ρ ą 0,

˜

´

ż

Qρpxq

ˇ

ˇ

ˇ

ˇ

ˇ

f ´´

ż

Qρpxq

fdµ

ˇ

ˇ

ˇ

ˇ

ˇ

p

dµ

¸
1
p

ď ρcp

˜

´

ż

Qλρpxq

gpdµ

¸
1
p

for all f P LpµpΩq and all p-weak upper gradient g P LpµpΩq for f . Hence, by using the Sobolev
inequality in [BB11, Theorem 5.51 pp. 142], it follows that there exists c ą 0 such that for
every 0 ă ρ ď ρ0, with ρ0 ě 0 and every v P H1,p

µ,0pQρpxq;Rmq,

˜

´

ż

Qρpxq

|v|pdµ

¸
1
p

ď ρc

˜

´

ż

Qρpxq

|gv|
pdµ

¸
1
p

, (3.7)

where gv is the minimal p-weak upper gradient3 for v. Moreover (see [Che99, §4] and also
[BB11, §B.2, pp. 363], [Bjö00] and [GH13, Remark 2.15]), there exists θ ě 1 such that for
every w P H1,p

µ pΩq and µ-a.e. x P Ω,

1

θ
gwpxq ď |Dµwpxq| ď θgwpxq,

where gw is the minimal p-weak upper gradient for w. As for v “ pviqi“1,¨¨¨ ,m P H
1,p
µ pΩ;Rmq

we have ∇µv “ pDµviqi“1,¨¨¨ ,m, it follows that

1

θ
|gvpxq| ď |∇µvpxq| ď θ|gvpxq| (3.8)

3From Cheeger (see [Che99, Theorems 2.10 and 2.18]), for each w P H1,p
µ pΩq there exists a unique p-

weak upper gradient for w, denoted by gw P LpµpΩq and called the minimal p-weak upper gradient for
w, such that for every p-weak upper gradient g P LpµpΩq for w, gwpxq ď gpxq for µ-a.a. x P Ω. For

v “ pviqi“1,¨¨¨ ,m P H
1,p
µ pΩ;Rmq, gv :“ pgviqi“1,¨¨¨ ,m is naturally called the minimal p-weak upper gradient for

v.
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for µ-a.a. x P Ω. Combining (3.7) with (3.8) we obtain the property (b). Fourthly, from
Björn (see [Bjö00, Corollary 4.6(ii)] we see that for every k, every u P H1,p

µ pΩ;Rmq and µ-a.e.
x P Ωk,

∇µuxpyq “ ∇µupxq for µ-a.a. y P Ωk,

where ux P H
1,p
µ pΩ;Rmq is given by

uxpyq :“ upxq `∇µupxq ¨ pξ
k
pyq ´ ξkpxqq,

and if p ą κ then u is L8µ -differentiable at x, i.e.

lim
ρ!0

1

ρ
}upyq ´ uxpyq}L8µ pQρpxq;Rmq “ 0.

Hence the property (d) is verified. Fifthly, given ρ ą 0, λ Ps0, 1r and x P Ω, there exists a
Urysohn function ϕ P LippΩq for the pair pXzQρpxqq, Qλρpxqq such

}Lipϕ}L8µ pΩq ď
1

ρp1´ λq
,

where for every y P Ω,

Lipϕpyq :“ lim
dpy,zq!0

|ϕpyq ´ ϕpzq|

dpy, zq
.

But, since µ is doubling and Ω supports a weak p1, pq-Poincaré inequality, from Cheeger (see
[Che99, Theorem 6.1]) we have Lipϕpyq “ gϕpyq for µ-a.a. y P Ω, where gϕ is the minimal
p-weak upper gradient for ϕ. Hence

}Dµϕ}L8µ pΩ;RN q ď
θ

ρp1´ λq

because |Dµϕpyq| ď θ|gϕpyq| for µ-a.a. y P Ω. Consequently the property (e) holds. Finally,
given x P Ω, by using the annular decay property (2.4) with r “ λρ and σ “ 1

λ
, where ρ ą 0

and λ Ps0, 1r, we see that

µpQρpxqzQλρpxqq ď CAp1´ λq
δµpQρpxqq

for all ρ ą 0 and all λ Ps0, 1r with CA ě 1 given by (2.4), and the property (f) follows. �

In the framework of the p-Cheeger-Sobolev spaces with p ą κ, we have the following L8µ -
compactness result.

Theorem 3.8. Assume that µ
`

ΩzΩ
˘

“ 0. If p ą κ and if u P H1,p
µ pΩ;Rmq and tunun Ă

H1,p
µ pΩ;Rmq are such that

lim
n!8

}un ´ u}LpµpΩ;Rmq “ 0 and sup
ně1

}∇µun}LpµpΩ;Mq ă 8, (3.9)

then, up to a subsequence,

lim
n!8

}un ´ u}L8µ pΩ;Rmq “ 0. (3.10)
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Proof of Theorem 3.8. Since pX, d, µq is a complete doubling metric space, pX, d, µq is
proper, i.e. every closed ball is compact (see [HKST15, Lemma 4.1.14]), and so pΩ, d|ΩˆΩq

is compact. Thus, as µ
`

ΩzΩ
˘

“ 0 we can assert that pΩ, d|ΩˆΩ, µ|Ωq is a compact doubling
metric measure space supporting a weak p1, pq-Poincaré inequality. In what follows, to
simplify the notation we set pY, δ, νq :“ pΩ, d|ΩˆΩ, µ|Ωq.

Step 1: two auxiliary lemmas. We need the following two lemmas (cf. Lemmas 3.9 and
3.10).

Lemma 3.9. If p ą κ then for every r ą 0 and every x̄ P Y there exists Cpr, x̄q ą 0 such
that

|upyq ´ upzq| ď Cpr, x̄qδpy, zq1´
κ
p

ˆ
ż

Q6σrpx̄q

|∇νu|
pdν

˙
1
p

for all u P H1,p
ν pY ;Rmq and all y, z P Qrpx̄q, where σ ě 1 is given by (2.2).

Proof of Lemma 3.9. From [Haj03, Theorem 9.7] we can assert that there exists c ą 0
such that

|wpyq ´ wpzq| ď cr
κ
p δpy, zq1´

κ
p

ˆ

´

ż

Q6σrpx̄q

gpwdν

˙
1
p

(3.11)

for all w P H1,p
ν pY q, all x̄ P Y , all r ą 0 and all y, z P Qrpx̄q, where σ ě 1 is given by (2.2)

and gw P L
p
νpY q denotes the minimal p-weak upper gradient for w. On the other hand, from

(2.3) it is easy to see that for every r ą 0 and every x̄ P Y there exists θpr, x̄q ą 0 such that

µpQrpx̄qq ě θpr, x̄qrκ.

But gw ď α|Dνw| with α ě 1 (see [Che99, §4]) and so ´
ş

Q6σrpx̄q
gpwdν ď αp´

ş

Q6σrpx̄q
|Dνw|

pdν.

Thus, for each r ą 0, each x̄ P Y and each y, z P Qrpx̄q, (3.11) can be rewritten as follows

|wpyq ´ wpzq| ď Cpr, x̄qδpy, zq1´
κ
p

ˆ
ż

Q6σrpx̄q

|Dνw|
pdν

˙
1
p

with Cpr, x̄q “ cα
θpr,x̄q

ą 0. It follows that for every r ą 0 and every x̄ P Y , we have

|upyq ´ upzq| ď Cpr, x̄qδpy, zq1´
κ
p

m
ÿ

i“1

ˆ
ż

Q6σrpx̄q

|Dνui|
pdν

˙
1
p

ď Cpr, x̄qδpy, zq1´
κ
p

˜

ż

Q6σrpx̄q

m
ÿ

i“1

|Dνui|
pdν

¸
1
p

“ Cpr, x̄qδpy, zq1´
κ
p

ˆ
ż

Q6σrpx̄q

|∇νu|
pdν

˙
1
p

for all u P H1,p
ν pY ;Rmq and all y, z P Qrpx̄q, and the proof of Lemma 3.9 is complete. �

Denote the space of continuous functions from Y to Rm by CpY ;Rmq. As a consequence of
Lemma 3.9 we have the following result.
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Lemma 3.10. If p ą κ then H1,p
ν pY ;Rmq continuously embeds into CpY ;Rmq, i.e.

H1,p
ν pY ;Rm

q Ă CpY ;Rm
q

and there exists K0 ą 0 such that

}u}CpY ;Rmq ď K0}u}H1,p
ν pY ;Rmq (3.12)

for all u P H1,p
ν pX;Rmq. Moreover, there exists K1 ą 0 such that

|upyq ´ upzq| ď K1δpy, zq
1´κ

p }∇νu}LpνpY ;Mq (3.13)

for all u P H1,p
ν pY ;Rmq and all y, z P Y .

Proof of Lemma 3.10. Applying Lemma 3.9 with r “ diampY q and for a fixed x̄ “ x0 P Y ,
where diampY q “ suptδpy, zq : y, z P Y u ă 8 because pY, δq is compact, we see that

|upyq ´ upzq| ď C pdiampY q, x0q δpy, zq
1´κ

p }∇νu}LpνpY ;Mq

ď C pdiampY q, x0q diampY q1´
κ
p }∇νu}LpνpY ;Mq (3.14)

for all u P H1,p
ν pY ;Rmq and all y, z P Y . Hence (3.13) holds with K1 “ C pdiampY q, x0q

and every u P H1,p
ν pY ;Rmq is p1 ´ κ

p
q-Hölder continuous. In particular, it follows that

H1,p
ν pY ;Rmq Ă CpY ;Rmq. On the other hand, given any u P H1,p

ν pY ;Rmq and any y P Y , we
have |upyq|p ď 2p p|upyq ´ upzq|p ` |upzq|pq for all z P Y , and consequently

νpY q
1
p |upyq| ď 21` 1

p

ˆ
ż

Y

|upyq ´ upzq|pdνpzq

˙
1
p

` 21` 1
p }u}LpνpY ;Rmq. (3.15)

But, by (3.14) we have
ˆ
ż

Y

|upyq ´ upzq|pdνpzq

˙
1
p

ď νpY q
1
pC pdiampY q, x0q diampY q1´

κ
p }∇νu}LpνpY ;Mq. (3.16)

Hence, combining (3.15) and (3.16) we deduce that for every y P Y ,

|upyq| ď 21` 1
pC pdiampY q, x0q diampY q1´

κ
p }∇νu}LpνpY ;Mq `

21` 1
p

νpY q
1
p

}u}LpνpY ;Rmq

ď K0}u}H1,p
ν pY ;Rmq

with K0 “ sup

"

21` 1
pC pdiampY q, x0q diampY q1´

κ
p , 2

1` 1
p

νpY q
1
p

*

, and (3.12) follows. �

Step 2: end of the proof of Theorem 3.8. As µ
`

ΩzΩ
˘

“ 0, from (3.9) we deduce that

lim
n!8

}un ´ u}LpνpY ;Rmq “ 0 and sup
ně1

}∇νun}LpνpY ;Mq ă 8,

and so supně1 }un}H1,p
ν pY ;Rmq ă 8. By Lemma 3.10 we can assert that supně1 }un}CpY ;Rmq ă

8, i.e. tunun is bounded in CpY ;Rmq with pY, δq a compact metric space. Moreover, using
(3.13) we see that tunun is equicontinuous. Consequently, up to a subsequence,

lim
n!8

}un ´ u}L8ν pY ;Rmq “ 0

by Arzelà-Ascoli’s theorem, and (3.10) follows because µ
`

ΩzΩ
˘

“ 0. �
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3.2. Ru-usc integrands. Let pX, d, µq be a metric measure space, let Ω Ă X be an open
set, let pΣ,F ,Pq be a probability space and let L : ΩˆMˆΣ ! r0,8s be a Borel measurable
stochastic integrand. For each ω P Σ and each x P Ω, we denote the effective domain of

Lpx, ¨, ωq by Lx,ω and, for each ap¨, ωq P L1
µpΩ; s0,8sq, we define ∆

ap¨,ωq
L : r0, 1s !s ´ 8,8s

by

∆
ap¨,ωq
L pτq :“ sup

xPΩ
sup
ξPLx,ω

Lpx, τξ, ωq ´ Lpx, ξ, ωq

apx, ωq ` Lpx, ξ, ωq
.

Definition 3.11. Let ω P Σ. We say that L is radially uniformly upper semicontinuous
(ru-usc) at ω if there exists ap¨, ωq P L1

µpΩ; s0,8sq such that

lim
τ!1´

∆
ap¨,ωq
L pτq ď 0.

The concept of ru-usc integrand was introduced in [AH10] and then developed in [AHM11,
AHM12a, AHM12b, Man13, AHM14, AHMZ15, AHM18].

Remark 3.12. If L is ru-usc at ω P Σ then limτ!1´ Lpx, τξ, ωq ď Lpx, ξ, ωq for all x P Ω and
all ξ P Lx,ω. On the other hand, given ω P Σ, if there exist x P Ω and ξ P Lx,ω such that

Lpx, ¨, ωq is lsc at ξ then, for each ap¨, ωq P L1
µpΩ; s0,8sq, limτ!1´ ∆

ap¨,ωq
L pτq ě 0, and so if in

addition L is ru-usc at ω then limτ!1´ ∆
ap¨,ωq
L pτq “ 0 for some ap¨, ωq P L1

µpΩ; s0,8sq.

Remark 3.13. Given ω P Σ, if, for every x P Ω, Lpx, ¨, ωq is convex and 0 P Lx,ω, then L is
ru-usc at ω.

The interest of Definition 3.11 comes from the following theorem. (For a proof we refer to

[AHM11, Theorem 3.5] and also [AHM12b, §4.2].) Let pL : Ω ˆM ˆ Σ ! r0,8s be defined
by

pLpx, ξ, ωq :“ lim
τ!1´

Lpx, τξ, ωq.

Theorem 3.14. Let ω P Σ. If L is ru-usc at ω and if for every x P Ω,

τLx,ω Ă intpLx,ωq for all τ Ps0, 1r,

then:

(a) pL is ru-usc at ω;

(b) pLpx, ξ, ωq :“ lim
τ!1´

Lpx, τξ, ωq for all x P Ω and all ξ PM.

If moreover Lpx, ¨, ωq is lsc on intpLx,ωq then:

(c) pLpx, ξ, ωq “

$

&

%

Lpx, ξ, ωq if ξ P intpLx,ωq
lim
τ!1´

Lpx, τξ, ωq if ξ P BLx,ω
8 otherwise;

(d) for every x P Ω, pLpx, ¨, ωq is the lsc envelope of Lpx, ¨, ωq.

The following definition extends Definition 3.11 to a family tLtutą0 of Borel measurable
stochastic integrands Lt : Ω ˆM ˆ Σ ! r0,8s. (When Lt “ L for all t ą 0 we retrieve
Definition 3.11.)
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Definition 3.15. Let ω P Σ. We say that tLtutą0 is ru-usc at ω if there exists tatp¨, ωqutą0 Ă

L1
µpΩ; s0,8sq such that

lim
τ!1´

sup
tą0

∆
atp¨,ωq
Lt

pτq ď 0.

Remark 3.16. Let L : X ˆMˆΣ ! r0,8s be a Borel measurable stochastic integrand and,
for each t ą 0, let Lt : Ω ˆM ˆ Σ ! r0,8s be given by Ltpx, ξ, ωq “ Lphtpxq, ξ, ωq with
ht : X ! X. Given ω P Σ, if L is ru-usc at ω with ap¨, ωq P L1

µpX; s0,8sq then tLtutą0 is
ru-usc at ω with tatp¨, ωqutą0 “ taphtp¨q, ωqutą0. Indeed, for any τ P r0, 1s, any t ą 0, any
x P Ω and any ξ P Lt,x,ω with Lt,x,ω denoting the effective domain of Ltpx, ¨, ωq, one has

Ltpx, τξ, ωq ´ Ltpx, ξ, ωq

atpx, ωq ` Ltpx, ξ, ωq
“
Lphtpxq, τξ, ωq ´ Lphtpxq, ξ, ωq

aphtpxq, ωq ` Lphtpxq, ξ, ωq
. (3.17)

As Lt,x,ω “ Lhtpxq,ω where, for each y P X, Ly,ω denotes the effective domain of Lpy, ¨, ωq,
and htpxq P X, we see that

Lphtpxq, τξ, ωq ´ Lphtpxq, ξ, ωq

aphtpxq, ωq ` Lphtpxq, ξ, ωq
ď sup

yPX
sup
ξPLy,ω

Lpy, τξ, ωq ´ Lpy, ξ, ωq

apy, ωq ` Lpy, ξ, ωq
“ ∆

ap¨,ωq
L pτq,

and from (3.17) we deduce that

sup
tą0

∆
atp¨,ωq
Lt

pτq ď ∆
ap¨,ωq
L pτq (3.18)

for all τ P r0, 1s. But L is ru-usc at ω with ap¨, ωq, i.e. limτ!1´ ∆
ap¨,ωq
L pτq ď 0, and so, letting

τ ! 1´ in (3.18), we get limτ!1´ suptą0 ∆
atp¨,ωq
Lt

pτq ď 0 which means that tLtutą0 is ru-usc
at ω with tatp¨, ωqutą0 “ taphtp¨q, ωqutą0.

For each t ą 0 and each ρ ą 0, let Hρ
µLt : ΩˆMˆ Σ ! r0,8s be defined by

Hρ
µLtpx, ξ, ωq :“ inf

#

´

ż

Qρpxq

Ltpy, ξ `∇µwpyq, ωqdµpyq : w P H1,p
µ,0pQρpxq;Rm

q

+

.

Let L8 : ΩˆMˆ Σ ! r0,8s be given by

L8px, ξ, ωq :“ lim
ρ!0

lim
t!8

Hρ
µLtpx, ξ, ωq. (3.19)

The following proposition shows that, under a suitable condition, ru-usc is conserved under
the operation characterized by (3.19).

Proposition 3.17. Let ω P Σ and let tatp¨, ωqutą0 Ă L1
µpΩ; s0,8sq be such that

lim
ρ!0

lim
t!8

´

ż

Qρp¨q

atpy, ωqdµpyq “: a8p¨, ωq P L
1
µpΩ; s0,8sq. (3.20)

If tLtutą0 is ru-usc at ω with tatp¨, ωqutą0 then L8 is ru-usc at ω with a8p¨, ωq.

Proof of Proposition 3.17. Fix any τ P r0, 1s, any x P Ω and any ξ P L8,x,ω, where L8,x,ω
is the effective domain of L8px, ¨, ωq. Then L8px, ξ, ωq “ limρ!0 limt!8Hρ

µLtpx, ξ, ωq ă 8
and without loss of generality we can suppose that Hρ

µLtpx, ξ, ωq ă 8 for all ρ ą 0 and all
t ą 0.
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Fix any ρ ą 0 and any t ą 0. By definition, there exists twnun Ă H1,p
µ,0pQρpxq;Rmq such that:

Hρ
µLtpx, ξ, ωq “ lim

n!8
´

ż

Qρpxq

Ltpy, ξ `∇µwnpyq, ωqdµpyq; (3.21)

ξ `∇µwnpyq P Lt,y,ω for all n ě 1 and µ-a.a. y P Qρpxq, (3.22)

where Lt,y,ω denotes the effective domain of Ltpy, ¨, ωq. Moreover, for every n ě 1,

Hρ
µLtpx, τξ, ωq ď ´

ż

Qρpxq

Lt
`

y, τpξ `∇µwnpyqq, ω
˘

dµpyq

since τwn P H
1,p
µ,0pQρpxq;Rmq, and so

δτρ,tpx, ξ, ωq ď lim
n!8

´

ż

Qρpxq

`

Ltpy, τpξ `∇µwnpyqq, ωq ´ Ltpy, ξ `∇µwnpyq, ωq
˘

dµpyq (3.23)

with δτρ,tpx, ξ, ωq:“Hρ
µLtpx, τξ, ωq´Hρ

µLtpx, ξ, ωq. Taking (3.22) into account, for every n ě 1
and µ-a.e. y P Qρpxq, one has

λτt,npy, ξ, ωq ď ∆
atp¨,ωq
Lt

pτq
`

atpy, ωq ` Ltpy, ξ `∇µwnpyq, ωq
˘

,

with λτt,npy, ξ, ωq :“ Lt
`

y, τpξ `∇µwnpyqq, ω
˘

´ Lt
`

y, ξ `∇µwnpyq, ω
˘

, hence

´

ż

Qρpxq

λτt,npy, ξ, ωqdµ ď ∆
atp¨,ωq
Lt

pτq

˜

´

ż

Qρpxq

atpy, ωqdµ`´

ż

Qρpxq

Ltpy, ξ `∇µwnpyq, ωqdµ

¸

for all n ě 1. Letting n! 8 and using (3.21) and (3.23), it follows that

δτρ,tpx, ξ, ωq ď ∆
atp¨,ωq
Lt

pτq

˜

´

ż

Qρpxq

atpy, ωqdµpyq `Hρ
µLtpx, ξ, ωq

¸

ď ∆ωpτq

˜

´

ż

Qρpxq

atpy, ωqdµpyq `Hρ
µLtpx, ξ, ωq

¸

(3.24)

for all ρ ą 0 and all t ą 0, where ∆ωpτq :“ supsą0 ∆
asp¨,ωq
Ls

pτq. By letting t ! 8 and ρ ! 0
in (3.24), we get

L8px, τξ, ωq ´ L8px, ξ, ωq ď ∆ωpτq
`

a8px, ωq ` L8px, ξ, ωq
˘

with a8p¨, ωq P L
1
µpΩ; s0,8sq given by (3.20), which implies that ∆

a8p¨,ωq
L8

pτq ď ∆ωpτq for all

τ P r0, 1s. As tLtutą0 is ru-usc at ω with tatp¨, ωqutą0, i.e. limτ!1´ ∆ωpτq ď 0, we conclude

that limτ!1´ ∆
a8p¨,ωq
L8

pτq ď 0 which means that L8 is ru-usc at ω with a8p¨, ωq. �

Given L : X ˆM ˆ Σ ! r0,8s and tAkukPN˚ a sequence of open subsets of X such that
µpAkq ą 0, let Lhom : Mˆ Σ ! r0,8s be defined by

Lhompξ, ωq :“ inf
kPN˚

inf

"

´

ż

Ak

Lpx, ξ `∇µwpxq, ωqdµpxq : w P H1,p
µ,0 pAk;Rm

q

*

. (3.25)

The following result shows that, under a suitable condition, ru-usc is conserved under the
operation characterized by (3.25).
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Proposition 3.18. Let ω P Σ and let ap¨, ωq P L1
µpΩ; s0,8sq be such that

´

ż

Ak

apx, ωqdµpxq “ apωq Ps0,8r for all k P N˚. (3.26)

If L is ru-usc at ω with ap¨, ωq then Lhom is ru-usc at ω with apωq.

Proof of Proposition 3.18. Fix any τ P r0, 1s and any ξ P Lhom,ω, where Lhom,ω denotes
the effective domain of Lhomp¨, ωq. By definition, there exist tknun Ă N˚ and twnun Ă
H1,p
µ,0pAkn ;Rmq such that:

Lhompξ, ωq “ lim
n!8

´

ż

Akn

Lpx, ξ `∇µwnpxq, ωqdµpxq; (3.27)

ξ `∇µwnpxq P Lx,ω for all n ě 1 and µ-a.a. x P Akn . (3.28)

Moreover, for every n ě 1,

Lhompτξ, ωq ď ´

ż

Akn

Lpx, τpξ `∇µwnpxqq, ωqdµpxq

because τwn P H
1,p
µ,0pAkn ;Rmq, hence

Lhompτξ, ωq´Lhompξ, ωq ď lim
n!8

´

ż

Akn

`

Lpx, τpξ`∇µwnpxqq, ωq´Lpx, ξ`∇µwnpxq, ωq
˘

dµpxq.

But, taking (3.28) into account, since L is ru-usc with a P L1
µpX; s0,8sq, for every n ě 1

and µ-a.e. x P Akn , one has

Lpx, τpξ`∇µwnpxqq, ωq´Lpx, ξ`∇µwnpxq, ωq ď ∆
ap¨,ωq
L pτq papx, ωq ` Lpx, ξ `∇µwnpxq, ωq ,

and so, by using (3.26) and (3.27), we deduce that

Lhompτξ, ωq ´ Lhompξ, ωq ď ∆
ap¨,ωq
L pτq

`

apωq ` Lhompξ, ωq
˘

,

which implies that ∆
apωq
Lhom

pτq ď ∆
ap¨,ωq
L pτq for all τ P r0, 1s, and the proof is complete. �

3.3. Ru-usc functionals. Let pX, d, µq be a metric measure space with the same properties
as in §3.1, let Ω Ă X be a bounded open set, let pΣ,F ,Pq be a probability space and let
J : H1,p

µ pΩ;Rmq ˆ Σ ! r0,8s be a functional. For each ω P Σ, we denote the effective
domain of J p¨, ωq by Jω. As for the case of integrands, we have the following definition.

Definition 3.19. Let ω P Σ. Given D Ă Jω, we say that J is ru-usc on D at ω if there
exists apωq Ps0,8r such that

lim
τ!1´

∆
apωq
J ,Dpτq ď 0

with ∆
apωq
J ,D : r0, 1s!s ´ 8,8s defined by

∆
apωq
J ,Dpτq :“ sup

uPD

J pτu, ωq ´ J pu, ωq
apωq ` J pu, ωq

.
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(For more details on the notion of ru-usc functional we refer to [AHM12b, §4.2] and [AHM14].)
As for the case of integrands, the interest of definition 3.19 comes from the following theorem

which is the analogue of Theorem 3.14. Let pJ : H1,p
µ pΩ;Rmq ˆ Σ ! r0,8s be defined by

pJ pu, ωq :“ lim
τ!1´

J pτu, ωq.

When D “ Jω we simply say that J is ru-usc at ω.

Theorem 3.20. Let ω P Σ. Given D Ă Jω and E Ą D such that

τE Ă D for all τ Ps0, 1r, (3.29)

if J is ru-usc on D at ω and if J p¨, ωq is Lpµ-lsc on D, i.e. limn!8 J pun, ωq ě J pu, ωq for
all u P D and all tunun Ă D such that un ! u in LpµpΩ;Rmq, then:

(a) J D
pu, ωq “ pJ pu, ωq for all u P E, where J D

p¨, ωq : H1,p
µ pΩ;Rmq ! r0,8s is defined

by

J D
pu, ωq :“ inf

"

lim
n!8

J pun, ωq : D Q un
Lpµ
! u

*

;

(b) pJ pu, ωq “

#

J pu, ωq if u P D
lim
τ!1´

J pτu, ωq if u P EzD.

(For a proof of Theorem 3.20 we refer to [AHM12b, Theorem 4.1], see also [AHM14].) For
each t ą 0, let Et : H1,p

µ pΩ;Rmq ˆ Σ ! r0,8s be a functional depending on a parameter
t and, for each ω P Σ, let St,ω denote the effective domain of Etp¨, ωq. As for the case of
integrands, the following definition extends Definition 3.19.

Definition 3.21. Let ω P Σ and, for each t ą 0, let Dt Ă St,ω. We say that tEtutą0 is ru-usc

on tDtutą0 at ω if there exists tatpωqutą0 Ăs0,8r with limt!8 atpωq ă 8 such that

lim
τ!1´

sup
tą0

∆
atpωq
Et,Dtpτq ď 0.

When Dt “ D for all t ą 0 (and so D Ă Xtą0St,ω) we say that tEtutą0 is ru-usc on D at ω,
and when Dt “ St,ω for all t ą 0 we simply say that tEtutą0 is ru-usc at ω.

The following result is an extension of Theorem 3.20.

Theorem 3.22. Let ω P Σ and let D Ă Xtą0St,ω and E Ą D be such that (3.29) holds.
Assume that tEtutą0 is ru-usc on D at ω and there exists Ip¨, ωq : H1,p

µ pΩ;Rmq! r0,8s such
that tEtp¨, ωqutą0 ΓpLpµq-converges to Ip¨, ωq on D, i.e.

ΓpLpµq- lim
t!8

Etpu, ωq “ Ipu, ωq for all u P D (3.30)

Then

ΓpLpµq- lim
t!8

Etpu, ωq ď pIpu, ωq ď ΓDpL
p
µq- lim

t!8
Etpu, ωq for all u P E (3.31)

with

ΓDpL
p
µq- lim

t!8
Etpu, ωq :“ inf

"

lim
t!8

Etputq : D Q ut
Lpµ
! u

*

.
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If moreover I is ru-usc on D at ω then

pIpu, ωq “

#

Ipu, ωq if u P D
lim
τ!1´

Ipτu, ωq if u P EzD. (3.32)

Proof of Theorem 3.22. Fix u P E. By (3.29), for any τ Ps0, 1r, we have τu P D. From
(3.30) it follows that Ipτu, ωq “ ΓpLpµq- limt!8 Etpτu, ωq “ ΓpLpµq- limt!8 Etpτu, ωq for all
τ Ps0, 1r, and consequently

pIpu, ωq “ lim
τ!1´

Ipτu, ωq “ lim
τ!1´

ΓpLpµq- lim
t!8

Etpτu, ωq ě ΓpLpµq- lim
t!8

Etpu, ωq,

which gives the left inequality in (3.31). Let us now prove the right inequality in (3.31). Let
tututą0 Ă D be such that:

ut
Lpµ
! u; (3.33)

lim
t!8

Etput, ωq “ ΓDpL
p
µq- lim

t!8
Etpu, ωq. (3.34)

By (3.29), for any τ Ps0, 1r, we have τut P D for all t ą 0. Hence τut
Lpµ
! τu by (3.33), and

so, by using (3.30),

lim
t!8

Etpτut, ωq ě ΓpLpµq- lim
t!8

Etpτu, ωq “ Ipτu, ωq

for all τ Ps0, 1r. It follows that

lim
τ!1´

lim
t!8

Etpτut, ωq ě pIpu, ωq. (3.35)

On the other hand, since tututą0 Ă D, for every τ Ps0, 1r and every t ą 0, we have

Etpτut, ωq ď
`

1`∆
atpωq
Et,D pτq

˘

Etput, ωq ` atpωq∆atpωq
Et,D pτq

ď

ˆ

1` sup
są0

∆
aspωq
Es,D pτq

˙

Etput, ωq ` atpωq sup
są0

∆
aspωq
Es,D pτq,

and so, by letting t! 8 and by using (3.34), we get

lim
t!8

Espτus, ωq ď

ˆ

1` sup
są0

∆
aspωq
Es,D pτq

˙

lim
s!8

Etput, ωq ` lim
t!8

atpωq sup
są0

∆
aspωq
Es,D pτq

“

ˆ

1` sup
są0

∆
aspωq
Es,D pτq

˙

ΓDpL
p
µq- lim

t!8
Etpu, ωq ` lim

t!8
atpωq sup

są0
∆
aspωq
Es,D pτq.

As tEtutą0 is ru-usc on D at ω, i.e. limτ!1´ supsą0 ∆
aspωq
Es,D pτq ď 0 (and limt!8 atpωq ă 8),

letting τ ! 1´ we conclude that

lim
τ!1´

lim
t!8

Espτus, ωq ď ΓDpL
p
µq- lim

t!8
Etpu, ωq, (3.36)

and the right inequality in (3.31) follows by combining (3.35) with (3.36).
From (3.30) we see that Ip¨, ωq is Lpµ-lsc on D, and (3.32) follows from Theorem 3.20(b). �

The following result is a consequence of the first part of Theorem 3.22.
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Corollary 3.23. Let ω P Σ, let D Ă H1,p
µ pΩ;Rmq be such that D “ St,ω for all t ą 0 and let

E Ą D be such that (3.29) holds. Assume that tEtutą0 is ru-usc on D at ω and there exists
Ip¨, ωq : H1,p

µ pΩ;Rmq! r0,8s satisfying (3.30). Then

ΓpLpµq- lim
t!8

Etpu, ωq “ pIpu, ωq for all u P E.

Proof of Corollary 3.23. As D “ St,ω for all t ą 0 we have

ΓDpL
p
µq- lim

t!8
Etp¨, ωq “ ΓpLpµq- lim

t!8
Etp¨, ωq,

and the corollary follows from the first part of Theorem 3.22. �

3.4. The De Giorgi-Letta lemma. Let Ω “ pΩ, dq be a metric space, let OpΩq be the
class of open subsets of X and let BpΩq be the class of Borel subsets of Ω, i.e. the smallest
σ-algebra containing the open (or equivalently the closed) subsets of Ω. The following result
is due to De Giorgi and Letta (see [DGL77] and also [But89, Lemma 3.3.6 pp. 105]).

Lemma 3.24. Let S : OpΩq ! r0,8s be an increasing set function, i.e. SpAq ď SpBq for
all A,B P OpΩq such A Ă B, satisfying the following four conditions:

(a) SpHq “ 0;
(b) S is superadditive, i.e. SpA Y Bq ě SpAq ` SpBq for all A,B P OpΩq such that

AXB “ H;
(c) S is subadditive, i.e. SpAYBq ď SpAq ` SpBq for all A,B P OpΩq;
(d) there exists a finite Radon measure ν on Ω such that SpAq ď νpAq for all A P OpΩq.

Then, S can be uniquely extended to a finite positive Radon measure on Ω which is absolutely
continuous with respect to ν.

3.5. Integral representation of the Vitali envelope of a set function. What follows
was first developed in [BFM98, BB00] (see also [AHM16]). Here we only recall what is
needed for proving Theorem 2.11. Let pΩ, dq be a metric space, let OpΩq be the class of open
subsets of Ω and let µ be a positive finite Radon measure on Ω. We begin with the concept
of differentiability with respect to µ of a set function.

Definition 3.25. We say that a set function Θ : OpΩq! R is differentiable with respect to
µ if

dµΘpxq :“ lim
ρ!0

ΘpQρpxqq

µpQρpxqq
(3.37)

exists and is finite for µ-a.e. x P Ω.

Remark 3.26. It is easy to see that the limit in (3.37) exists and is finite if and only if
´8 ă d`µΘ ď d´µΘ ă 8, where d´µΘ : Ω ! r´8,8r and d`µΘ : Ω !s ´ 8,8s are given by:

d´µΘpxq :“ lim
ρ!0

d´µΘpx, ρq with d´µΘpx, ρq :“ inf

"

ΘpQq

µpQq
: Q P BapΩ, x, ρq

*

; (3.38)

d`µΘpxq :“ lim
ρ!0

d`µΘpx, ρq with d`µΘpx, ρq :“ sup

"

ΘpQq

µpQq
: Q P BapΩ, x, ρq

*

, (3.39)

where BapΩ, x, ρq denotes the class of open balls Q of Ω such that x P Q, diampQq Ps0, ρr
and µpBQq “ 0, where BQ :“ QzQ. We then have dµΘ “ d´µΘ “ d`µΘ.
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Remark 3.27. In (3.38) and (3.39) we can replace BapΩ, x, ρq by BapA, x, ρq whenever A P
OpΩq and x P A.

For each ε ą 0 and each A P OpΩq, we denote the class of countable families tQi :“
QρipxiquiPI of disjoint open balls of A with xi P A, ρi “ diampQiq Ps0, εr and µpBQiq “ 0
such that µpAz YiPI Qiq “ 0 by VεpAq.

Definition 3.28. Given Θ : OpΩq! R, for each ε ą 0 we define Θε : OpΩq! r´8,8s by

Θε
pAq :“ inf

#

ÿ

iPI

ΘpQiq : tQiuiPI P VεpAq

+

. (3.40)

By the Vitali envelope of Θ we denote the set function Θ˚ : OpΩq! r´8,8s defined by

Θ˚
pAq :“ sup

εą0
Θε
pAq “ lim

ε!0
Θε
pAq. (3.41)

The interest of Definition 3.28 comes from the following integral representation result whose
proof is postponed in Appendix A.1.

Theorem 3.29. Let Θ : OpΩq! R be a set function satisfying the following two conditions:

(a) there exists a finite Radon measure ν on Ω which is absolutely continuous with respect
to µ such that |ΘpAq| ď νpAq for all A P OpΩq;

(b) Θ is subadditive, i.e. ΘpAq ď ΘpBq ` ΘpCq for all A,B,C P OpΩq with B,C Ă A,
B X C “ H and µpAzB Y Cq “ 0.

Then Θ is differentiable with respect to µ, dµΘ P L1
µpΩq and

Θ˚
pAq “

ż

A

dµΘpxqdµpxq

for all A P OpΩq.

As a direct consequence, we have

Corollary 3.30. Let Θ : OpΩq ! R be a set function satisfying the assumptions (a) and
(b) of Theorem 3.29. Then Θ and Θ˚ are differentiable with respect to µ and dµΘ˚ “ dµΘ.

3.6. Subadditive theorems. What follows was first developed in [AHM17, AHM19b]. Let
pX, d, µq be a metric measure space with µ a positive Radon measure on X. Let BpXq be
the class of Borel subsets of X and let Bµ,0pXq denote the class of Q P BpXq such that
µpQq ă 8 and µpBQq “ 0. Let HomeopXq be the group of homeomorphisms on X and let
G be a subgroup of HomeopXq for which µ is G-invariant, i.e. g7µ “ µ for all g P G, where
g7µ denotes the image measure of µ by g. From now on, we consider tUkukPN˚ Ă Bµ,0pXq
with µpUkq ą 0 for all k P N˚ and, for each k P N˚, we consider the class UkpGq defined by

UkpGq :“
!

H Ă G : tg´1
pUkqugPH is disjoint

)

.

In what follows, | ¨ | denotes the counting measure on G and, for any H Ă G, PfpHq denotes
the class of finite subsets of H.
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3.6.1. The deterministic case. The following definition sets a framework, in the setting of
metric measure spaces, for establishing a subadditive theorem in the deterministic case and
(see Theorem 3.33).

Definition 3.31. Let tQtutą0 Ă Bµ,0pXq. We say that tQtutą0 is weakly G-asymptotic with
respect to tUkukPN˚ if for each k P N˚ there exists Hk P UkpGq with the property that for
each t ą 0 there exist mt,k P N˚, gt,k P G and Ft,k, H

´
t,k, H

`
t,k P PfpHkq such that:

Y
gPH´t,k

g´1
pUkq Ă Qt Ă Y

gPH`t,k

g´1
pUkq; (3.42)

lim
t!8

µ

ˆ

Y
gPH`t,k

g´1pUkqz Y
gPH´t,k

g´1pUkq

˙

µpQtq
“ 0; (3.43)

H`
t,k Ă Ft,k and Y

gPFt,k
g´1
pUkq “ g´1

t,k pUmt,kq; (3.44)

lim
t!8

ˇ

ˇFt,k
ˇ

ˇ

ˇ

ˇH`
t,k

ˇ

ˇ

ď 1. (3.45)

Let us recall the definition of a subadditive and G-invariant set function.

Definition 3.32. Let S : Bµ,0pXq! R be a set function.

(a) The set function S is said to be subadditive if

SpAYBq ď SpAq ` SpBq.

for all A,B P Bµ,0pXq such that AXB “ H.
(b) The set function S is said to be G-invariant if

Spg´1
pAqq “ SpAq

for all A P Bµ,0pXq and all g P G.

The following result is used in the proof of Theorem 2.25. It was established in [AHM19b,
Theorem 2.3] (see also [AHM17, Theorem 2.17]). For the convenience of the reader its proof
is given in §A.2.1.

Theorem 3.33. Let S : Bµ,0pXq ! R be a subadditive and G-invariant set function with
the following boundedness condition:

|SpQq| ď cµpQq (3.46)

for all Q P Bµ,0pXq and some c ą 0, and assume that µ is G-invariant. Then, for each
tQtutą0 Ă Bµ,0pXq which is weakly G-asymptotic with respect to tUkukPN˚, one has

lim
t!8

SpQtq

µpQtq
“ inf

kPN˚

SpUkq

µpUkq
.



ON Γ-CONVERGENCE OF UNBOUNDED INTEGRALS IN CHEEGER-SOBOLEV SPACES 35

3.6.2. The stochastic case. We begin with the following definition.

Definition 3.34. The metric mesaure space pX, d, µq is said to be meshable with respect to
tUkukPN˚ if for each k P N˚ there exists Hk P UkpGq with the property that for each n P N˚
there exist H´

n,k, H
`
n,k P PfpHkq such that:

Y
gPH´n,k

g´1
pUkq Ă Un Ă Y

gPH`n,k

g´1
pUkq; (3.47)

lim
n!8

µ

ˆ

Y
gPH`n,k

g´1pUkqz Y
gPH´n,k

g´1pUkq

˙

µpUnq
“ 0. (3.48)

The interest of Definition 3.34 comes from the following proposition (which is used in the
proof of Theorem 3.42).

Proposition 3.35. Let S : Bµ,0pXq ! R be a subadditive and G-invariant set function
satisfying (3.46). If pX, d, µq is meshable with respect to tUkukPN˚ then

lim
n!8

SpUnq

µpUnq
“ inf

kPN˚

SpUkq

µpUkq
. (3.49)

Proof of Proposition 3.35. First of all, it is clear that SpUnq
µpUnq ě infkPN˚

SpUkq
µpUkq

for all n P N˚,
and so

lim
n!8

SpUnq

µpUnq
ě inf

kPN˚

SpUkq

µpUkq
. (3.50)

On the other hand, fix any k P N˚ and any n P N˚ and set:

U´n,k :“ Y
gPH´n,k

g´1
pUkq;

U`n,k :“ Y
gPH`n,k

g´1
pUkq,

where H´
n,k and H`

n,k P PfpHkq with Hk given by Definition 3.34. By the left inclusion in

(3.47) we have U´n,k Ă Un and so Un “ U´n,k Y
`

UnzU´n,k
˘

. Hence

SpUnq ď S
`

U´n,k
˘

` S
`

UnzU´n,k
˘

because S is subadditive, and consequently

SpUnq

µpUnq
ď

S
`

U´n,k
˘

µ
`

U´n,k
˘

µ
`

U´n,k
˘

µpUnq
`

S
`

UnzU´n,k
˘

µpUnq
.

Using again the subadditivity of S and its G-invariance (resp. the G-invariance of µ) we
have

S
`

U´n,k
˘

ď
ˇ

ˇH´
n,k

ˇ

ˇSpUkq
`

resp. µ
`

U´n,k
˘

“
ˇ

ˇH´
n,k

ˇ

ˇµpUkq
˘

.

Moreover, Un Ă U`n,k by the right inclusion in (3.47), which implies that UnzU´n,k Ă U`n,kzU
´
n,k

and so
S
`

UnzU´n,k
˘

ď cµ
`

U`n,kzU
´
n,k

˘
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with c ą 0 given by (3.46). It follows that

SpUnq

µpUnq
ď

S pUkq

µ pUkq

µ
`

U´n,k
˘

µpUnq
`
cµ

`

U`n,kzU
´
n,k

˘

µpUnq

ď
S pUkq

µ pUkq
`
cµ

`

U`n,kzU
´
n,k

˘

µpUnq

because µ
`

U´n,k
˘

ď µpUnq since U´n,k Ă Un. Letting n ! 8 and using (3.48), and then
passing to the infimum on k, we obtain

lim
n!8

SpUnq

µpUnq
ď inf

kPN˚

S pUkq

µ pUkq
, (3.51)

and (3.49) follows by combining (3.50) with (3.51). �

In what follows, ∆ denotes the symmetric difference of sets, i.e. E∆F :“ pEzF q Y pF zEq
for any E,F Ă G, and we adopt the following notation: EF :“ tgof : pg, fq P E ˆ F u and
E´1F :“ tg´1of : pg, fq P E ˆ F u and, for any g P G, gF :“ tgof : f P F u. From now on,
for each k P N˚, we consider the class Ua

k pGq defined by

Ua
k pGq :“

!

H P UkpGq : H is countable, discrete and amenable group
)

,

where amenability ofHmeans that for each E P PfpHq and each δ ą 0 there exists F P PfpHq

such that

|F∆EF | ď δ|F |.

(For more details about the theory of amenability, we refer to [Gre69, OW87, Pat88, Tem92,
AAB`10, DZ15] and the references therein, see also [Kre85, §6.4].)

The property of Følner-Tempelman stated in the definition below is needed to use both
Lindenstrauss’s ergodic theorem (see Theorem A.3) which is valid for general amenable
groups, and a maximal inequality (see Lemma A.4) which is valid for countable discrete
amenable groups. (These two results are used in the proof of Theorem 3.42.)

Definition 3.36. Let H P Ua
k pGq and let tGtutą0 Ă PfpHq. We say that tGtutą0 is of

Følner-Tempelman type with respect to H if it satisfies the following two conditions:

(a) Følner’s condition: for every g P H, one has

lim
t!8

ˇ

ˇgGt∆Gt

ˇ

ˇ

ˇ

ˇGt|
“ 0;

(b) Tempelman’s condition: there exists M ą 0, which called the Templeman constant
associated with tGtutą0, such that for every t ą 0, one has

ˇ

ˇ

ˇ
Y

0ăsďt
GsGt

ˇ

ˇ

ˇ
ďM |Gt|.

Together with Definition 3.34, the following definition set a framework for establishing a
subadditive theorem in the stochastic case and in the setting of metric measure spaces (see
Theorem 3.42).
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Definition 3.37. Let tQtutą0 Ă Bµ,0pXq. We say that tQtutą0 is strongly G-asymptotic
with respect to tUkukPN˚ if there exists tGkukPN˚ with Gk P Ua

k pGq for all k P N˚ and
YkPN˚Gk “ G such that for each k P N˚ and each t ą 0 there exist mt,k P N˚, gt,k P G
and Ft,k, G

´
t,k, G

`
t,k P PfpGkq such that (3.42), (3.43), (3.44) and (3.45) are satisfied with

the additional assumption that tG´t,kutą0 and tG`t,kutą0 are of Følner-Tempelman type with
respect to Gk.

Let pΣ, T ,Pq be a probability space and let tτg : Σ ! ΣugPG be satisfying the following three
properties:

(mesurability) τg is T -mesurable for all g P G;
(group property) τgoτf “ τgof and τg´1 “ τ´1

g for all g, f P G;
(mass invariance) PpτgpEqq “ PpEq for all E P T and all g P G.

Definition 3.38. Such a tτgugPG is said to be a group of P-preserving transformation on
pΣ, T ,Pq and the quadruplet pΣ, T ,P, tτgugPGq is called a measurable dynamical G-system.

Remark 3.39. If pΣ, T ,P, tτgugPGq is a measurable dynamical G-system then, for any sub-
group H of G, pΣ, T ,P, tτgugPHq is a measurable dynamical H-system.

Let I :“ tE P T : PpτgpEq∆Eq “ 0 for all g P Gu be the σ-algebra of invariant sets with
respect to pΣ, T ,P, tτgugPGq. (For any subgroup H of G, we denote the σ-algebra of invariant
sets with respect to pΣ, T ,P, tτgugPHq by IH.)

Definition 3.40. When PpEq P t0, 1u for all E P I, the measurable dynamical G-system
pΣ, T ,P, tτgugPGq is said to be ergodic.

In what follows, we assume that pΣ, T ,P, tτgugPGq is a measurable dynamical G-system. Let
us recall the definition of a subadditive process.

Definition 3.41. A set function S : Bµ,0pXq ! L1pΣ, T ,Pq is called a subadditive process
if it is subadditive in the sense of Definition 3.32(a) and G-covariant, i.e.

Spg´1
pAqq “ SpAqoτg

for all A P Bµ,0pXq and all g P G. If in addition the measurable dynamical G-system
pΣ, T ,P, tτgugPGq is ergodic, then S is called an ergodic subadditive process.

The following result is used in the proof of Theorem 2.34. It was established in [AHM19b,
Theorem 2.11]. For the convenience of the reader its proof is given in §A.2.2.

Theorem 3.42. Assume that pX, d, µq is meshable with respect to tUkukPN˚ and consider
S : Bµ,0pXq! L1pΣ, T ,Pq a subadditive process satisfying (3.46). Then, for each tQtutą0 Ă

Bµ,0pXq which is strongly G-asymptotic with respect to tUkukPN˚, one has

lim
t!8

SpQtqpωq

µ
`

Qt

˘ “ inf
kPN˚

EIrSpUkqspωq

µpUkq
for P-a.a. ω P Σ,

where EIrSpUkqs denotes the conditional expectation of SpUkq over I with respect to P. If
in addition pΣ, T ,P, tτgugPGq is ergodic, then

lim
t!8

SpQtqpωq

µ
`

Qt

˘ “ inf
kPN˚

ErSpUkqs

µpUkq
for P-a.a. ω P Σ,
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where ErSpUkqs denotes the expectation of SpUkq with respect to P.

4. Proof of the Γ-convergence theorem

This section is devoted to the proof of Theorem 2.11 which is divided into five steps.

Proof of Theorem 2.11. Let ω P Σ be satisfying all the assumptions of Theorem 2.11.

Step 1: integral representation of the ΓΓΓ-limit inf and the ΓΓΓ-limit sup. For each
u P H1,p

µ pΩ;Rmq we consider the set functions S´u,ω,S`u,ω : OpΩq! r0,8s given by:

S´u,ωpAq :“ ΓpLpµq- lim
t!8

Etpu,A, ωq;

S`u,ωpAq :“ ΓpLpµq- lim
t!8

Etpu,A, ωq.

Recall that G is the effective domain of the functional u 7!
ş

Ω
Gp∇µupxqqdµpxq.

Step 1 consists of proving the following lemma.

Lemma 4.1. If (2.5), (2.6), (2.7), (2.11), (2.12) and (2.13) hold then:

S´u,ωpAq “
ż

A

λ´u,ωpxqdµpxq;

S`u,ωpAq “
ż

A

λ`u,ωpxqdµpxq

for all u P G and all A P OpΩq with λ´u,ω, λ
`
u,ω P L

1
µpΩq given by:

λ´u,ωpxq “ lim
ρ!0

S´u,ωpQρpxqq

µpQρpxqq
;

λ`u,ωpxq “ lim
ρ!0

S`u,ωpQρpxqq

µpQρpxqq
.

Proof of Lemma 4.1. Fix u P G. Using the right inequality in (2.11) we see that:

S´u,ωpAq ď βµpAq ` β

ż

A

Gp∇µupxqqdµpxq; (4.1)

S`u,ωpAq ď βµpAq ` β

ż

A

Gp∇µupxqqdµpxq

for all A P OpΩq. Thus, the condition (d) of Lemma 3.24 is satisfied with ν “ β
`

1 `

Gp∇µup¨qq
˘

µ (which is absolutely continuous with respect to µ). On the other hand, it is
easily seen that the conditions (a) and (b) of Lemma 3.24 are satisfied. Hence, the proof is
completed if we prove the condition (c) of Lemma 3.24, i.e.

S´u,ωpAYBq ď S´u,ωpAq ` S´u,ωpBq for all A,B P OpΩq; (4.2)

S`u,ωpAYBq ď S`u,ωpAq ` S`u,ωpBq for all A,B P OpΩq. (4.3)

Indeed, by Lemma 3.24, the set function S´u,ω (resp. S`u,ω) can be (uniquely) extended to
a (finite) positive Radon measure which is absolutely continuous with respect to µ, and
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the theorem follows by using Radon-Nikodym’s theorem and then Lebesgue’s differentiation
theorem.

Remark 4.2. Lemma 4.1 shows that ΓpLpµq- limt!8Etpu, ¨, ωq and ΓpLpµq- limt!8Etpu, ¨, ωq
can be uniquely extended to a finite positive Radon measure on Ω which is absolutely con-
tinuous with respect to µ.

Substep 1-1: an auxiliary result for proving Lemma 4.1. To show (4.2) (resp. (4.3))
we need the following lemma.

Lemma 4.3. If U, V, Z, T P OpΩq are such that Z Ă U and T Ă V , then:

S´u,ωpZ Y T q ď S´u,ωpUq ` S´u,ωpV q; (4.4)

S`u,ωpZ Y T q ď S`u,ωpUq ` S`u,ωpV q. (4.5)

Proof of Lemma 4.3. As the proofs of (4.4) and (4.5) are the same, we only give the proof
of (4.4). Let tututą0 and tvtutą0 be two sequences in H1,p

µ pΩ;Rmq such that:

}ut ´ u}LpµpΩ;Rmq ! 0; (4.6)

}vt ´ u}LpµpΩ;Rmq ! 0; (4.7)

lim
t!8

ż

U

Ltpx,∇µutpxq, ωqdµpxq “ S´u,ωpUq ă 8; (4.8)

lim
t!8

ż

V

Ltpx,∇µvtpxq, ωqdµpxq “ S´u,ωpV q ă 8. (4.9)

Since tLtutą0 is p-coercive (see (2.5) and the left inequality in (2.11)), from (4.8) and(4.9)
we see that suptą0 }∇µut}LpµpΩ;Mq ă 8 and suptą0 }∇µvt}LpµpΩ;Mq ă 8. As p ą κ, taking (4.6)
and (4.7) into account, by Corollary 3.8 we can assert, up to a subsequence, that:

}ut ´ u}L8µ pΩ;Rmq ! 0; (4.10)

}vt ´ u}L8µ pΩ;Rmq ! 0. (4.11)

Fix δ Ps0, distpZ, BUqr with BU :“ UzU , fix any q ě 1 and consider W´
i ,W

`
i Ă Ω given by:

W´
i :“

!

x P Ω : distpx, Zq ď δ
3
`
pi´1qδ

3q

)

;

W`
i :“

!

x P Ω : δ
3
` iδ

3q
ď distpx, Zq

)

,

where i P t1, ¨ ¨ ¨ , qu. For every i P t1, ¨ ¨ ¨ , qu there exists a Urysohn function ϕi P LippΩq
for the pair pW`

i ,W
´
i q. Fix any t ą 0 and define wit P H

1,p
µ pΩ;Rmq by

wit :“ ϕiut ` p1´ ϕiqvt. (4.12)

Fix any τ Ps0, 1r. Setting Wi :“ ΩzpW´
i YW

`
i q and using Theorem 3.3(d) and (3.1) we have

∇µpτw
i
tq “ τ∇µw

i
t “

$

&

%

τ∇µut in W´
i

p1´ τq t
1´τ

Dµϕi b put ´ vtq ` τ
`

ϕi∇µut ` p1´ ϕiq∇µvt
˘

in Wi

τ∇µvt in W`
i .
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Noticing that Z Y T “ ppZ Y T q XW´
i q Y pW XWiq Y pT XW

`
i q with pZ Y T q XW´

i Ă U ,
T X W`

i Ă V and W :“ T X tx P U : δ
3
ă distpx, Zq ă 2δ

3
u we deduce that for every

i P t1, ¨ ¨ ¨ , qu,
ż

ZYT

Ltpx, τ∇µw
i
t, ωqdµ ď

ż

U

Ltpx, τ∇µut, ωqdµ`

ż

V

Ltpx, τ∇µvt, ωqdµ

`

ż

WXWi

Ltpx, τ∇µw
i
t, ωqdµ. (4.13)

Fix any i P t1, ¨ ¨ ¨ , qu. From the right inequality in (2.11) and the inequality (2.7) we see
that

ż

WXWi

Ltpx, τ∇µw
i
t, ωqdµ ď βµpW XWiq ` β

ż

WXWi

Gpτ∇µw
i
tqdµ

ď βp1` γqµpW XWiq

`βγ

ż

WXWi

Gpϕi∇µut ` p1´ ϕiq∇µvtqdµ

`βγ

ż

WXWi

G

ˆ

τ

1´ τ
Dµϕi b put ´ vtq

˙

dµ,

and by using again the inequality (2.7) and the left inequality in (2.11) we obtain
ż

WXWi

Ltpx, τ∇µw
i
t, ωqdµ ď βp1` γ ` γ2

qµpW XWiq

`
βγ2

α

ˆ
ż

WXWi

Ltpx,∇µut, ωqdµ`

ż

WXWi

Ltpx,∇µvt, ωqdµ

˙

`βγ

ż

WXWi

G

ˆ

τ

1´ τ
Dµϕi b put ´ vtq

˙

dµ. (4.14)

On the other hand, we have
ˇ

ˇ

ˇ

ˇ

τ

1´ τ
Dµϕipxq b putpxq ´ vtpxqq

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

τ

1´ τ

ˇ

ˇ

ˇ

ˇ

}Dµϕi}L8µ pΩq}ut ´ vt}L8µ pΩ;Rmq

for µ-a.a. x P Ω. But limt!8 }ut ´ vt}L8µ pΩ;Rmq “ 0 by (4.10) and (4.11), hence for each

τ Ps0, 1r and each i P t1, ¨ ¨ ¨ , qu there exists tτ,i ą 0 such that
ˇ

ˇ

ˇ

ˇ

τ

1´ τ
Dµϕipxq b putpxq ´ vtpxqq

ˇ

ˇ

ˇ

ˇ

ď r

for µ-a.a. x P Ω and all t ě tτ,i with r ą 0 given by (2.6). Hence
ż

WXWi

G

ˆ

τ

1´ τ
Dµϕi b put ´ vtq

˙

dµ ď

ż

WXWi

sup
|ξ|ďr

Gpξqdµ

“ µpW XWiq sup
|ξ|ďr

Gpξq (4.15)



ON Γ-CONVERGENCE OF UNBOUNDED INTEGRALS IN CHEEGER-SOBOLEV SPACES 41

for all t ě Tτ,q with Tτ,q “ maxttτ,i : i P t1, ¨ ¨ ¨ , quu. Moreover, we have
ż

U

Ltpx, τ∇µut, ωqdµ ď

ż

U

Ltpx,∇µut, ωqdµ

`∆
atp¨,ωq
Lt

pτq

ˆ
ż

U

atpx, ωqdµpxq `

ż

U

Ltpx,∇µut, ωqdµ

˙

ď

ż

U

Ltpx,∇µut, ωqdµ

`∆ωpτq

ˆ
ż

U

atpx, ωqdµpxq `

ż

U

Ltpx,∇µut, ωqdµ

˙

(4.16)

with ∆ωpτq :“ supsą0 ∆
asp¨,ωq
Ls

pτq, where tasp¨, ωqusą0 Ă L1
µpΩ; s0,8sq is given by (2.12). In

the same way, we have
ż

V

Ltpx, τ∇µvt, ωqdµ ď

ż

V

Ltpx,∇µvt, ωqdµ

`∆ωpτq

ˆ
ż

V

atpx, ωqdµpxq `

ż

V

Ltpx,∇µvt, ωqdµ

˙

. (4.17)

Taking (4.15) into account and substituting (4.14), (4.16) and (4.17) into (4.13) and then
averaging these inequalities, it follows that for every q ě 1, every τ Ps0, 1r and every t ě Tτ,q,
there exists it,τ,q P t1, ¨ ¨ ¨ , qu such that

ż

ZYT

Ltpx,∇µpτw
it,τ,q
t q, ωqdµ ď

ż

U

Ltpx,∇µut, ωqdµ`

ż

V

Ltpx,∇µvt, ωqdµ

`∆ωpτq

ˆ
ż

U

atpx, ωqdµpxq `

ż

U

Ltpx,∇µut, ωqdµ

˙

`∆ωpτq

ˆ
ż

V

atpx, ωqdµpxq `

ż

V

Ltpx,∇µvt, ωqdµ

˙

`
c

q
µpΩq sup

|ξ|ďr

Gpξq

`
c

q

ˆ
ż

U

Ltpx,∇µut, ωqdµ`

ż

V

Ltpx,∇µvt, ωqdµ

˙

with c “ max
 

βp1 ` γ ` γ2q ` 1, βγ
2

α

(

, where limt!8

ş

A
atpx, ωqdµ ă 8 by (2.13) and

sup|ξ|ďrGpξq ă 8 by (2.6). As limτ!1´ ∆ωpτq ď 0, letting t ! 8, τ ! 1´ and q ! 8 and
using (4.8) and (4.9), we get

lim
q!8

lim
τ!1´

lim
t!8

ż

ZYT

Ltpx,∇µpτw
it,τ,q
t q, ωqdµ ď S´u,ωpUq ` S´u,ωpV q. (4.18)

On the other hand, taking (4.12) into account and using (4.6) and (4.7) we see that

lim
q!8

lim
τ!1´

lim
t!8

}τw
it,τ,q
t ´ u}LpµpΩ;Rmq “ 0.
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By diagonalization, there exist increasing mappings t 7! τt and t 7! qt with τt ! 1´ and
qt ! 8 such that:

lim
t!8

ż

ZYT

Ltpx,∇µŵt, ωqdµ ď lim
t!8

ż

ZYT

Ltpx,∇µŵt, ωqdµ

ď lim
q!8

lim
τ!1´

lim
t!8

ż

ZYT

Ltpx,∇µpτw
it,τ,q
t q, ωqdµ;

lim
t!8

}ŵt ´ u}LpµpΩ;Rmq “ 0,

where ŵt :“ τtw
it,τt,qt
t . Hence

S´u,ωpZ Y T q ď lim
q!8

lim
τ!1´

lim
t!8

ż

ZYT

Ltpx,∇µpτw
it,τ,q
t q, ωqdµ,

and (4.4) follows from (4.18). �

Substep 1-2: end of the proof of Lemma 4.1. We now prove (4.2). Fix A,B P OpΩq.
Fix any ε ą 0 and consider C,D P OpΩq such that C Ă A, D Ă B and

βµpEq ` β

ż

E

Gp∇µupxqqdµpxq ă ε

with E :“ AYBzC YD. Then S´u,ωpEq ď ε by (4.1). Let Ĉ, D̂ P OpΩq be such that C Ă Ĉ,

Ĉ Ă A, D Ă D̂ and D̂ Ă B. Applying Lemma 4.3 with U “ Ĉ Y D̂, V “ T “ E and
Z “ C YD (resp. U “ A, V “ B, Z “ Ĉ and T “ D̂) we obtain

S´u,ωpAYBq ď S´u,ωpĈ Y D̂q ` ε
`

resp. S´u,ωpĈ Y D̂q ď S´u,ωpAq ` S´u,ωpBq
˘

,

and (4.2) follows by letting ε! 0. �

Step 2: other formulas for the ΓΓΓ-limit inf and the ΓΓΓ-limit sup. Consider the varia-
tional functionals E´0,ω, E

`
0,ω : H1,p

µ pΩ;Rmq ˆOpΩq! r0,8s given by:

E´0,ωpu,Aq :“ inf

"

lim
t!8

Etput, A, ωq : H1,p
µ,0pΩ;Rm

q Q ut ´ u
Lpµ
! 0

*

;

E`0,ωpu,Aq :“ inf

"

lim
t!8

Etput, A, ωq : H1,p
µ,0pΩ;Rm

q Q ut ´ u
Lpµ
! 0

*

.

As H1,p
µ,0pΩ;Rmq Ă H1,p

µ pΩ;Rmq it is clear that:

S´u,ωpAq ď E´0,ωpu,Aq; (4.19)

S`u,ωpAq ď E`0,ωpu,Aq (4.20)

for all u P H1,p
µ pΩ;Rmq and all A P OpΩq. On the other hand, we have the following lemma.
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Lemma 4.4. If (2.5), (2.6), (2.7), (2.11), (2.12) and (2.13) hold then for every u P G, every
A P OpΩq and every τ Ps0, 1r, one has:

E´0,ωpτu,Aq ď
`

1`∆ωpτq
˘

S´u,ωpAq ` lim
t!8

∆ωpτq

ż

A

atpx, ωqdµpxq; (4.21)

E`0,ωpτu,Aq ď
`

1`∆ωpτq
˘

S`u,ωpAq ` lim
t!8

∆ωpτq

ż

A

atpx, ωqdµpxq, (4.22)

with ∆ωpτq :“ supsą0 ∆
asp¨,ωq
Ls

pτq, where tasp¨, ωqusą0 Ă L1
µpΩ; s0,8sq is given by (2.12) and

satisfies (2.13). As a consequence (4.19)-(4.21) and (4.20)-(4.22) we have:

ΓpLpµq- lim
t!8

Etpu,A, ωq “ lim
τ!1´

E´0,ωpτu,Aq; (4.23)

ΓpLpµq- lim
t!8

Etpu,A, ωq “ lim
τ!1´

E`0,ωpτu,Aq

for all u P G and A P OpΩq.

Proof of Lemma 4.4. Fix u P G and A P OpΩq. As the proofs of (4.21) and (4.22) are the
same, we only prove (4.21). Let tututą0 Ă H1,p

µ pΩ;Rmq be such that:

}ut ´ u}LpµpΩ;Rmq ! 0; (4.24)

lim
t!8

ż

A

Ltpx,∇µutpxq, ωqdµpxq “ S´u,ωpAq ă 8. (4.25)

Since tLtutą0 is p-coercive (see (2.5) and the left inequality in (2.11)), from (4.25) we see
that suptą0 }∇µut}LpµpΩ;Mq ă 8. As p ą κ, taking (4.24) into account, by Corollary 3.8 we
can assert, up to a subsequence, that:

}ut ´ u}L8µ pΩ;Rmq ! 0. (4.26)

Fix δ ą 0 and set Aδ :“ tx P A : distpx, BAq ą δu with BA :“ AzA. Fix any t ą 0 and any
q ě 1 and consider W´

i ,W
`
i Ă Ω given by

W´
i :“

!

x P Ω : distpx,Aδq ď
δ
3
`
pi´1qδ

3q

)

;

W`
i :“

!

x P Ω : δ
3
` iδ

3q
ď distpx,Aδq

)

,

where i P t1, ¨ ¨ ¨ , qu. (Note that W´
i Ă A.) For every i P t1, ¨ ¨ ¨ , qu there exists a Urysohn

function ϕi P LippΩq for the pair pW`
i ,W

´
i q. Define wit : Ω ! Rm by

wit :“ ϕiut ` p1´ ϕiqu. (4.27)

Then wit ´ u P H
1,p
µ,0pA;Rmq. Fix any τ Ps0, 1r. Setting Wi :“ XzpW´

i YW
`
i q Ă A and using

Theorem 3.3(d) and (3.1) we have

∇µpτw
i
tq “ τ∇µw

i
t “

$

&

%

τ∇µut in W´
i

p1´ τq τ
1´τ

Dµϕi b put ´ uq ` τ
`

ϕi∇µut ` p1´ ϕiq∇µu
˘

in Wi

τ∇µu in W`
i .
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Fix any t ą 0. Noticing that A “ W´
i YWiYpAXW

`
i q we deduce that for every i P t1, ¨ ¨ ¨ , qu,

ż

A

Ltpx, τ∇µw
i
t, ωqdµ ď

ż

A

Ltpx, τ∇µut, ωqdµ`

ż

AXW`
i

Ltpx, τ∇µu, ωqdµ

`

ż

Wi

Ltpx, τ∇µw
i
t, ωqdµ. (4.28)

Fix any q P t1, ¨ ¨ ¨ , qu. From the right inequality in (2.11) and the inequality (2.7) we see
that

ż

Wi

Ltpx, τ∇µw
i
t, ωqdµ ď βµpWiq ` β

ż

Wi

Gpτ∇µw
i
tqdµ

ď βp1` γqµpWiq

`βγ

ż

Wi

Gpϕi∇µut ` p1´ ϕiq∇µuqdµ

`βγ

ż

Wi

G

ˆ

τ

1´ τ
Dµϕi b put ´ uq

˙

dµ, (4.29)

and by using again the inequality (2.7) and the left inequality in (2.11) we obtain
ż

Wi

Ltpx, τ∇µw
i
t, ωqdµ ď βp1` γ ` γ2

qµpWiq

`
βγ2

α

ˆ
ż

Wi

Ltpx,∇µut, ωqdµ`

ż

Wi

Ltpx,∇µu, ωqdµ

˙

`βγ

ż

Wi

G

ˆ

τ

1´ τ
Dµϕi b put ´ uq

˙

dµ. (4.30)

Remark 4.5. Since u P G, from (2.11) we see that limt!8

ş

E
Ltpx,∇µu, ωqdµ ă 8 for all

E P OpΩq.

On the other hand, we have
ˇ

ˇ

ˇ

ˇ

τ

1´ τ
Dµϕipxq b putpxq ´ upxqq

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

τ

1´ τ

ˇ

ˇ

ˇ

ˇ

}Dµϕi}L8µ pΩq}ut ´ u}L8µ pΩ;Rmq

for µ-a.a. x P Ω. But limt!8 }ut ´ u}L8µ pΩ;Rmq “ 0 by (4.26), hence for each i P t1, ¨ ¨ ¨ , qu
there exists ti ą 0 such that

ˇ

ˇ

ˇ

ˇ

τ

1´ τ
Dµϕipxq b putpxq ´ upxqq

ˇ

ˇ

ˇ

ˇ

ď r

for µ-a.a. x P Ω and all t ě ti with r ą 0 given by (2.6). Hence
ż

Wi

G

ˆ

τ

1´ τ
Dµϕi b put ´ uq

˙

dµ ď

ż

Wi

sup
|ξ|ďr

Gpξqdµ (4.31)

“ µpWiq sup
|ξ|ďr

Gpξq
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for all t ě Tq with Tq “ maxtti : i P t1, ¨ ¨ ¨ , quu. Moreover, we have:
ż

A

Ltpx, τ∇µut, ωqdµ ď

ż

A

Ltpx,∇µut, ωqdµ

`∆ωpτq

ˆ
ż

A

atpx, ωqdµ`

ż

A

Ltpx,∇µut, ωqdµ

˙

; (4.32)

ż

AXW`
i

Ltpx, τ∇µu, ωqdµ ď

ż

AXW`
i

Ltpx,∇µu, ωqdµ

`∆ωpτq

˜

ż

AXW`
i

atpx, ωqdµ`

ż

AXW`
i

Ltpx,∇µu, ωqdµ

¸

. (4.33)

Taking (4.31) into account and substituting (4.30), (4.32) and (4.33) into (4.28) and then
averaging these inequalities, it follows that for every q ě 1 and every t ě Tq, there exists
it,q P t1, ¨ ¨ ¨ , qu such that

ż

A

Ltpx,∇µpτw
it,q
t q, ωqdµ ď

ż

A

Ltpx,∇µut, ωqdµ

`∆ωpτq

ˆ
ż

A

atpx, ωqdµ`

ż

A

Ltpx,∇µut, ωqdµ

˙

`
1

q

ż

A

Ltpx,∇µu, ωqdµ

`
1

q
∆ωpτq

ˆ
ż

A

atpx, ωqdµ`

ż

A

Ltpx,∇µu, ωqdµ

˙

`
c

q
µpAq sup

|ξ|ďr

Gpξq

`
c

q

ˆ
ż

A

Ltpx,∇µut, ωqdµ`

ż

A

Ltpx,∇µu, ωqdµ

˙

with c “ max
 

βp1 ` γ ` γ2q ` 1, βγ
2

α

(

, where limt!8

ş

A
atpx, ωqdµ ă 8 by (2.13) and

sup|ξ|ďrGpξq ă 8 by (2.6). Thus, letting t! 8 and q ! 8 and using (4.25), we get

lim
q!8

lim
t!8

ż

A

Ltpx,∇µpτw
it,q
t q, ωqdµ ď

`

1`∆ωpτq
˘

S´u,ωpAq ` lim
t!8

∆ωpτq

ż

A

atpx, ωqdµ. (4.34)

On the other hand, taking (4.27) into account and using (4.24) we see that

lim
q!8

lim
t!8

}τw
it,q
t ´ τu}LpµpΩ;Rmq “ 0.

By diagonalization, there exists an increasing mapping t 7! qt with qt ! 8 such that:

lim
t!8

ż

A

Ltpx,∇µŵt, ωqdµ ď lim
t!8

ż

A

Ltpx,∇µŵt, ωqdµ ď lim
q!8

lim
t!8

ż

A

Ltpx,∇µpτw
it,q
t q, ωqdµ;

lim
t!8

}ŵt ´ u}LpµpΩ;Rmq “ 0,
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where ŵt :“ τw
it,qt
t is such that ŵt ´ τu P H

1,p
µ,0pA;Rmq. Hence

E´0,ωpτu,Aq ď lim
q!8

lim
t!8

ż

A

Ltpx,∇µpτw
it,q
t q, ωqdµ,

and (4.21) follows from (4.34).
As limτ!1´ ∆ωpτq ď 0 we have limτ!1´ limt!8 ∆ωpτq

ş

A
atpx, ωqdµpxq ď 0, and so from

(4.21) we deduce that

lim
τ!1´

E´0,ωpτu,Aq ď S`u,ωpAq.

Moreover, from (4.19) we have

S`u,ωpAq ď lim
τ!1´

S`τu,ωpAq ď lim
t!1´

E´0,ωpτu,Aq,

which gives (4.23). �

Step 3: using the Vitali envelope. For each u P H1,p
µ pΩ;Rmq we consider the set functions

qm´
u,ω, qm

`
u,ω : OpΩq! r0,8s defined by:

qmu,ωpAq :“ lim
τ!1´

mτu,ωpAq;

qmu,ωpAq :“ lim
τ!1´

mτu,ωpAq. (4.35)

where, for each z P H1,p
µ pΩ;Rmq, mz,ω,mz,ω : OpΩq! r0,8s are given by:

mz,ωpAq :“ lim
t!8

inf
!

Etpv,A, ωq : v ´ z P H1,p
µ,0pA;Rm

q

)

;

mz,ωpAq :“ lim
t!8

inf
!

Etpv,A, ωq : v ´ z P H1,p
µ,0pA;Rm

q

)

.

For each ε ą 0 and each A P OpΩq, we denote the class of countable families tQi :“
QρipxiquiPI of disjoint open balls of A with xi P A and ρi “ diampQiq Ps0, εr such that

µpAz YiPI Qiq “ 0 by VεpAq, we consider qm
ε

u,ω : OpΩq! r0,8s given by

qm
ε

u,ωpAq :“ inf

#

ÿ

iPI

qmu,ωpQiq : tQiuiPI P VεpAq

+

,

and we define qm
˚

u,ω : OpΩq! r0,8s by

qm
˚

u,ωpAq :“ sup
εą0

qm
ε

u,ωpAq “ lim
ε!0

qm
ε

u,ωpAq.

The set function qm
˚

u,ω is called the Vitali envelope of qmu,ω, see §3.5 for more details.

Remark 4.6. For any tQiuiPI P VεpAq, as the annular decay property, see (2.4), holds we have
µpBQiq “ 0 for all i P I, see Remark 2.2.

Remark 4.7. As Ω satisfies the Vitali covering theorem, see Proposition 3.6(c), we have
VεpAq ­“ H for all A P OpΩq and all ε ą 0.

Step 3 consists of proving the following lemma.
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Lemma 4.8. If (2.5), (2.6), (2.7), (2.11), (2.12) and (2.13) hold then:

ΓpLpµq- lim
t!8

Etpu,A, ωq ě qmu,ωpAq; (4.36)

ΓpLpµq- lim
t!8

Etpu,A, ωq “ qm
˚

u,ωpAq (4.37)

for all u P G and all A P OpΩq.

Proof of Lemma 4.8. Fix u P G. Given any A P OpΩq, it is easy to see that:

mτu,ωpAq ď E´0,ωpτu,Aq;

mτu,ωpAq ď E`0,ωpτu,Aq

for all τ Ps0, 1r, hence:

qmu,ωpAq “ lim
τ!1´

mτu,ωpAq ď lim
τ!1´

E´0,ωpτu,Aq “ ΓpLpµq- lim
t!8

Etpu,A, ωq;

qmu,ωpAq “ lim
τ!1´

mτu,ωpAq ď lim
τ!1´

E`0,ωpτu,Aq “ ΓpLpµq- lim
t!8

Etpu,A, ωq

by Lemma 4.4, and consequently

qm
˚

u,ωpAq ď ΓpLpµq- lim
t!8

Etpu,A, ωq

because in the proof of Lemma 4.4 it is established that ΓpLpµq- limt!8Etpu, ¨, ωq can be
uniquely extended to a finite positive Radon measure on Ω, see Remark 4.2. Hence (4.36)
holds and, to establish (4.37), it remains to prove that

ΓpLpµq- lim
t!8

Etpu,A, ωq ď qm
˚

u,ωpAq (4.38)

with qm
˚

u,ωpAq ă 8. Fix any ε ą 0. By definition of qm
ε

u,ωpAq there exists tQiuiPI P VεpAq
such that

ÿ

iPI

qmu,ωpQiq ď qm
ε

u,ωpAq `
ε

2
. (4.39)

Fix any t ą 0 and define mt
u,ω : OpΩq! r0,8s by

mt
u,ωpUq :“ inf

!

Etpv, U, ωq : v ´ z P H1,p
µ,0pU ;Rm

q

)

. (4.40)

(Thus mu,ωp¨q “ limt!8 mt
u,ωp¨q.) Fix any τ Ps0, 1r. For each i P I, by definition of mt

τu,ωpQiq

there exists vit,τ P H
1,p
µ pQi;Rmq such that vit,τ ´ τu P H

1,p
µ,0pQi;Rmq and

Epvit,τ , Qi, ωq ď mt
τu,ωpQiq `

εµpQiq

2µpAq
. (4.41)

Define uεt,τ : Ω ! Rm by

uεt,τ :“

"

τu in ΩzA
vit,τ in Qi.
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Then uεt,τ ´ τu P H1,p
µ,0pA;Rmq. Moreover, because of Proposition 3.6(a), ∇µu

ε
t,τ pxq “

∇µv
i
t,τ pxq for µ-a.e. x P Qi. From (4.41) we see that

Etpu
ε
t,τ , A, ωq ď

ÿ

iPI

mt
τu,ωpQiq `

ε

2
,

hence limτ!1´ limt!8Epu
ε
t,τ , A, ωq ď qm

ε

u,ωpAq ` ε by using (4.39), and consequently

lim
ε!0

lim
τ!1´

lim
t!8

Etpu
ε
t,τ , A, ωq ď qm

˚

u,ωpAq. (4.42)

On the other hand, we have

}uεt,τ ´ u}
p
LpµpΩ;Rmq ď 2p

´

}uεt,τ ´ τu}
p
LpµpΩ;Rmq ` }τu´ u}

p
LpµpΩ;Rmq

¯

“ 2p
ˆ
ż

A

|uεt,τ ´ τu|
pdµ` p1´ τqp}u}p

LpµpΩ;Rmq

˙

“ 2p

˜

ÿ

iPI

ż

Qi

|vit,τ ´ τu|
pdµ` p1´ τqp}u}p

LpµpΩ;Rmq

¸

.

As Ω supports a p-Sobolev inequality, see Proposition 3.6(b), and diampQiq Ps0, εr for all
i P I, we have

ÿ

iPI

ż

Qi

|vit,τ ´ τu|
pdµ ď εpCp

S

ÿ

iPI

ż

Qi

|∇µv
i
t,τ ´ τ∇µu|

pdµ

with CS ą 0 given by (3.3), hence

ÿ

iPI

ż

Qi

|vit,τ ´ τu|
pdµ ď 2pεpCp

S

˜

ÿ

iPI

ż

Qi

|∇µv
i
t,τ |

pdµ` τ p
ż

A

|∇µu|
pdµ

¸

,

and consequently

}uεt,τ ´ u}
p
LpµpΩ;Rmq ď 22pεpCp

S

˜

ÿ

iPI

ż

Qi

|∇µv
i
t,τ |

pdµ` τ p
ż

A

|∇µu|
pdµ

¸

`2pp1´ τqp}u}p
LpµpΩ;Rmq. (4.43)

Taking (2.5), the left inequality in (2.11), (4.39) and (4.41) into account, from (4.43) we
deduce that

lim
τ!1´

lim
t!8

}uεt,τ ´ u}
p
LpµpΩ;Rmq ď 22pCp

Sε
p

ˆ

1

αc
pqm

ε

u,ωpAq ` εq `

ż

A

|∇µu|
pdµ

˙

,

which gives
lim
ε!0

lim
τ!1´

lim
t!8

}uεt,τ ´ u}
p
LpµpΩ;Rmq “ 0 (4.44)

because limε!0
qm
ε

u,ωpAq “ qm
˚

u,ωpAq ă 8. According to (4.42) and (4.44), by diagonalization
there exist mappings t 7! τt and t! εt, with τt ! 1´ and εt ! 0 as t! 8, such that:

lim
t!8

}wt ´ u}
p
LpµpΩ;Rmq “ 0; (4.45)

lim
t!8

Etpwt, A, ωq ď qm
˚

u,ωpAq (4.46)
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with wt :“ uεtt,τt . By (4.45) we have ΓpLpµq- limt!8Etpu,A, ωq ď limt!8Etpwt, A, ωq, and
inequality (4.38) follows from (4.46). �

Step 4: differentiation with respect to µµµ. Using Lemma 4.1, Remark 4.2 and Lemma
4.8, it is easily seen that

ΓpLpµq- lim
t!8

Etpu,A, ωq ě

ż

A

lim
ρ!0

qmu,ωpQρpxqq

µpQρpxqq
dµpxq “

ż

A

lim
ρ!0

lim
τ!1´

mτu,ωpQρpxqq

µpQρpxqq
dµpxq; (4.47)

ΓpLpµq- lim
t!8

Etpu,A, ωq “

ż

A

lim
ρ!0

qm
˚

u,ωpQρpxqq

µpQρpxqq
dµpxq (4.48)

for all u P G and all A P OpΩq. The goal of Step 4 is to apply Theorem 3.29 (with Θ “ qmu,ω

where u P G) for proving the following lemma.

Lemma 4.9. If (2.5), (2.6), (2.7), (2.11), (2.12) and (2.13) hold then

qm
˚

u,ωpAq “

ż

A

lim
ρ!0

qmu,ωpQρpxqq

µpQρpxqq
dµpxq (4.49)

for all u P G and all A P OpΩq. As a consequence, we have

ΓpLpµq- lim
t!8

Etpu,A, ωq “

ż

A

lim
ρ!0

qmu,ωpQρpxqq

µpQρpxqq
dµpxq “

ż

A

lim
ρ!0

lim
τ!1´

mτu,ωpQρpxqq

µpQρpxqq
dµpxq (4.50)

for all u P G and all A P OpΩq.

Proof of Lemma 4.9. Fix u P G. The integral representation of ΓpLpµq- limt!8Etpu, ¨, ωq

in (4.50) follows from (4.49), (4.48) and the definition of qmu,ω in (4.35). So, we only need to

establish (4.49). For this, it is sufficient to prove that qmu,ω is subadditive and there exists a
finite Radon measure ν on Ω which is absolutely continuous with respect to µ such that

qmu,ωpAq ď νpAq (4.51)

for all A P OpΩq, and then to apply Theorem 3.29. For each t ą 0 and each τ Ps0, 1r,
from the definition of mt

τu,ω in (4.40), it is easy to see that for every A,B,C P OpΩq with
B,C Ă A, B X C “ H and µpAzB Y Cq “ 0,

mt
τu,ωpAq ď mt

τu,ωpBq `mt
τu,ωpCq,

and so

lim
τ!1´

lim
t!8

mt
τu,ωpAq ď lim

τ!1´
lim
t!8

mt
τu,ωpBq ` lim

τ!1´
lim
t!8

mt
τu,ωpCq,

i.e.
qmu,ωpAq ď qmu,ωpBq ` qmu,ωpCq, (4.52)

which shows the subadditivity of qmu,ω.

Remark 4.10. As, in general, the limit inf of the sum is not smaller than the sum of the
limit inf, we cannot assert that (4.52) holds for qmu,ω instead of qmu,ω and so that qmu,ω is
subadditive.



50 OMAR ANZA HAFSA AND JEAN-PHILIPPE MANDALLENA

On the other hand, given any t ą 0 and any τ Ps0, 1r, by using the right inequality in (2.11)
we have

mt
τu,ωpAq ď βµpAq ` β

ż

A

Gpτ∇µupxqqdµpxq.

But, from (2.7) we see that Gpτ∇µupxqq ď γp1`Gp∇µupxqq `Gp0qq for µ-a.a. x P Ω, hence

mt
τu,ωpAq ď βµpAq ` βγµpAq ` βγ

ˆ
ż

A

Gp∇µupxqqdµpxq ` µpAqGp0q

˙

ď βµpAq ` βγµpAq ` βγµpAqGp0q ` βγ

ż

A

Gp∇µupxqqdµpxq.

Letting t! 8 and τ ! 1´ we conclude that

qmu,ωpAq ď c

ˆ

µpAq `

ż

A

Gp∇µupxqqdµpxq

˙

with c :“ βp1`γ`γGp0qq. Thus (4.51) holds with the Radon measure ν :“ c
`

1`Gp∇µup¨qq
˘

µ
which is necessarily finite since u P G and Gp0q ă 8 by (2.6). �

Step 5: establishing the ΓΓΓ-limit inf and the ΓΓΓ-limit sup formulas. According to
(4.47) and (4.50), the proof of Theorem 2.11 will be completed (see Substep 5-2) if we prove
that for each u P G and µ-a.e. x P Ω, we have

lim
τ!1´

lim
ρ!0

mτux,ωpQρpxqq

µpQρpxqq
ď lim

ρ!0

qmu,ωpQρpxqq

µpQρpxqq
; (4.53)

and

lim
τ!1´

lim
ρ!0

mτux,ωpQρpxqq

µpQρpxqq
“ lim

ρ!0

qmu,ωpQρpxqq

µpQρpxqq
, (4.54)

i.e.

lim
τ!1´

lim
ρ!0

mτux,ωpQρpxqq

µpQρpxqq
ď lim

ρ!0

qmu,ωpQρpxqq

µpQρpxqq
; (4.55)

lim
τ!1´

lim
ρ!0

mτux,ωpQρpxqq

µpQρpxqq
ě lim

ρ!0

qmu,ωpQρpxqq

µpQρpxqq
, (4.56)

where ux P H
1,p
µ pΩ;Rmq is given by Proposition 3.6(d) (and satisfies (3.4) and (3.5)).

Substep 5-1: proofs of (4.53), (4.55) and (4.56). We only give the proof of (4.53). As
the proofs of (4.55) and (4.56) use the same method, the details are left to the reader.
First of all, by diagonalization there exists a mapping σ 7! τσ with τσ ! 1´ as σ ! 1´ such
that:

lim
σ!1´

τσ
σ
“ 1;

lim
τ!1´

lim
σ!1´

∆ω

´ τ

σ

¯

ď lim
σ!1´

∆ω

´τσ
σ

¯

,
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where ∆ωp¨q :“ supsą0 ∆
asp¨,ωq
Ls

p¨q with tasp¨, ωqusą0 Ă L1
µpΩ; s0,8sq given by (2.12). But

limr!1´ ∆ωprq ď 0, hence

lim
τ!1´

lim
σ!1´

∆ω

´ τ

σ

¯

ď 0. (4.57)

Fix any ε ą 0. For each τ Ps0, 1r there exists στ Psτ, 1r such that

∆ω

´ τ

σ

¯

ď lim
σ!1´

∆ω

´ τ

σ

¯

`
ε

2
(4.58)

for all σ P rστ , 1r. In the same way, there exists τ0 Ps0, 1r such that

lim
σ!1´

∆ω

´ τ

σ

¯

ď lim
τ!1´

lim
σ!1´

∆ω

´ τ

σ

¯

`
ε

2
(4.59)

for all τ P rτ0, 1r, and from (4.57), (4.58) and (4.59) we deduce that

∆ω

´ τ

σ

¯

ď ε (4.60)

for all τ P rτ0, 1r and all σ P rστ , 1r.
Fix u P G. Fix any t ą 0, any λ Ps0, 1r, any ρ ą 0, any τ P rτ0, 1r and any σ P rστ , 1r.
By definition of mt

σu,ωpQλρpxqq in (4.40), there exists w : Ω ! Rm such that w ´ σu P

H1,p
µ,0pQλρpxq;Rmq and

ż

Qλρpxq

Ltpy,∇µwpyq, ωqdµpyq ď mt
σu,ωpQλρpxqq ` εµpQλρpxqq. (4.61)

By Proposition 3.6(e) there is a Urysohn function ϕ P LippΩq for the pair pΩzQρpxq, Qλρpxqq
such that

}Dµϕ}L8µ pΩ;RN q ď
θ

ρp1´ λq
(4.62)

for some θ ą 0 (which does not depend on ρ). Define v P H1,p
µ pQρpxq;Rmq by

v :“ ϕ
τ

σ
u` p1´ ϕq

τ

σ
ux.

Then v ´ τ
σ
ux P H

1,p
µ,0pQρpxq;Rmq. Using Theorem 3.3(d) and (3.1) we have

∇µpσvq “

"

∇µpτuq in Qλρpxq
τDµϕb pu´ uxq ` σ

`

ϕ τ
σ
∇µu` p1´ ϕq

τ
σ
∇µupxq

˘

in QρpxqzQλρpxq

“

"

∇µpτuq in Qλρpxq
p1´ τq τ

1´τ
Dµϕb pu´ uxq ` τ

`

ϕ∇µu` p1´ ϕq∇µupxq
˘

in QρpxqzQλρpxq.

As τ
σ
w´τu P H1,p

µ,0pQλρpxq;Rmq we have σv`p τ
σ
w´τuq´τux P H

1,p
µ,0pQρpxq;Rmq. Noticing that

µpBQλρpxqq “ 0 (see Remark 2.2) and, because of Proposition (3.6)(a), ∇µp
τ
σ
w´ τuqpyq “ 0
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for µ-a.a. y P QρpxqzQλρpxq, we see that

mt
τux,ωpQρpxqq

µpQλρpxqq
ď

1

µpQλρpxqq

ż

Qρpxq

Lt

´

y,∇µpσvq `∇µ

´ τ

σ
w ´ τu

¯

, ω
¯

dµ

“
1

µpQλρpxqq

ż

Qλρpxq

Lt

´

y,∇µpτuq `∇µ

´ τ

σ
w ´ τu

¯

, ω
¯

dµ

`
1

µpQλρpxqq

ż

QρpxqzQλρpxq

Ltpy,∇µpσvq, ωqdµ

“
1

µpQλρpxqq

ż

Qλρpxq

Lt

´

y,
τ

σ
∇µw, ω

¯

dµ

`
1

µpQλρpxqq

ż

QρpxqzQλρpxq

Ltpy,∇µpσvq, ωqdµ.

It follows that

mt
τux,ωpQρpxqq

µpQλρpxqq
ď

1

µpQλρpxqq

ż

Qρpxq

Ltpy,∇µw, ωqdµ

`∆ω

´ τ

σ

¯

˜

µpQρpxqq

µpQλρpxqq
´

ż

Qρpxq

atpy, ωqdµ`
1

µpQλρpxqq

ż

Qρpxq

Ltpy,∇µw, ωqdµ

¸

`
1

µpQλρpxqq

ż

QρpxqzQλρpxq

Ltpy,∇µpσvq, ωqdµ.

Taking (4.61), (2.7) and the right inequality in (2.11) into account we deduce that

mt
τux,ωpQρpxqq

µpQλρpxqq
ď

´

1`∆ω

´ τ

σ

¯¯

ˆ

mt
σu,ωpQλρpxqq

µpQλρpxqq
` ε

˙

`∆ω

´ τ

σ

¯ µpQρpxqq

µpQλρpxqq
´

ż

Qρpxq

atpy, ωqdµ

`
c

µpQλρpxqq

ż

QρpxqzQλρpxq

G

ˆ

τ

1´ τ
Dµϕb pu´ uxq

˙

dµ

`
c

µpQλρpxqq

ż

QρpxqzQλρpxq

`

Gp∇µupyqq `Gp∇µupxqq
˘

dµ

`c

ˆ

µpQρpxqq

µpQλρpxqq
´ 1

˙
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with c :“ β`βγ`βγ2, where γ ą 0 and β ą 0 given by (2.7) and (2.11) respectively. Thus,
taking (4.60) into account, noticing that µpQρpxqq ě µpQλρpxqq, we obtain

mt
τux,ωpQρpxqq

µpQρpxqq
ď p1` εq

ˆ

mt
σu,ωpQλρpxqq

µpQλρpxqq
` ε

˙

`ε
µpQρpxqq

µpQλρpxqq
´

ż

Qρpxq

atpy, ωqdµ

`
c

µpQλρpxqq

ż

QρpxqzQλρpxq

G

ˆ

τ

1´ τ
Dµϕb pu´ uxq

˙

dµ

`
c

µpQλρpxqq

ż

QρpxqzQλρpxq

Gp∇µupyqqdµ

`c

ˆ

µpQρpxqq

µpQλρpxqq
´ 1

˙

Gp∇µupxqq

`c

ˆ

µpQρpxqq

µpQλρpxqq
´ 1

˙

. (4.63)

On the other hand, by (4.62) we have

ˇ

ˇ

ˇ

ˇ

τ

1´ τ
Dµϕpyq b pupyq ´ uxpyqq

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

τ

1´ τ

ˇ

ˇ

ˇ

ˇ

}Dµϕ}L8µ pΩq}u´ ux}L8µ pQρpxq;Rmq

ď
τθ

p1´ τqp1´ λq

1

ρ
}u´ ux}L8µ pQρpxq;Rmq

for µ-a.a. y P QρpxqzQλρpxq. But, since p ą κ, limρ!0
1
ρ
}u ´ ux}L8µ pQρpxq;Rmq “ 0 by (3.5),

hence there exists ρ0 ą 0 (which depends on τ and λ) such that

ˇ

ˇ

ˇ

ˇ

τ

1´ τ
Dµϕpyq b pupyq ´ uxpyqq

ˇ

ˇ

ˇ

ˇ

ď r

for µ-a.a. y P QρpxqzQλρpxq and all ρ Ps0, ρ0r with r ą 0 given by (2.6). Hence

ż

QρpxqzQλρpxq

G

ˆ

τ

1´ τ
Dµϕb pu´ uxq

˙

dµ ď

ż

QρpxqzQλρpxq

sup
|ξ|ďr

Gpξqdµ

“ µpQρpxqzQλρpxqq sup
|ξ|ďr

Gpξq (4.64)

for all ρ Ps0, ρ0r. Moreover, it easy to see that

ż

QρpxqzQλρpxq

Gp∇µupyqqdµ ď µpQρpxqq´

ż

Qρpxq

ˇ

ˇGp∇µupyqq ´Gp∇µupxqq
ˇ

ˇdµ

`µ pQρpxqzQλρpxqqGp∇µupxqq. (4.65)
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Taking (4.64) and (4.65) into account, from (4.63) we deduce that

mt
τux,ωpQρpxqq

µpQρpxqq
ď p1` εq

ˆ

mt
σu,ωpQλρpxqq

µpQλρpxqq
` ε

˙

`ε
µpQρpxqq

µpQλρpxqq
´

ż

Qρpxq

atpy, ωqdµ

`c
µpQρpxqq

µpQλρpxqq
´

ż

Qρpxq

ˇ

ˇGp∇µupyqq ´Gp∇µupxqq
ˇ

ˇdµpyq

`c

ˆ

µpQρpxqq

µpQλρpxqq
´ 1

˙

sup
|ξ|ďr

Gpξq

`2c

ˆ

µpQρpxqq

µpQλρpxqq
´ 1

˙

Gp∇µupxqq

`c

ˆ

µpQρpxqq

µpQλρpxqq
´ 1

˙

. (4.66)

As u P G, i.e. Gp∇µup¨qq P L
1
µpΩq, (and µ is a doubling measure) we can assert that

lim
ρ!0

´

ż

Qρpxq

ˇ

ˇGp∇µupyqq ´Gp∇µupxqq
ˇ

ˇdµpyq “ 0, (4.67)

and by (2.14) we have

lim
ρ!0

lim
t!8

´

ż

Qρpxq

atpy, ωqdµpyq “: a8px, ωq P r0,8r. (4.68)

Letting t! 8, σ ! 1´ and ρ! 0 in (4.66) and using (4.67) and (4.68) we see that

lim
ρ!0

mτux,ωpQρpxqq

µpQρpxqq
ď p1` εq

ˆ

lim
ρ!0

qmu,ωpQρpxqq

µpQρpxqq
` ε

˙

`ε lim
ρ!0

µpQρpxqq

µpQλρpxqq
a8px, ωq

`c

ˆ

lim
ρ!0

µpQρpxqq

µpQλρpxqq
´ 1

˙

sup
|ξ|ďr

Gpξq

`2c

ˆ

lim
ρ!0

µpQρpxqq

µpQλρpxqq
´ 1

˙

Gp∇µupxqq

`c

ˆ

lim
ρ!0

µpQρpxqq

µpQλρpxqq
´ 1

˙

. (4.69)

Letting τ ! 1´ and λ! 1´ in (4.69) and using (3.6) we conclude that

lim
τ!1´

lim
ρ!0

mτux,ωpQρpxqq

µpQρpxqq
ď p1` εq

ˆ

lim
ρ!0

qmu,ωpQρpxqq

µpQρpxqq
` ε

˙

` εa8px, ωq, (4.70)

and (4.53) follows by letting ε! 0.
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Substep 5-2: end of the proof of Theorem 2.11. Combining (4.47) with (4.53) and
(4.50) with (4.54) we get:

ΓpLpµq- lim
t!8

Etpu,A, ωq ě

ż

A

lim
τ!1´

lim
ρ!0

mτux,ωpQρpxqq

µpQρpxqq
dµpxq;

ΓpLpµq- lim
t!8

Etpu,A, ωq “

ż

A

lim
τ!1´

lim
ρ!0

mτux,ωpQρpxqq

µpQρpxqq
dµpxq

for all u P G and all A P OpΩq. On the other hand, given any u P G, it is easily seen that:

lim
τ!1´

lim
ρ!0

mτux,ωpQρpxqq

µpQρpxqq
“ lim

τ!1´
lim
ρ!0

lim
t!8

Hρ
µLtpx, τ∇µupxq, ωq;

lim
τ!1´

lim
ρ!0

mτux,ωpQρpxqq

µpQρpxqq
“ lim

τ!1´
lim
ρ!0

lim
t!8

Hρ
µLtpx, τ∇µupxq, ωq

for µ-a.a. x P Ω, and (2.15) and (2.16) follow. �

5. Proofs of the homogenization theorems

As the proof of Theorem 2.25 follows by the same method as in the proof of Theorem 2.34,
by using Theorem 3.33 instead of Theorem 3.42, we only give the proof of Theorem 2.34.

Proof of Theorem 2.34. The proof consists of applying Corollary 2.15. First of all, taking
Remarks 2.32 and 3.16 into account, it is easy to see that (2.5), (2.6), (2.7), (2.11), (2.12),
(2.13) and (2.14) are satisfied. So, we only need to prove that for P-a.e. ω P Σ and every
x P Ω, one has

lim
t!8

Hρ
µLtpx, ξ, ωq “ lim

t!8
Hρ
µLtpx, ξ, ωq “ Lhompξ, ωq for all ξ P G. (5.1)

Let ξ P G and let Sξ : Bµ,0pXq! L1pΣ, T ,Pq be defined by

SξpAqpωq :“ inf

"
ż

Å

Lpy, ξ `∇µwpyq, ωqdµpyq : w P H1,p
µ,0

`

Å;Rm
˘

*

,

where by (2.32) we have 0 ď SξpAqpωq ď cµ
`

Å
˘

ď cµpAq for all A P Bµ,0pXq and all ω P Σ

with c :“ βp1 ` Gpξqq (c ă 8 because ξ P G). In particular Sξ satisfies the boundedness
condition in (3.46). On the other hand, taking (2.34) into account, from (H2), we see that
for any Q P BapXq, any t ą 0 and any ω P Σ, one has

Sξ phtpQqq pωq “ inf

"
ż

htpQq

Lpy, ξ `∇µwpyq, ωqdµpyq : w P H1,p
µ,0phtpQq;Rm

q

*

“ inf

"
ż

Q

Lphtpyq, ξ `∇µwphtpyqq, ωqdph
´1
t q

7µpyq : w P H1,p
µ,0phtpQq;Rm

q

*

“ µphtpUqq inf

"
ż

Q

Ltpy, ξ `∇µwphtpyqq, ωqdµpyq : w P H1,p
µ,0phtpQq;Rm

q

*

.
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But µphtpUqqµpQq “ ph´1
t q

7µpQq “ µphtpQqq by using again (H2), and so from (H3) we obtain

Sξ phtpQqq pωq “ µphtpQqq inf

"

´

ż

Q

Ltpy, ξ `∇µwpyq, ωqdµpyq : w P H1,p
µ,0pQ;Rm

q

*

for all Q P BapXq, all t ą 0 and all ω P Σ. Consequently, we have:

lim
t!8

Hρ
µLtpx, ξ, ωq “ lim

t!8

Sξ phtpQρpxqqq pωq

µ phtpQρpxqq
; (5.2)

lim
t!8

Hρ
µLtpx, ξ, ωq “ lim

t!8

Sξ phtpQρpxqqq pωq

µ phtpQρpxqqq
(5.3)

for all x P Ω, all ρ ą 0 and P-a.a. ω P Σ. Moreover, from (H1) and (2.33) it easily seen
that the set function Sξ is G-covariant, and Sξ is also subadditive because, for each A,B P

Bµ,0pXq, µ
`

{̊AYBzpÅY B̊q
˘

“ 0 since {̊AYBzpÅY B̊q Ă BAY BB and µpBAq “ µpBBq “ 0.
Thus, taking (Hs

4) and (H5) into account, for every x P Ω and every ρ ą 0, we can apply
Theorem 3.42 with tUkukPN˚ “ thkpUqukPN˚ and tQtutą0 “ thtpQρpxqqutą0, and, noticing

that µphkpUqq “ µp{̊hkpUqq “ µphkpŮqq for all k P N˚, we conclude that

lim
t!8

Sξ phtpQρpxqqq pωq

µ phtpQρpxqqq
“ inf

kPN˚

EI
“

Sξ phkpUqq
‰

pωq

µphkpUqq

“ inf
kPN˚

EI

«

Sξ phkpUqq
µphkpŮqq

ff

pωq

“ Lhompξ, ωq,

for P-a.a. ω P Σ, and (5.1) follows from (5.2) and (5.3). �

A. Appendix

A.1. Proof of the integral representation of the Vitali envelope of a set function.
In this appendix we prove Theorem 3.29.

Proof of Theorem 3.29. First of all, from (a) we see that ´dµν ď d´µΘ ď d`µΘ ď dµν.

Hence d´µΘ, d`µΘ P L1
µpΩq because ν is a finite Radon measure which is absolutely continuous

with respect to the finite Radon measure µ. So λ´pAq, λ`pAq P R for all A P OpΩq, where
λ´, λ` : OpΩq! R are given by:

λ´pAq :“

ż

A

d´µΘpxqdµpxq;

λ`pAq :“

ż

A

d`µΘpxqdµpxq.

In what follows, we consider Θ
˚

: OpΩq! R defined by

Θ
˚
pAq :“ inf

εą0
sup

#

ÿ

iPI

ΘpQiq : tQiuiPI P VεpAq

+

. (A.1)
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(It is clear that Θ˚ ď Θ
˚
. In fact, we are going to prove that under the assumptions (a)

and (b) of Theorem 3.29 we have Θ˚pAq “ Θ
˚
pAq “

ş

A
dµΘpxqdµpxq for all A P OpΩq.) We

divide the proof into three steps.

Step 1: proving that Θ˚ “ λ´ and Θ
˚
“ λ`. Define θ´, θ` : OpΩq! R by:

θ´pAq :“ ΘpAq ´ λ´pAq;
θ`pAq :“ ΘpAq ´ λ`pAq.

In what follows, θ˚ (resp. θ
˚
) is defined by (3.41) (resp. (A.1)) with Θ replaced by θ´ (resp.

θ`).

Substep 1-1: an auxiliary lemma.

Lemma A.1. Under the assumption (a) of Theorem 3.29 we have θ˚ “ θ
˚
“ 0.

Proof of Lemma A.1. We only prove that θ˚ “ 0. (The proof of θ
˚
“ 0 follows from

similar arguments and is left to the reader.)
First of all, from the assumption (a) it is clear that

|θ´pAq| ď ν̂pAq (A.2)

for all A P OpΩq, where ν̂ :“ ν ` |ν| is absolutely continuous with respect to µ (with |ν|
denoting the total variation of ν).
Secondly, we can assert that

d´µ θ
´
“ 0, (A.3)

where for any set function s : OpΩq! R, the function d´µ s : Ω ! r´8,8r (resp. d`µ s : Ω !
s ´ 8,8s) is defined by (3.38) (resp. (3.39)) with Θ replaced by s. Indeed, for any x P X,
it is easily seen that

d´µΘpx, ρq ´ d`µλ
´
px, ρq ď d´µ θ

´
px, ρq ď d´µΘpx, ρq ´ d´µλ

´
px, ρq.

for all ρ ą 0, and letting ρ! 0, we obtain

d´µΘpxq ´ d`µλ
´
pxq ď d´µ θ

´
pxq ď d´µΘpxq ´ d´µλ

´
pxq.

But d´µλ
´pxq “ d`µλ

´pxq “ d´µΘpxq, hence d´µ θ
´pxq “ 0.

Finally, to conclude we prove that (A.2) and (A.3) imply θ˚ “ 0. For this, we are going to
prove the following two assertions:

if d´µ θ
´ ď 0 then θ˚ ď 0; (A.4)

under (A.2), if d´µ θ
´ ě 0 then θ˚ ě 0. (A.5)

Proof of (A.4). Fix A P OpΩq. Fix any ε ą 0. Then d´µ θ
´ ă ε, and so in particular

limρ!0 d
´
µ θ
´px, ρq ă ε for all x P A. Hence, for each x P A there exists tρx,nun Ăs0, εr with

ρx,n ! 0 as n ! 8 such that d´µ θ
´px, ρx,nq ă ε for all n ě 1. Taking Remark 3.27 into

account, it follows that for each x P A and each n ě 1 there is Qx,n P BapA, x, ρx,nq such
that for each x P A and each n ě 1,

θ´pQx,nq

µpQx,nq
ă ε. (A.6)



58 OMAR ANZA HAFSA AND JEAN-PHILIPPE MANDALLENA

Moreover, since diam
`

Qx,n

˘

“ diampQx,nq ď ρx,n for all x P A and all n ě 1, we have

inf
 

diam
`

Qx,n

˘

: n ě 1
(

“ 0 (where Qx,n denotes the closed ball corresponding to the open
ball Qx,n). Let F0 be the family of closed balls of Ω given by

F0 :“
!

Qx,n : x P A and n ě 1
)

.

As Ω satisfies the Vitali covering theorem, from the above we deduce that there exists a
disjoint countable subfamily tQiuiPI0 of closed balls of F0 (with Qi Ă A, µpBQiq “ 0 and
diampQiq Ps0, εr) such that µ

`

Az YiPI0 Qi

˘

“ 0, which means that tQiuiPI0 P VεpAq. From
(A.6) we see that θ´pQiq ă εµpQiq for all i P I0, hence

ÿ

iPI0

θ´pQiq ď ε
ÿ

iPI0

µpQiq “ εµpAq.

Consequently θ´,εpAq ď εµpAq for all ε ą 0, where θ´,ε is defined by (3.40) with Θ replaced
by θ´, and letting ε! 0 we obtain θ˚pAq ď 0.

Proof of (A.5). Fix A P OpΩq. By Egorov’s theorem, there exists a sequence tBnun of
Borel subsets of A such that:

lim
n!8

µpAzBnq “ 0; (A.7)

lim
ε!0

sup
xPBn

ˇ

ˇd´µ θ
´
pxq ´ d´µ θ

´
px, εq

ˇ

ˇ “ 0 for all n ě 1. (A.8)

As ν̂ is absolutely continuous with respect to µ, by (A.7) we have

lim
n!8

ν̂pAzBnq “ 0. (A.9)

Moreover, as d´µ θ
´ ě 0, from (A.8) we deduce that

lim
ε!0

inf
xPBn

d´µ θ
´
px, εq ě 0 for all n ě 1. (A.10)

Fix any n ě 1 and any ε ą 0. By definition of θ´,ε, there exists tQiuiPI P VεpAq such that

θ´,εpAq ą
ÿ

iPI

θ´pQiq ´ ε. (A.11)

Set In :“
 

i P I : Qi XBn ­“ H
(

. Using (A.2) we have
ÿ

iPI

θ´pQiq “
ÿ

iPIn

θ´pQiq `
ÿ

iPIzIn

θ´pQiq ě
ÿ

iPIn

θ´pQiq ´
ÿ

iPIzIn

ν̂pQiq

ě
ÿ

iPIn

θ´pQiq

µpQiq
µpQiq ´ ν̂

ˆ

Y
iPIzIn

Qi

˙

,

and, choosing xi P Qi X Bn for each i P In and noticing that YiPIzIn Qi Ă AzBn, it follows
that

ÿ

iPI

θ´pQiq ě
ÿ

iPIn

d´µ θ
´
pxi, εqµpQiq ´ ν̂pAzBnq

ě inf
xPBn

d´µ θ
´
px, εq

ÿ

iPIn

µpQiq ´ ν̂pAzBnq.
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Taking (A.11) into account, we conclude that

θ´,εpAq ě inf
xPBn

d´µ θ
´
px, εq

ÿ

iPIn

µpQiq ´ ν̂pAzBnq ´ ε

for all ε ą 0 and all n ě 1, which gives θ˚pAq ě 0 by letting ε ! 0 and using (A.10) and
then by letting n! 8 and using (A.9). �

Substep 1-2: using Lemma A.1. As λ´ and λ` are absolutely continuous with respect
to µ, it is easy to see that:

θ˚ “ Θ˚ ´ λ´;
θ
˚
“ Θ

˚
´ λ`.

Hence Θ˚ “ λ´ and Θ
˚
“ λ` by Lemma A.1.

Step 2: proving that Θ˚ “ Θ
˚
. We only need to prove that Θ

˚
ď Θ˚. For this, it is

sufficient to show that for each open ball Q of Ω with µpBQq “ 0, one has

ΘpQq ď Θ˚
pQq. (A.12)

Fix any ε ą 0. By definition of Θε, there exists tQiuiPI P VεpQq such that
ÿ

iPI

ΘpQiq ď Θε
pQq ` ε. (A.13)

Since µ
`

Qz YiPI Qi

˘

“ 0 there is a sequence tInun of finite subsets of I such that

lim
n!8

µ

ˆ

Qz Y
iPIn

Qi

˙

“ lim
n!8

µ

ˆ

Y
iPIzIn

Qi

˙

“ 0. (A.14)

Fix any n ě 1. As Θ is subadditive by assumption (b), we have

Θ

ˆ

Y
iPIn

Qi

˙

ď
ÿ

iPIn

ΘpQiq.

Moreover, µ
`

Qz
“

pYiPInQiq Y pQzYiPInQiq
‰˘

“ 0 because µpBQiq “ 0 for all i P In, so that

ΘpQq ď Θ

ˆ

Y
iPIn

Qi

˙

`Θ

ˆ

Qz Y
iPIn

Qi

˙

by using again the subadditivity of Θ, and consequently
ÿ

iPIn

ΘpQiq ě ΘpQq ´Θ

ˆ

Qz Y
iPIn

Qi

˙

.

Thus, using the assumption (a), we get
ÿ

iPI

ΘpQiq “
ÿ

iPIzIn

ΘpQiq `
ÿ

iPIn

ΘpQiq

ě
ÿ

iPIzIn

ΘpQiq `ΘpQq ´Θ

ˆ

Qz Y
iPIn

Qi

˙

ě ΘpQq ´ ν

ˆ

Y
iPIzIn

Qi

˙

´ ν

ˆ

Qz Y
iPIn

Qi

˙

.
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But, νpBQiq “ 0 for all i P In because ν is absolutely with respect to µ, so that

ν

ˆ

Qz Y
iPIn

Qi

˙

“ ν

ˆ

Qz Y
iPIn

Qi

˙

“ ν

ˆ

Y
iPIzIn

Qi

˙

,

and thus
ÿ

iPI

ΘpQiq ě ΘpQq ´ 2ν

ˆ

Y
iPIzIn

Qi

˙

. (A.15)

Combining (A.13) with (A.15) we conclude that

ΘpQq ď Θε
pQq ` 2ν

ˆ

Y
iPIzIn

Qi

˙

` ε,

and (A.12) follows by letting n! 8 and using (A.14) and then by letting ε! 0.

Step 3: end of the proof of Theorem 3.29. From steps 1 and 2 we have
ż

Ω

d´µΘpxqdµpxq “ Θ˚
pΩq “ Θ

˚
pΩq “

ż

X

d`µΘpxqdµpxq.

Thus
ş

Ω
pd`µΘpxq ´ d´µΘpxqqdµpxq “ 0. But d`µΘ ě d´µΘ, i.e. d`µΘ ´ d´µΘ ě 0, hence

d`µΘ´ d´µΘ “ 0, i.e. d`µΘ “ d´µΘ, and the proof of Theorem 3.29 is complete. �

A.2. Proofs of the subadditive theorems. In this appendix we prove Theorem 3.33 (see
§A.2.1) and Theorem 3.42 (see §A.2.2).

A.2.1. The deterministic case. Here we prove Theorem 3.33.

Proof of Theorem 3.33. First of all, let tkjujPN˚ be such that

lim
j!8

SpUkjq

µpUkjq
“ inf

kPN˚

SpUkq

µpUkq
. (A.16)

We divide the proof into three steps.

Step 1: establishing lower bound and upper bound. Fix any j P N˚ and any t ą 0
and set:

Q´t,j :“ Y
gPG´t,kj

g´1
pUkjq;

Q`t,j :“ Y
gPG`t,kj

g´1
pUkjq,

where G´t,kj , G
`
t,kj
P PfpGkjq with Gkj P UkjpGq given by Definition 3.31.

Substep 1-1: lower bound. By the right inclusion in (3.42) we have Qt Ă Q`t,j and so

Q`t,j “ Qt Y pQ
`
t,jzQtq. Hence

S
`

Q`t,j
˘

ď S pQtq ` S
`

Q`t,jzQt

˘

,

and consequently
S
`

Q`t,j
˘

µ
`

Q`t,j
˘ ď

S pQtq

µ pQtq
`

S
`

Q`t,jzQt

˘

µ pQtq
.
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As Q´t,j Ă Qt by the left inclusion in (3.42), we see that Q`t,jzQt Ă Q`t,jzQ
´
t,j and so

S
`

Q`t,jzQt

˘

ď cµ
`

Q`t,jzQ
´
t,j

˘

with c ą 0 given by (3.46). It follows that

S
`

Q`t,j
˘

µ
`

Q`t,j
˘ ď

S pQtq

µ pQtq
`
cµ

`

Q`t,jzQ
´
t,j

˘

µ pQtq
.

Letting t! 8 and using (3.43) we obtain

lj :“ lim
t!8

S
`

Q`t,j
˘

µ
`

Q`t,j
˘ ď lim

t!8

SpQtq

µpQtq
“: l. (A.17)

Substep 1-2: upper bound. By the left inclusion in (3.42) we have Q´t,j Ă Qt and so

Qt “ Q´t,j Y pQtzQ
´
t,jq. Hence

SpQtq ď S
`

Q´t,j
˘

` S
`

QtzQ
´
t,j

˘

,

and consequently

SpQtq

µpQtq
ď

S
`

Q´t,j
˘

µ
`

Q´t,j
˘

µ
`

Q´t,j
˘

µpQtq
`

S
`

QtzQ
´
t,j

˘

µpQtq
.

As Qt Ă Q`t,j by the right inclusion in (3.42), we see that QtzQ
´
t,j Ă Q`t,jzQ

´
t,j and so

S
`

QtzQ
´
t,j

˘

ď cµ
`

Q`t,jzQ
´
t,j

˘

with c ą 0 given by (3.46). It follows that

SpQtq

µpQtq
ď

S
`

Q´t,j
˘

µ
`

Q´t,j
˘

µ
`

Q´t,j
˘

µpQtq
`
cµ

`

Q`t,jzQ
´
t,j

˘

µpQtq

ď
S
`

Q´t,j
˘

µ
`

Q´t,j
˘ `

cµ
`

Q`t,jzQ
´
t,j

˘

µpQtq

because µ
`

Q´t,j
˘

ď µpQtq since Q´t,j Ă Qt. Letting t! 8 and using (3.43) we obtain

l :“ lim
t!8

SpQtq

µpQtq
ď lim

t!8

S
`

Q´t,j
˘

µ
`

Q´t,j
˘ “: lj. (A.18)

Step 2: we prove that l “ ll “ ll “ l. It is sufficient to prove that for each ε ą 0, one has

l ´ l ă ε. (A.19)

Fix ε ą 0. From (A.17) and (A.18) we see that l´ l ď lj ´ lj. So, to prove (A.19) it suffices
to show that there exists j P N˚ such that

lj ´ lj ă ε. (A.20)

Let Sj : PfpGkjq! R be defined by

SjpEq :“
1

µpUkjq

„

S
´

Y
gPE

g´1
pUkjq

¯

´ |E|SpUkjq



. (A.21)
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As S is subadditive, we can assert that Sj is negative, i.e.

SjpEq “
1

µpUkjq

„

S
´

Y
gPE

g´1
pUkjq

¯

´ |E|SpUkjq



ď 0 (A.22)

for all E P PfpGkjq. Moreover, it is easily seen that Sj is decreasing, i.e. for all E,F P

PfpGkjq, if E Ă F then SjpEq ě SjpF q. Consider mt,kj P N˚, gt,kj P G and Ft,kj P PfpGkjq

given by Definition 3.31. From (3.44) it follows that

Sj
´

G`t,kj

¯

ě Sj
`

Ft,kj
˘

“
1

µpUkjq

«

S
´

Y
gPFt,kj

g´1
pUkjq

¯

´
ˇ

ˇFt,kj
ˇ

ˇSpUkjq

ff

“
1

µpUkjq

”

S
`

g´1
t,kj
pUmt,kj

q
˘

´
ˇ

ˇFt,kj
ˇ

ˇSpUkjq

ı

.

Hence, since 1
|G`t,kj

|
ě 1

|Ft,kj |
and S and µ are G-invariant, we get

Sj
´

G`t,kj

¯

ˇ

ˇG`t,kj
ˇ

ˇ

ě
1

|G`t,kj
ˇ

ˇµpUkjq

”

S
`

g´1
t,kj
pUmt,kj

q
˘

´
ˇ

ˇFt,kj
ˇ

ˇSpUkjq

ı

ě
S
`

g´1
t,kj
pUmt,kj

q
˘

|Ft,kj
ˇ

ˇµpUkjq
´

ˇ

ˇFt,kj
ˇ

ˇ

ˇ

ˇG`t,kj
ˇ

ˇ

SpUkjq

µpUkjq

“
S
`

g´1
t,kj
pUmt,kj

q
˘

µ
`

g´1
t,kj
pUmt,kj

q
˘ ´

ˇ

ˇFt,kj
ˇ

ˇ

ˇ

ˇG`t,kj
ˇ

ˇ

SpUkjq

µpUkjq

“
S
`

Umt,kj

˘

µ
`

Umt,kj

˘ ´

ˇ

ˇFt,kj
ˇ

ˇ

ˇ

ˇG`t,kj
ˇ

ˇ

SpUkjq

µpUkjq

ě inf
kPN˚

SpUkq

µpUkq
´

ˇ

ˇFt,kj
ˇ

ˇ

ˇ

ˇG`t,kj
ˇ

ˇ

SpUkjq

µpUkjq
.

Letting t! 8 and taking (3.45) into account, we deduce that

lim
t!8

Sj
´

G`t,kj

¯

ˇ

ˇG`t,kj
ˇ

ˇ

ě inf
kPN˚

SpUkq

µpUkq
´

SpUkjq

µpUkjq
. (A.23)

By (A.16) we can assert that there exists jε P N˚ such that for all j ě jε, one has

SpUkjq

µpUkjq
´ inf

kPN˚

SpUkq

µpUkq
ă ε. (A.24)

Combining (A.23) with (A.24) we conclude that

lim
t!8

Sj
´

G`t,kj

¯

ˇ

ˇG`t,kj
ˇ

ˇ

ą ´ε (A.25)
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for all j ě jε. On the other hand, by using (A.21) with E “ G`t,kj and (A.22) with E “ G´t,kj
we get:

S
`

Q`t,j
˘

µ
`

Q`t,j
˘ ´

SpUkjq

µpUkjq
“

Sj
´

G`t,kj

¯

ˇ

ˇG`t,kj
ˇ

ˇ

; (A.26)

S
`

Q´t,j
˘

µ
`

Q´t,j
˘ ´

SpUkjq

µpUkjq
ď 0. (A.27)

Letting t! 8 in (A.26) and (A.27) and taking (A.25) into account, we deduce that:

lj ´
SpUkjq

µpUkjq
ą ´ε for all j ě jε; (A.28)

lj ´
SpUkjq

µpUkjq
ď 0 for all j P N˚, (A.29)

and (A.20) follows with j “ jε. We set l :“ l “ l and γ :“ infkPN˚
SpUkq
µpUkq

.

Step 3: we prove that l “ γl “ γl “ γ. Combining (A.18) with (A.29) we see that l ď
SpUkj q
µpUkj q

for

all j P N˚, and so l ď γ by letting j ! 8 and using (A.16). On the other hand, combining

(A.17) with (A.28) we see that l ą ´ε `
SpUkj q
µpUkj q

for all j ě jε. Letting j ! 8 and using

(A.16) we deduce that l ě ´ε` γ for all ε ą 0, and so l ě γ by letting ε! 0. �

A.2.2. The stochastic case. Here we prove Theorem 3.42.

Proof of Theorem 3.42. The proof is divided into four steps.

Step 1: establishing lower bound and upper bound. Fix any k P N˚ and any t ą 0
and set:

Q´t,k :“ Y
gPG´t,k

g´1
pUkq;

Q`t,k :“ Y
gPG`t,k

g´1
pUkq,

where G´t,k, G
`
t,k P PfpGkq with Gk P Ua

k pGq given by Definition 3.37. Arguing as in Step 1 of
the proof of Theorem 3.33, for each ω P Σ, we get:

lkpωq :“ lim
t!8

S
`

Q`t,k
˘

pωq

µ
`

Q`t,k
˘ ď lim

t!8

SpQtqpωq

µpQtq
“: lpωq (A.30)

lpωq :“ lim
t!8

SpQtqpωq

µpQtq
ď lim

t!8

S
`

Q´t,k
˘

pωq

µ
`

Q´t,k
˘ “: lkpωq. (A.31)

Remark A.2. Arguing as in Step 1-1 of the proof of Theorem 3.33, we see that we also have

lim
t!8

S
`

Q`t,k
˘

pωq

µ
`

Q`t,k
˘ ď lpωq (A.32)

for all ω P Σ. (This is used in Step 3.)
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Step 2: we prove that lpωq “ lpωqlpωq “ lpωqlpωq “ lpωq for PPP-a.a. ω P Σω P Σω P Σ. It is sufficient to prove that for each
α ą 0, one has

P
´!

ω P Σ : lpωq ´ lpωq ą α
)¯

“ 0. (A.33)

Fix α ą 0. From (A.30) and (A.31) we see that for each k P N˚, one has

!

ω P Σ : lpωq ´ lpωq ą α
)

Ă

!

ω P Σ : lkpωq ´ lkpωq ą α
)

“: Wk,α. (A.34)

So, to prove (A.33) it suffices to show that for each ε ą 0 there exists k P N˚ such that

PpWk,αq ď
Mk

α
ε, (A.35)

where Mk ą 0 is the Tempelman constant associated with tG`t,kutą0. Fix ε ą 0.

Substep 2-1: constructing a decreasing negative subadditive process on PfpGkqPfpGkqPfpGkq.
Let Ak : PfpGkq! L1pΣ, T ,Pq be defined by

AkpEq :“
ÿ

gPE

S pUkq oτg,

where Gk P Ua
k pGq is (a countable discrete and amenable subgroup of G) given by Definition

3.37, and let Sk : PfpGkq! L1pΣ, T ,Pq be defined by

SkpEq :“
1

µ pUkq

„

S
´

Y
gPE

g´1
pUkq

¯

´AkpEq



. (A.36)

As S is subadditive and G-covariant (and so Gk-covariant) and Ak is additive and Gk-
covariant, we can assert that Sk is a subadditive process4 on PfpGkq which is negative, i.e.

SkpEqpωq “
1

µ pUkq

„

S
´

Y
gPE

g´1
pUkq

¯

pωq ´AkpEqpωq



ď 0 (A.37)

for all E P PfpGkq and all ω P Σ. Moreover, it is easily seen that Sk is decreasing, i.e. for all
E,F P PfpGkq, if E Ă F then SkpEq ě SkpF q. Consider mt,k P N˚, gt,k P G and Ft,k P PfpGkq

given by Definition 3.37. From (3.44) it follows that

Sk
`

G`t,k
˘

ě Sk pFt,kq “
1

µpUkq

„

S
´

Y
gPFt,k

g´1
pUkq

¯

´Ak pFt,kq



“
1

µ pUkq

“

S
`

g´1
t,k

`

Umt,k

˘˘

´Ak pFt,kq
‰

.

4The set function Sk : PfpGkq ! L1pΣ, T ,Pq is said to be a subadditive process on PfpGkq if it is
subadditive, i.e. SkpEYF q ď SkpEq`SkpF q for all E,F P PfpGkq such that EXF “ H, and Gk-covariant,
i.e. SkpEgq “ SkpEqoτg for all E P PfpGkq and all g P Gk.
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By using the G-covariance of S we see that
ż

Σ

Sk
`

G`t,k
˘

pωqdPpωq ě
1

µ pUkq

„
ż

Σ

S
`

g´1
t,k

`

Umt,k

˘˘

pωqdPpωq ´
ż

Σ

Ak pFt,kq pωqdPpωq


“
1

µ pUkq

„
ż

Σ

S
`

Umt,k

˘

pωqdPpωq ´
ˇ

ˇFt,k
ˇ

ˇErS pUkqs



“
E
“

S
`

Umt,k

˘‰

µ pUkq
´
ˇ

ˇFt,k
ˇ

ˇ

ErS pUkqs

µ pUkq
.

Consequently, since 1
|G`t,k|

ě 1
|Ft,k|

and µ is G-invariant, we get

ErSj
`

G`t,k
˘

s
ˇ

ˇG`t,k
ˇ

ˇ

ě
E
“

S
`

Umt,k

˘‰

µ
`

Umt,k

˘ ´

ˇ

ˇFt,k
ˇ

ˇ

ˇ

ˇG`t,k
ˇ

ˇ

ErSpUkqs

µpUkq

ě inf
mPN˚

ErSpUmqs

µpUmq
´

ˇ

ˇFt,k
ˇ

ˇ

ˇ

ˇG`t,k
ˇ

ˇ

ErSpUkqs

µpUkq
.

Letting t! 8 and taking (3.45) into account, we deduce that

lim
t!8

ErSk
`

G`t,k
˘

s
ˇ

ˇG`t,k
ˇ

ˇ

ě inf
mPN˚

ErSpUmqs

µpUmq
´

ErSpUkqs

µpUkq
. (A.38)

As S is subadditive and G-covariant, we see that the set function ErSp¨qs is subadditive and
G-invariant. From Proposition 3.35 it follows that there exists kε P N˚ such that for all
k ě kε, one has

ErSpUkqs

µpUkq
´ inf

mPN˚

ErSpUmqs

µpUmq
ă ε. (A.39)

Combining (A.38) with (A.39) we conclude that

lim
t!8

E
“

Sk
`

G`t,k
˘‰

ˇ

ˇG`t,k
ˇ

ˇ

ą ´ε (A.40)

for all k ě kε.

Substep 2-2: using Lindenstrauss’s ergodic theorem. We need the following pointwise
additive ergodic theorem5 due to Lindenstrauss (see [Lin01, Theorem 1.2] and also [DGZ14,
Theorem 2.1]).

Theorem A.3. Let Θ P L1pΣ, T ,Pq and let tGtutą0 Ă PfpGkq. If tGtutą0 is of Følner-
Tempelman type with respect to Gk then

lim
t!8

1

|Gt|

ÿ

gPGt

Θ
`

τgpωq
˘

“ EIGk rΘspωq for P-a.a ω P Σ,

where IGk is the σ-algebra of invariant sets with respect to pΣ, T ,P, tτgugPGkq and EIGk rΘs
denotes the conditional expectation over IGk with respect to P.

5Lindenstrauss’s ergodic theorem is established under the weaker condition that tGtutą0 is of tempered
Følner type (see [Lin01, Definition 1.1] and [DGZ14, §2] for more details). The tempered Følner condition
implies the Følner-Tempelman condition, but the converse is not true (see [Lin01, DGZ14]).
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As tG´t,kutą0 and tG`t,kutą0 are of Følner-Tempelman type with respect to Gk, applying The-

orem A.3 with Θ “ SpUkq we deduce that there exists pΣ P T with PppΣq “ 1 such that

lim
t!8

Ak

`

G´t,k
˘

pωq
ˇ

ˇG´t,k
ˇ

ˇ

“ lim
t!8

Ak

`

G`t,k
˘

pωq
ˇ

ˇG`t,k
ˇ

ˇ

“ EIGk rSpUkqspωq for all ω P pΣ. (A.41)

On the other hand, by using (A.36) with E “ G`t,k and (A.37) with E “ G´t,k we get:

S
`

Q`t,k
˘

pωq

µ
`

Q`t,k
˘ ´

1

µpUkq

Ak

`

G`t,k
˘

pωq
ˇ

ˇG`t,k
ˇ

ˇ

“
Sk
`

G`t,k
˘

pωq
ˇ

ˇG`t,k
ˇ

ˇ

ě inf
są0

Sk
`

G`s,k
˘

pωq
ˇ

ˇG`s,k
ˇ

ˇ

; (A.42)

S
`

Q´t,k
˘

pωq

µ
`

Q´t,k
˘ ´

1

µpUkq

Ak

`

G´t,k
˘

pωq
ˇ

ˇG´t,k
ˇ

ˇ

ď 0

for all ω P Σ. Letting t! 8 we deduce that:

lkpωq ´
EIGk rSpUkqspωq

µpUkq
ě inf

tą0

Sk
`

G`t,k
˘

pωq
ˇ

ˇG`t,k
ˇ

ˇ

for all k P N˚ and all ω P pΣ; (A.43)

lkpωq ´
EIGk rSpUkqspωq

µpUkq
ď 0 for all k P N˚ and all ω P pΣ; . (A.44)

In what follows, without loss of generality, we assume that pΣ “ Σ.

Substep 2-3: using a maximal inequality. We need the following lemma (see [DGZ14,
Lemma 3.5] and also [AK81, Theorem 4.2]).

Lemma A.4. Let K : PfpGkq ! L1pΣ, T ,Pq be a negative subadditive process and let
tGtutą0 Ă PfpGkq. Fix α ą 0 and consider V K

α P T given by

V K
α :“

"

ω P Σ : inf
tą0

KpGt

˘

pωq

|Gt|
ă ´α

*

.

If tGtutą0 is of Følner-Tempelman type with respect to Gk then

P
`

V K
α

˘

ď ´
M

α
lim
t!8

ErKpGtqs

|Gt|
,

where M ą 0 is the Templeman constant associated with tGtutą0.

As Sk : PfpGkq ! L1pΣ, T ,Pq defined by (A.36) is a negative subadditive process, we can
apply Theorem A.4 with K “ Sk. Hence, since tG`t,kutą0 is of Følner-Tempelman type with
respect to Gk, one has

P
`

V Sk
α

˘

ď ´
Mk

α
lim
t!8

ErSk
`

G`t,k
˘

s
ˇ

ˇG`t,k
ˇ

ˇ

,

where Mk ą 0 is the Templeman constant associated with tG`t,kutą0. Consequently, taking
(A.40) into account, we get

P
`

V Sk
α

˘

ď
Mk

α
ε for all k ě kε. (A.45)
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Substep 2-4: end of Step 2. From (A.43) and (A.44) it follows that

lk ´ lk ď ´ inf
tą0

Sk
`

G`t,k
˘

ˇ

ˇG`t,k
ˇ

ˇ

.

Hence Wk,α Ă V Sk
α , where Wk,α is defined in (A.34). From (A.45) we conclude that (A.35)

is satisfied with k “ kε.

In what follows we set l :“ l “ l and γ :“ inf
kPN˚

γk with γk :“ EIGk rSpUkqs
µpUkq

for all k P N˚.

Step 3: we prove that lpωq “ γpωqlpωq “ γpωqlpωq “ γpωq for PPP-a.a. ω P Σω P Σω P Σ. First of all, from (A.31) and (A.44)
we see that lpωq ď γkpωq for P-a.a. ω P Σ and all k P N˚, and so

lpωq ď γpωq for P-a.a. ω P Σ. (A.46)

On the other hand, letting t! 8 in (A.42) and using (A.41) we get

lim
t!8

S
`

Q`t,k
˘

pωq

µ
`

Q`t,k
˘ ´ γkpωq ě lim

t!8

Sk
`

G`t,k
˘

pωq
ˇ

ˇG`t,k
ˇ

ˇ

for P-a.a. ω P Σ

and so, taking (A.32) into account, one has

lpωq ´ γk ě lim
t!8

Sk
`

G`t,k
˘

pωq
ˇ

ˇG`t,k
ˇ

ˇ

for P-a.a. ω P Σ.

It follows that
ż

Σ

rlpωq ´ γks dPpωq ě
ż

Σ

lim
t!8

Sk
`

G`t,k
˘

pωq
ˇ

ˇG`t,k
ˇ

ˇ

dPpωq.

But, by using Fatou’s lemma and (A.40) we see that for any k ě kε, one has

ż

Σ

lim
t!8

Sk
`

G`t,k
˘

pωq
ˇ

ˇG`t,k
ˇ

ˇ

dPpωq ą ´ε, (A.47)

and consequently
ż

Σ

lpωqdPpωq ě

ż

Σ

γkpωqdPpωq ´ ε

ě

ż

Σ

γpωqdPpωq ´ ε.

Letting ε! 0 we deduce that
ż

Σ

rlpωq ´ γpωqs dPpωq ě 0, (A.48)

and the result follows by combining (A.46) with (A.48).

In what follows, we set γI :“ inf
kPN˚

γIk with γIk :“ EIrSpUkqs
µpUkq

for all k P N˚.
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Step 4: we prove that lpωq “ γIpωqlpωq “ γIpωqlpωq “ γIpωq for PPP-a.a. ω P Σω P Σω P Σ. Since γk is IGk-measurable for all
k P N˚, γ “ infkPN˚ γk is XkPN˚IGk-measurable. But XkPN˚IGk “ I because YkPN˚Gk “ G,
hence γ is I-measurable and so l is I-measurable by Step 3. It follows that

EI
rls “ l. (A.49)

As I Ă IGk for all k P N˚ we also have

EI
rγks “ γIk for all k P N˚. (A.50)

Arguing as in Step 3, for each k P N˚, we have l ď γk hence EIrls ď EIrγks and so l ď γIk by
using (A.49) and (A.50). Consequently

l ď γI . (A.51)

Fix any E P I. Arguing again as in Step 3 we see that for any k ě kε, one has
ż

E

lpωqdPpωq ě
ż

E

γkpωqdPpωq ´ ε.

But
ş

E
γkpωqdPpωq “

ş

E
EIrγkspωqdPpωq by definition of the conditional expectation, hence

ş

E
γkpωqdPpωq “

ş

E
γIk pωqdPpωq by (A.50), and so

ż

E

lpωqdPpωq ě

ż

E

γIk pωqdPpωq ´ ε

ě

ż

E

γIpωqdPpωq ´ ε.

Letting ε! 0 we get
ż

E

lpωqdPpωq ě
ż

E

γIpωqdPpωq for all E P I. (A.52)

Combining (A.51) with (A.52) we deduce that
ż

E

lpωqdPpωq “
ż

E

γIpωqdPpωq for all E P I,

which implies that l “ EIrγIs by unicity of the conditional expectation. But γI is I-
measurable because γIk is I-measurable for all k P N˚, hence EIrγIs “ γI and consequently
l “ γI . �
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[BH99] Martin R. Bridson and André Haefliger. Metric spaces of non-positive curvature, volume 319
of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences]. Springer-Verlag, Berlin, 1999.
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