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ΓΓΓ-CONVERGENCE OF NONCONVEX UNBOUNDED INTEGRALS IN
CHEEGER-SOBOLEV SPACES

OMAR ANZA HAFSA AND JEAN-PHILIPPE MANDALLENA

Abstract. We study Γ-convergence of nonconvex integrals of the calculus of variations in
the setting of Cheeger-Sobolev spaces when the integrands have not polynomial growth and
can take infinite values. Applications to relaxation and homogenization are also developed.
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1. Introduction

Let pX, d, µq be a metric measure space, where pX, dq is separable and complete and µ is a
doubling positive Radon measure onX which satisfies the annular decay property, supporting
a weak p1, pq-Poincaré inequality with p ą 1. Let m,N ě 1 be two integers, let O Ă X be
a bounded open set such that µpOzOq “ 0 and let pΩ,F,Pq be a probability space. In this
paper we consider a family of stochastic integrals Et : H1,p

µ pO;Rmq ˆΩ ! r0,8s defined by

Etpu, ωq :“

ż

O

Lt
`

x,∇µupxq, ω
˘

dµpxq, (1.1)

where Lt : O ˆMˆ Ω ! r0,8s is a Borel measurable stochastic integrand1 depending on a
parameter t ą 0, not necessarily convex with respect to ξ P M, where M denotes the space
of real mˆN matrices, and possibly taking infinite values. The space H1,p

µ pO;Rmq denotes
the class of p-Cheeger-Sobolev functions from Ω to Rm and ∇µu is the µ-gradient of u.

The object of the present paper is to deal with the problem of computing the almost sure
Γ-convergence (see Definitions 2.1) of the stochastic family tEtutą0, as t! 8, to a stochastic
integral Elim : H1,p

µ pO;Rmq ˆ Ω ! r0,8s of the type

Elimpu, ωq “

ż

O

Llim

`

x,∇µupxq, ω
˘

dµpxq (1.2)

with Llim : OˆMˆΩ ! r0,8s not depending on the parameter t. When Llim is independent
of the variable x, the procedure of passing from (1.1) to (1.2) is referred to as stochastic
homogenization. If furthermore Llim is independent of the variable ω then Elim is said to be
deterministic, otherwise Elim is said to be stochastic. When tLtutą0 is deterministic, i.e. Lt
is independent of the variable ω for all t ą 0, the procedure of passing from (1.1) to (1.2) is
referred to as deterministic homogenization.

In the case where Lt has p-growth, this Γ-convergence problem was already studied in
[AHM17] and in [MPSC20, MPC21] for functionals depending on vector fields. Here we
treat the case where Lt has not necessarily p-growth and can take infinite values (see Section
2 for more details).

In the Euclidean case, i.e. when pX, d, µq “ pRN , | ¨ ´ ¨ |,LNq where LN is the Lebesgue
measure on RN , Γ-convergence of unbounded integrals was studied by Carbone and De
Arcangelis in [CCDAG02, CCDAG04, CDA02] for the scalar case, i.e. when m “ 1, and in
[AHM11, AHMZ15, DG16, AHM21] (see also [AHLM11, AHCM17]) for the vector case, i.e.
when m ą 1.

One motivation for developing Γ-convergence, and more generally calculus of variations, in
the setting of metric measure spaces comes from applications to hyperelasticity. In fact,
the interest of considering a general measure is that its support can be interpreted as a hy-
perelastic structure together with its singularities like for example thin dimensions, corners,

1Throughout the paper, by a Borel measurable stochastic integrand L : OˆMˆΩ ! r0,8s we mean that
L is pBpXqbBpMqbF,BpRqq-measurable, where BpXq, BpMq and BpRq denote the Borel σ-algebra on
X, M and R respectively.
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junctions, etc. Such mechanical “singular” objects naturally lead to develop calculus of vari-
ations in the setting of metric measure spaces. Indeed, for example, a low multi-dimensional
structures can be described by a finite number of smooth compact manifolds Si of dimension
ki on which a superficial measure µi “ H ki |Si is attached. Such a situation leads to deal with
the finite union of manifolds Si, i.e. X “ YiSi, together with the finite sum of measures µi,
i.e. µ “

ř

i µi, whose mathematical framework is that of metric measure spaces (for more
examples, we refer the reader to [BBS97, Zhi02, CJLP02] and [CPS07, Chapter 2, §10] and
the references therein).

Another motivation is the development of the calculus of variations on “singular” spaces,
which are of interest for geometers and physicists, like Carnot groups, glued spaces, Laakso
spaces, Bourdon-Pajot spaces, Gromov-Hausdorff limit spaces, spaces satisfying generalized
Ricci bounds (see [KM16] for more details). Indeed, all these spaces are examples of doubling
metric measure spaces satisfying a Poincaré inequality on which the theory of Γ-convergence
on Cheeger-Sobolev spaces could be applied.

The plan of the paper is as follows. In Section 2 we state the main result of the paper,
see Theorem 2.5 (and also Proposition 2.8 whose proof is given at the end of Section 2).
Theorem 2.5 is a Γ-convergence result of tEtutą0 as t ! 8 to Elim in the setting of metric
measure spaces and in a unbounded framework. Classically, its proof is a consequence of
Proposition 2.6 (the lower bound) and Proposition 2.7 (the upper bound). Section 3 is
devoted to several auxiliary definitions and results needed for understanding and proving
our Γ-convergence result: in Subsection 3.1 we provide materials about Cheeger-Sobolev
spaces; in Subsection 3.2 we recall the concept of (family of) ru-usc2 integrand(s) and its
main properties that will be used in the proof of Propositions 2.6, 2.7 and 2.8; the proof of
Proposition 2.7 also needs the use of the Vitali envelope of a set function which is recalled in
Subsection 3.3. Section 4 is devoted to the proofs of Propositions 2.6 and 2.7 and Theorem
2.5. Finally, applications to relaxation and homogenization are developed in Section 5.

Notation. The open and closed balls centered at x P X with radius ρ ą 0 are denoted by:

Bρpxq :“
!

y P X : dpx, yq ă ρ
)

;

Bρpxq :“
!

y P X : dpx, yq ď ρ
)

.

For x P X and ρ ą 0 we set

BBρpxq :“ BρpxqzBρpxq “
!

y P X : dpx, yq “ ρ
)

.

For A Ă X, the diameter of A is defined by diampAq :“ supx,yPA dpx, yq. The symbol ´
ş

stands for the mean-value integral

´

ż

B

fdµ “
1

µpBq

ż

B

fdµ.

For F ĂM, where M denotes the space of real mˆN matrices, the interior and the closure
of F are respectively denoted by intpFq and F.

2The abbreviation ru-usc means radially uniformly upper semicontinuous.
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2. The Γ-convergence result

We begin by recalling the definition of the almost sure Γ-convergence. (For more details on
the theory of Γ-convergence we refer to [DM93].)

Definition 2.1. We say that tEtutą0 almost surely ΓpLpµq-converges as t ! 8 to the func-

tional Elim : H1,p
µ pO;Rmq ˆ Ω ! r0,8s if there exists Ω1 P F with PpΩ1q “ 1 such that for

every ω P Ω1, one has:

Γ-lim: for every u P H1,p
µ pO;Rmq, ΓpLpµq- limt!8Etpu, ωq ě Elimpu, ωq with

ΓpLpµq- lim
t!8

Etpu, ωq :“ inf

"

lim
t!8

Etput, ωq : ut ! u in LpµpO;Rmq

*

,

or equivalently, for every u P H1,p
µ pO;Rmq and every tututą0 Ă H1,p

µ pO;Rmq such that
ut ! u in LpµpO;Rmq,

lim
t!8

Etpuε, ωq ě Elimpu, ωq;

Γ-lim: for every u P H1,p
µ pO;Rmq, ΓpLpµq- limt!8Etpu, ωq ď Elimpu, ωq with

ΓpLpµq- lim
t!8

Etpu, ωq :“ inf
!

lim
t!8

Etput, ωq : ut ! u in LpµpO;Rmq
)

,

or equivalently, for every u P H1,p
µ pO;Rmq there exists tututą0 Ă H1,p

µ pO;Rmq such
that ut ! u in LpµpO;Rmq and

lim
t!8

Etput, ωq ď Elimpu, ωq.

Referring to the next section for any unfamiliar notation or definition, in what follows we
state the main results of the paper. Let G : M ! r0,8s be a Borel measurable integrand
satisfying the following conditions:

(C1) there exists γ ą 0 such that for every ξ, ζ PM and every τ Ps0, 1r,

Gpτξ ` p1´ τqζq ď γp1`Gpξq `Gpζqq;

(C2) 0 P intpGq, where G denotes the effective domain of G, i.e. G :“ tξ PM : Gpξq ă 8u.

Remark 2.2. If (C1) is satisfied then G is convex, but G is not necessarily convex (see
[AHMZ15, Sect. 9]). So, if moreover (C2) holds then

τG Ă intpGq for all τ Ps0, 1r,

and there exists r ą 0 such that

sup
|ξ|ďr

Gpξq ă 8,

see [AHM12b, Lemma 4.1].

Let QµG : O ˆM! r0,8s be defined by

QµGpx, ξq :“ lim
ρ!0

inf

#

´

ż

Bρpxq

Gpξ `∇µwpyqqdµpyq : w P H1,p
µ,0pBρpxq;R

m
q

+

,
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where the space H1,p
µ,0pBρpxq;R

mq is defined as the closure of

Lip0pBρpxq;R
m
q :“

!

u P LippO;Rmq : u “ 0 on OzBρpxq
)

with respect to the H1,p
µ -norm, where LippO;Rmq :“ rLippOqsm with LippOq denoting

the algebra of Lipschitz functions from O to R. (The integrand QµG is called the H1,p
µ -

quasiconvexification of G. For more details on the notion of H1,p
µ -quasiconvexity, we refer to

[AHM20a, AHM22].) Denote the effective domain of QµGpx, ¨q by QµGx. We further suppose
that:

(C3) for every u P H1,p
µ pO;Rmq, if

ş

O
QµGpx,∇µupxqqdµ ă 8 and if ∇µupxq P intpQµGxq

for µ-a.a. x P O then
ş

O
Gp∇µupxqqdµ ă 8;

(C4) for every x P O, QµGpx, ¨q is lsc3 on intpQµGxq.

Remark 2.3. (i) For every px, ξq P O ˆM, QµGpx, ξq ď Gpξq, and so G Ă QµGx for all
x P O.

(ii) Considering G,QµG : H1,p
µ pO;Rmq ! r0,8s defined by Gpuq :“

ş

O
Gp∇µupxqqdµpxq

and QµGpuq :“
ş

O
QµGpx,∇µupxqqdµpxq and denoting their effective domains by

dompGq and dompQµGq, we see that (C3) means that
!

u P dompQµGq : ∇µupxq P intpQµGxq for µ-a.a. x P O
)

Ă dompGq.

(iii) If either dompQµGq “ dompGq or Gpuq ă 8 for all u P H1,p
µ pO;Rmq such that

∇µupxq P intpQµGxq for µ-a.a. x P O, then (C3) can be dropped.
(iv) Under (C1)–(C2), if G “ QµG, i.e. G is H1,p

µ -quasiconvex, then (C3) holds. In

particular, since convexity implies H1,p
µ -quasiconvexity (see [AHM20a]), if G is convex

then (C3) holds.
(v) If G satisfies (C1) then QµG verifies the same condition, i.e. for every x P O, every

ξ, ζ PM and every τ Ps0, 1r,

QµGpx, τξ ` p1´ τqζq ď γp1`QµGpx, ξq `QµGpx, ζqq,

and so QµGx is convex for all x P O. Hence, under (C1)–(C2), for every x P O,

τQµGx Ă intpQµGxq for all τ Ps0, 1r.

Let pX, d, µq be a metric measure space, where pX, dq is separable and complete and µ is a
doubling positive Radon measure onX which satisfies the annular decay property, supporting
a weak p1, pq-Poincaré inequality with

p ą κ :“
lnpCdq

lnp2q
where Cd ě 1 is the doubling constant.

Let O Ă X be a bounded open set such that µpOzOq “ 0 and let pΩ,F,Pq be a probability
space. Throughout the paper, we consider a family tLt : O ˆM ˆ Ω ! r0,8sutą0 of Borel
measurable stochastic integrands depending on a parameter t ą 0 and satisfying the following
conditions:

3The abbreviation lsc means lower semicontinuous.
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(C5) tLtutą0 is p-coercive, i.e. there exists c ą 0 such that for every t ą 0, every x P O,
every ξ PM and every ω P Ω,

Ltpx, ξ, ωq ě c|ξ|p;

(C6) tLtutą0 has G-growth, i.e. there exist α, β ą 0 such that for every x P O, every ξ PM
and every ω P Ω,

αGpξq ď Ltpx, ξ, ωq ď βp1`Gpξqq.

Remark 2.4. If (C1) and (C6) hold then the effective domain Lt,x,ω of Ltpx, ¨, ωq is equal to
G and so is convex and does not depend on x and ω.

The p-growth case, i.e. whenGpξq “ |ξ|p, was already studied in [AHM17] (see also [MPSC20,
MPC21]). The object of this paper is to deal with the G-growth case. For this, in addition,
we need to suppose that

(C7) for every ω P Ω, tLtutą0 is ru-usc at ω, i.e. for every ω P Ω, there exists tatp¨, ωqutą0 Ă

L1
µpO; s0,8sq with

lim
t!8

ż

O

atpx, ωqdµpxq ă 8 (2.1)

and

lim
ρ!0

lim
t!8

´

ż

Bρp¨q

atpy, ωqdµpyq “: a8p¨, ωq P L
1
µpOq (2.2)

such that

lim
τ!1´

sup
tą0

∆at
Lt
pτ, ωq ď 0,

where ∆at
Lt

: r0, 1s ˆ Ω !s ´ 8,8s is given by

∆at
Lt
pτ, ωq :“ sup

xPO
sup

ξPLt,x,ω

Ltpx, τξ, ωq ´ Ltpx, ξ, ωq

atpx, ωq ` Ltpx, ξ, ωq
(2.3)

with Lt,x,ω denoting the effective domain of Ltpx, ¨, ωq.

For each t ą 0 and each ρ ą 0, let Hρ
µLt : O ˆMˆ Ω ! r0,8s be defined by

Hρ
µLtpx, ξ, ωq :“ inf

#

´

ż

Bρpxq

Ltpy, ξ `∇µwpyq, ωqdµpyq : w P H1,p
µ,0pBρpxq;R

m
q

+

.

For each t ą 0, let Et : H1,p
µ pO;Rmq ˆ Ω ! r0,8s be defined by (1.1). The main result of

the paper is the following Γ-convergence result.

Theorem 2.5 (Γ- lim). Assume that p ą κ. If (C1)–(C7) hold and if

(C8) there exists Ω1 P F with PpΩ1q “ 1 such that for every ω P Ω1, one has

lim
ρ!0

lim
t!8

Hρ
µLtpx, ξ, ωq ě lim

ρ!0
lim
t!8

Hρ
µLtpx, ξ, ωq

for all x P O and all ξ P intpQµGxq,
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then tEtutą0 almost surely ΓpLpµq-converges as t! 8 to the functional Elim : H1,p
µ pO;Rmq ˆ

Ω ! r0,8s defined by (1.2) with Llim : O ˆMˆ Ω ! r0,8s given by

Llimpx, ξ, ωq “ lim
τ!1´

lim
ρ!0

lim
t!8

Hρ
µLtpx, τξ, ωq

Theorem 2.5 is a consequence of the following two propositions.

Proposition 2.6 (Γ- lim). Assume that p ą κ. If (C1)–(C2) and (C5)–(C7) hold then, for
every ω P Ω, one has

ΓpLpµq- lim
t!8

Etpu, ωq ě

ż

O

lim
τ!1´

lim
ρ!0

lim
t!8

Hρ
µLtpx, τ∇µupxq, ωqdµpxq

for all u P H1,p
µ pO;Rmq.

Proposition 2.7 (Γ- lim). Assume that p ą κ. If (C1)–(C7) hold then, for every ω P Ω, one
has

ΓpLpµq- lim
t!8

Etpu, ωq ď

ż

O

lim
τ!1´

lim
ρ!0

lim
t!8

Hρ
µLtpx, τ∇µupxq, ωqdµpxq

for all u P H1,p
µ

`

O;Rm
˘

.

Let L8 : O ˆMˆ Ω ! r0,8s be defined by

L8px, ξ, ωq :“ lim
ρ!0

lim
t!8

Hρ
µLtpx, ξ, ωq.

(Note that if (C8) is satisfied then L8p¨, ¨, ωq “ limρ!0 limt!8Hρ
µLtp¨, ¨, ωq for P-a.e. ω P Ω.)

Let pL8 : O ˆMˆ Ω ! r0,8s be given by

pL8px, ξ, ωq :“ lim
τ!1´

L8px, τξ, ωq

and, for each x P O and each ω P Ω, let L8px, ¨, ωq denotes the lsc envelope of L8px, ¨, ωq.
The following proposition makes more precise the formula of the limit integrand Llim in
Theorem 2.5.

Proposition 2.8. Assume that (C1)–(C2) and (C6)–(C7) hold.

(i) For every ω P Ω,

pL8px, ξ, ωq “ lim
τ!1´

L8px, τξ, ωq “

#

lim
τ!1´

L8px, τξ, ωq if ξ P QµGx

8 otherwise.

So, in Theorem 2.5 we have Llim “ pL8.
(ii) Suppose furthermore that for every ω P Ω and every x P O, L8px, ¨, ωq is lsc on

intpQµGxq. Then

pL8px, ξ, ωq “ L8px, ξ, ωq “

$

&

%

L8px, ξ, ωq if ξ P intpQµGxq

lim
τ!1´

L8px, τξ, ωq if ξ P BQµGx

8 otherwise.

(2.4)

In such a case, in Theorem 2.5, Llim is given by (2.4).



8 OMAR ANZA HAFSA AND JEAN-PHILIPPE MANDALLENA

Proof of Proposition 2.8. From (C7) and Proposition 3.14, we can assert that for every
ω P Ω, L8 is ru-usc at ω. Moreover, by (C6) it is easily seen that for every x P O and
every ω P Ω, the effective domain of L8px, ¨, ωq is equal to QµGx. So, taking (C1)–(C2) into
account (see Remark 2.3(v)), Proposition 2.8 follows from Theorem 3.12. �

3. Auxiliary results

3.1. Cheeger-Sobolev spaces. Let pX, d, µq be a separable and complete metric measure
space. Here and subsequently, we assume that µ is doubling on X, i.e. there exists a constant
Cd ě 1 such that

µ pBρpxqq ď Cdµ
´

B ρ
2
pxq

¯

(3.1)

for µ-a.a. x P X and all ρ ą 0, and X supports a weak p1, pq-Poincaré inequality with p ą 1,
i.e. there exist CP ą 0 and σ ě 1 such that for µ-a.e. x P X and every ρ ą 0,

´

ż

Bρpxq

ˇ

ˇ

ˇ

ˇ

ˇ

u´´

ż

Bρpxq

udµ

ˇ

ˇ

ˇ

ˇ

ˇ

dµ ď ρCP

˜

´

ż

Bσρpxq

vpdµ

¸
1
p

(3.2)

for every u P LpµpOq, every p-weak upper gradient4 v P LpµpOq for u and every open set O Ă X
such that Bσρpxq Ă O.

Remark 3.1. As µ is doubling, for µ-a.e. x̄ P X and every r ą 0, we have µpBρpxqq{µpBrpx̄qq ě

4´κ pρ{rqκ for all x P Brpx̄q and all 0 ă ρ ď r, where κ :“ lnpCdq
lnp2q

(see [Haj03, Lemma 4.7]).

We further assume that pX, d, µq satisfies the annular decay property, i.e. there exist δ ą 0
and CA ě 1 such that

µ pBσrpxqzBrpxqq ď CA

ˆ

1´
1

σ

˙δ

µpBσrpxqq (3.3)

for all x P X, all r ą 0 and all σ Ps1,8r.

Remark 3.2. From [Buc99, Corollary 2.2] and [CM98, Lemma 3.3] (see also [Che99, Propo-
sition 6.12] and [HKST15, Proposition 11.5.3 pp. 328]), under (3.1) and (3.2), if moreover
pX, dq is a length space, i.e. the distance between any two points equals infimum of lengths
of curves connecting the points, then (3.3) holds.

Remark 3.3. If (3.3) holds then µ
`

BrpxqzBrpxq
˘

“ 0 for all x P X and all r ą 0, i.e.
the boundary of any ball is of zero measure. Indeed, given x P X and r ą 0, we have

1 ě µpBrpxqq

µpBrpxqq
ě

µpBrpxqq
µpBσrpxqq

ě 1 ´ CAp1 ´
1
σ
qδ for all σ Ps1,8r. Hence, by letting σ ! 1, we

obtain µpBrpxqq

µpBrpxqq
“ 1, i.e. µpBrpxqq “ µpBrpxqq.

4A Borel function v : O ! r0,8s is said to be an upper gradient for u : O ! R if |upcp1qq ´ upcp0qq| ď
ş1

0
vpcpsqqds for all continuous rectifiable curves c : r0, 1s ! O. A function v P LpµpOq is said to be a p-weak

upper gradient for u P LpµpOq if there exist tunun Ă LpµpOq and tvnun Ă LpµpOq such that for each n ě 1,
vn is an upper gradient for un, un ! u in LpµpOq and vn ! v in LpµpOq. For more details we refer to

[HK98, Che99].
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Let O Ă X be a bounded open set. Denote the algebra of Lipschitz functions from O to
R by LippOq. (Note that, by Hopf-Rinow’s theorem (see [BH99, Proposition 3.7, pp. 35]),
the closure of O is compact, and so every Lipschitz function from O to R is bounded.) Let
LippO;Rmq :“ rLippOqsm and let ∇µ : LippO;Rmq! L8µ pO;Mq be given by

∇µu :“

¨

˝

Dµu1
...

Dµum

˛

‚ with u “ pu1, ¨ ¨ ¨ , umq,

where Dµ : LippOq ! L8µ pO;RNq is the differential of Cheeger (see [Che99, Theorem 4.38]
and [Kei04, Definition 2.1.1 and Theorem 2.3.1] for more details). The p-Cheeger-Sobolev
space H1,p

µ pO;Rmq is defined as the completion of LippO;Rmq with respect to the norm

}u}H1,p
µ pO;Rmq :“ }u}LpµpO;Rmq ` }∇µu}LpµpO;Mq. (3.4)

As }∇µu}LpµpO;Mq ď }u}W 1,p
µ pO;Rmq for all u P LippO;Rmq, the linear map ∇µ from LippO;Rmq

to LpµpO;Mq has a unique extension to H1,p
µ pO;Rmq which will still be denoted by ∇µ and

will be called the µ-gradient. For more details on the various possible extensions of the
classical theory of the Sobolev spaces to the setting of metric measure spaces, we refer to
[Hei07, §10-14] (see also [Che99, Sha00, GT01, Haj03]).

The following proposition brings together useful known properties for dealing with calculus
of variations in the metric measure setting. (For a proof we refer to [HKST15] and [AHM20a,
§7].)

Proposition 3.4. Under (3.1), (3.2) and (3.3) the following properties hold:

(i) O satisfies the Vitali covering theorem, i.e. for every A Ă O and every family B of
closed balls in O, if inftρ ą 0 : Bρpxq P Bu “ 0 for all x P A (we say that B is a
fine cover of A) then there exists a countable disjoint subfamily B1 of B such that
µpAz YBPB1 Bq “ 0; in other words, A Ă

`

YBPB1 B
˘

YN with µpNq “ 0;
(ii) the µ-gradient is closable in H1,p

µ pO;Rmq, i.e. for every u P H1,p
µ pO;Rmq and every

open set A Ă O, if upxq “ 0 for µ-a.a. x P A then ∇µupxq “ 0 for µ-a.a. x P A;
(iii) O supports a p-Sobolev inequality, i.e. there exists CS ą 0 such that

˜

ż

Bρpxq

|v|pdµ

¸
1
p

ď ρCS

˜

ż

Bρpxq

|∇µv|
pdµ

¸
1
p

for all 0 ă ρ ď ρ0, with ρ0 ą 0, and all v P H1,p
µ,0pBρpxq;R

mq, where, for each open set

A Ă O, H1,p
µ,0pA;Rmq is the closure of Lip0pA;Rmq with respect to H1,p

µ -norm defined
in (3.4) with

Lip0pA;Rmq :“
 

u P LippO;Rmq : u “ 0 on OzA
(

;
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(iv) for every u P H1,p
µ pO;Rmq and µ-a.e. x P O there exists ux P H

1,p
µ pO;Rmq such that:

∇µuxpyq “ ∇µupxq for µ-a.a. y P O;

lim
ρ!0

1

ρ
}u´ ux}L8µ pBρpxq;Rmq “ 0 if p ą κ,

where κ :“ lnpCdq
lnp2q

with Cd ě 1 given by the inequality (3.1);

(v) for every x P O, every ρ ą 0 and every λ Ps0, 1r there exists a Urysohn function
ϕ P LippOq for the pair pOzBρpxq, Bλρpxqq

5 such that

}Dµϕ}L8µ pO;RN q ď
θ

ρp1´ λq

for some θ ą 0;
(vi) for µ-a.e. x P O,

lim
λ!1´

lim
ρ!0

µpBλρpxqq

µpBρpxqq
“ lim

λ!1´
lim
ρ!0

µpBλρpxqq

µpBρpxqq
“ 1;

(vii) for every u P H1,p
µ pO;Rmq and every ϕ P LippOq,

∇µpϕuq “ ϕ∇µu`Dµϕb u.

Remark 3.5. As µ is a Radon measure and O satisfies the Vitali covering theorem, for every
open set A Ă O and every ε ą 0 there exists a countable family tBρipxiquiPI of disjoint open
balls of A with xi P A, ρi Ps0, εr such that µ

`

Az YiPI Bρipxiq
˘

“ 0. By the annular decay
property, see (3.3), we also have µpBBρipxiqq “ 0 for all i P I (see Remark 3.3).

In the framework of the p-Cheeger-Sobolev spaces with p ą κ :“ lnpCdq{ lnp2q, where Cd ě 1
is the doubling constant, we also have the following L8µ -compactness result.

Theorem 3.6. Assume that p ą κ and µ
`

OzO
˘

“ 0. If u P H1,p
µ pO;Rmq and tunun Ă

H1,p
µ pO;Rmq are such that

lim
n!8

}un ´ u}LpµpO;Rmq “ 0 and sup
ně1

}∇µun}LpµpO;Mq ă 8, (3.5)

then, up to a subsequence,
lim
n!8

}un ´ u}L8µ pO;Rmq “ 0. (3.6)

Proof of Theorem 3.6. Since pX, d, µq is a complete doubling metric space, pX, d, µq is
proper, i.e. every closed ball is compact (see [HKST15, Lemma 4.1.14]), and so pO, d|OˆOq

is compact. Thus, as µ
`

OzO
˘

“ 0 we can assert that pO, d|OˆO, µ|Oq is a compact doubling
metric measure space supporting a weak p1, pq-Poincaré inequality. In what follows, to
simplify the notation we set pY, δ, νq :“ pO, d|OˆO, µ|Oq.

Step 1: two auxiliary lemmas. We need the following two lemmas (cf. Lemmas 3.7 and
3.8).

5Given a metric space pO, dq, by a Urysohn function from O to R for the pair pOzV,Kq, where K Ă V Ă O
with K compact and V open, we mean a continuous function ϕ : O ! R such that ϕpxq P r0, 1s for all x P O,
ϕpxq “ 0 for all x P OzV and ϕpxq “ 1 for all x P K.
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Lemma 3.7. If p ą κ then for every r ą 0 and ν-a.e. x̄ P Y there exists Cpr, x̄q ą 0 such
that

|upyq ´ upzq| ď Cpr, x̄qδpy, zq1´
κ
p

ˆ
ż

B6σrpx̄q

|∇νu|
pdν

˙
1
p

for all u P H1,p
ν pY ;Rmq and all y, z P Brpx̄q, where σ ě 1 is given by (3.2).

Proof of Lemma 3.7. From [Haj03, Theorem 9.7] we can assert that there exists c ą 0
such that

|wpyq ´ wpzq| ď cr
κ
p δpy, zq1´

κ
p

ˆ

´

ż

B6σrpx̄q

gpwdν

˙
1
p

(3.7)

for all w P H1,p
ν pY q, all x̄ P Y , all r ą 0 and all y, z P Brpx̄q, where σ ě 1 is given by (3.2)

and gw P L
p
νpY q denotes the minimal p-weak upper gradient for w. On the other hand, from

Remark 3.1 it is easy to see that for every r ą 0 and ν-a.e. x̄ P Y there exists θpr, x̄q ą 0
such that

νpBrpx̄qq ě θpr, x̄qrκ.

But gw ď α|Dνw| with α ě 1 (see [Che99, §4]) and so ´
ş

B6σrpx̄q
gpwdν ď αp´

ş

B6σrpx̄q
|Dνw|

pdν.

Thus, for every r ą 0, ν-a.e. x̄ P Y and every y, z P Brpx̄q, (3.7) can be rewritten as follows

|wpyq ´ wpzq| ď Cpr, x̄qδpy, zq1´
κ
p

ˆ
ż

B6σrpx̄q

|Dνw|
pdν

˙
1
p

with Cpr, x̄q “ cα{θpr, x̄q ą 0. It follows that for every r ą 0 and ν-a.e. x̄ P Y , we have

|upyq ´ upzq| ď Cpr, x̄qδpy, zq1´
κ
p

m
ÿ

i“1

ˆ
ż

B6σrpx̄q

|Dνui|
pdν

˙
1
p

ď Cpr, x̄qδpy, zq1´
κ
p

˜

ż

B6σrpx̄q

m
ÿ

i“1

|Dνui|
pdν

¸
1
p

“ Cpr, x̄qδpy, zq1´
κ
p

ˆ
ż

B6σrpx̄q

|∇νu|
pdν

˙
1
p

for all u P H1,p
ν pY ;Rmq and all y, z P Brpx̄q, and the proof of Lemma 3.7 is complete. �

Denote the space of continuous functions from Y to Rm by CpY ;Rmq. As a consequence of
Lemma 3.7 we have the following result.

Lemma 3.8. If p ą κ then H1,p
ν pY ;Rmq continuously embeds into CpY ;Rmq, i.e.

H1,p
ν pY ;Rmq Ă CpY ;Rmq

and there exists K0 ą 0 such that

}u}CpY ;Rmq ď K0}u}H1,p
ν pY ;Rmq (3.8)

for all u P H1,p
ν pX;Rmq. Moreover, there exists K1 ą 0 such that

|upyq ´ upzq| ď K1δpy, zq
1´κ

p }∇νu}LpνpY ;Mq (3.9)

for all u P H1,p
ν pY ;Rmq and all y, z P Y .
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Proof of Lemma 3.8. Applying Lemma 3.7 with r “ diampY q and for a fixed x̄ “ x0 P Y ,
where diampY q “ suptδpy, zq : y, z P Y u ă 8 because pY, δq is compact, we see that

|upyq ´ upzq| ď C pdiampY q, x0q δpy, zq
1´κ

p }∇νu}LpνpY ;Mq

ď C pdiampY q, x0q diampY q1´
κ
p }∇νu}LpνpY ;Mq (3.10)

for all u P H1,p
ν pY ;Rmq and all y, z P Y . Hence (3.9) holds with K1 “ C pdiampY q, x0q

and every u P H1,p
ν pY ;Rmq is p1 ´ κ

p
q-Hölder continuous. In particular, it follows that

H1,p
ν pY ;Rmq Ă CpY ;Rmq. On the other hand, given any u P H1,p

ν pY ;Rmq and any y P Y ,
we have |upyq|p ď 2p p|upyq ´ upzq|p ` |upzq|pq for all z P Y , and consequently

νpY q
1
p |upyq| ď 21` 1

p

ˆ
ż

Y

|upyq ´ upzq|pdνpzq

˙
1
p

` 21` 1
p }u}LpνpY ;Rmq. (3.11)

But, by (3.10) we have

ˆ
ż

Y

|upyq ´ upzq|pdνpzq

˙
1
p

ď νpY q
1
pC pdiampY q, x0q diampY q1´

κ
p }∇νu}LpνpY ;Mq. (3.12)

Hence, combining (3.11) and (3.12) we deduce that for every y P Y ,

|upyq| ď 21` 1
pC pdiampY q, x0q diampY q1´

κ
p }∇νu}LpνpY ;Mq `

21` 1
p

νpY q
1
p

}u}LpνpY ;Rmq

ď K0}u}H1,p
ν pY ;Rmq

with K0 “ sup

"

21` 1
pC pdiampY q, x0q diampY q1´

κ
p , 2

1` 1
p

νpY q
1
p

*

, and (3.8) follows. �

Step 2: end of the proof of Theorem 3.6. As µ
`

OzO
˘

“ 0, from (3.5) we deduce that

lim
n!8

}un ´ u}LpνpY ;Rmq “ 0 and sup
ně1

}∇νun}LpνpY ;Mq ă 8,

and so supně1 }un}H1,p
ν pY ;Rmq ă 8. By Lemma 3.8 we can assert that supně1 }un}CpY ;Rmq ă 8,

i.e. tunun is bounded in CpY ;Rmq with pY, δq a compact metric space. Moreover, using (3.9)
we see that tunun is equicontinuous. Consequently, up to a subsequence,

lim
n!8

}un ´ u}L8ν pY ;Rmq “ 0

by Arzelà-Ascoli’s theorem, and (3.6) follows because µ
`

OzO
˘

“ 0. �

3.2. Ru-usc integrands. Let pX, d, µq be a metric measure space, let O Ă X be an open
set, let pΩ,F,Pq be a probability space and let L : OˆMˆΩ ! r0,8s be a Borel measurable
stochastic integrand. For each tap¨, ωquω Ă L1

µpO; s0,8sq we define ∆a
L : r0, 1sˆΩ !s´8,8s

by

∆a
Lpτ, ωq :“ sup

xPO
sup
ξPLx,ω

Lpx, τξ, ωq ´ Lpx, ξ, ωq

apx, ωq ` Lpx, ξ, ωq
,

where Lx,ω denotes the effective domain of Lpx, ¨, ωq.
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Definition 3.9. Let ω P Ω. We say that L is radially uniformly upper semicontinuous
(ru-usc) at ω if there exists ap¨, ωq P L1

µpO; s0,8sq such that

lim
τ!1´

∆a
Lpτ, ωq ď 0.

The concept of ru-usc integrand was introduced in [AH10] and then developed in [AHM11,
AHM12a, AHM12b, Man13, AHM14, AHMZ15, AHM18].

Remark 3.10. If L is ru-usc at ω P Ω then limτ!1´ Lpx, τξ, ωq ď Lpx, ξ, ωq for all x P O and
all ξ P Lx,ω. On the other hand, given ω P Ω, if there exist x P O and ξ P Lx,ω such that
Lpx, ¨, ωq is lsc at ξ then, for each ap¨, ωq P L1

µpO; s0,8sq, limτ!1´ ∆a
Lpτ, ωq ě 0, and so if in

addition L is ru-usc at ω then limτ!1´ ∆a
Lpτ, ωq “ 0 for some ap¨, ωq P L1

µpO; s0,8sq.

Remark 3.11. Given ω P Ω, if, for every x P O, Lpx, ¨, ωq is convex and 0 P Lx,ω, then L is
ru-usc at ω.

The interest of Definition 3.9 comes from the following theorem. (For a proof we refer to

[AHM11, Theorem 3.5] and also [AHM12b, §4.2].) Let pL : O ˆM ˆ Ω ! r0,8s be defined
by

pLpx, ξ, ωq :“ lim
τ!1´

Lpx, τξ, ωq.

Theorem 3.12. Let ω P Ω. If L is ru-usc at ω with ap¨, ωq and if for every x P O,

τLx,ω Ă intpLx,ωq for all τ Ps0, 1r,

where Lx,ω denotes the effective domain of Lpx, ¨, ωq, then:

(i) pLpx, ξ, ωq :“ lim
τ!1´

Lpx, τξ, ωq “

#

lim
τ!1´

Lpx, τξ, ωq if ξ P Lx,ω
8 otherwise;

(ii) pL is ru-usc at ω with ap¨, ωq.

If moreover Lpx, ¨, ωq is lsc on intpLx,ωq then:

(iii) pLpx, ξ, ωq “

$

&

%

Lpx, ξ, ωq if ξ P intpLx,ωq
lim
τ!1´

Lpx, τξ, ωq if ξ P BLx,ω
8 otherwise;

(iv) for every x P O, pLpx, ¨, ωq is the lsc envelope of Lpx, ¨, ωq.

The following definition extends Definition 3.9 to a family tLtutą0 of Borel measurable sto-
chastic integrands Lt : OˆMˆΩ ! r0,8s. (When Lt “ L for all t ą 0 we retrieve Definition
3.9.)

Definition 3.13. Let ω P Ω. We say that tLtutą0 is ru-usc at ω if there exists tatp¨, ωqutą0 Ă

L1
µpO; s0,8sq, satisfying (2.1) and (2.2), such that

lim
τ!1´

sup
tą0

∆at
Lt
pτ, ωq ď 0.
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For each t ą 0 and each ρ ą 0, let Hρ
µLt : O ˆMˆ Ω ! r0,8s be defined by

Hρ
µLtpx, ξ, ωq :“ inf

#

´

ż

Bρpxq

Ltpy, ξ `∇µwpyq, ωqdµpyq : w P H1,p
µ,0pBρpxq;R

m
q

+

,

where the space H1,p
µ,0pBρpxq;R

mq is defined as the closure of

Lip0pBρpxq;R
m
q :“

!

u P LippO;Rmq : u “ 0 on OzBρpxq
)

with respect to the H1,p
µ -norm, where LippO;Rmq :“ rLippOqsm with LippOq denoting the

algebra of Lipschitz functions from O to R. Let L8 : O ˆMˆ Ω ! r0,8s be given by

L8px, ξ, ωq :“ lim
ρ!0

lim
t!8

Hρ
µLtpx, ξ, ωq. (3.13)

The following proposition shows that ru-usc is conserved under the operation characterized
by (3.13).

Proposition 3.14. Let ω P Ω. If tLtutą0 is ru-usc at ω with tatp¨, ωqutą0 then L8 is ru-usc
at ω with a8p¨, ωq given by (2.2).

Proof of Proposition 3.14. Fix any τ P r0, 1s, any x P O and any ξ P L8,x,ω, where L8,x,ω
is the effective domain of L8px, ¨, ωq. Then L8px, ξ, ωq “ limρ!0 limt!8Hρ

µLtpx, ξ, ωq ă 8
and without loss of generality we can suppose that Hρ

µLtpx, ξ, ωq ă 8 for all ρ ą 0 and all

t ą 0. Fix any ρ ą 0 and any t ą 0. By definition, there exists twnun Ă H1,p
µ,0pBρpxq;R

mq

such that:

Hρ
µLtpx, ξ, ωq “ lim

n!8
´

ż

Bρpxq

Ltpy, ξ `∇µwnpyq, ωqdµpyq; (3.14)

ξ `∇µwnpyq P Lt,y,ω for all n ě 1 and µ-a.a. y P Bρpxq, (3.15)

where Lt,y,ω denotes the effective domain of Ltpy, ¨, ωq. Moreover, for every n ě 1,

Hρ
µLtpx, τξ, ωq ď ´

ż

Bρpxq

Lt
`

y, τpξ `∇µwnpyqq, ω
˘

dµpyq

since τwn P H
1,p
µ,0pBρpxq;R

mq, and so

δτρ,tpx, ξ, ωq ď lim
n!8

´

ż

Bρpxq

`

Ltpy, τpξ `∇µwnpyqq, ωq ´ Ltpy, ξ `∇µwnpyq, ωq
˘

dµpyq (3.16)

with δτρ,tpx, ξ, ωq :“Hρ
µLtpx, τξ, ωq ´Hρ

µLtpx, ξ, ωq. Taking (3.15) into account, for every
n ě 1 and µ-a.e. y P Bρpxq, one has

λτt,npy, ξ, ωq ď ∆at
Lt
pτ, ωq

`

atpy, ωq ` Ltpy, ξ `∇µwnpyq, ωq
˘

,

with λτt,npy, ξ, ωq :“ Lt
`

y, τpξ `∇µwnpyqq, ω
˘

´ Lt
`

y, ξ `∇µwnpyq, ω
˘

, hence

´

ż

Bρpxq

λτt,npy, ξ, ωqdµ ď ∆at
Lt
pτ, ωq

˜

´

ż

Bρpxq

atpy, ωqdµ`´

ż

Bρpxq

Ltpy, ξ `∇µwnpyq, ωqdµ

¸
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for all n ě 1. Letting n! 8 and using (3.14) and (3.16), it follows that

δτρ,tpx, ξ, ωq ď ∆at
Lt
pτ, ωq

˜

´

ż

Bρpxq

atpy, ωqdµpyq `Hρ
µLtpx, ξ, ωq

¸

ď ∆pτ, ωq

˜

´

ż

Bρpxq

atpy, ωqdµpyq `Hρ
µLtpx, ξ, ωq

¸

(3.17)

for all ρ ą 0 and all t ą 0, where ∆pτ, ωq :“ supsą0 ∆as
Ls
pτ, ωq. By letting t ! 8 and ρ ! 0

in (3.17), we get

L8px, τξ, ωq ´ L8px, ξ, ωq ď ∆pτ, ωq
`

a8px, ωq ` L8px, ξ, ωq
˘

with a8p¨, ωq P L
1
µpO; s0,8sq given by (2.2), which implies that ∆a8

L8
pτ, ωq ď ∆pτ, ωq for all

τ P r0, 1s. As tLtutą0 is ru-usc at ω with tatp¨, ωqutą0, i.e. limτ!1´ ∆pτ, ωq ď 0, we conclude
that limτ!1´ ∆a8

L8
pτ, ωq ď 0 which means that L8 is ru-usc at ω with a8p¨, ωq. �

Remark 3.15. In the proof of Proposition 3.14 we do not need (2.1). In fact, (2.1) will be
used in the proof of the Γ-convergence result (see Section 4).

3.3. Integral representation of the Vitali envelope of a set function. What follows
was first developed in [BFM98, BB00] (see also [AHM17, AHCM17, AHM18]). Let pO, dq
be a metric space, let OpOq be the class of open subsets of O and let µ be a positive finite
Radon measure on O. We begin with the concept of the Vitali envelope of a set function.

For each ε ą 0 and each A P OpOq, we denote the class of countable families tBi :“ BρipxiquiPI
of disjoint open balls of A with xi P A, ρi Ps0, εr and µpBBiq “ 0 such that µpAzYiPI Biq “ 0
by VεpAq.

Definition 3.16. Given S : OpOq! r0,8s, for each ε ą 0 we define Sε : OpOq! r0,8s by

Sε
pAq :“ inf

#

ÿ

iPI

SpBiq : tBiuiPI PVεpAq

+

.

By the Vitali envelope of S we call the set function S˚ : OpOq! r´8,8s defined by

S˚pAq :“ sup
εą0

Sε
pAq “ lim

ε!0
Sε
pAq.

The interest of Definition 3.16 comes from the following integral representation result. (For
a proof we refer to [AHM18, §3.3] or [AHCM17, §A.4].)

Theorem 3.17. Let S : OpOq! r0,8s be a set function satisfying the following two condi-
tions:

(i) there exists a finite Radon measure ν on O which is absolutely continuous with respect
to µ such that SpAq ď νpAq for all A P OpOq;

(ii) S is subadditive, i.e. SpAq ď SpBq ` SpCq for all A,B,C P OpOq with B,C Ă A,
B X C “ H and µpAzpB Y Cqq “ 0.

Then limρ!0
SpBρp¨qq

µpBρp¨qq
P L1

µpOq and for every A P OpOq, one has

S˚pAq “

ż

A

lim
ρ!0

SpBρpxqq

µpBρpxqq
dµpxq.
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4. Proofs

4.1. Proof of the lower bound. Here we prove Proposition 2.6.

Proof of Proposition 2.6. Fix ω P Ω. Let u P H1,p
µ pO;Rmq and let tututą0 Ă H1,p

µ pO;Rmq
be such that }ut ´ u}LpµpO;Rmq ! 0. We have to prove that

lim
t!8

Etput, ωq ě

ż

O

lim
τ!1´

lim
ρ!0

lim
t!8

Hρ
µLtpx, τ∇µupxq, ωqdµpxq. (4.1)

Without loss of generality we can assume that limt!8Etput, ωq “ limt!8Etput, ωq ă 8, and
so

sup
tą0

Etput, ωq ă 8. (4.2)

In particular, suptą0 }∇µut}LpµpO;Mq ă 8 because tLtutą0 is p-coercive, see (C5). Then

∇µutpxq P G for all t ą 0 and µ-a.a. x P O (4.3)

and, up to a subsequence,

ut á u in H1,p
µ pO;Rmq. (4.4)

As G is convex, see (C1) and Remark 2.2, from (4.3) and (4.4) it follows that

∇µupxq P G for µ-a.a. x P O. (4.5)

As }ut´u}H1,p
µ pO;Rmq ! 0, suptą0 }∇µut}LpµpO;Mq ă 8 and p ą κ, from Theorem 3.6 we deduce

that, up to a subsequence,

}ut ´ u}L8µ pO;Rmq ! 0. (4.6)

Step 1: localization. For each t ą 0, we define the (positive) Radon measure νt on O by

νt :“ Ltp¨,∇µutp¨q, ωqdµ.

From (4.2) we see that suptą0 νtpOq ă 8, and so there exists a (positive) Radon measure ν
on O such that, up to a subsequence, νt á ν weakly. By Lebesgue’s decomposition theorem,
we have ν “ νa ` νs where νa and νs are (positive) Radon measures on O such that νa ! µ
and νs K µ. Thus, to prove (4.1) it suffices to show that

νa ě lim
τ!1´

lim
ρ!0

lim
t!8

Hρ
µLtp¨, τ∇µup¨q, ωqdµ. (4.7)

From Radon-Nikodym’s theorem we have νa “ fp¨qdµ with

fp¨q :“ lim
ρ!0

νpBρp¨qq

µpBρp¨qq
P L1

µpO; r0,8rq, (4.8)

and so to prove (4.7) it is sufficient to establish that for µ-a.e. x0 P O,

fpx0q “ lim
ρ!0

νpBρpx0qq

µpBρpx0qq
ě lim

τ!1´
lim
ρ!0

lim
t!8

Hρ
µLtpx0, τ∇µupx0q, ωq. (4.9)

Fix x0 P OzN where N Ă O is a suitable set such that µpNq “ 0. As νpOq ă 8, without
loss of generality we can assume that νpBBρpx0qq “ 0 for all ρ ą 0, which implies, by
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Alexandrov’s theorem, that νpBρpx0qq “ limt!8 νtpBρpx0qq. Consequently, to prove (4.9) it
suffices to show that

lim
ρ!0

lim
t!8

´

ż

Bρpx0q

Ltpx,∇µutpxq, ωqdµ ě lim
τ!1´

lim
ρ!0

lim
t!8

Hρ
µLtpx0, τ∇µupx0q, ωq. (4.10)

On the other hand, as G is convex, see (C1) and Remark 2.2, and 0 P intpGq, see (C2), from
(4.3) we can assert for every σ Ps0, 1r,

σ∇µutpxq P G for all t ą 0 and for µ-a.a. x P O.

Hence, given any τ Ps0, 1r, we see that for every t ą 0 and every ρ ą 0,

´

ż

Bρpx0q

Ltpx, τ∇µutpxq, ωqdµ ď
`

1`∆pτ, ωq
˘

´

ż

Bρpx0q

Ltpx,∇µutpxq, ωqdµ

`∆pτ, ωq´

ż

Bρpx0q

atpx, ωqdµ

with ∆pτ, ωq :“ suptą0 ∆at
Lt
pτ, ωq, where ∆at

Lt
pτ, ωq is given by (2.3). Letting t ! 8 and

ρ! 0 we obtain

lim
ρ!0

lim
t!8

´

ż

Bρpx0q

Ltpx, τ∇µutpxq, ωqdµ ď
`

1`∆pτ, ωq
˘

lim
ρ!0

lim
t!8

´

ż

Bρpx0q

Ltpx,∇µutpxq, ωqdµ

` lim
ρ!0

lim
t!8

∆pτ, ωq´

ż

Bρpx0q

atpx, ωqdµ.

But, from (C7) we have

lim
τ!1´

∆pτ, ωq ď 0

and, by (2.2),

lim
ρ!0

lim
t!8

´

ż

Bρpx0q

atpx, ωqdµ ă 8

with ´
ş

Bρpx0q
atpx, ωqdµ ě 0, hence

lim
τ!1´

lim
ρ!0

lim
t!8

∆pτ, ωq´

ż

Bρpx0q

atpx, ωqdµ ď 0,

and consequently

lim
τ!1´

lim
ρ!0

lim
t!8

´

ż

Bρpx0q

Ltpx, τ∇µutpxq, ωqdµ ď lim
ρ!0

lim
t!8

´

ż

Bρpx0q

Ltpx,∇µutpxq, ωqdµ.

Thus, to prove (4.10) it is sufficient to show that

lim
τ!1´

lim
ρ!0

lim
t!8

´

ż

Bρpx0q

Ltpx, τ∇µutpxq, ωqdµ ě lim
τ!1´

lim
ρ!0

lim
t!8

Hρ
µLtpx0, τ∇µupx0q, ωq. (4.11)

Step 2: cut-off method. Fix any t ą 0, any τ Ps0, 1r, any σ Psτ, 1r, any λ Ps0, 1r and
any ρ ą 0. By Proposition 3.4(v) there is a Uryshon function ϕ P LippOq for the pair
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pOzBρpx0q, Bλρpx0qq such that }Dµϕ}L8µ pO;RN q ď
θ

ρp1´λq
for some θ ą 0 (which does not

depend on ρ). Define vt P H
1,p
µ pO;Rmq by

vt :“ ϕut ` p1´ ϕqux0 “ ϕput ´ ux0q ` ux0

with ux0 P H
1,p
µ pO;Rmq given by Proposition 3.4(iv). (Note that ∇µux0pxq “ ∇µupx0q for

µ-a.a. x P O.) Then

τvt ´ τux0 P H
1,p
µ,0pBρpx0q;R

m
q (4.12)

and, using Proposition 3.4(vii),

τ∇µvt “

"

τ∇µut in Bλρpx0q
τ
σ

`

ϕσ∇µut ` p1´ ϕqσ∇µupx0q
˘

`
`

1´ τ
σ

˘

Ψt,ρ in Bρpx0qzBλρpx0q
(4.13)

with Ψt,ρ :“ τ
1´ τ

σ
Dµϕb put ´ ux0q. Using the right inequality in (C6) it follows that

´

ż

Bρpx0q

Ltpx, τ∇µvt, ωqdµ “
1

µpBρpx0qq

ż

Bλρpx0q

Ltpx, τ∇µut, ωqdµ

`
1

µpBρpx0qq

ż

Bρpx0qzBλρpx0q

Ltpx, τ∇µvt, ωqdµ

ď ´

ż

Bρpx0q

Ltpx, τ∇µut, ωqdµ` β
µpBρpx0qzBλρpx0qq

µpBρpx0qq

`
β

µpBρpx0qq

ż

Bρpx0qzBλρpx0q

Gpτ∇µvtqdµ. (4.14)

On the other hand, taking (4.13) into account and using (C1) and the left inequality in (C6),
we have

Gpτ∇µvtq ď c1 p1`Gpσ∇µutq `Gpσ∇µupx0qq `GpΨt,ρqq

ď c1

ˆ

1`
1

α
Ltpx, σ∇µut, ωq `Gpσ∇µupx0qq `GpΨt,ρq

˙

(4.15)

with c1 :“ 2pγ ` γ2q ą 0. Note that from (C2) and (4.5) we can assert that σ∇µupx0q P G,
and so

Gpσ∇µupx0qq ă 8.

Moreover, it is easy to see that

}Ψt,ρ}L8µ pBρpx0q;Mq ď
θτ

p1´ τ
σ
qp1´ λq

1

ρ
}u´ ux0}L8µ pBρpx0q;Rmq

`
θτ

ρp1´ τ
σ
qp1´ λq

}ut ´ u}L8µ pO;Rmq,

where

lim
ρ!0

θτ

p1´ τ
σ
qp1´ λq

1

ρ
}u´ ux0}L8µ pBρpx0q;Rmq “ 0 (4.16)
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by Proposition 3.4(iv), i.e., limρ!0
1
ρ
}u´ ux0}L8µ pBρpx0q;Rmq “ 0, and

lim
t!8

θτ

ρp1´ τ
σ
qp1´ λq

}ut ´ u}L8µ pO;Rmq “ 0 (4.17)

by (4.6), i.e., limt!8 }ut ´ u}L8µ pO;Rmq “ 0. From (C1)–(C2) there exists r ą 0 such that

c2 :“ sup
|ξ|ďr

Gpξq ă 8

(see Remark 2.2). By (4.16) there exists ρ̄ ą 0 such that θτ
p1´ τ

σ
qp1´λq

1
ρ
}u´ux0}L8µ pBρpx0q;Rmq ă

r
2

for all ρ Ps0, ρ̄r. Fix any ρ Ps0, ρ̄r. Taking (4.17) into account we can assert that there exists
tρ ą 0 such that

GpΨt,ρq ď c2 for all t Ps0, tρr. (4.18)

Thus, from (4.14), (4.15) and (4.18) we deduce that

´

ż

Bρpx0q

Ltpx, τ∇µvt, ωqdµ ď ´

ż

Bρpx0q

Ltpx, τ∇µut, ωqdµ` c3pσqγρ,λ `
βc1

α
Γt,ρ,λ,σ

for all t Ps0, tρr with:

c3pσq :“ βc1

ˆ

1`
1

c1

`Gpσ∇µupx0qq ` c2

˙

Ps0,8r ;

γρ,λ :“
µpBρpx0qzBλρpx0qq

µpBρpx0qq
;

Γt,ρ,λ,σ :“
1

µpBρpx0qq

ż

Bρpx0qzBλρpx0qq

Ltpx, σ∇µut, ωqdµ.

But, taking (4.12) into account, we see that

Hρ
µLtpx0, τ∇µupx0q, ωq ď ´

ż

Bρpx0q

Ltpx, τ∇µvt, ωqdµ,

hence, for every ρ ą 0, every t Ps0, tρr, every λ Ps0, 1r, every τ Ps0, 1r and every σ Psτ, 1r, we
have

Hρ
µLtpx0, τ∇µupx0q, ωq ď ´

ż

Bρpx0q

Ltpx, τ∇µut, ωqdµ` c3pσqγρ,λ `
βc1

α
Γt,ρ,λ,σ. (4.19)

Step 3: passing to the limit. Letting t ! 8, ρ ! 0, λ ! 1´, σ ! 1´ and τ ! 1´ in
(4.19), we obtain

lim
τ!1´

lim
ρ!0

lim
t!8

Hρ
µLtpx0, τ∇µupx0q, ωq ď lim

τ!1´
lim
ρ!0

lim
t!8

´

ż

Bρpx0q

Ltpx, τ∇µut, ωqdµ

` lim
σ!1´

c3pσq lim
λ!1´

lim
ρ!0

γρ,λ

`
βc1

α
lim
σ!1´

lim
λ!1´

lim
ρ!0

lim
t!8

Γt,ρ,λ,σ. (4.20)



20 OMAR ANZA HAFSA AND JEAN-PHILIPPE MANDALLENA

Substep 3-1: proving that limλ!1´ limρ!0 γρ,λ “ 0limλ!1´ limρ!0 γρ,λ “ 0limλ!1´ limρ!0 γρ,λ “ 0. As the boundary of any ball is of
zero measure (see Remark 3.3), we have

γρ,λ “ 1´
µpBλρpx0qq

µpBρpx0qq
,

hence

lim
ρ!0

γρ,λ “ 1´ lim
ρ!0

µpBλρpx0qq

µpBρpx0qq
,

and so, by using Proposition (3.4)(vi),

lim
λ!1´

lim
ρ!0

γρ,λ “ 0. (4.21)

Substep 3-2: proving that limσ!1´ limλ!1´ limρ!0 limt!8 Γt,ρ,λ,σ “ 0limσ!1´ limλ!1´ limρ!0 limt!8 Γt,ρ,λ,σ “ 0limσ!1´ limλ!1´ limρ!0 limt!8 Γt,ρ,λ,σ “ 0. For every t Ps0, tρr,
we have

Γt,ρ,λ,σ ď
`

1`∆pσ, ωq
˘νt

`

Bρpx0qzBλρpx0qq
˘

µpBρpx0qq

`∆pσ, ωq
1

µpBρpx0qq

ż

Bρpx0qzBλρpx0q

atpx, ωqdµ. (4.22)

But limσ!1´ ∆pσ, ωq ď 0 by (C7), and by (2.2) we have

lim
λ!1´

lim
ρ!0

lim
t!8

1

µpBρpx0qq

ż

Bρpx0qzBλρpx0q

atpx, ωqdµ ď lim
ρ!0

lim
t!8

´

ż

Bρpx0q

atpx, ωqdµ ă 8

with 1
µpBρpx0qq

ş

Bρpx0qzBλρpx0q
atpx, ωqdµ ě 0, hence

lim
σ!1´

lim
λ!1´

lim
ρ!0

lim
t!8

∆pσ, ωq
1

µpBρpx0qq

ż

Bρpx0qzBλρpx0q

atpx, ωqdµ ď 0. (4.23)

Since pX, d, µq is a complete doubling metric space, pX, d, µq is proper, i.e. every closed ball
is compact. Hence Bρpx0q is compact, and so Bρpx0qzBλρpx0q is compact. As νt á ν weakly,
by Alexandrov’s theorem, we have

lim
t!8

νt
`

Bρpx0qzBλρpx0q
˘

ď ν
`

Bρpx0qzBλρpx0q
˘

,

hence

lim
t!8

νt
`

Bρpx0qzBλρpx0q
˘

ď ν
`

Bρpx0q
˘

´ ν pBλρpx0qq ,

and consequently, since the boundary of any ball is of zero measure with respect to µ,

lim
t!8

νt
`

Bρpx0qzBλρpx0q
˘

µpBρpx0qq
ď
ν
`

Bρpx0q
˘

µpBρpx0qq
´
µ pBλρpx0qq

µpBρpx0qq

ν pBλρpx0qq

µpBλρpx0qq
.

It follows that

lim
ρ!0

lim
t!8

νt
`

Bρpx0qzBλρpx0q
˘

µpBρpx0qq
ď

ˆ

1´ lim
ρ!0

µ pBλρpx0qq

µpBρpx0qq

˙

fpx0q
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with f P L1
µpO; r0,8rq given by (4.8), and so, by using Proposition (3.4)(vi),

lim
λ!1´

lim
ρ!0

lim
t!8

νt
`

Bρpx0qzBλρpx0q
˘

µpBρpx0qq
“ 0.

Consequently, by using (C7),

lim
σ!1´

lim
λ!1´

lim
ρ!0

lim
t!8

`

1`∆pσ, ωq
˘νt

`

Bρpx0qzBλρpx0q
˘

µpBρpx0qq
ď 0. (4.24)

From (4.22), (4.23) and (4.24) we deduce that

lim
σ!1´

lim
λ!1´

lim
ρ!0

lim
t!8

Γt,ρ,λ,σ “ 0. (4.25)

Substep 3-3: end of the proof. Combining (4.21) and (4.25) with (4.20) we obtain (4.11),
and the proof of the lower bound is complete. �

4.2. Proof of the upper bound. Here we prove Proposition 2.7.

Proof of Proposition 2.7. Fix ω P Ω. For each u P H1,p
µ pO;Rmq, let mu,ω : OpOq! r0,8s

be defined by

mu,ωpAq :“ lim
t!8

mt
u,ωpAq.

with, for each t ą 0, mt
u,ω : OpOq! r0,8s given by

mt
u,ωpAq “ inf

"
ż

A

Ltpx,∇µvpxq, ωqdµpxq : v ´ u P H1,p
µ,0pA;Rmq

*

. (4.26)

For each ε ą 0 and each A P OpOq, we denote the class of countable families tBi :“ BρipxiquiPI
of disjoint open balls of A with xi P A and ρi Ps0, εr such that µpAz YiPI Biq “ 0 by VεpAq,
and we consider mε

u,ω : OpOq! r0,8s given by

mε
u,ωpAq :“ inf

#

ÿ

iPI

mu,ωpBiq : tBiuiPI PVεpAq

+

,

and we define m˚
u,ω : OpOq! r0,8s by

m˚
u,ωpAq :“ sup

εą0
mε
u,ωpAq “ lim

ε!0
mε
u,ωpAq.

The set function m˚
u,ω is called the Vitali envelope of mu,ω (see §3.3).

Step 1: link between Γ- limΓ- limΓ- lim and Vitali envelope. Let u P H1,p
µ pO;Rmq. We are going

to prove that

ΓpLpµq- lim
t!8

Etpu, ωq ď m˚
u,ωpOq. (4.27)

Without loss of generality we can assume that m˚
u,ωpOq ă 8. Fix any ε ą 0. By definition

of mε
u,ωpOq there exists tBiuiPI PVεpOq such that

ÿ

iPI

mu,ωpBiq ď mε
u,ωpOq `

ε

2
. (4.28)
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Fix any t ą 0. For each i P I, by definition of mt
u,ωpBiq there exists vit P H

1,p
µ pO;Rmq such

that vit ´ u P H
1,p
µ,0pBi;R

mq and
ż

Bi

Lt
`

x,∇µv
i
tpxq, ω

˘

dµpxq ď mt
u,ωpBiq `

εµpBiq

2µpOq
. (4.29)

Define uεt : O ! Rm by

uεt :“

#

u in Oz Y
iPI
Bi

vit in Bi.

Then uεt ´ u P H1,p
µ,0pO;Rmq. Moreover, because of Proposition 3.4(ii), ∇µu

ε
tpxq “ ∇µv

i
tpxq

for µ-a.a. x P Bi. From (4.29) we see that

Etpu
ε
t , ωq ď

ÿ

iPI

mt
u,ωpBiq `

ε

2
,

hence limt!8Epu
ε
t , ωq ď mε

u,ωpOq ` ε by using (4.28), and consequently

lim
ε!0

lim
t!8

Etpu
ε
t , ωq ď m˚

u,ωpOq. (4.30)

On the other hand, we have

}uεt ´ u}
p
LpµpO;Rmq

“

ż

O

ˇ

ˇuεt ´ u
ˇ

ˇ

p
dµ “

ÿ

iPI

ż

Bi

ˇ

ˇvit ´ u
ˇ

ˇ

p
dµ.

As O supports a p-Sobolev inequality, see Proposition 3.4(iii), and ρi Ps0, εr for all i P I, we
have

ÿ

iPI

ż

Bi

ˇ

ˇvit ´ u
ˇ

ˇ

p
dµ ď εpCp

S

ÿ

iPI

ż

Bi

ˇ

ˇ∇µv
i
t ´∇µu

ˇ

ˇ

p
dµ

with CS ą 0, and so

}uεt ´ u}
p
LpµpO;Rmq

ď 2pεpCp
S

˜

ÿ

iPI

ż

Bi

|∇µv
i
t|
pdµ`

ż

O

|∇µu|
pdµ

¸

. (4.31)

Taking (C5), (4.28) and (4.29) into account, from (4.31) we deduce that

lim
t!8

}uεt ´ u}
p
LpµpO;Rmq

ď 2pεpCp
S

ˆ

1

c

`

mε
u,ωpOq ` ε

˘

`

ż

O

|∇µu|
pdµ

˙

with c ą 0, which gives
lim
ε!0

lim
t!8

}uεt ´ u}
p
LpµpO;Rmq

“ 0 (4.32)

because limε!0 mε
u,ωpOq “ m˚

u,ωpOq ă 8. According to (4.30) and (4.32), by diagonalization
there exists a mapping t 7! εt, with εt ! 0 as t! 8, such that:

lim
t!8

}wt ´ u}
p
LpµpO;Rmq

“ 0; (4.33)

lim
t!8

Etpwt, ωq ď m˚
u,ωpOq (4.34)

with wt :“ uεtt . By (4.33) we have ΓpLpµq- limt!8Etpu, ωq ď limt!8Etpwt, ωq, and (4.27)
follows from (4.34).
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Step 2: differentiation with respect to µµµ. Let u P H1,p
µ pO;Rmq be such that Gpuq :“

ş

O
Gp∇µupxqqdµpxq ă 8. We are going to prove that

m˚
u,ωpOq “

ż

O

lim
ρ!0

mu,ωpBρpxqq

µpBρpxqq
dµpxq. (4.35)

According to Theorem 3.17, to prove (4.35) it suffices to establish that mu,ω is subadditive
and there exists a finite Radon measure ν on O which is absolutely continuous with respect
to µ such that

mu,ωpAq ď νpAq (4.36)

for all A P OpOq. For each t ą 0, from the definition of mt
u,ω in (4.26), it is easy to see that

for every A,B,C P OpOq with B,C Ă A, B X C “ H and µpAzpB Y Cqq “ 0, one has

mt
u,ωpAq ď mt

u,ωpBq `mt
u,ωpCq,

and so

lim
t!8

mt
u,ωpAq ď lim

t!8
mt
u,ωpBq ` lim

t!8
mt
u,ωpCq,

i.e.

mu,ωpAq ď mu,ωpBq `mu,ωpCq,

which shows the subadditivity of mu,ω. On the other hand, given any t ą 0, by using the
right inequality in (C6) we have

mt
u,ωpAq ď

ż

A

β
`

1`Gp∇µupxqq
˘

dµpxq

for all A P OpOq. Thus (4.36) holds with the Radon measure ν :“ β
`

1`Gp∇µup¨qq
˘

µ which
is necessarily finite since Gpuq ă 8.

Step 3: cut-off method. Let τ Ps0, 1r, let σ Psτ, 1r and let u P H1,p
µ pO;Rmq be such that

Gpσuq ă 8. We are going to prove that for µ-a.e. x P O,

lim
ρ!0

mτu,ωpBρpxqq

µpBρpxqq
ď lim

ρ!0

mτux,ωpBρpxqq

µpBρpxqq
, (4.37)

where ux P H
1,p
µ pΩ;Rmq is given by Proposition 3.4(iv).

Remark 4.1. For µ-a.e. x P O, one has

lim
ρ!0

mτux,ωpBρpxqq

µpBρpxqq
“ lim

ρ!0
lim
t!8

Hρ
µLtpx, τ∇µupxq, ωq.

Remark 4.2. If Gpτuq ă 8 then Gpτuxq ă 8 for µ-a.a. x P O, and so, by the step 2,

lim
ρ!0

mτu,ωpBρpxqq

µpBρpxqq
“ lim

ρ!0

mτu,ωpBρpxqq

µpBρpxqq
and lim

ρ!0

mτux,ωpBρpxqq

µpBρpxqq
“ lim

ρ!0

mτux,ωpBρpxqq

µpBρpxqq
.

Fix any t ą 0, any λ Ps0, 1r, any ρ ą 0 and any ε ą 0. By definition of mt
τux,ωpBλρpxqq in

(4.26), there exists w P H1,p
µ pO;Rmq such that

τw ´ τux P H
1,p
µ,0pBλρpxq;R

m
q (4.38)
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and
ż

Bλρpxq

Ltpy, τ∇µwpyq, ωqdµpyq ď mt
τux,ωpBλρpxqq ` εµpBλρpxqq. (4.39)

By Proposition 3.4(v) there is a Urysohn function ϕ P LippΩq for the pair pΩzBρpxq, Bλρpxqq
such that

}Dµϕ}L8µ pΩ;RN q ď
θ

ρp1´ λq

for some θ ą 0 (which does not depend on ρ). Define v P H1,p
µ pO;Rmq by

v :“ ϕux ` p1´ ϕqu “ ϕpux ´ uq ` u.

Then

τv ´ τu P H1,p
µ,0pBρpxq;R

m
q (4.40)

and, using Proposition 3.4(iv), i.e. ∇µuxpyq “ ∇µupxq for µ-a.a. y P O, and Proposition
3.4(vii),

τ∇µv “

"

τ∇µupxq in Bλρpx0q
τ
σ

`

ϕσ∇µupxq ` p1´ ϕqσ∇µu
˘

`
`

1´ τ
σ

˘

Ψρ in Bρpx0qzBλρpx0q
(4.41)

with Ψρ :“ τ
1´ τ

σ
Dµϕ b pux ´ uq. From (4.38) and (4.40) we have τv ` pτw ´ τuxq ´ τu P

H1,p
µ,0pBρpxq;R

mq. Noticing that µpBBλρpxqq “ 0 (see Remark 3.3) and, because of Proposition

(3.4)(ii), ∇µpτw ´ τuxqpyq “ τ∇µw ´ τ∇µux “ 0 for µ-a.a. y P BρpxqzBλρpxq, we see that

mt
τu,ωpBρpxqq

µpBλρpxqq
ď

1

µpBλρpxqq

ż

Bρpxq

Lt py, τ∇µv ` τ∇µw ´ τ∇µux, ωq dµ

“
1

µpBλρpxqq

ż

Bλρpxq

Lt py, τ∇µupxq ` τ∇µw ´ τ∇µupxq, ωq dµ

`
1

µpBλρpxqq

ż

BρpxqzBλρpxq

Ltpy, τ∇µv, ωqdµ

“
1

µpBλρpxqq

ż

Bλρpxq

Lt py, τ∇µw, ωq dµ

`
1

µpBλρpxqq

ż

BρpxqzBλρpxq

Ltpy, τ∇µv, ωqdµ.

From (4.39) and the right inequality in (C6) it follows that

mt
τu,ωpBρpxqq

µpBρpxqq
ď

mt
τu,ωpBρpxqq

µpBλρpxqq
ď

mt
τux,ωpBλρpxqq

µpBλρpxqq
` ε` β

µpBρpxqzBλρpxqq

µpBλρpxqq

`
β

µpBλρpxqq

ż

BρpxqzBλρpxq

Gpτ∇µvqdµ. (4.42)

On the other hand, taking (4.41) into account and using (C1), we have

Gpτ∇µvq ď c1 p1`Gpσ∇µupxqq `Gpσ∇µuq `GpΨρqq (4.43)
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with c1 :“ 2pγ ` γ2q ą 0. Moreover, it is easy to see that

}Ψρ}L8µ pBρpxq;Mq ď
θτ

p1´ τ
σ
qp1´ λq

1

ρ
}u´ ux}L8µ pBρpxq;Rmq,

where

lim
ρ!0

θτ

p1´ τ
σ
qp1´ λq

1

ρ
}u´ ux}L8µ pBρpxq;Rmq “ 0 (4.44)

by Proposition 3.4(iv), i.e. limρ!0
1
ρ
}u ´ ux}L8µ pBρpxq;Rmq “ 0. From (C1)–(C2) there exists

r ą 0 such that

c2 :“ sup
|ξ|ďr

Gpξq ă 8

(see Remark 2.2). By (4.44) there exists ρ̄ ą 0 such that θτ
p1´ τ

σ
qp1´λq

1
ρ
}u´ ux}L8µ pBρpxq;Rmq ă r

for all ρ Ps0, ρ̄r. Fix any ρ Ps0, ρ̄r. We then have

GpΨρq ď c2. (4.45)

From (4.43) and (4.45) it follows that

β

µpBλρpxqq

ż

BρpxqzBλρpxq

Gpτ∇µvqdµ ď βc1

`

1`Gpσ∇µupxqq ` c2

˘µpBρpxqzBλρpxqq

µpBλρpxqq

`
βc1

µpBλρpxqq

ż

BρpxqzBλρpxq

Gpσ∇µupyqqdµpyq.

But
ż

BρpxqzBλρpxq

Gpσ∇µupyqqdµpyq ď µpBρpxqq´

ż

Bρpxq

|Gpσ∇µupyqq ´Gpσ∇µupxqq|dµpyq

`µpBρpxqzBλρpxqqGpσ∇µupxqq,

hence

β

µpBλρpxqq

ż

BρpxqzBλρpxq

Gpτ∇µvqdµ ď βc1

`

1` 2Gpσ∇µupxqq ` c2

˘µpBρpxqzBλρpxqq

µpBλρpxqq

`βc1
µpBρpxqq

µpBλρpxqq
´

ż

Bρpxq

|Gpσ∇µupyqq ´Gpσ∇µupxqq|dµpyq. (4.46)

From (4.42) and (4.46) we deduce that

mt
τu,ωpBρpxqq

µpBρpxqq
ď

mt
τux,ωpBλρpxqq

µpBλρpxqq
` ε

`βc1

ˆ

1`
1

c1

` 2Gpσ∇µupxqq ` c2

˙

µpBρpxqzBλρpxqq

µpBλρpxqq

`βc1
µpBρpxqq

µpBλρpxqq
´

ż

Bρpxq

|Gpσ∇µupyqq ´Gpσ∇µupxqq|dµpyq. (4.47)
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As Gpσuq ă 8, i.e. Gpσ∇µup¨qq P L
1
µpOq, (and µ is a doubling measure) we can assert that:

Gpσ∇µupxqq ă 8; (4.48)

lim
ρ!0

´

ż

Bρpxq

|Gpσ∇µupyqq ´Gpσ∇µupxqq|dµpyq “ 0. (4.49)

As the boundary of any ball is of zero measure (see Remark 3.3), we have

lim
ρ!0

µpBρpxqzBλρpxqq

µpBλρpxqq
“ lim

ρ!0

ˆ

1´
µpBρpxqq

µpBλρpxqq

˙

“ 1´ lim
ρ!0

µpBρpxqq

µpBλρpxqq
,

and so, by using Proposition (3.4)(vi),

lim
λ!1´

lim
ρ!0

µpBρpxqzBλρpxqq

µpBλρpxqq
“ 0. (4.50)

Moreover, we have:

lim
ρ!0

lim
t!8

mt
τu,ωpBρpxqq

µpBρpxqq
“ lim

ρ!0

mτu,ωpBρpxqq

µpBρpxqq
; (4.51)

lim
ρ!0

lim
t!8

mt
τux,ωpBλρpxqq

µpBλρpxqq
ď lim

ρ!0
lim
t!8

mt
τux,ωpBρpxqq

µpBρpxqq
“ lim

ρ!0

mτux,ωpBρpxqq

µpBρpxqq
. (4.52)

Letting t ! 8, ρ ! 0 and λ ! 1´ in (4.47) and using (4.48), (4.49), (4.50), (4.51) and
(4.52) we conclude that

lim
ρ!0

mτu,ωpBρpxqq

µpBρpxqq
ď lim

ρ!0

mτux,ωpBρpxqq

µpBρpxqq
` ε,

and (4.37) follows by letting ε! 0.

Conclusion of the steps 1, 2 and 3. As a direct consequence of (4.27), (4.35) and (4.37)
together with Remarks 4.1 and 4.2, we have the following lemma.

Lemma 4.3. For every τ Ps0, 1r and every u P H1,p
µ pO;Rmq such that Gpτuq ă 8 and

Gpσuq ă 8 for some σ Psτ, 1r, one has

ΓpLpµq- lim
t!8

Etpτu, ωq ď

ż

O

lim
ρ!0

lim
t!8

Hρ
µLtpx, τ∇µupxq, ωqdµpxq.

Step 4: end of the proof. Let u P H1,p
µ pO;Rmq. We have to prove that

ΓpLpµq- lim
t!8

Etpu, ωq ď

ż

O

lim
τ!1´

lim
ρ!0

lim
t!8

Hρ
µLtpx, τ∇µupxq, ωqdµpxq. (4.53)

Without loss of generality we can assume that
ż

O

lim
τ!1´

lim
ρ!0

lim
t!8

Hρ
µLtpx, τ∇µupxq, ωqdµpxq “: Elimpu, ωq ă 8. (4.54)

Then, by Proposition 2.8(i) we have

∇µupxq P QµGx for µ-a.a. x P O (4.55)
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and

lim
τ!1´

lim
ρ!0

lim
t!8

Hρ
µLtpx, τ∇µupxq, ωq“ lim

τ!1´
lim
ρ!0

lim
t!8

Hρ
µLtpx, τ∇µupxq, ωq forµ-a.a. x P O. (4.56)

Substep 4-1: proving (4.53) under the constraint ∇µupxq P intpQµGxq∇µupxq P intpQµGxq∇µupxq P intpQµGxq for µµµ-a.a.
x P Ox P Ox P O. Assume that

∇µupxq P intpQµGxq for µ-a.a. x P O. (4.57)

Then, since (C1)–(C2) implies that τ∇µupxq P intpQµGxq for all τ Ps0, 1r and for µ-a.a. x P O
(see Remark 2.3(v)), by (C4) we have

lim
τ!1´

QµGpx, τ∇µupxqq ě QµGpx,∇µupxqq for µ-a.a. x P O. (4.58)

Using (4.58) and the left inequality in (C6) we see that

1

α
Elimpu, ωq ě

ż

O

lim
τ!1´

QµGpx, τ∇µupxqqdµ ě

ż

O

QµGpx,∇µupxqqdµ “: QµGpuq,

hence, by (4.54),
QµGpuq ă 8. (4.59)

Taking (C3) into account, from (4.57) and (4.59) it follows that

Gpuq ă 8. (4.60)

But, by (C1) we see that for every τ Ps0, 1r, Gpτuq ď γµpOqp1 ` Gp0qq ` γGpuq, hence, by
(C2) and (4.60), Gpτuq ă 8 for all τ Ps0, 1r, and so, by Lemma 4.3 we have

ΓpLpµq- lim
t!8

Etpτu, ωq ď

ż

O

lim
ρ!0

lim
t!8

Hρ
µLtpx, τ∇µupxq, ωqdµpxq for all τ Ps0, 1r. (4.61)

On the other hand, from the right inequality in (C6) we see that for every τ Ps0, 1r,

lim
ρ!0

lim
t!8

Hρ
µLtpx, τ∇µup¨q, ωq ď β

`

1`QµGpx, τ∇up¨qq
˘

ď β
`

1`Gpτ∇up¨qq
˘

,

and consequently, by using (C1),

lim
ρ!0

lim
t!8

Hρ
µLtpx, τ∇µup¨q, ωq ď β

`

1`Gp0q `Gp∇µup¨q
˘

:“ fp¨q for all τ Ps0, 1r

with f P L1
µpOq by (C2) and (4.60). Taking (4.56) into account, from Lebesgue’s dominated

convergence theorem we deduce that

lim
τ!1´

ż

O

lim
ρ!0

lim
t!8

Hρ
µLtpx, τ∇µupxq, ωqdµpxq “

ż

O

lim
τ!1´

lim
ρ!0

lim
t!8

Hρ
µLtpx, τ∇µupxq, ωqdµpxq.

From (4.61) we conclude that

lim
τ!1´

ΓpLpµq- lim
t!8

Etpτu, ωq ď

ż

O

lim
τ!1´

lim
ρ!0

lim
t!8

Hρ
µLtpx, τ∇µupxq, ωqdµpxq,

and (4.53) follows because ΓpLpµq- limt!8Etp¨, ωq is Lpµ-lsc and τu ! u in LpµpO;Rmq as
τ ! 1´.
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Substep 4-2: proof of (4.53). First of all, from (C7) and Proposition 3.14 we can assert
that L8 :“ limρ!0 limt!8Hρ

µLt is ru-usc at ω with a8p¨, ωq given by (2.2). Moreover, by
(C6) we see that for every x P O, the effective domain of L8px, ¨, ωq is equal to QµGx. Taking
(C1)–(C2) into account (see Remark 2.3(v)), from Theorem 3.12(ii) it follows that

pL8 :“ lim
τ!1´

lim
ρ!0

lim
t!8

Hρ
µLt is ru-usc at ω with a8p¨, ωq. (4.62)

From (4.54) we see that ∇µupxq P pL8,x,ω for µ-a.a. x P O, where pL8,x,ω denotes the effective

domain of pL8px, ¨, ωq. Hence, for every τ Ps0, 1r,

ż

O

pL8px, τ∇µupxq, ωqdµ ď
`

1`∆a8
pL8
pτ, ωq

˘

ż

O

pL8px,∇µupxq, ωqdµ

`∆a8
pL8
pτ, ωq

ż

O

a8px, ωqdµ

with ∆a8
pL8
pτ, ωq :“ supxPO supξPpL8,x,ω

pL8px,τξ,ωq´pL8px,ξ,ωq

a8px,ωq`pL8px,ξ,ωq
, i.e.

Elimpτu, ωq ď
`

1`∆a8
pL8
pτ, ωq

˘

Elimpu, ωq `∆a8
pL8
pτ, ωq

ż

O

a8px, ωqdµ (4.63)

for all τ Ps0, 1r. Using (4.54) and (2.2), i.e. a8 P L
1
µpOq, we see that

Elimpτu, ωq ă 8 for all τ Ps0, 1r. (4.64)

On the other hand, from (4.55) and (C1)–(C2) (see Remark 2.3(v)) we deduce that

∇µpτuqpxq P intpQµGxq for all τ Ps0, 1r and µ-a.a. x P O. (4.65)

According to (4.65) and (4.64), from the substep 4-1 we can assert that

ΓpLpµq- lim
t!8

Etpτu, ωq ď Elimpτu, ωq

for all τ Ps0, 1r, and so, taking (4.63) into account,

ΓpLpµq- lim
t!8

Etpτu, ωq ď
`

1`∆a8
pL8
pτ, ωq

˘

Elimpu, ωq `∆a8
pL8
pτ, ωq

ż

O

a8px, ωqdµ (4.66)

for all τ Ps0, 1r. Moreover, by (4.62) we have limτ!1´ ∆a8
pL8
pτ, ωq ď 0. Hence, letting τ ! 1´

in (4.66) we conclude that

lim
τ!1´

ΓpLpµq- lim
t!8

Etpτu, ωq ď Elimpu, ωq,

and (4.53) follows because ΓpLpµq- limt!8Etp¨, ωq is Lpµ-lsc and τu ! u in LpµpO;Rmq as
τ ! 1´. �
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4.3. Proof of the Γ-convergence result. Here we prove Theorem 2.5

Proof of Theorem 2.5. Fix ω P Ω1. By (C6) we see that

αQµGpx, ξq ď lim
ρ!0

lim
t!8

Hρ
µLtpx, ξ, ωq ď lim

ρ!0
lim
t!8

Hρ
µLtpx, ξ, ωq ď β

`

1`QµGpx, ξq
˘

for all x P O and all ξ PM. So, for every x P O, one has

dom

ˆ

lim
ρ!0

lim
t!8

Hρ
µLtpx, ¨, ωq

˙

“ dom

ˆ

lim
ρ!0

lim
t!8

Hρ
µLtpx, ¨, ωq

˙

“ QµGx, (4.67)

where dom
`

limρ!0 limt!8Hρ
µLtpx, ¨, ωq

˘

and dom
`

limρ!0 limt!8Hρ
µLtpx, ¨, ωq

˘

denotes the

effective domain of limρ!0 limt!8Hρ
µLtpx, ¨, ωq and limρ!0 limt!8Hρ

µLtpx, ¨, ωq respectively.

Let px, ξq P O ˆM. If ξ R QµGx then there exists τξ Ps0, 1r such that τξ R QµGx for all
τ P rτξ, 1r. Hence:

‚ if ξ R QµGx then, by (4.67),

lim
ρ!0

lim
t!8

Hρ
µLtpx, τξ, ωq “ lim

ρ!0
lim
t!8

Hρ
µLtpx, τξ, ωq “ 8 for all τ P rτξ, 1r;

‚ if ξ P QµGx then, from (C1)–(C2) (see Remark 2.3(v)), we have τξ P intpQµGxq for
all τ Ps0, 1r, and so, by (C8),

lim
ρ!0

lim
t!8

Hρ
µLtpx, τξ, ωq ě lim

ρ!0
lim
t!8

Hρ
µLtpx, τξ, ωq for all τ Ps0, 1r.

It follows that

lim
τ!1´

lim
ρ!0

lim
t!8

Hρ
µLtpx, ξ, ωq ě lim

τ!1´
lim
ρ!0

lim
t!8

Hρ
µLtpx, ξ, ωq

for all px, ξq P O ˆM. From Propositions 2.6 and 2.7 we deduce that

ΓpLpµq- lim
t!8

Etpu, ωq ě

ż

O

lim
τ!1´

lim
ρ!0

lim
t!8

Hρ
µLtpx, τ∇µupxq, ωqdµpxq

ě

ż

O

lim
τ!1´

lim
ρ!0

lim
t!8

Hρ
µLtpx, τ∇µupxq, ωqdµpxq

ě ΓpLpµq- lim
t!8

Etpu, ωq.

for all u P H1,ppO;Rmq. Hence

ΓpLpµq- lim
t!8

Etpu, ωq “

ż

O

lim
τ!1´

lim
ρ!0

lim
t!8

Hρ
µLtpx, τ∇µupxq, ωqdµpxq

for all u P H1,p
µ pO;Rmq. �

5. Applications

In this section we give some applications of Theorem 2.5 and Proposition 2.8.
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5.1. Relaxation. In case Ltpx, ξ, ωq “ Lpx, ξq, and so Etp¨, ωq “ Ep¨q, we retrieve the
relaxation theorem established in [AHM18, Theorem 2.7]. More precisely, denoting the lsc
envelope of E with respect to the strong topology of LpµpΩ;Rmq by E, as a direct consequence
of Theorem 2.5 and Proposition 2.8 we have the following result.

Corollary 5.1. Assume that the hypotheses of Theorem 2.5 are satisfied with Ltpx, ξ, ωq “
Lpx, ξq6. Then

Epuq “

ż

O

yQµLpx,∇µupxqqdµpxq

for all u P H1,p
µ pO;Rmq with yQµL : O ˆM! r0,8s given by

yQµLpx, ξq “

#

lim
τ!1´

QµLpx, τξq if ξ P QµGx

8 otherwise,

where QµL : O ˆM! r0,8s is defined by

QµLpx, ξq :“ lim
ρ!0

inf

#

´

ż

Bρpxq

Lpy, ξ `∇µwpyqqdµpyq : w P H1,p
µ,0pBρpxq;R

m
q

+

.

If moreover QµLpx, ¨q is lsc on intpQµGxq for all x P O then

yQµLpx, ξq “ QµLpx, ξq “

$

&

%

QµLpx, ξq if ξ P intpQµGxq

lim
τ!1´

QµLpx, τξq if ξ P BQµGx

8 otherwise,

where, for each x P O, QµLpx, ¨q denotes the lsc envelope of QµLpx, ¨q.

5.2. Homogenization. Homogenization of integrals of the calculus of variations in non-
euclidean settings has been studied for the first time in [AHM17] (see also [DDMM20,
AHM20b]) for integrands having p-growth. In this paragraph, we attempt to develop a
framework to deal with integrands which have not necessarily p-growth and can take infinite
values, by using (the Γ-convergence result) Theorem 2.5 together with Proposition 2.8 and
subadditive theorems that we proved in [AHM20b] (see Theorems 5.3 and 5.4).

5.2.1. Homogenization framework. Roughly speaking, once we have established a Γ-
convergence result as Theorem 2.5, we can deduce homogenization theorems (see §5.2.3) by
the use of suitable subadditive theorems (see §5.2.2) allowing to establish the condition (C8)
in Theorem 2.5. To apply this process, we need an appropriate framework with which we
can work in the setting of metric measure spaces. In what follows, we adopt the following
notation:

‚ we denote by BpXq the class of Borel subsets of X;
‚ we denote by B0 the class of A P BpXq such that µpAq ă 8 and µpBAq “ 0 with

BA “ AzÅ, where A (resp. Å) is the closure (resp. the interior) of A;
‚ we denote by HomeopXq the group of homeomorphisms on X;
‚ we denote by BapXq the class of open ball of X.

6When Ltpx, ξ, ωq “ Lpx, ξq we have Hρ
µLtpx, ξ, ωq “ QµLpx, ξq, and (C8) is trivially satisfied.
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Note that by Remark 3.3 we have µpBBq “ 0 for all B P BapXq, and so BapXq Ă B0. In
order to deal with homogenization in the framework of metric measure spaces, we need to
introduce the quadruple

`

G , tτgugPG ,U, thtutą0

˘

with:

(O1) G a subgroup of HomeopXq such that µ is G-invariant, i.e. g7µ “ µ for all g P G
which means that for every g P G and every A PBpXq,

µpg´1
pAqq “ µpAq;

(O2) tτgugPG a group of P-preserving transformations on pΩ,F,Pq, i.e.
$

&

%

τg is F-mesurable for all g P G
τgoτf “ τgof and τg´1 “ τ´1

g for all g, f P G
PpτgpAqq “ PpAq for all A P F and all g P G ;

(O3) U PB0 such that µpUq ą 0;
(O4) thtutą0 Ă HomeopXq,

where U can be interpretated as the “unit cell” with respect to X and thtutą0 as a family of
“dilations” in X. Let J ĂB0 be given by

J :“

"

Y
gPH

g´1
`

hkpUq
˘

: k P N˚, H P D
`

hkpUq
˘

and |H| ă 8

*

with

D
`

hkpUq
˘

:“
!

H Ă G :
 

g´1
phkpUqq

(

gPH
is disjoint

)

.

(Theses sets are of interest for the development of subadditive theorems in the setting on
measure spaces with acting group, see [AHM20b] for more details.) To obtain homogeniza-
tion results in the framework of metric measure spaces, we need to refine it by assuming
that:

(F1) pX,BpXq, µq is G-meshable with respect to
 

hkpUq
(

kPN˚
, i.e. for each k P N˚ there

is Gk P DphkpUqq with the property that for each q P N˚ there exist G´q,k Ă G`q,k P
PfpGkq such that

$

’

&

’

%

Y
gPG´q,k

g´1
phkpUqq Ă hqpUq Ă Y

gPG`q,k

g´1
phkpUqq

lim
q!8

ˇ

ˇG`q,kzG
´
q,k

ˇ

ˇ

µphkpUqq
µphqpUqq

“ 0;

(Fs
1) pX,BpXq, µq is strongly G-meshable with respect to

 

hkpUq
(

kPN˚
, i.e. pX,BpXq, µq

is G-meshable with respect to
 

hkpUq
(

kPN˚
with the additional property that G “

YkPN˚Gk where every Gk is a countable discrete amenable7 subgroup of G ;

7Let H Ă G be a subgroup and let Pf pH q denote the class of finite subsets of H . We say that H is
amenable if for each E P PfpH q and each δ ą 0 there exists F P PfpH q such that,|F∆EF | ď δ|F |, where | ¨ |
denotes the counting measure on G , ∆ is the symmetric difference of sets and EF “ tgof : pg, fq P E ˆ F u.
(For more details on the theory of amenable groups, see [Kre85, §6.4] and [DZ15, §2].)
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(F2) for every B P BapXq, thtpBqutą0 is asymptotically G-regular, i.e. there exist two
G-regular families8 tJ tutą0, tJ tutą0 Ă J such that

$

&

%

J t Ă htpBq Ă J t for all t ą 0

lim
t!0

µ
`

J tzJ t
˘

µphtpBqq
“ 0;

(5.1)

(Fs
2) for every B P BapXq, thtpBqutą0 is asymptotically strongly G-regular, i.e. there exist

two strongly G-regular families9 tJ tutą0, tJ tutą0 Ă J satisfying (5.1);
(F3) for each t ą 0, pphtq

´1q7µ “ µphtpUqqµ, i.e. for every A PBpXq,

µphtpAqq “ µphtpUqqµpAq;
(F4) for every g P G and every B P BapXq, there exists a bijective map Tg,B from

H1,p
µ,0pg

´1pBq;Rmq to H1,p
µ,0pB;Rmq such that ∇µTg,Bpwq “ ∇µwog´1 for all w P

H1,p
µ,0pg

´1pBq;Rmq and ∇µpTg,Bq
´1pvq “ ∇µv og for all v P H1,p

µ,0pB;Rmq;
(F5) for every t ą 0 and every B P BapXq, there exists a bijective map Ht,B from

H1,p
µ,0phtpBq;R

mq to H1,p
µ,0pB;Rmq such that ∇µHt,Bpwq “ ∇µwoht for all w P

H1,p
µ,0phtpBq;R

mq and ∇µpHt,Bq
´1pvq “ ∇µv o phtq

´1 for all v P H1,p
µ,0pB;Rmq.

Remark 5.2. From (F3) we see that µphtpUqq ą 0 and phtq
7µ “ pµphtpUqqq´1µ for all t ą 0.

Moreover, as µpUzŮq “ 0 we have µpŮq “ µpUq and so µphtpŮqq “ µphtpUqq for all t ą 0.

5.2.2. Subadditive theorems. In what follows, we recall subadditive theorems that we
proved in [AHM20b, Theorem 2.19]. Let S : B0 ˆ Ω ! r0,8s be such that SpA, ¨q P
L1pΩ,F,Pq for all A PB0. In Theorems 5.3 and 5.4 below we need the following properties
on S:

(S1) there exists C ą 0 such that for every A PB0 and every ω P Ω,

SpA, ωq ď CµpAq;

(S2) S is subadditive, i.e. for every A,B PB0 with AXB “ H and every ω P Ω,

SpAYB,ωq ď SpA, ωq `SpB,ωq;

(Ss
3) S is G-stationary, i.e. for every A PB0, every g P G and every ω P Ω,

S
`

g´1
pAq, ω

˘

“ S
`

A, τgpωq
˘

and, when S is deterministic, i.e. Sp¨, , ωq “ Sp¨q,

(S3) S is G-invariant, i.e. for every A PB0 and every g P G ,

S
`

g´1
pAq

˘

“ SpAq.

8Given tJtutą0 Ă J, for each t ą 0, Jt “ YgPHt
g´1phqtpUqq with Ht P DphqtpUqq. We say that tJtutą0 is

G-regular if limt!8 qt “ 8 and for every t ą 0 and every k P N˚ there exist q̄t,k P N
˚, ḡt,k P G and Ft,k P

PfpGkq such that G`qt,kHt Ă Ft,k, ḡ´1
t,k phq̄t,kpUqq “ YrPG`

qt,k
Ht
r´1phkpUqq and limt!8 |Ft,k||G

`
qt,k

Ht|
´1 “ 1.

9We say that tJtutą0 is strongly G-regular if it is G-regular with the additional assumption that
for each k P N˚ and each i P t´,`u, tGiqt,kHtutą0 is of Følner-Tempelman type with respect to

Gk, i.e. limt!8 |gG
i
qt,k

Ht∆G
i
qt,k

Ht||G
i
qt,k

Ht|
´1 “ 0 for all g P Gk (Følner’s condition) and | Y0ăsďt

pGiqs,kHsqpG
i
qt,k

Htq| ď M |Giqt,kHt| for all t ą 0 and some M ą 0 (Tempelman’s condition). (For more

details on these conditions, see [Lin99, Lin01, DGZ14].)
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Theorem 5.3 (deterministic case). Under (O1), (O3)–(O4), (F1)–(F2) and (S1)–(S3), for
every B P BapXq, one has

lim
t!8

SphtpBqq

µphtpBqq
“ inf

kPN˚

SphkpUqq
µphkpUqq

.

Let I :“
 

A P F : PpτgpAq∆Aq “ 0 for all g P G
(

be the σ-algebra of invariant sets
with respect to pΩ,F,P, tτgugPGq. Recall that pΩ,F,P, tτgugPGq is said to be ergodic if
PpAq P t0, 1u for all A P I.

Theorem 5.4 (stochastic case). Under (O1)–(O4), (Fs
1)–(Fs

2), (S1)–(S2) and (Ss
3), there

exists Ω1 P F with PpΩ1q “ 1 such that for every ω P Ω1 and every B P BapXq, one has

lim
t!8

SphtpBq, ωq

µphtpBqq
“ inf

kPN˚

EIrSphkpUq, ¨qspωq
µphkpUqq

,

where EIrSphkpUq, ¨qs denotes the conditional expectation of SphkpUq, ¨q over I with respect
to P. If moreover pΩ,F,P, tτgugPGq is ergodic then

lim
t!8

SphtpBq, ωq

µphtpBqq
“ inf

kPN˚

ErSphkpUq, ¨qs
µphkpUqq

,

where ErSphkpUq, ¨qs denotes the expectation of SphkpUq, ¨q with respect to P.

5.2.3. Homogenization theorems. In what follows, we establish deterministic and sto-
chastic homogenization theorems of nonconvex unbounded integrals in the setting of metric
measure spaces according to our framework in §5.2.1 (see Theorems 5.9 and 5.10). Let
L : X ˆMˆ Ω ! r0,8s be a Borel measurable stochastic integrand such that:

(H1) L is p-coercive, i.e. there exists c ą 0 such that for every x P X, every ξ P M and
every ω P Ω,

Lpx, ξ, ωq ě c|ξ|p;

(H2) L has G-growth, i.e. there exist α, β ą 0 such that for every x P X, every ξ PM and
every ω P Ω,

αGpξq ď Lpx, ξ, ωq ď βp1`Gpξqq

with G : M! r0,8s satisfying (C1)–(C4);
(Hs

3) L is G-stationary with respect to tτgugPG , i.e. for every x P X, every ξ P M, every
g P G and every ω P Ω,

Lpg´1
pxq, ξ, ωq “ Lpx, ξ, τgpωqq

and, when L is deterministic, i.e. Lpx, ξ, ωq “ Lpx, ξq,

(H3) L is G-periodic, i.e. for every x P X, every ξ PM and every g P G ,

Lpg´1
pxq, ξq “ Lpx, ξq.

For each t ą 0, we consider Lt : X ˆMˆ Ω ! r0,8s given by

Ltpx, ξ, ωq :“ Lphtpxq, ξ, ωq. (5.2)

Then, under (H1)–(H2), it is easy to see that tLtutą0 satisfies (C5)–(C6). Homogenization of
integrals was already studied in [AHM17] and [AHM20b, §3] in the p-growth case, i.e. when
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Gpξq “ |ξ|p. Here we are concerned with the G-growth case. For this, we need to suppose
that

(H4) for every ω P Ω, L is ru-usc at ω with respect to thtutą0, i.e. for every ω P Ω, there
exists ap¨, ωq P L1

µpX; s0,8sq with

lim
t!8

ż

X

aphtpxq, ωqdµpxq ă 8

and

lim
ρ!0

lim
t!8

´

ż

Bρp¨q

aphtpyq, ωqdµpyq P L
1
µpXq

such that

lim
τ!1´

∆a
Lpτ, ωq ď 0,

where ∆a
L : r0, 1s ˆ Ω !s ´ 8,8s is given by

∆a
Lpτ, ωq :“ sup

xPX
sup
ξPLx,ω

Lpx, τξ, ωq ´ Lpx, ξ, ωq

apx, ωq ` Lpx, ξ, ωq

with Lx,ω denoting the effective domain of Lpx, ¨, ωq.

Lemma 5.5. Let ω P Ω. If L is ru-usc at ω with respect to thtutą0 with ap¨, ωq, then tLtutą0

is ru-usc at ω with taphtp¨q, ωqutą0.

Proof of Lemma 5.5. Set atp¨, ωq :“ aphtp¨q, ωq for all t ą 0. For any τ P r0, 1s, any t ą 0,
any x P Ω and any ξ P Lt,x,ω, one has

Ltpx, τξ, ωq ´ Ltpx, ξ, ωq

atpx, ωq ` Ltpx, ξ, ωq
“
Lphtpxq, τξ, ωq ´ Lphtpxq, ξ, ωq

aphtpxq, ωq ` Lphtpxq, ξ, ωq
. (5.3)

As Lt,x,ω “ Lhtpxq,ω and htpxq P X we see that

Lphtpxq, τξ, ωq ´ Lphtpxq, ξ, ωq

aphtpxq, ωq ` Lphtpxq, ξ, ωq
ď sup

yPX
sup
ξPLy,ω

Lpy, τξ, ωq ´ Lpy, ξ, ωq

apy, ωq ` Lpy, ξ, ωq
“ ∆a

Lpτ, ωq,

and from (5.3) we deduce that

sup
tą0

∆at
Lt
pτ, ωq ď ∆a

Lpτ, ωq (5.4)

for all τ P r0, 1s. But L is ru-usc at ω with ap¨, ωq, i.e. limτ!1´ ∆a
Lpτ, ωq ď 0, and so, letting

τ ! 1´ in (5.4), we obtain limτ!1´ suptą0 ∆at
Lt
pτ, ωq ď 0 which means that tLtutą0 is ru-usc

at ω with tatp¨, ωqutą0 “ taphtp¨q, ωqutą0. �

Lemma 5.5 shows that (H4) implies (C7). So, according to Theorem 2.5 and Proposition
2.8, to prove Theorems 5.9 and 5.10 below, it is sufficient to establish the condition (C8) in
Theorem 2.5. For this, we consider the following assumption:

(H5) for every ξ P YyPOintpQµGyq, there exists Cξ ą 0 such that for every A PB0,

inf

"
ż

Å

Gpξ `∇µwpyqqdµpyq : w P H1,p
µ,0pÅ;Rmq

*

ď CξµpAq.
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Remark 5.6. It is clear that if intpQµGyq Ă G for all y P O, then (H5) is satisfied with
Cξ “ Gpξq. (In particular, (H5) holds when G is H1,p

µ -quasiconvex.)

For each ξ PM, let Sξ
L : B0 ˆ Ω ! r0,8s be defined by

S
ξ
LpA, ωq :“ inf

"
ż

Å

Lpy, ξ `∇µwpyq, ωqdµpyq : w P H1,p
µ,0pÅ;Rmq

*

.

As M is separable, also is YyPOintpQµGyq. Let D Ă YyPOintpQµGyq be a countable set

such that D “ YyPOintpQµGyq. In the stochastic case, we need the following two additional
assumptions:

(Hs
6) for every ξ P YyPOintpQµGyq and every A PB0, Sξ

LpA, ¨q is F-mesurable;
(Hs

7) there exist φ : r0,8r! r0,8s and θ : YyPOintpQµGyq ˆ D ! r0,8s with
#

lim
r!0

φprq “ 0

sup
!

θpξ, ζq : ζ P D and |ζ| ďM
)

ă 8

such that for every A PB0, every ω P Ω, every ξ P YyPOintpQµGyq and every ζ P D,
ˇ

ˇ

ˇ

ˇ

ˇ

S
ξ
LpA, ωq

µpAq
´

S
ζ
LpA, ωq

µpAq

ˇ

ˇ

ˇ

ˇ

ˇ

ď θpξ, ζqφp|ξ ´ ζ|q.

The following two propositions are consequences of Theorems 5.3 and 5.4 respectively. We
only give the proof of the stochastic proposition. The deterministic proposition can be proved
by the same method.

Proposition 5.7 (deterministic case). Under (O1), (O3)–(O4), (F1)–(F5), the right inequal-
ity in (H2) and (H3)–(H5), for every ρ ą 0, every x P O and every ξ P intpQµGxq, one
has

lim
t!8

Hρ
µLtpx, ξq “ lim

t!8

S
ξ
L pht pBρpxqqq

µ pht pBρpxqqq
“ inf

kPN˚

S
ξ
LphkpUqq
µphkpUqq

,

which implies (C8).

Proposition 5.8 (Stochastic case). Under (O1)–(O4), (Fs
1)–(Fs

2), (F3)–(F5), the right in-
equality in (H2), (Hs

3), (H4)–(H5), (Hs
6)–(Hs

7), there exists Ω1 P F with PpΩ1q “ 1 such that
for every ω P Ω1, every ρ ą 0, every x P O and every ξ P intpQµGxq, one has

lim
t!8

Hρ
µLtpx, ξ, ωq “ lim

t!8

S
ξ
L pht pBρpxqq , ωq

µ pht pBρpxqqq
“ inf

kPN˚

EIrS
ξ
LphkpUq, ¨qspωq
µphkpUqq

,

where EI denotes the conditional expectation over I with respect to P, with I being the
σ-algebra of invariant sets with respect to pΩ,F,P, tτgugPGq. If moreover pΩ,F,P, tτgugPGq

is ergodic then

lim
t!8

Hρ
µLtpx, ξ, ωq “ lim

t!8

S
ξ
L pht pBρpxqq , ωq

µ pht pBρpxqqq
“ inf

kPN˚

ErSξ
LphkpUq, ¨qs
µphkpUqq

,

where E denotes the expectation with respect to P. Consequently (C8) holds.
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Proof of Proposition 5.8. First of all, from (Hs
7) we see that for every ω P Ω, every k P N˚,

every ξ P YyPOintpQµGyq and every ζ P D,

S
ξ
LphkpUq, ωq
µphkpUqq

´ θpξ, ζqφp|ξ ´ ζ|q ď
S
ζ
LphkpUq, ωq
µphkpUqq

ď
S
ξ
LphkpUq, ωq
µphkpUqq

` θpξ, ζqφp|ξ ´ ζ|q,

and so, passing to the conditional expectation EI and then to the infimum on k,
ˇ

ˇ

ˇ

ˇ

ˇ

inf
kPN˚

EIrS
ξ
LphkpUq, ¨qspωq
µphkpUqq

´ inf
kPN˚

EIrS
ζ
LphkpUq, ¨qspωq
µphkpUqq

ˇ

ˇ

ˇ

ˇ

ˇ

ď θpξ, ζqφp|ξ ´ ζ|q.

Taking the properties of φ and θ in (Hs
7) into account, we obtain

lim
DQζ!ξ

inf
kPN˚

EIrS
ζ
LphkpUq, ¨qspωq
µphkpUqq

“ inf
kPN˚

EIrS
ξ
LphkpUq, ¨qspωq
µphkpUqq

(5.5)

for all ω P Ω and all ξ P YyPOintpQµGyq. Fix any ζ P D. From the right inequality in (H2)

and (H5) we have S
ζ
LpA, ωq ď βp1` CζqµpAq for all ω P Ω and all A P B0, and so, by (Hs

6),

S
ζ
LpA, ¨q P L

1pΩ,F,Pq for all A PB0. Moreover, from (O1), (F3) and (Hs
3) it easily seen that

the set function S
ζ
L is G-stationary, and S

ζ
L is also subadditive because, for each A,B PB0,

µ
`

{̊A Y BzpÅ Y B̊q
˘

“ 0 since {̊A Y BzpÅ Y B̊q Ă BA Y BB and µpBAq “ µpBBq “ 0. Then,
by Theorem 5.4, there exists Ω1ζ P F with PpΩ1ζq “ 1 such that for every ω P Ω1ζ and every
B P BapXq, one has

lim
t!8

S
ζ
LphtpBq, ωq

µphtpBqq
“ inf

kPN˚

EIrS
ζ
LphkpUq, ¨qspωq
µphkpUqq

. (5.6)

Now, set Ω1 :“ XζPDΩ1ζ . Since D is countable, PpΩ1q “ 1. Fix any ω P Ω1, any ξ P
YyPOintpQµGyq and any B P BapXq. From (Hs

7) we see that for every t ą 0 and every ζ P D,

S
ζ
LphtpBq, ωq

µphtpBqq
´ θpξ, ζqφp|ξ ´ ζ|q ď

S
ξ
LphtpBq, ωq

µphtpBqq
ď

S
ζ
LphtpBq, ωq

µphtpBqq
` θpξ, ζqφp|ξ ´ ζ|q,

and so, letting t! 8 and using (5.6), we obtain:

inf
kPN˚

EIrS
ζ
LphkpUq, ¨qspωq
µphkpUqq

´ θpξ, ζqφp|ξ ´ ζ|q ď lim
t!8

S
ξ
LphtpBq, ωq

µphtpBqq
;

lim
t!8

S
ξ
LphtpBq, ωq

µphtpBqq
ď inf

kPN˚

EIrS
ζ
LphkpUq, ¨qspωq
µphkpUqq

` θpξ, ζqφp|ξ ´ ζ|q.

By the properties of φ and θ in (Hs
7) and (5.5), letting D Q ζ ! ξ, it follows that:

inf
kPN˚

EIrS
ξ
LphkpUq, ¨qspωq
µphkpUqq

ď lim
t!8

S
ξ
LphtpBq, ωq

µphtpBqq
;

lim
t!8

S
ξ
LphtpBq, ωq

µphtpBqq
ď inf

kPN˚

EIrS
ξ
LphkpUq, ¨qspωq
µphkpUqq

.
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Consequently, for every ω P Ω1, every ξ P YyPOintpQµGyq and every B P BapXq,

lim
t!8

S
ξ
LphtpBq, ωq

µphtpBqq
“ inf

kPN˚

EIrS
ξ
LphkpUq, ¨qspωq
µphkpUqq

. (5.7)

Finally, fix x P O and ξ P intpQµGxq (then ξ P YyPOintpQµGyq). Taking (5.2) into account,
from (O3) and (F3), we see that for every ω P Ω1, every B P BapXq, and every t ą 0, one has

S
ξ
L phtpBq, ωq “ inf

"
ż

htpBq

Lpy, ξ `∇µwpyq, ωqdµpyq : w P H1,p
µ,0phtpBq;R

m
q

*

“ inf

"
ż

B

Lphtpyq, ξ `∇µwphtpyqq, ωqdph
´1
t q

7µpyq : w P H1,p
µ,0phtpBq;R

m
q

*

“ µphtpUqq inf

"
ż

B

Ltpy, ξ `∇µwphtpyqq, ωqdµpyq : w P H1,p
µ,0phtpBq;R

m
q

*

.

But µphtpUqqµpBq “ ph´1
t q

7µpBq “ µphtpBqq by using (F3), and so from (F5) we obtain

S
ξ
L phtpBq, ωq “ µphtpBqq inf

"

´

ż

B

Ltpy, ξ `∇µwpyq, ωqdµpyq : w P H1,p
µ,0pB;Rmq

*

for all ω P Ω1, all B P BapXq and all t ą 0. Consequently, for every ω P Ω1 and every ρ ą 0,
we have:

lim
t!8

Hρ
µLtpx, ξ, ωq “ lim

t!8

S
ξ
L phtpBρpxqq, ωq

µ phtpBρpxqq
;

lim
t!8

Hρ
µLtpx, ξ, ωq “ lim

t!8

S
ξ
L phtpBρpxqq, ωq

µ phtpBρpxqqq
,

and the proposition follows by using (5.7) with B “ Bρpxq. �

For each t ą 0, let Et : H1,p
µ pO;Rmq ˆ Ω ! r0,8s be defined by (1.1) with Lt given by

(5.2). Taking Theorem 2.5 and Proposition 2.8 into account, from Propositions 5.7 and 5.8
respectively, we deduce the following two homogenization theorems.

Theorem 5.9 (deterministic case). Assume that p ą κ. Under (O1), (O3)–(O4), (F1)–(F5)
and (H1)–(H5), one has

ΓpLpµq- lim
t!8

Etpuq “

ż

O

Lhom

`

∇µupxq
˘

dµpxq

for all u P H1,p
µ pO;Rmq with Lhom : M! r0,8s given by

Lhompξq “

$

&

%

lim
τ!1´

inf
kPN˚

S
τξ
L phkpUqq
µphkpUqq

if ξ P Y
yPO

QµGy

8 otherwise.

Theorem 5.10 (stochastic case). Assume that p ą κ. Under (O1)–(O4), (Fs
1)–(Fs

2), (F3)–
(F5), (H1)–(H2), (Hs

3), (H4)–(H5), (Hs
6)–(Hs

7), there exists Ω1 P F with PpΩ1q “ 1 such that
for every ω P Ω1, one has

ΓpLpµq- lim
t!8

Etpu, ωq “

ż

O

Lhom

`

∇µupxq, ω
˘

dµpxq
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for all u P H1,p
µ pO;Rmq with Lhom : Mˆ Ω ! r0,8s given by

Lhompξ, ωq “

$

&

%

lim
τ!1´

inf
kPN˚

EIrS
τξ
L phkpUq, ¨qspωq
µphkpUqq

if ξ P Y
yPO

QµGy

8 otherwise,

where EI denotes the conditional expectation over I with respect to P, with I being the
σ-algebra of invariant sets with respect to pΩ,F,P, tτgugPGq. If moreover pΩ,F,P, tτgugPGq

is ergodic then Lhom is deterministic and is given by

Lhompξq “

$

&

%

lim
τ!1´

inf
kPN˚

ErSτξ
L phkpUq, ¨qs
µphkpUqq

if ξ P Y
yPO

QµGy

8 otherwise,

where E denotes the expectation with respect to P.
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