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I'"CONVERGENCE OF NONCONVEX UNBOUNDED INTEGRALS IN

CHEEGER-SOBOLEV SPACES

OMAR ANZA HAFSA AND JEAN-PHILIPPE MANDALLENA

ABSTRACT. We study I'-convergence of nonconvex integrals of the calculus of variations in
the setting of Cheeger-Sobolev spaces when the integrands have not polynomial growth and
can take infinite values. Applications to relaxation and homogenization are also developed.
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1. INTRODUCTION

Let (X, d, ) be a metric measure space, where (X, d) is separable and complete and p is a
doubling positive Radon measure on X which satisfies the annular decay property, supporting
a weak (1, p)-Poincaré inequality with p > 1. Let m, N > 1 be two integers, let O < X be
a bounded open set such that u(O\O) = 0 and let (2, F,P) be a probability space. In this
paper we consider a family of stochastic integrals E; : H ﬁ’p (O;R™) x Q — [0, 0] defined by

Ei(u,w) := Jo Li(z, V,u(z),w)du(z), (1.1)

where Ly : O x M x Q — [0, 0] is a Borel measurable stochastic integrandﬂ depending on a
parameter ¢t > 0, not necessarily convex with respect to & € IM, where IM denotes the space
of real m x N matrices, and possibly taking infinite values. The space H ;’p (O; R™) denotes
the class of p-Cheeger-Sobolev functions from €2 to R™ and V,u is the p-gradient of w.

The object of the present paper is to deal with the problem of computing the almost sure
[-convergence (see Definitions of the stochastic family {E; }+~0, as t — o0, to a stochastic
integral By @ HP(O;R™) x Q — [0, 0] of the type

Elim (1, w) = Jo Ly, (a:, V,u(x), w)du(m) (1.2)
with Ly, : Ox M x Q — [0, 0] not depending on the parameter t. When Ly, is independent
of the variable x, the procedure of passing from to is referred to as stochastic
homogenization. If furthermore Ly, is independent of the variable w then FEj, is said to be
deterministic, otherwise Ey, is said to be stochastic. When {L;};~¢ is deterministic, i.e. L;
is independent of the variable w for all ¢ > 0, the procedure of passing from to is
referred to as deterministic homogenization.

In the case where L; has p-growth, this I'-convergence problem was already studied in
[AHM17] and in [MPSC20, MPC21] for functionals depending on vector fields. Here we
treat the case where L; has not necessarily p-growth and can take infinite values (see Section
for more details).

In the Euclidean case, i.e. when (X,d, u) = (RY,|- — |, &) where & is the Lebesgue
measure on RY, I'-convergence of unbounded integrals was studied by Carbone and De
Arcangelis in [CCDAGO02, [CCDAGO04, [CDAO02| for the scalar case, i.e. when m = 1, and in
[AHM11l, [AHMZ15 [DG16, [AHM21] (see also [AHLM11l [AHCMI1T]) for the vector case, i.e.
when m > 1.

One motivation for developing I'-convergence, and more generally calculus of variations, in
the setting of metric measure spaces comes from applications to hyperelasticity. In fact,
the interest of considering a general measure is that its support can be interpreted as a hy-
perelastic structure together with its singularities like for example thin dimensions, corners,

IThroughout the paper, by a Borel measurable stochastic integrand L : O x M x  — [0, 0] we mean that
Lis (B(X)®B(M)®F, B(R))-measurable, where B(X), B(IM) and B(R) denote the Borel o-algebra on
X, M and R respectively.
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junctions, etc. Such mechanical “singular” objects naturally lead to develop calculus of vari-
ations in the setting of metric measure spaces. Indeed, for example, a low multi-dimensional
structures can be described by a finite number of smooth compact manifolds .S; of dimension
k; on which a superficial measure p; = #H*i s, is attached. Such a situation leads to deal with
the finite union of manifolds 5;, i.e. X = u,;95;, together with the finite sum of measures p;,
ie. pu = Y, pi, whose mathematical framework is that of metric measure spaces (for more
examples, we refer the reader to [BBS97, [Zhi02, [CJLP02] and [CPS07, Chapter 2, §10] and
the references therein).

Another motivation is the development of the calculus of variations on “singular” spaces,
which are of interest for geometers and physicists, like Carnot groups, glued spaces, Laakso
spaces, Bourdon-Pajot spaces, Gromov-Hausdorff limit spaces, spaces satisfying generalized
Ricci bounds (see [KMI6] for more details). Indeed, all these spaces are examples of doubling
metric measure spaces satisfying a Poincaré inequality on which the theory of I'-convergence
on Cheeger-Sobolev spaces could be applied.

The plan of the paper is as follows. In Section [2] we state the main result of the paper,
see Theorem (and also Proposition whose proof is given at the end of Section .
Theorem is a I-convergence result of {F;};~¢ as t — o to Eyy, in the setting of metric
measure spaces and in a unbounded framework. Classically, its proof is a consequence of
Proposition (the lower bound) and Proposition (the upper bound). Section [3] is
devoted to several auxiliary definitions and results needed for understanding and proving
our ['-convergence result: in Subsection [3.1] we provide materials about Cheeger-Sobolev
spaces; in Subsection we recall the concept of (family of) ru—uS(ﬂ integrand(s) and its
main properties that will be used in the proof of Propositions [2.6] and [2.8 the proof of
Proposition also needs the use of the Vitali envelope of a set function which is recalled in
Subsection [3.3] Section [ is devoted to the proofs of Propositions [2.6) and 2.7] and Theorem
2.5 Finally, applications to relaxation and homogenization are developed in Section [5

Notation. The open and closed balls centered at x € X with radius p > 0 are denoted by:
B,(x) := {y € X d(z,y) < p};
B,(z) := «{y € X :d(x,y) < p}.
For x € X and p > 0 we set
0B,(x) i= By(w)\By(z) = {y € X : d(z,y) = p}.

For A ¢ X, the diameter of A is defined by diam(A) := sup, ., d(z,y). The symbol §
stands for the mean-value integral

For F < M, where M denotes the space of real m x N matrices, the interior and the closure
of F are respectively denoted by int(F) and F.

2The abbreviation ru-usc means radially uniformly upper semicontinuous.
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2. THE ['-CONVERGENCE RESULT

We begin by recalling the definition of the almost sure I'-convergence. (For more details on
the theory of I'-convergence we refer to [DM93].)

Definition 2.1. We say that {E}};~o almost surely I'(L?)-converges as ¢ — o0 to the func-
tional By : HyP(O;R™) x Q — [0, 00] if there exists Q' € & with P(Q') = 1 such that for
every w € {2, one has:

P-lim: for every uw e H?(O; R™), T'(L7)-lim, ., Ey(u,w) > Ejm(u, w) with

F(Lﬁ)- lim F(u,w) := inf {h_m Ey(ug,w) s ug — u in Lﬁ(O; Rm)} )

t—00 t—00

or equivalently, for every u € H;?(O; R™) and every {u};~0 = H.?(O; R™) such that
uy — w in LP(O; R™),

li_m Et(u87 CU) 2 Elim(ua C(.)),
t—00

[-lim: for every u € HP(O;R™), L(L2)-Timy—op By(u,w) < B (u, w) with
I'(L%)- lim Ey(u,w) := inf {m Ey(up,w) : ug — uwin LA (O; ]Rm)} :
t—o0 t—o0
or equivalently, for every u € H,?(O;R™) there exists {u;}~0 = H)?(O; R™) such
that u; — u in LF(O;R™) and

tli_m Ei(up, w) < Ejjm(u,w).
00

Referring to the next section for any unfamiliar notation or definition, in what follows we
state the main results of the paper. Let G : M — [0, 0] be a Borel measurable integrand
satisfying the following conditions:

(Cq) there exists v > 0 such that for every &, € M and every 7 €]0, 1],

G(rE+ (1 =7)0) <(1+G(§) + G(Q));
(Cy) 0 € int(G), where G denotes the effective domain of G, i.e. G := {{ € M : G(&) < w0}.

Remark 2.2. If (Cy) is satisfied then G is convex, but G is not necessarily convex (see
[AHMZ15| Sect. 9]). So, if moreover (Cz) holds then

7G < int(G) for all 7 €]0, 1],

and there exists > 0 such that
sup G(&) < oo,

§l<r

see [AHM12b, Lemma 4.1].
Let @,G : O x M — [0, o0] be defined by

Q.G (x,§) = }}jr%inf {J[ G(& + V,w(y))dp(y) - we HH(B,(x); Rm)} :

Bp(l’)
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where the space H /if)’(Bp(x); R™) is defined as the closure of
Lipy(B,(x); R™) := {u € Lip(O;R™) : uw = 0 on O\Bp(x)}

with respect to the H)P-norm, where Lip(O;R™) := [Lip(O)]™ with Lip(O) denoting
the algebra of Lipschitz functions from O to R. (The integrand @Q,G is called the H /i’p—
quasiconvexification of GG. For more details on the notion of H bp—quasiconvexity, we refer to
[AHM20a, [AHM?22].) Denote the effective domain of @,G(z, -) by @,G,. We further suppose
that:

(Cs) for every u € H,?(O;R™), if S0 @G (x,Vyu(x))dp < o and if V,u(z) € int(Q,G,)

for p-a.a. erthenSO pu(x))dp < oo;
(Cy) for every z € O, Q,G(x,-) is lscﬂ on int(Q,G,).

Remark 2.3. (i) For every (z,&) € O x M, Q,G(z,§) < G(§), and so G < @,G, for all

x e 0.
(i) Considering ©,0,% : H;*(O;R™) — [0, 0] defined by €(u) := {, G( x))dp(x)
and Q,%(u SO@ G(z,V,u(z))dp(x) and denoting thelr effectlve domalns by

dom(?) and dom(@ug) we see that (C3) means that
{u e dom(@,%) : V,u(z) € int(Q,G,) for p-a.a. xe O} c dom(%).

(iii) If either dom(@,%) = dom(¥) or ¥(u) < oo for all u € H;?(O;R™) such that
V,u(z) € int(Q,G,) for p-a.a. x € O, then (C3) can be dropped.

(iv) Under (C1)—(Cy), if G = @,G, ie. G is H)P-quasiconvex, then (C3) holds. In
particular, since convexity implies H ;’p—quasiconvexity (see [AHM20a]), if G is convex
then (Cj3) holds.

(v) If G satisfies (Cy) then @,G verifies the same condition, i.e. for every z € O, every
¢, e M and every T €]0, 1],

Q,G(x, 76+ (1 —71)¢) <~v(1+@Q,G(x,¢) + Q,G(x,()),
and so Q,G, is convex for all z € O. Hence, under (C;)-(C,), for every z € O,
70,G, < int(Q,G,) for all 7 €]0, 1].

Let (X,d, 1) be a metric measure space, where (X, d) is separable and complete and p is a
doubling positive Radon measure on X which satisfies the annular decay property, supporting
a weak (1, p)-Poincaré inequality with

ln(Cd)
In(2)
Let O < X be a bounded open set such that x(O\O) = 0 and let (2, ,P) be a probability
space. Throughout the paper, we consider a family {L; : O x M x Q — [0, 0]}~ of Borel

measurable stochastic integrands depending on a parameter ¢ > 0 and satisfying the following
conditions:

P> K= where Cy > 1 is the doubling constant.

3The abbreviation lsc means lower semicontinuous.
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(Cs) {Lt}t=0 is p-coercive, i.e. there exists ¢ > 0 such that for every t > 0, every z € O,
every £ € M and every w € €2,
Lt(za 57 UJ) = C|€|p;
(Cg) {Li}i=0 has G-growth, i.e. there exist «r, 5 > 0 such that for every z € O, every £ € M
and every w € ),

aG(€) < Lilw, &,w) < B(1 + G(9).

Remark 2.4. If (Cy) and (Cg) hold then the effective domain Ly, of L(z,-,w) is equal to
G and so is convex and does not depend on z and w.

The p-growth case, i.e. when G(&) = |£|P, was already studied in [AHM17] (see also [MPSC20),
MPC21]). The object of this paper is to deal with the G-growth case. For this, in addition,
we need to suppose that

(Cq) for every w € Q, {L;}4=0 is ru-usc at w, i.e. for every w € ), there exists {a;(-,w) };=0 <
L, (0;]0,0]) with

lim | a;(z,w)du(r) < o (2.1)
t—0 Jo
and
lim lim ay(y,w)du(y) =: ax(-,w) € L,,(0) (2.2)
p—0t—00 Bp(-)
such that

: a
lim sup A7 (1,w) <0,
T—17 >0

where A7 1 [0,1] x Q —] — o0, 00] is given by

Lt(xa 7-57 OJ) _ Lt(x7 ga OJ)
AT (T,w) :=sup su
Lt( ) xeg fG]LtEM Gy (ZL‘, w) + Lt(l‘7 ga w)

with L; ., denoting the effective domain of L;(z, -, w).

For each t > 0 and each p > 0, let Z/L; : O x M x 2 — [0, 0] be defined by

Z!Li(v,§,w) := inf {J[ Li(y, &+ V,w(y), w)du(y) - w e H;:g(Bp(a:); Rm)} :

For each t > 0, let E; : H?(O;R™) x Q — [0,0] be defined by (L.1). The main result of
the paper is the following I'-convergence result.

Bﬂ(m)

Theorem 2.5 (I'-lim). Assume that p > k. If (C1)—(C7) hold and if
(Csg) there exists ' € F with P(2') = 1 such that for every w € ', one has

lim lim %7 L;(x,&,w) = lim lim %7 L;(x, &, w)
=000 i p—0t—00 ®

for all x € O and all € € int(Q,G,),
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then {E;}i~0 almost surely ['(LP)-converges as t — oo to the functional By : HyP(O;R™) x
Q — [0,0] defined by (1.2) with Ly, : O x M x Q — [0, 00] given by

Lhm(x ¢,w) = lim lim hm P Ly(x, 78, w)

r—1- P—0t—
Theorem is a consequence of the following two propositions.

Proposition 2.6 (I'-lim). Assume that p > k. If (C1)—(Cy) and (Cs5)—(Cz) hold then, for
every w € 2, one has

[(L%)- lim By (u,w) >J lim lig lim 0 Ly(x, 7V u(x), w)dp(x)
t—00 O T—1— P=0 o0

for allue HP(O;R™).

Proposition 2.7 (I'-lim). Assume that p > r. If (C1)~(C5) hold then, for every w € Q, one
has

[(L%)- lim B, (u,w) < Jo lim lim lim ZPLi(v, TV ju(), w)dp(z)

t00 T p—0 1o
for all uwe H?(O;R™).
Let Ly, : O x M x Q — [0, 0] be defined by
Lo (x,&, w) := lim lim 7 Ly(x, &, w).

p—0t—0c0
(Note that if (Cs) is satisfied then Ly (-, -, w) = hmpﬁo limy op L4 (-, -, w) for P-a.e. w e Q.)
Let EOC : 0 x M x Q — [0, 0] be given by
-/[:Oo(x7€7w> = h_m Loo(xﬂfaw)

T—1~
and, for each z € O and each w € Q, let L (7,-,w) denotes the Isc envelope of Ly (x, -, w).

The following proposition makes more precise the formula of the limit integrand Ly, in
Theorem 2.5

Proposition 2.8. Assume that (C1)—(Csy) and (Cg)—(C7) hold.
(i) For every w € €,

) T
Lon(e,€,0) = lim Lo (2, 7€,0) :{ Tim Lo(z,76,w) €€,

T—1- 0 otherwise.

~

So, in Theorem we have Ly, = L.
(ii) Suppose furthermore that for every w € Q and every x € O, Ly(z,-,w) is lsc on
int(Q,G,). Then

Lo(7,€&,w) if € € int(Q,G,)
Loo(w,6,w) = Lop(z,&,w) = { MM Lec(@, 7€, 0) if £ € 00,G (2.4)
0 otherwise.

In such a case, in Theorem Ly is given by ([2.4)).
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Proof of Proposition [2.8 From (C;) and Proposition we can assert that for every
w € ), Ly is ru-usc at w. Moreover, by (Cg) it is easily seen that for every z € O and
every w € (1, the effective domain of Ly (z,-,w) is equal to @,G,. So, taking (C;)—(Cs) into
account (see Remark [2.3|(v)), Proposition [2.8 follows from Theorem [3.12] W

3. AUXILIARY RESULTS

3.1. Cheeger-Sobolev spaces. Let (X, d, 1) be a separable and complete metric measure
space. Here and subsequently, we assume that p is doubling on X, i.e. there exists a constant
Cy; = 1 such that

(B,(2)) < Capt ( By () (3.1)

for p-a.a. x € X and all p > 0, and X supports a weak (1, p)-Poincaré inequality with p > 1,
i.e. there exist Cp > 0 and o > 1 such that for p-a.e. x € X and every p > 0,

1
J[ u— J[ udp
By(z) By(z)

dp < pCp (J[ vpd,u) (3.2)

Bvﬂ(x)
for every u € LL(O), every p-weak upper gradientﬂ v € LF(O) for u and every open set O = X
such that B,,(z) < O.

Remark 3.1. As pis doubling, for pu-a.e. € X and every r > 0, we have (B, (x))/u(B,(z)) =

% (p/r)" for all x € B.(Z) and all 0 < p < r, where K := lrf((’;‘i) (see [Haj03| Lemma 4.7]).

We further assume that (X, d, 1) satisfies the annular decay property, i.e. there exist § > 0
and Cy = 1 such that

0
B (2B (0)) < Co (1 1) (B (o) 33)

for all z € X, all r > 0 and all o €]1, o0[.

Remark 3.2. From [Buc99, Corollary 2.2] and [CM98| Lemma 3.3] (see also [Che99, Propo-
sition 6.12] and [HKSTT5, Proposition 11.5.3 pp. 328]), under (3.1) and (3.2), if moreover
(X, d) is a length space, i.e. the distance between any two points equals infimum of lengths
of curves connecting the points, then (3.3|) holds.

Remark 3.3. If (3.3) holds then u(B,(z)\B,(z)) = 0 for all z € X and all r > 0, ie.
the boundary of any ball is of zero measure. Indeed, given z € X and r > 0, we have

1> Zg:g;; > “((lfgrr(é)))) > 1—Cy(l —_—) for all o €]1,0[. Hence, by letting o — 1, we
obtain §B g ;; =1, ie u(B(z)) = p(B.(z)).

4A Borel function v : O — [0, 0] is said to be an upper gradient for u : O — R if |u(c(1)) — u(c(0))| <
So ))ds for all continuous rectifiable curves ¢ : [0,1] — O. A function v € LE(O) is said to be a p-weak
upper gradlent for u € LE(O) if there exist {u,}, < LF(O) and {v,}, = L%(O) such that for each n > 1,
vy, is an upper gradient for u,, u, — w in L} (O) and v, — v in L% (O). For more details we refer to
[IK98, [Che99].
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Let O < X be a bounded open set. Denote the algebra of Lipschitz functions from O to
R by Lip(O). (Note that, by Hopf-Rinow’s theorem (see [BH99, Proposition 3.7, pp. 35]),
the closure of O is compact, and so every Lipschitz function from O to R is bounded.) Let
Lip(O; R™) := [Lip(O)]™ and let V,, : Lip(O; R™) — L7(O; M) be given by

D#ul
V,u = : with u = (ug, -+, up),
Dy,

where D, : Lip(O) — L?(O;R") is the differential of Cheeger (see [Che99, Theorem 4.38]
and [Kei04, Definition 2.1.1 and Theorem 2.3.1] for more details). The p-Cheeger-Sobolev
space H ;4’(0; R™) is defined as the completion of Lip(O; R™) with respect to the norm

HUHH;vP(o;Rm) = HuHLﬁ(O;]Rm) + HvuuHLﬁ(O;]M)- (3.4)

As |Vl pr oy < HUHW/},p(O;Rm) for all u € Lip(O; R™), the linear map V, from Lip(O; R™)
to L2(O; M) has a unique extension to H,?(O; R™) which will still be denoted by V,, and
will be called the p-gradient. For more details on the various possible extensions of the

classical theory of the Sobolev spaces to the setting of metric measure spaces, we refer to
[Hei07], §10-14] (see also [Che99, [Sha00l IGT01l, Hajo3]).

The following proposition brings together useful known properties for dealing with calculus
of variations in the metric measure setting. (For a proof we refer to [HKST15] and [AHM20al,

§7].)

Proposition 3.4. Under (3.1)), (3.2) and (3.3)) the following properties hold:

(i) O satisfies the Vitali covering theorem, i.e. for every A < O and every family B of
closed balls in O, if inf{p > 0: B,(z) € B} =0 for all z € A (we say that B is a
fine cover of A) then there exists a countable disjoint subfamily B' of B such that
W(A\ Upeg B) = 0; in other words, A ( U Beg’ B) u N with u(N) = 0;

(ii) the p-gradient is closable in H}i’p(O;]Rm), i.e. for every u € H/}p(O;]Rm) and every
open set A < O, if u(z) =0 for p-a.a. v € A then V,u(z) =0 for p-a.a. x € A;

(iii) O supports a p-Sobolev inequality, i.e. there exists C's > 0 such that

1
( | Ivlpdu) < Cs ( | rvuvv’du>
By (z) By ()

for all0 < p < po, with pg >0, and all v € H;:g(Bp(ac); R™), where, for each open set
Ac O, H;:g(A; R™) is the closure of Lipy(A; R™) with respect to HP-norm defined

in (3.4) with
Lipy(4; R™) := {u € Lip(O; R™) : u = 0 on O\A};
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(iv) for every u € HyP(O;R™) and p-a.e. x € O there exists u, € HyP(O;R™) such that:
V,u.(y) = V,u(z) for p-a.a. ye O;

iy = — 1 04 p>
pli}’(l)p U — Uy LP(Bp(z);R™) = uyp K,

where Kk = % with Cq = 1 given by the inequality (3.1));

(v) for every x € O, every p > 0 and every A €]0, 1[ there exists a Urysohn function
¢ € Lip(O) for the pair (O\B,(z), BAp(x)) such that

0
D ©(O- < —
H N¢"LH (O;RN) p(l _ )\)

for some 6 > 0;
(vi) for p-a.e. x €O,
p(By() _ |

B I
lim limw = lim lim ;

A=1- g (il Bp(x))  a=170=0 p(By(x))
(vii) for every u e H*(O;R™) and every ¢ € Lip(O),
V,u(pu) = oV, u+ Dyp @ u.

Remark 3.5. As p is a Radon measure and O satisfies the Vitali covering theorem, for every
open set A < O and every € > 0 there exists a countable family {B,.(z;)}:e; of disjoint open
balls of A with z; € A, p; €]0, [ such that u(A\ Uier By, (xl)) = (0. By the annular decay
property, see , we also have (0B, (x;)) = 0 for all i € I (see Remark .

In the framework of the p-Cheeger-Sobolev spaces with p > « := In(Cy)/In(2), where Cy > 1
is the doubling constant, we also have the following L7-compactness result.

Theorem 3.6. Assume that p > r and p(O\O) = 0. If u € H?(O;R™) and {up}, <
HP(O;R™) are such that
T}Elgo |un — uf 2z o;rmy = 0 and sup IV pttn | 220y < 925 (3.5)

then, up to a subsequence,

lim fjup, —uf gz 0mm) = 0. (3.6)

Proof of Theorem 3.6l Since (X,d, u) is a complete doubling metric space, (X,d, ) is
proper, i.e. every closed ball is compact (see [HKSTT5, Lemma 4.1.14]), and so (O, d|5,5)
is compact. Thus, as 1(O\O) = 0 we can assert that (O, d|g,g, tlg) is a compact doubling
metric measure space supporting a weak (1,p)-Poincaré inequality. In what follows, to
simplify the notation we set (Y,8,v) := (0, d|g,5, 1l5)-

Step 1: two auxiliary lemmas. We need the following two lemmas (cf. Lemmas and

33).

SGiven a metric space (O, d), by a Urysohn function from O to R for the pair (O\V, K), where K < V < O
with K compact and V open, we mean a continuous function ¢ : O — R such that ¢(x) € [0,1] for all z € O,
p(z) =0 for all x € O\V and ¢(x) =1 for all z € K.
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Lemma 3.7. If p > k then for every r > 0 and v-a.e. T €Y there exists C(r,z) > 0 such
that

oly) — u(2)| < O30 ([ W)’
Bﬁgr(i)
for allue HYP(Y;R™) and all y, z € B.(T), where o =1 is given by (3.2).

Proof of Lemma [3.7l. From [Haj03|, Theorem 9.7] we can assert that there exists ¢ > 0
such that

)~ e < ooty (f o)’ 37

for all we HYP(Y), all € Y, all r > 0 and all y, 2z € B,(Z), where o > 1 is given by
and g,, € LE(Y") denotes the minimal p-weak upper gradient for w. On the other hand, from
Remark it is easy to see that for every r > 0 and v-a.e. Z € Y there exists 0(r,z) > 0
such that

v(B,(Z)) = 0(r,z)r".
But g, < a|Dyw| with o > 1 (see [Che99, §4]) and so §, o ghdy < ol o IDwlPdy.
Thus, for every r > 0, v-a.e. T €Y and every y, z € B.(Z), can be rewritten as follows

1

w(y) — ()] < Clr,2)s(y, 2)' UBM |D,,w|pdu> ;

with C(r,z) = ca/0(r,z) > 0. It follows that for every r > 0 and v-a.e. T € Y, we have

m 1

u(y) ~u@] < Cn@), )" ; (JBGM(z) |Dyuz'|pdl/> ;

Clr,)3(y, 2)'5 (f > rD,,umdu) ,,

6or (3_3) =1

- coas ([ )
Bﬁa'r'(if)
for all w e HP(Y;R™) and all y, 2z € B,.(¥), and the proof of Lemma is complete. W

Denote the space of continuous functions from Y to R™ by C(Y;R™). As a consequence of
Lemma we have the following result.

Lemma 3.8. If p > k then HYP(Y;R™) continuously embeds into C(Y;R™), i.e.
HYP(Y;R™) < O(Y;R™)
and there exists Ko > 0 such that

N

lullemm) < Kolul yrey.gm) (3.8)
for alluw e HM(X;R™). Moreover, there exists K; > 0 such that
[uly) = u(z)] < Ki6(y, 2)' "7 | Voul g (3.9)

for allue HYP(Y;R™) and all y,z €Y.
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Proof of Lemma [B.8. Applying Lemma [3.7] with = diam(Y") and for a fixed 7 = zg € Y,
where diam(Y) = sup{d(y, z) : y,z € Y} < o0 because (Y, ) is compact, we see that

uly) —u(z)] < C(diam(Y), 20) 6(y, 2)"~» [Voul poyaw
< C(diam(Y'), zo) diam(Y)' ™% |V, u| oy (3.10)

for all w € H?(Y;R™) and all y,2 € Y. Hence (3.9) holds with K; = C (diam(Y’), o)

and every u € HM(Y;R™) is (1 — #)-Holder continuous. In particular, it follows that

HYP(YV;R™) « C(Y;R™). On the other hand, given any u € H?(Y;R™) and any y € Y/,
we have |u(y)|P < 2P (Ju(y) — u(z)[” + |u(z)[?) for all z € Y, and consequently

1

V(Y uy)] < 2 ( [ 1ute - u<z>|pdu<z>) el (311)

But, by (3.10) we have

(JY lu(y) — u(z)|pdl/(z)) ’ < V(Y)%C (diam(Y'), o) diam(Y)k%HVVuHLg(y;]M). (3.12)

Hence, combining (3.11)) and (3.12]) we deduce that for every y € Y,

1+1

1 . . _k 27
lu(y)] < 270 (diam(Y), o) diam(Y)' "7 | Vou| oy + —— [ul 22 (vimem)
v P

g KOHUHH&"’(Y;]R’")

1+

with Ky = sup {21+11)C’ (diam(Y), o) diam(Y)' "%, 2(

g } and (3.8) follows. W

Y
Step 2: end of the proof of Theorem . As ,u(a\O) =0, from (3.5) we deduce that

lim |u, — uHLg(Y;Rm) = 0 and sup HV,,unHLg(y;]M) < o,
n—:o0 n=1

and 0 sup,> [un| g1o(ygmy < 9. By Lemmal3.8 we can assert that sup,,> |un|cymm) < o0,
i.e. {uy}, is bounded in C'(Y; R™) with (Y, d) a compact metric space. Moreover, using ((3.9)
we see that {u,}, is equicontinuous. Consequently, up to a subsequence,

lim Hun — uHL%(Y;Rm) =0
n—ao0
by Arzela-Ascoli’s theorem, and (3.6)) follows because ,u(a\O) =0. 1

3.2. Ru-usc integrands. Let (X, d, ) be a metric measure space, let O < X be an open
set, let (2, #,P) be a probability space and let L : O x M x Q — [0, 0] be a Borel measurable
stochastic integrand. For each {a(-,w)}, = L, (0;]0, 0]) we define Af : [0,1] xQ —]—o0, 0]
by

L($77—57w) _L<x7€7w>
A% (T,w) :=sup su
L( ) xegge]wa CL(ZL',W) +L($7£7w)

where L, denotes the effective domain of L(z, -, w).



I'-CONVERGENCE OF UNBOUNDED INTEGRALS IN CHEEGER-SOBOLEV SPACES 13

Definition 3.9. Let w € 2. We say that L is radially uniformly upper semicontinuous
(ru-usc) at w if there exists a(-,w) € L} (0;]0, c]) such that

lim A (r,w) < 0.

T—1"

The concept of ru-usc integrand was introduced in [AHI0] and then developed in [AHMTI],
AHM12al [AHM12bl, Man13, [AHM14, [AHMZ15, [AHM18§].

Remark 3.10. If L is ru-usc at w € Q then lim, ;- L(z, 7¢,w) < L(z,£,w) for all z € O and
all £ € L,,. On the other hand, given w € (2, if there exist z € O and & € L, such that
L(z,-,w) is Isc at & then, for each a(-,w) € L,(0;]0,]), lim, ;- Af(7,w) = 0, and so if in
addition L is ru-usc at w then lim, ;- A} (7,w) = 0 for some a(-,w) € L} (0;]0, x]).
Remark 3.11. Given w € €, if, for every x € O, L(z,-,w) is convex and 0 € L, ,, then L is
ru-usc at w.

The interest of Definition comes from the following theorem. (For a proof we refer to
[AHM11], Theorem 3.5] and also [AHMI12bl §4.2].) Let L : O x M x © — [0, 0] be defined
by

L(z,& w) := lim L(z,7€,w).

T—17

Theorem 3.12. Let we Q. If L is ru-usc at w with a(-,w) and if for every x € O,
TE:W c int(L,,,) for all T €]0, 1],

where L, ,, denotes the effective domain of L(x,-,w), then:

{ lim L(z,7€,w) if € € Ly,
T—1—

o0 otherwise;

(i) Lz, &,w) == lim L(z,7€,w) =

T—1"
(ii) L is ru-usc at w with a(+,w).

If moreover L(zx,-,w) is Isc on int(LL, ) then:

L(z,& w) if € € int(L, )
(iii) L(z,&,w) = 4 lim L@, 78w) if €€ lay
o0 otherwise;

(iv) for every x € O, L(x, -, w) is the lsc envelope of L(x,-,w).

The following definition extends Definition to a family {L;};~o of Borel measurable sto-
chastic integrands L; : O x M x Q — [0, 0]. (When L; = L for all ¢t > 0 we retrieve Definition

39)

Definition 3.13. Let w € Q. We say that {L;};~¢ is ru-usc at w if there exists {a;(-,w)}i=0 <
L,(0;]0,0]), satisfying (2.1)) and (2.2), such that

lim sup A7 (1,w) < 0.
717 >0
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For each ¢ > 0 and each p > 0, let Z/L; : O x M x Q — [0, 0] be defined by

HLi(v,§,w) := inf {J[B ( )Lt(y,§ + V,w(y), w)du(y) - w e H;:g(Bp(x); Rm)} :

where the space H ;:g(Bp(x); R'™) is defined as the closure of
Lipo(B,(x); R™) := {u € Lip(O; R™) : w =0 on O\Bp(x)}

with respect to the H)P-norm, where Lip(O;R™) := [Lip(O)]™ with Lip(O) denoting the
algebra of Lipschitz functions from O to R. Let Ly : O x M x Q — [0, 0] be given by

Loo(#,&, w) := lim lim " Ly(z, &, w). (3.13)

p—0t—00
The following proposition shows that ru-usc is conserved under the operation characterized
by (B-13).

Proposition 3.14. Let w e Q. If {L;}=0 is ru-usc at w with {a;(-,w)}=0 then Ly is Tu-usc
at w with ax(-,w) given by (2.2)).

Proof of Proposition [3.14. Fix any 7 € [0,1], any x € O and any £ € Ly, ,,, where L, ,
is the effective domain of Lyo(z,-,w). Then Lo (z,&, w) = lim,_olimy .o Z7 Ly(2,§,w) < o0
and without loss of generality we can suppose that #L;(z,{,w) < o for all p > 0 and all
t > 0. Fix any p > 0 and any ¢ > 0. By definition, there exists {wy,}, < H;:g(Bp(x);]Rm)
such that:

HpLr €)= i f Ly V) ) 3.14)
€+ Vyw,(y) € Lyy, forall n > 1 and p-a.a. y € B,(x), (3.15)

where L; , ,, denotes the effective domain of L;(y, -,w). Moreover, for every n > 1,
K Li(z, 76, w) < J[ ( )Lt(yﬁ(f + Vyuwn(y)), w)du(y)
By(x

since Tw, € H}L:g(BP(QJ); R™), and so

6, (2, & w) < lim ( )(Lt(w(f + Vuwn (), w) — Li(y, € + Vywa(y),w))du(y) - (3.16)

n—:o0 Bp T
with 6] (2,8, w) := Z L Li(v, 7§, w) — F L Li(r,§,w). Taking (3.15) into account, for every
n =1 and p-a.e. y € B,(x), one has
tny, & w) < (at w) + Li(y, & + V,wi(y )w)),

with )\z—,n(y7§7w) = Lt(y7 (5 +V U)n( ))7w) Lt(y €+ vuwn( ) )7 hence

][ Moy, & w)dp < A (1,w) <J[ at(y,w)dw][ (Y, € + V,uwn(y), )du>
Bp(oc)

By() By()
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for all n > 1. Letting n — oo and using ) and (3.16)), it follows that

04, w) < Af(T,w) (J[ a(y,w)du(y) + %’lth(x,f,w))

Bp(z)

< A(T>w) (:fB ( )at(y7w)dﬂ(y) + %]fol’,f,W)) (317)

for all p > 0 and all t > 0, where A(7,w) := sup,.o A7 (1,w). By letting t — c0 and p — 0

in , we get
LOO(I'7 7-57 w) - LOO(xu f? w) < A(7—7 LU) (aoo(:zr, w) + LOO(‘ra g’ w))
with a.(-,w) € L,(0;]0,0]) given by (2.2), which implies that A7” (7,w) < A(7,w) for all
€ [0,1]. As {Li}i=0 is ru-usc at w with {a;(-,w)}i=0, ie. lim, ;- A(7,w) < 0, we conclude
that lim,_;- A7” (7,w) < 0 which means that L is ru-usc at w with a,(-,w). B

Remark 3.15. In the proof of Proposition we do not need (2.1). In fact, (2.1 will be
used in the proof of the I'-convergence result (see Section [4]).

3.3. Integral representation of the Vitali envelope of a set function. What follows
was first developed in [BEM98, BB00] (see also [AHMI17, AHCMI17, [AHMI1S§|). Let (O,d)
be a metric space, let ©(0O) be the class of open subsets of O and let u be a positive finite
Radon measure on O. We begin with the concept of the Vitali envelope of a set function.

For each ¢ > 0 and each A € O(0), we denote the class of countable families { B; := B,, (%) }ier
of disjoint open balls of A with z; € A, p; €]0, e[ and p(0B;) = 0 such that p(A\ U, B;) =0
by Z:(A).

Definition 3.16. Given & : O(O) — [0, 0], for each € > 0 we define §° : 6(O) — [0, 0] by

§°(A) := inf {Z S(B;) : {Bj}ier € %(A)} .

1€l
By the Vitali envelope of & we call the set function §* : 0(0) — [—o0, 0] defined by
S*(A) :==supSs°(4) = lir% S°(A).
e>0 e
The interest of Definition comes from the following integral representation result. (For
a proof we refer to [AHMIS| §3.3] or [AHCM17, §A .4].)

Theorem 3.17. Let § : O(0O) — [0, 0] be a set function satisfying the following two condi-
tions:
(i) there ezists a finite Radon measure v on O which is absolutely continuous with respect
to u such that S(A) < v(A) for all Ae 6(0);
(ii) & is subadditive, i.e. S(A) < S(B)+ S(C) for all A,B,C € 6(0) with B,C < A,
BnC = and u(A\(Bu C)) =

Then lim,_q EBPE)); € L,(0) and for every A e 0(0), one has

) - [ 1y SLB)

(
Bt )
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4. PROOFS

4.1. Proof of the lower bound. Here we prove Proposition [2.6

Proof of Proposition [2.6] Fix w e Q. Let u e H)?(O; R™) and let {u};~0 ¢ H?(O;R™)
be such that |u; — u|.zozm) — 0. We have to prove that

lim By (ug,w) = J lim lim lim %/ Ly(z, 7V ,u(z), w)du(z). (4.1)
t—00 O T—1— p—0 t—00

Without loss of generality we can assume that lim, | E;(us,w) = limy o Fy(u, w) < 00, and
SO

sup Ey(uy, w) < o0, (4.2)

t>0

In particular, sup,.q |V u| 2z o) < 0 because {Li}s~o is p-coercive, see (Cj). Then

V,u(z) € G for all t > 0 and p-a.a. €O (4.3)
and, up to a subsequence,
u, — uin H;?(O;R™). (4.4)
As G is convex, see (C1) and Remark 2.2] from and it follows that
V,u(z) € G for pra.a. z € O. (4.5)

As ||ut—u\|H;,p(O,Rm) — 0, supy | Vyute| 2 ong) < 00 and p >k, from TheoremWwe deduce
that, up to a subsequence,
||Ut — UHLZO(O;]Rm) — 0. (46)

Step 1: localization. For each ¢ > 0, we define the (positive) Radon measure v, on O by
vei= Li(+, Vu (), w)dp.

From (4.2)) we see that sup,.,14(0O) < o0, and so there exists a (positive) Radon measure v
on O such that, up to a subsequence, v, — v weakly. By Lebesgue’s decomposition theorem,
we have v = v* + v* where v* and v*® are (positive) Radon measures on O such that v* « p

and v° L p. Thus, to prove (4.1)) it suffices to show that
v* > lim lim lim Z/L,(-, 7V (), w)dp. (4.7)

T—1— p—=0¢ 0
From Radon-Nikodym’s theorem we have v* = f(-)du with
. v(By() 4
f() = 1im ——F-= e L, (05 [0, 0], (4.8)
=0 pu(By(-) "
and so to prove (4.7) it is sufficient to establish that for p-a.e. zq € O,
V(Bo(0)) _ i s
———= > lim lim lim #Z°"L,(xo, 7V ,u(xg),w). 4.9
o0 (B y(10)) ~ ot 0 P t(zo, TV u(0), w) (4.9)

Fix o € O\N where N < O is a suitable set such that u(N) = 0. As v(O) < oo, without
loss of generality we can assume that v(0B,(xg)) = 0 for all p > 0, which implies, by
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Alexandrov’s theorem, that v(B,(x¢)) = lim;_,o v:(B,(x¢)). Consequently, to prove (4.9) it
suffices to show that

lim lim Li(z, Vyuy(x),w)dp = lim lim lim Z7 Ly (zo, 7V yu(1), w). (4.10)

p—0t—00 Bp(xO) T—1" p—0 t—0

On the other hand, as G is convex, see (C;) and Remark 2.2 and 0 € int(G), see (Cs), from
(4.3) we can assert for every o €]0, 1],

oV, u(x) € G for all t > 0 and for p-a.a. z € O.
Hence, given any 7 €]0, 1[, we see that for every ¢t > 0 and every p > 0,

J[ ( )Lt(:c,TV#ut(x),w)d,u < (1—|—A(T,w))J[ Li(z,V u(x),w)dp

Bp(wO)

+A(T,w)Jf ay (2, w)dp

Bﬁ(f’?O)

with A(7,w) = sup,.o A7 (7,w), where A7 (1,w) is given by (2.3). Letting ¢ — oo and
p — 0 we obtain

lim lim Li(z, 7V, u(z),w)dp < (14 A(r,w)) lim lim Ly(x, V,u(x),w)dp

0120 By (wo) 0120 By (wo)

+ lim lim A(r, w)J[ at(z, w)dpu.
By (z0)

p—0t—0o0
But, from (C;) we have

lim A(r,w) <0

T—1—
and, by (2.2),

lim lim at(z,w)dp < oo
p~>0 t—0o0 Bp(ZBO)

with &B yar(z,w)dp = 0, hence

7—1— p—0t—00

lim lim lim A(7, w)J[ at(z,w)dp <0,
By (z0)

and consequently

lim lim lim Li(x, 7V u (), w)dp < lim lim Ly(x,V u(x),w)dpu.

T—1— p—>0 t—0o0 Bp(xo) p—>0 t—o0 Bp(l’O)

Thus, to prove (4.10) it is sufficient to show that

lim lim lim Li(z, 7V, u(z),w)dp > lim lim lim 7 Li(xo, TV u(zo),w). (4.11)

7—1— p—0t—00 Bp(wo) F—1— pﬂotg,w

Step 2: cut-off method. Fix any ¢t > 0, any 7 €|0, 1, any o €|, 1[, any A €]0,1[ and
any p > 0. By Proposition [3.4(v) there is a Uryshon function ¢ € Lip(O) for the pair
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(O\B,(z0), Bx,(70)) such that IDpe| e omny < ﬁ for some 6 > 0 (which does not
depend on p). Define v, € H,?(O; R™) by

Vg 1= Pup + (1 - Qp)uwo = Qo(ut - uwo) + Ugg

with u,, € H)?(O; R™) given by Proposition (iv). (Note that V,u,,(xz) = V,u(zg) for
p-a.a. x € O.) Then
TV — Ty, € H}L:g(Bp(xo); R™) (4.12)

and, using Proposition [3.4|(vii),

V. in By, (7o)
Vv = n R 4.13
TV utt { (oo ¥V, + (1= 9)oV,u(zo)) + (1= ) Uy, in B,(we)\Bhy(wo) (4.13)
with W, , := 7= D, ® (u; — Uy, ). Using the right inequality in (Cs) it follows that
J[ Ly(x, TV )d 1 J Li(x, 7V jup, w)dp
x, 7V, 0, w)dp = T ,
Bp(Io) ' e /’L(BP(:CO)) E)\p(:to) ' e
)
— Li(z, 7V v, w)dpu
(B, (20)) By (20)\Bap(0) ' e
N(Bp(x())\E)\p(xO))
< Li(z, 7V jup,w)dp + 5
J(B,,(xo) ' o 11(By(0))
el
F—— G(TV u)dp. (4.14)
p(B,y(z0)) By (20)\Ba,(z0) ut

On the other hand, taking (4.13)) into account and using (C;) and the left inequality in (Cg),
we have

G(tV,n) < a(1+G(oV,u)+ GoV,u(zg)) + G(Wy,))
< ¢ (1 + éLt(x, oV, u, w) + G(oV , u(x)) + G’(\Ift,p)) (4.15)

with ¢; := 2(y +~?) > 0. Note that from (Cy) and ([£.5]) we can assert that oV, u(zo) € G,
and so

G(oV u(zp)) < 0.
Moreover, it is easy to see that
ot 1
Vel Bo(@oy) < SIS ;Hu = Uao |32 (B, (wo)smm)
’ ot
- e o,

+

where

o1 1
I “lu = gy 1o (B (o mmy = 0 4.16
P el s (416)
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by Proposition (iv), Le., lim, .o %Hu — Ugy | L7 (B, (z0):mm) = 0, and
ot
li — ul[poomrm) = 0 4.17
M Ay eeom 4

by (4.6), i.e., limy o |uy — ufrz0rm) = 0. From (Ci)~(Cy) there exists 7 > 0 such that

¢y :=sup G(§) <

[El<r

(see Remark . By (4.16) there exists p > 0 such that %%Hu—umhf(&(xo)ﬁm) <3
for all p €]0, p[. Fix any p €]0, p[. Taking (4.17) into account we can assert that there exists
t, > 0 such that

G(‘Ilt,p) < ¢ for all ¢ E]O,tp[. (418)
Thus, from (4.14)), (4.15) and (4.18]) we deduce that

][ Li(x, 7V v, w)dp < J[
BP(Z’O)

for all ¢ €]0, t,[ with:

Be
Ly(x, TV Uy, w)dp + 03(0)%)\ + _1Pt,p,>\,o
Bp(w0) o

e5(0) = Bey (1 L GOV, + c2) €10, o[ ;

&1

B0\ Boylay)
STNED)
1

’ M(Bp(%)) By(20)\Ba, (o))
But, taking (4.12) into account, we see that

Li(x,0V jug, w)dp.

X Li(0, TV u(z0),w) < :f ( )Lt(x, TV v, w)dp,
By(zo
hence, for every p > 0, every t €]0,t,[, every X €]0, 1[, every 7 €]0, 1| and every o €], 1], we
have
Y Li(x0, TV yu(z0),w) < J[ Li(x, 7V jup, w)dp + c3(0)ypn + %I‘tvaa. (4.19)
Bp(xo)

Step 3: passing to the limit. Lettingt — 0, p -0, A - 17,0 - 1" and 7 — 1" in

(4.19), we obtain

lim mn_m%’lth(xo,TVMu(xo),w) < lim lim lim Li(x, 7V juy, w)dp
r—1- P00 7—1- p—0t—00 B, (z0)
* a@— ¢s() ,\@— ;1}?% oA
PN Bm EmEm D, (4.20)

o o—1= A—1— p—0t—0
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Substep 3-1: proving that lim,_,;- Ep_,o Ypx = 0. As the boundary of any ball is of
zero measure (see Remark [3.3)), we have

_ HBe)
Yor =1 — —F 7y
p(By(0))
hence
B
lim 19p0 = 1—lim —,u( )‘p(%)),
= p—0 p(B,(0))
and so, by using Proposition (3.4))(vi),
lim lim~,, = 0. (4.21)

A—1— p—0

Substep 3-2: proving that lim,_,;- lim)_,;- hmp_,o limy_o Tipare = 0. Forevery t €]0,¢,],
we have
vi (By(20)\Bxp(0)))

u(B,(x0))

Lipre < (1+A(a,w))

1
+A(o, w)—f at(z,w)dpu. (4.22)
M(Bp(xo)) By (2z0)\Baxp(z0)
But lim,_;- A(o,w) < 0 by (C7), and by (2.2) we have
Tim Tim Tim f ar(, w)dp < Tim Tom o, w)dp < o
A—1— p—0t—0 Iu/(B (.To)) By (20)\ By (20) t p—0t—00 B, (x0) t(
with W SBp (20)\ B, (20) at(x,w)dp = 0, hence
1
lim lim lim lim A(o, w)—f at(z,w)dp < 0. (4.23)
=17 A=1" p—=0t—0 (B, (20)) By (20)\Ba,(0)

Since (X, d, p) is a complete doubling metric space, (X, d, i) is proper, i.e. every closed ball
is compact. Hence B,(z¢) is compact, and so B,(z)\Bx,(z¢) is compact. As v, — v weakly,
by Alexandrov’s theorem, we have

th_)_I?OVt (B,(20)\Bxp(0)) < v (B,(20)\Bnp(0)) ,

hence
Tim vy (B,(20)\Bap(w0)) < v (By(x0)) = v (Bay(0))

and consequently, since the boundary of any ball is of zero measure with respect to p,

m Vi (Bp(%)\gkp(xo)) <Y (Ep(xo)) M (Bap(o)) v (Bap(wo))
i~ pu(B,(x0)) = u(B,y(x))  u(By(x0)) p(Bag(xo))
It follows that
T Ut (Bp(ﬁo)\EAp(xO)) im X (Bxp(x0)) T
T B ) (1 225 1(By(w0)) )f ()
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with f € L, (O;[0,[) given by (4.§), and so, by using Proposition (3.4))(vi),
o Vi (By(@0)\Bap(0))

lim lim li =
st pmbimm (B, (x0)

Consequently, by using (C7),
Ut (Bp(l’o)\gxp(xo))

lim lim lim lim (1 + A(o,w)) <0. (4.24)

01— A—=1- p—0t—0 p(B,(x0))
From (4.22), (4.23)) and (4.24) we deduce that
Tim T Tion i oy r e — 0. (4.25)

o—1— A—1— p—0t—00

Substep 3-3: end of the proof. Combining (4.21)) and (4.25]) with (4.20) we obtain (4.11]),

and the proof of the lower bound is complete.

4.2. Proof of the upper bound. Here we prove Proposition

Proof of Proposition [2.7} Fix w € Q. For each u € H*(O;R™), let T, : 0(0) — [0, x]
be defined by
M, (A) := lim m!,  (A).

t—00

with, for each t > 0, m{ , : 6(O) — [0, 0] given by

ml,,,(A) = inf { L Lo(e, V,0(2),w)dpu() v — u € HB(A: Rm)} | (4.26)

For each ¢ > 0 and each A € O(0), we denote the class of countable families {B; := B,, (%) }ier
of disjoint open balls of A with x; € A and p; €]0,¢[ such that pu(A\ s B;) = 0 by ZZ(A),
and we consider m;, , : O(0) — [0, 0] given by

m,, ,(A) := inf {Zﬁu,w(&) :{Bi}icr € %(A)}7

el
and we define m} , : 0(0) — [0, 0] by
m, ,(A) := sup™, ,(A) = lim 1, (A).
’ e>0 e=0

The set function my, , is called the Vitali envelope of W, ., (see .

Step 1: link between I'-lim and Vitali envelope. Let u € Hi’p(O; R™). We are going
to prove that

F(LZ)—tli_)_I(I)lo Ei(u,w) <mt (O). (4.27)

UyW

Without loss of generality we can assume that mj (O) < oo. Fix any € > 0. By definition
of m;, ,(O) there exists {B;}icr € 72(O) such that

> m,.(B) <, (0) +

iel

%. (4.28)
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Fix any t > 0. For each i € I, by definition of m/, ,(B;) there exists v; € H,?(O;R™) such
that v/ —u € Hi:g(Bi; R™) and

J Ly (z, Vvi(z),w) du(x) < ml ,(B;) + 5
B;

Define u; : O — R™ by

(4.29)

Uy 1=

u in O\ U B;
€ ) iel

U; in Bz

€ Lp .R™M %
Then ui —u € H,((O;R™). Moreover, because of Proposition ( i), V,ui(z) = V,vi(z)
for p-a.a. x € B;. From (4.29)) we see that

Ey(uj,w Zm

el
hence limy_.o, (v, w) < ms,,(0) + ¢ by using (4.28), and consequently
llr% thm Ey(uf, w) <1, ,(0). (4.30)

On the other hand, we have

|u§ — u||LpORm f |uf — uf’dp = ZJ vy — ul dp.

el

As O supports a p-Sobolev inequality, see Proposition [3.4[(iii), and p; €]0,¢] for all i € I, we

have
ZJ v — u’du < EPCPZJ V) — V.l dp

iel iel
with C's > 0, and so

s — uHLp ORm) S < 2PePCY (ZJ V, vt]pdu+f V, u|pd,u) (4.31)

iel
Taking (Cs), (4.28) and (4.29) into account, from (4.31) we deduce that
— |
Tim |us — u||Lp (Ommy < 27€°C (E( "w(0) +¢) + fo |V#u\pd,u)

with ¢ > 0, which gives

l% thm ug — uHLp(O Rm) =0 (4.32)
because lim. o m;, ,(O) = m; ,(O) < . According to and (4.32), by diagonalization
there exists a mapping t +— &4, with ¢, — 0 as t — o0, such that:

th—{g |we — uHLp ©ommy = 03 (4.33)
m Ey(wy,w) < ,(0) (4.34)

with w; = uj*. By (4.33] - we have I'(L?)- limy_o By (u,w) < limy_o Ey(wy, w), and -
follows from (4.34]).
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Step 2: diﬁ'erentiation with respect to p. Let u € H?(O;R™) be such that &(u) :=

o G( x))dp(r) < oo. We are going to prove that
_ . My, (By(x))
m, (O =J lim —= 22 (). 4.35
AP I B ) M 439

According to Theorem [3.17} to prove (4.35)) it suffices to establish that m,,, is subadditive
and there exists a finite Radon measure v on O which is absolutely continuous with respect
to p such that

m,w(A) < v(A4) (4.36)

for all A€ 0(0). For each t > 0, from the definition of m! , in (4.26)), it is easy to see that
for every A, B,C € 6(0O) with B,C c A, Bn C = & and u(A\(B u C)) = 0, one has

m! (A) <m! (B)+ m;w(C),

and so
lim m! (A) < lim m}, ,(B) + lim m}, ,(C),

t—on ¥ t—o0 t—o0
ie.
My (A) < Mye(B) + Myw(C),
which shows the subadditivity of m,,. On the other hand, given any ¢ > 0, by using the
right inequality in (Cg) we have

!, ,(4) < f B+ G(V,u(x)))dulz)

for all A€ 6(0). Thus (4.36) holds with the Radon measure v := 3(1 + G(V,u(-)))p which
is necessarily finite since € (u) < .

Step 3: cut-off method. Let 7 €]0,1[, let o €]7,1[ and let u € H,?(O; R™) be such that
Z(ou) < co. We are going to prove that for py-a.e. x € O,

i B (Bo(@)) o e, o (Bo(7))
=0 u(By(x)) =0 p(By(x))

where u, € H?(€;R™) is given by Proposition (iv).

(4.37)

Remark 4.1. For p-a.e. x € O, one has

—m B
limw = lim lim Z/ Ly(z, 7V u(z), w).
p—0 M(Bp(l‘)) p—0t—00

Remark 4.2. If €(tu) < oo then ¥(1u,) < o« for p-a.a. x € O, and so, by the step 2,
Wl (B) | Wu(Ble) T u(Bn) || T u(By()
p=0 p(By(z)) =0 p(By()) p=0  pu(B,(x)) =0 u(By(z))

Fix any ¢t > 0, any A €]0,1[, any p > 0 and any ¢ > 0. By definition of m{, (Bx,(z)) in
(4.26), there exists w € H*(O; R™) such that

TW — TUy, € H;ZS(BAP(Q:); R™) (4.38)
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and
| Do 7900, 0)dn) < s, (Bl + (B (0). (4:39)

By Proposition (v) there is a Urysohn function ¢ € Lip(2) for the pair (\B,(z), By,(z))
such that

6
| Dl ommy < ——
PEIEEERES) = (1= N)

for some 6 > 0 (which does not depend on p). Define v € H*(O; R™) by
vi=pu, + (1 —p)u = p(u, —u) + u.

Then
TV — TU € H;:g(Bp(:z;); R™) (4.40)
and, using Proposition (iv), ie. V,yu.(y) = Vyu(zx) for p-a.a. y € O, and Proposition

BAvi,
oy { TV u(z) in E)\p(.iljo)_

a Z(eoV,u(z) + (1 — p)oV,u) + (1= Z) ¥, in B,(zo)\Bx(z0)
with ¥, := "= D0 ® (u, —u). From (4.38) and (4.40) we have 7v + (Tw — Tu,) — Tu €
Hi:g(Bp(a:); R™). Noticing that ;1(0By,(x)) = 0 (see Remark and, because of Proposition
(3-4) (ii), V,(tw — Tuy,)(y) = 7V,w — 7V u, = 0 for p-a.a. y € B,(x)\By,(x), we see that

(4.41)

M < L J Ly (y, 7V, v + 7V, 0 — 7V ju,, w) dp
#(Br(7)) #(Br(2)) Jp, @)
1

= — L (y, 7V, u(x) + 7V, w — 7V, u(x),w) du
M(B)\p(x)) fB/\p(x) t( Iz ( ) I iz ( ) )

1

1(Bxy(x)) JBp<x)\BAp(x>

ool
= 57 Ly (y, 7V, w,w) dp
1(Bxp(2)) Js,, @) ! g

+ Li(y, 7V v, w)dp

1

iy
1(Bxo(2)) JB,@)\By, (@)

Li(y, 7V v, w)dp.

From (4.39) and the right inequality in (Cg) it follows that

i (Ble)) _ b (By(@) 1, (Bap(@)
wBo(x))  — u(Br(@) T p(Br(@)
)
M(BAp(iU)) By(2)\Ba, ()
On the other hand, taking into account and using (C;), we have

G(rV,w) < e (1 +GoV,ul@) + GoV,u) + G(D,)) (4.43)

pU(By(7)\By())
(B (7))

G(TV , v)dpu. (4.42)

+ 0

_|_
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with ¢; := 2(y + %) > 0. Moreover, it is easy to see that

ot 1
\Il a0 x): < - - €T 0 x):IR™),

where
ot 1
lim —|lu — ugl LB, (2)mmy = 0 4.44
P T n T e 4y
by Proposition (iv), le. lim, .o %Hu — U | Le(B, (z)rm) = 0. From (C;)—(Cy) there exists
r > 0 such that

¢ :=sup G(§) <

[El<r

(see Remark . By (4.44) there exists p > 0 such that m;ﬁ%]\u — Uy || 0 (B (2ymm) < T
for all p €]0, p|. Fix any p €]0, p[. We then have

G(T,) < . (4.45)
From (4.43) and (4.45)) it follows that

K )
M(BAp(JC)) Bp(x)\Bx,(x)

< fBe oV,u(z)) + ¢ 1B, (7)\By, (7))
GOy < 1+ GoV,ule)) + o) =Ll

—ﬁ01 g u
+M(BAp(fU)) pr(x)\B/\p(a:) CloVuuly))duly).
But
fB()\B GOV < p(B ) GOV,0(0) = GloVuula)lduty
(B (2)\Bap (1)) G0V (),
hence
8 o ) oy B\ Bay(2)
(@) STt < fer(1 o+ 2G(oVulz)) + e2) == I 0
u(B,(2)) o g
#es pE T, 1GTu) ~ Gl Vi) lduty). (449

From (4.42) and (4.46|) we deduce that

mt, o (By()) _ miy, o(By(2))
w(By(z)) pu(By(2)) -
+ ey (1 + Cil +2G(oVu(z)) + 02> MBZE?A?Q;)@)
1(B,(x))

*501m1(3 16V ,(0) = GV, duty). (44

+¢€
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As @(ou) < o, ie. G(oV,u(-) € L,(0), (and p is a doubling measure) we can assert that:

G(oV,u(r)) < oo; (4.48)
i ( )|G(0Vy“(y)) = G(oVyu(@))|dp(y) = 0. (4.49)

As the boundary of any ball is of zero measure (see Remark , we have
— u(B,(x)\B — B B
i BBl _ (MDA B
=0 (Bxy(z)) =0 1(Bxp()) p—0 (Bxp(x))
and so, by using Proposition (3.4))(vi),

H(Bp(x)\gx\p(x))

lim lim = 0. 4.50
By (0)) (4:50)
Moreover, we have:
- B _m
lim lim —mmw( o(z)) = lim —mm,w(Bp(x))‘ (4.51)
p—0t—n  u(B,(z)) =0 p(By())
_ B — _—m! B —m B
i T Dres (Bol@)) g o, w(Bp(@))_ e o (B (7)) (4.52)

P u(Bay(@)  eoee u(B,@) e p(B,(w)

Letting t — o0, p — 0 and A — 17 in (4.47) and using (4.48), (4.49), (4.50), (4.51) and
(4.52) we conclude that

Tm M0 (By(7)) < Tim My, w(By(2))
=0 p(By(x)) om0 pu(B,(2))
and (4.37) follows by letting ¢ — 0.

Conclusion of the steps 1, 2 and 3. As a direct consequence of (4.27)), (4.35)) and (4.37))
together with Remarks [4.1] and we have the following lemma.

Lemma 4.3. For every 7 €]0,1[ and every u € H,yP(O;R™) such that €(Tu) < o and
G(ou) < o for some o €|1,1], one has

+ €,

t—0o0 p—0t—o0

I(L7)- lim E;(Tu,w) < Jo lim lim ZPLi(v, TV u(z), w)dp(z).

Step 4: end of the proof. Let u € H?(O;R™). We have to prove that

[(L2)- lim E(u,w) < fo lim lim lim % L(z, 7V u(z), w)dpu(z). (4.53)

t—o0 F—1— P—0t—00

Without loss of generality we can assume that

f lim lim lim %7 Ly(z, 7V u(x),w)du(z) =: Eim(u,w) < o. (4.54)
o

F1— pP—0t—00

Then, by Proposition 2.§[i) we have
V,u(z) € @,G, for p-a.a. x €O (4.55)



I'-CONVERGENCE OF UNBOUNDED INTEGRALS IN CHEEGER-SOBOLEV SPACES 27

and
lim lim im %7 Ly (2, 7V, u(x), w)=lim Iim m % Ly(z, 7V ,u(z), w) forpra.a. z € O. (4.56)
r—l— p—0t—0o0 7—1—p—0t—00

Substep 4-1: proving (4.53) under the constraint V,u(z) € int(@,G,) for p-a.a.
x € O. Assume that

V,u(z) € int(Q,G,) for p-a.a. x € O. (4.57)
Then, since (C;)-(Cz) implies that 7V, u(z) € int(Q,G,) for all 7 €]0, 1[ and for p-a.a. z € O
(see Remark [2.3|(v)), by (C4) we have

lim Q,G(x, 7V, u(z)) = @,G(x,V, u(x)) for p-a.a. x e O. (4.58)
T—1~
Using (4.58)) and the left inequality in (Cg) we see that
1
Ein(u,0) > [ lim @605, mV,u@)dn > | @,6(5,V,u(0)dn = 0,5(),
0 o)

T—1"
hence, by (54),

0,8 (u) < w. (4.59)
Taking (C3) into account, from and it follows that
Z(u) < . (4.60)
But, by (C;) we see that for every 7 €]0, 1[, €(7u) < yu(O)(1 + G(0)) + v€(u), hence, by
(Cs) and ([1.60), €(tu) < o for all 7 €]0,1[, and so, by Lemma [4.3] we have

[(L})- hm Ei(tu,w) < Jo lim lim Z ! Li(x, TV ju(z), w)dp(z) for all 7 €]0, 1[. (4.61)

p—0t—0o0
On the other hand, from the right inequality in (Cg) we see that for every 7 €]0, 1],
lim lim K Li(x, 7V, u(-),w) < B(1+Q,G(x,7Vu(-)))

p—r0 t—c0
< B(1+G(rVu()),
and consequently, by using (C),
lim lim #7L,(z, 7V u(-),w) < B(1 + G(0) + G(V,u(-)) := f(:) for all 7 €]0,1]

p—0t—0o0
with f € L!(O) by (C;) and (4.60). Taking (4.56)) into account, from Lebesgue’s dominated
convergence theorem we deduce that

lim [ lim lim X Li(v, TV u(z), w)dp(z) = f lim lim lim P Li(v, TV yu(z), w)dp(z).
o)

1 Op—>0t—>oo 71— P00 t—00

From (4.61)) we conclude that

lim T(L%)- lim Ey(Tu,w) < fo lim lim lim %7 Ly(z, 7V ,u(x), w)dpu(z),

1 t—00 71— p—0t—0

and (4.53) follows because I'(LE)- limy o B,(,w) is LP-lsc and 7u — u in LE(O;R™) as

T— 1"
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Substep 4-2: proof of (4.53)). First of all, from (C7) and Proposition we can assert
that Lo, 1= lim, o lim; .o Ly is ru-usc at w with ay(-,w) given by (2.2). Moreover, by
(Cg) we see that for every z € O, the effective domain of L (z, -,w) is equal to @,G,. Taking
(C1)—(Cy) into account (see Remark [2.3|(v)), from Theorem [3.12(ii) it follows that

Ly = lim @)th_m "Ly is Tu-usc at w with ax(-,w). (4.62)
71— pUE—=0

From (4.54) we see that V, u(z) € IEOO,LW for p-a.a. x € O, where ]/I\Joo@,w denotes the effective
domain of Le(z,-,w). Hence, for every 7 €]0, 1],

f Lo(z, TV,u(z),w)dy < (14 A% (7, w)) J Lo (z, V,u(x), w)dp
o * o
—i—A%Z(T,w) fo Ao (T, w)dp

E(ﬁ ($,’T€,w)—im (x7£7w)

with Ai“;‘ (T,w) i= SUPyeo SUPgef, PR SRR ie.
B (Tu,w) < (14 A%O;(T, w)) Etim (u, w) + A%":o (1, w) fo Ao (T, w)dp (4.63)

for all 7 €]0,1[. Using and (2.2), i.e. ax € L,(0), we see that
Elim(Tu,w) < oo for all 7 €]0, 1]. (4.64)
On the other hand, from and (C1)—(Cy) (see Remark [2.3|(v)) we deduce that
V. (tu)(z) € int(Q,G,) for all 7 €]0,1[ and p-a.a. z € O. (4.65)
According to (4.65)) and , from the substep 4-1 we can assert that
D(27)- T By(ru,) < B (ru,)

for all 7 €]0, 1], and so, taking (4.63)) into account,

F(Lﬁ)—}LT?OEt(TU, w) < (1+ A%O;(T, w)) B (1, w) + A%"; (1, w) Jo Ao (T, w)dp (4.66)
for all 7 €]0, 1[. Moreover, by (4.62)) we have lim,_;- A% (1,w) < 0. Hence, letting 7 — 1~
in (4.66|) we conclude that

lim T(L2)- lim Ey(tu, w) < Ejm(u, w),

T—1— t—

and (4.53) follows because I'(LE)- limy o B,(,w) is LP-lsc and 7u — u in LE(O;R™) as
T—1". 1
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4.3. Proof of the I'-convergence result. Here we prove Theorem
Proof of Theorem 2.5 Fix w e Q. By (Cg) we see that
a@,G(z,§) < hm lim 77 Ly(7, &, w) < }E@%’;Lt(%f,w) < B(1+@Q,G(x,€))

p=0¢ o0
for all x € O and all £ € M. So, for every x € O, one has

dom (hm lim 77 L(, )) = dom (hm lim 77 L(, )) = Q,G,, (4.67)

p—0 ¢t 00 p—0t—0o0

where dom (mp_)g lim, ., %th(x, . w)) and dom (mp_,o limy_o %;Lt(a:, . w)) denotes the
effective domain of lim,, .o lim, ., #7L(z,-,w) and lim, o lim; ., #L¢(x, -, w) respectively.
Let (z,§) € O x M. If ¢ ¢ @,G, then there exists 7¢ €]0,1[ such that 7¢ ¢ @Q,G, for all
T € [7¢, 1[. Hence:

o if £ ¢ Q,G, then, by (4.67),
lim lim 77 Ly(x, 7€, w) = lim lim " Ly(z,7¢,w) = oo for all 7 € [7¢,1[;

p—0¢t 0 p—0t—0o0

o if £ € Q,G, then, from (C;)-(Cs) (see Remark (v)), we have 7¢ € int(Q,G,) for
all 7 €]0, 1[, and so, by (Cs),

lim lim %Ly (x, 7€, w) > lim lim Z/ Ly(z, 7€, w) for all 7 €]0, 1[.

0t 0 p—0t—00

It follows that
lim lim lim P Li(z, & ,w) = lim lim lim HPLi(v, &, w)

T—1— P=0¢ o0 T—1— p—0t—00

for all (x,£) € O x M. From Propositions [2.6] and [2.7| we deduce that

(L) tim Bio) > |l g lim 2L, 79, (), )

t—0o0 T—1— P_>O t—00

> J lim lim lim ZLi(v, TV ju(w), w)dp(z)
o

T—1~ p—0t—00
> I“(I/l';)—tlggJ Ei(u,w).
for all w e H*(O; R™). Hence

D(LE)- lim By(u,w) = L lim lim lim %7 (2, 7V ,u(2), w)du(w)

t—o0 71— p—0t—00

for all w e H,?(O;R™). A

5. APPLICATIONS

In this section we give some applications of Theorem and Proposition
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5.1. Relaxation. In case Li(x,&,w) = L(x,§), and so E(-,w) = E(-), we retrieve the
relaxation theorem established in [AHMIS8, Theorem 2.7]. More precisely, denoting the lsc
envelope of E with respect to the strong topology of Lﬁ(Q; R™) by E, as a direct consequence
of Theorem and Proposition 2.8 we have the following result.

Corollary 5.1. Assume that the hypotheses of Th@orem are satisfied with Ly(x, &, w) =
L(z, &N} Then

E(u) = Jo Q,L(x,V u(x))dp(x)

for all we HP(O;R™) with @77[) 0 x M — [0, 0] given by

linlrl_ Q,L(x, 7€) if€E€q,G,

o0 otherwise,

@uL(z,€) = {

where @, L : O x M — [0, 0] is defined by

@, L(z,&) := lim inf {J[B ( )L(y,f + Vuw(y)du(y) : w e H,5(By(x); ]Rm)} :

p—0

If moreover @, L(zx, ) is lsc on int(Q,G,) for all x € O then

Q,L(x,¢§) if € € int(Q,G,)
@#L(fl?, ) = m(%, ) = Tli)r{l_ @ML(xa 7_5) ng € a@,qu
0 otherwise,

where, for each x € O, Q,L(x,-) denotes the lsc envelope of @, L(x,-).

5.2. Homogenization. Homogenization of integrals of the calculus of variations in non-
euclidean settings has been studied for the first time in [AHMIT] (see also [DDMMZ20,
AHM20b]) for integrands having p-growth. In this paragraph, we attempt to develop a
framework to deal with integrands which have not necessarily p-growth and can take infinite
values, by using (the I'-convergence result) Theorem together with Proposition and
subadditive theorems that we proved in [AHM20b] (see Theorems and [5.4).

5.2.1. Homogenization framework. Roughly speaking, once we have established a I'-
convergence result as Theorem , we can deduce homogenization theorems (see by
the use of suitable subadditive theorems (see allowing to establish the condition (Cyg)
in Theorem 2.5, To apply this process, we need an appropriate framework with which we
can work in the setting of metric measure spaces. In what follows, we adopt the following
notation:

e we denote by J(X) the class of Borel subsets of X;

e we denote by B, the class of A € B(X) such that u(A) < o and u(dA) = 0 with
0A = A\A, where A (resp. A) is the closure (resp. the interior) of A;

e we denote by Homeo(X) the group of homeomorphisms on X;

e we denote by Ba(X) the class of open ball of X.

SWhen Ly (z, &, w) = L(x, €) we have HPLi(z,8,w) = Q,L(7,§), and (Cs) is trivially satisfied.
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Note that by Remark we have u(0B) = 0 for all B € Ba(X), and so Ba(X) < %,. In

order to deal with homogenization in the framework of metric measure spaces, we need to
introduce the quadruple (G, {7;}geg, U, {h¢}1=0) with:
(O1) G a subgroup of Homeo(X) such that p is G-invariant, i.e. gfu = p for all g € G
which means that for every g € G and every A € B(X),

(g™ (A)) = p(A);
(O2) {74}4eq & group of P-preserving transformations on (2, #,P), i.e.

7, is F-mesurable for all g € G
Tg0Tf = Tgop and 7,1 = 7, for all g, f € G
P(1,(A)) =P(A) forall Ae & and all g € G;

(0O3) U € %y such that u(U) > 0;

(O4) {ht}s=0 = Homeo(X),
where U can be interpretated as the “unit cell” with respect to X and {h;};~o as a family of
“dilations” in X. Let # < 3B, be given by

J = {ggHg_l(hk(U)) ke N*, HeP(h(U)) and |H| < oo}

with
D (hi(U)) = {H <6 {g (L)}, is disjoint}.

(Theses sets are of interest for the development of subadditive theorems in the setting on
measure spaces with acting group, see [AHM20b|] for more details.) To obtain homogeniza-
tion results in the framework of metric measure spaces, we need to refine it by assuming
that:

(F1) (X,%(X), 1) is G-meshable with respect to {hk(U)}ke]N*, i.e. for each k € IN* there
is Gy € D(Ii(U)) with the property that for each ¢ € IN* there exist G, < G, €
P:(Gr) such that

U g ((U)) < h(U) = u g7 (me(1))

- +
QEGq,k QEGq,k

. _ (R (U))

tim |G\, [AED)

P G Gl ) =

(F5) (X, %B(X), ) is strongly G-meshable with respect to {hk(U)}ke]N*’ fe. (X,B(X), )
is G-meshable with respect to {hk(U)} ren+ With the additional property that G =
Uken* Gr where every Gy is a countable discrete amenableﬂ subgroup of G;

"Let # < G be a subgroup and let P(H) denote the class of finite subsets of #. We say that #f is
amenable if for each E € P (#) and each § > 0 there exists F' € P(#) such that,|FAEF| < §|F|, where ||
denotes the counting measure on G, A is the symmetric difference of sets and EF = {gof : (g, f) € E x F}.
(For more details on the theory of amenable groups, see [Kre85, §6.4] and [DZ15] §2].)
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(F2) for every B € Ba(X), {h(B)}io is asymptotically G-regular, i.e. there exist two

G-regular families {J,}i=0, {J:}i>0 = F such that
J; < hy(B) c J, forallt >0
) (5.0
=0 p(he(B))

(F%) for every B € Ba(X), {hi(B)}i~o is asymptotically strongly G-regular, i.e. there exist
two strongly G-regular familiesﬂ {J,}is0, {Jt}i=0 © F satistying (5.1));

(F3) for each t > 0, ((hs)~1)*u = u(he(U))p, i.e. for every A e B(X),

p(hi(A)) = p(he(U))p(A);

(F4) for every g € G and every B € Ba(X), there exists a bijective map .7, p from
Hijg(gfl(B);IRm) to H}L:g(B;]Rm) such that V,.7, p(w) = V,wog™! for all w €
H,5(g7H(B); R™) and V,.(Zy5) " (v) = Vwog for all ve Hyb(B;R™);

(F5) for every t > 0 and every B € Ba(X), there exists a bijective map 4 p from
H;:g(ht(B);]Rm) to H;:g(B;IRm) such that V, 74 g(w) = V,woh, for all w €

Hi:g(ht(B); R™) and V(4 ) ' (v) = V,vo (k) ! for all v e Hi”g(B; R™).

Remark 5.2. From (F3) we see that u(h:(U)) > 0 and (h¢)*u = (u(h(U))) " p for all £ > 0.
Moreover, as u(U\U) = 0 we have u(U) = u(U) and so u(h:(U)) = u(hy(U)) for all t > 0.

5.2.2. Subadditive theorems. In what follows, we recall subadditive theorems that we
proved in [AHM20b, Theorem 2.19]. Let & : By x 2 — [0,0] be such that §(A4,) €

LY, F,P) for all A€ %By. In Theorems and below we need the following properties
ond&:

(S1) there exists C' > 0 such that for every A € %, and every w € (Q,
S(Aw) < Cu(A);
(Se) & is subadditive, i.e. for every A, B € By with An B = ¢J and every w € ),
S(Au B,w) < S(A,w) + S(B,w);
(S3) & is G-stationary, i.e. for every A € By, every g € G and every w € €2,
S (971(A),w) = S(A,7(w))
and, when & is deterministic, i.e. §(-,,w) = S(),
(S3) & is G-invariant, i.e. for every A € %, and every g € G,
S (97'(4) = S(4A).

8Given {J;}1~0 © 7, for each t > 0, J; = Ugenr, g~ (hy, (U)) with Hy € D(hg,(U)). We say that {J;}4~o is
G-regular if lim;_, o, ¢; = 00 and for every ¢ > 0 and every k € IN* there exist g, € N*, g1, € G and Fy, €
P1(Gr) such that G;kat c Fix, g_]t_’;(hqt‘k(U)) = YreGt M, r~1(hi(U)) and lim;_.o |Ft7k||G;:7kHt|*1 =1.

9We say that {Ji}t=0 is strongly G-regular if it is G-regular with the additional assumption that
for each & € N* and each i € {— +}, {G,, Hi}i>0 is of Folner-Tempelman type with respect to
Gr, ie. limg o |ng1t,kHtAth,kHt‘|th,k:Ht|71 = 0 for all g € Gr (Fglner’s condition) and | Up<s<t
(G 1 H)(GY, 1 He)| < MIGY,  Hy| for all ¢ > 0 and some M > 0 (Tempelman’s condition). (For more
details on these conditions, see [Lin99, Lin01l DGZ14].)



I'-CONVERGENCE OF UNBOUNDED INTEGRALS IN CHEEGER-SOBOLEV SPACES 33

Theorem 5.3 (deterministic case). Under (O1), (O3)—(O4), (F1)-(F2) and (S1)—(Ss3), for
every B € Ba(X), one has

. S(B) _ . S((U)
lim ———= = in
= u(he(B)) — kew pu(hy(U))
Let 5 = {A e F : P(r,(A)AA) = Oforall g € G} be the o-algebra of invariant sets

€
with respect to (2, F,P, {7,}4eq). Recall that (Q,F P, {7,}4es) is said to be ergodic if
P(A) € {0,1} for all Ae .7.

Theorem 5.4 (stochastic case). Under (O1)—(O4), (F5)—(F3), (S1)—(S2) and (S3), there
exists V' € F with P(Y') = 1 such that for every w € Q' and every B € Ba(X), one has

L S(B).w) _ L ET[S((U).)]w)

EETuh(B) e a(u(@)
where B[S (hy(U), )] denotes the conditional expectation of 8(hy(U),-) over F with respect
to P. If moreover (Q, F,P,{7,}4eq) is ergodic then

t=e p(hy(B)) ket p(hy(U))

where B[S (h(U), )] denotes the expectation of 8 (hg(U),-) with respect to P.

5.2.3. Homogenization theorems. In what follows, we establish deterministic and sto-
chastic homogenization theorems of nonconvex unbounded integrals in the setting of metric
measure spaces according to our framework in (see Theorems and [5.10). Let
L:X xM x Q — [0,0] be a Borel measurable stochastic integrand such that:

(Hy) L is p-coercive, i.e. there exists ¢ > 0 such that for every x € X, every £ € M and
every w € €,

L(z,§ w) = cl¢]”;
(Hy) L has G-growth, i.e. there exist «, 5 > 0 such that for every x € X, every £ € M and
every w € €2,

aG(§) < L(x, §,w) < B(1+ G(S))
with G : M — [0, oo] satisfying (C;)—(Cy);
(H3) L is G-stationary with respect to {7,}4eq, i.e. for every z € X, every £ € M, every
g € G and every w € (),

L(g~' (), & w) = L(2,& 7y (w))
and, when L is deterministic, i.e. L(z,&,w) = L(x,§),
(H3) L is G-periodic, i.e. for every x € X, every £ € M and every g € G,
L(g™(x),&) = L(z,£).
For each t > 0, we consider L; : X x M x  — [0, 0] given by
Ly(z,§,w) := L(hy(x),§, w). (5.2)

Then, under (H;)—(H,), it is easy to see that {L;};~o satisfies (C5)—(Cg). Homogenization of
integrals was already studied in [AHMI7] and [AHM20Db|, §3| in the p-growth case, i.e. when
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G(&) = [¢|P. Here we are concerned with the G-growth case. For this, we need to suppose
that

(Hy) for every w € Q, L is ru-usc at w with respect to {h;}i~o, i.e. for every w € Q, there
exists a(,w) € L,(X; 0, c0]) with

lim | a(h(z),w)du(z) < o

t—0o0 X
and
[im Tim he(y), w)dn(y) € Ly, (X
R M) € B
such that

lim A% (7,w) <0,

T—1"

where A¢ : [0,1] x Q —] — 00, 00] is given by

L(z,7¢,w) — L(z,&,w)
A (T,w) :=sup su
L( ) me)lggelfw CL(I?L‘)) +L(I‘,£,W>

with L, denoting the effective domain of L(z, -, w).

Lemma 5.5. Let w e Q. If L is ru-usc at w with respect to {h;}4=o with a(-,w), then {L;};~0
is ru-usc at w with {a(hy(-),w)}=o-

Proof of Lemma [5.5. Set a;(-,w) := a(h(+),w) for all ¢ > 0. For any 7 € [0, 1], any ¢ > 0,
any z € 2 and any £ € L, ., one has

Lt(fE’Tf,w) —Lt(ZE,f,CU) _ L(ht(l‘)ﬂ_ga ) ( (:E

) 7("))

)
wlw) + L,6.0)alha(a),w) + L(he(o) £,0) 53
As Ligw = L, (2)w and hy(x) € X we see that
( t( )77—57 )_ ( t( ),S,UJ) L(yaTng)_L(yvgaw) . a
a(ha(@),0) + Ln(@),6,0) R P )+ Ly Ew) AL(mw),
and from (5.3) we deduce that
sup A7 (1,w) < A% (T, w) (5.4)

t>0

for all 7 € [0,1]. But L is ru-usc at w with a(-,w), i.e. lim, ;- A%(7,w) < 0, and so, letting
7 — 17 in (5.4)), we obtain lim,_,;- sup,.o A7 (7,w) < 0 which means that {L;};~¢ is ru-usc
at w with {a;(-,w)}i=0 = {a(h(:),w)}i=0. B

Lemma shows that (Hy) implies (C;). So, according to Theorem and Proposition
2.8 to prove Theorems and below, it is sufficient to establish the condition (Cg) in
Theorem [2.5] For this, we consider the following assumption:

(Hs) for every & € U eoint(@Q,G,), there exists C¢ > 0 such that for every A € %y,

nt { [ 66+ Tyt)dnt) s w e HECA R | < Couta)
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Remark 5.6. It is clear that if int(Q,G,) < G for all y € O, then (Hs) is satisfied with
Ce = G(&). (In particular, (Hs) holds when G is HP-quasiconvex.)

For cach £ € M, let &5 : By x Q — [0, 0] be defined by
Siw) = int { [ L6+ Tyl )dn(y) s w e HFAR)
A

As M is separable, also is Uyeoint(@Q,G,). Let D < Uy,eoint(Q,G,) be a countable set

such that D = U,oint(@Q,G,). In the stochastic case, we need the following two additional
assumptions:

(H3) for every € € Uyeoint(@,G,) and every A € By, §5(A,-) is F-mesurable;
(H2) there exist ¢ : [0,00[— [0,00] and 0 : Ueoint(Q,G,) x D — [0, 0] with

lim 6(r) = 0
{ sup{e(g,g) ¢CeDand |(] < M} <o

such that for every A € By, every w € Q, every & € U,0int(Q,G,) and every ¢ € D,

SHA W) SHAw)
1(A) 1(A)
The following two propositions are consequences of Theorems [5.3] and [5.4] respectively. We

only give the proof of the stochastic proposition. The deterministic proposition can be proved
by the same method.

< 0(¢,Q)o(E — <.

Proposition 5.7 (deterministic case). Under (Oy), (O3)—(O0y4), (F1)—(F5), the right inequal-
ity in (He) and (H3)-(Hs), for every p > 0, every x € O and every £ € int(Q,G,), one
has

o S (By@) L SE((V)
R O = 7 G, (B (0) e (D))
which implies (Cg).

Proposition 5.8 (Stochastic case). Under (O1)—(0y4), (F5)—(F3), (F3)—(F5), the right in-
equality in (Ha), (H3), (Hs)—(Hs), (Hf)—(H3), there exists Q' € F with P(Q) = 1 such that
for every w e Y, every p >0, every x € O and every § € int(Q,G,), one has
St (he (B E7 (8} (hy(U), -

i 20—t S Bl ) ¢ TS (D),])

£ t=o g (he (By(x))) — keN® 1(hi(U))
where B denotes the conditional expectation over F with respect to P, with 5 being the
o-algebra of invariant sets with respect to (Q, F,P,{7y}geq). If moreover (Q, F P, {7,}4es)
1s ergodic then

L ot — ti SEBE) ) ELSE (D), )
fim Zi el & w) = I = 0 B @) e T u(e(D)

where E denotes the expectation with respect to P. Consequently (Cg) holds.
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Proof of Proposition [5.8 First of all, from (H3) we see that for every w € 2, every k € IN*,
every & € Uyeoint(@Q,G,) and every ¢ € D,

S (i (U), w) Si(h(0),w) _ Sp(hi(U),w)
u(hi (D)) n(h(0)  p((0))

and so, passing to the conditional expectation E” and then to the infimum on &,

—0(&,Q)o(lE = ¢l) < +0(8,O)o(|€ — ),

o FISE0@Olw) -
keN* u(hk (U)) kel ,u(hk (U))

< 0(&,¢)o(I€ = <)

Taking the properties of ¢ and € in (H3) into account, we obtain

o BT[S (e (U), )](w) L ET[S (Ak(U), )] (w)
pimn it 1u(ho(0)) = ot 1(he(0)) (5:5)

for all w e Q and all £ € Uyeoint(Q,G,). Fix any ( € D. From the right inequality in (H,)
and (Hs) we have 8¢ (A, w) < B(1 + Co)u(A) for all w e Q and all A € By, and so, by (H3),
S$(A,-) e L', F,P) for all Ae By. Moreover, from (01), (Fs) and (H3) it easily seen that
the set function é’g is G-stationary, and <§’£ is also subadditive because, for each A, B € 3y,
(AU B\(A U B)) = 0since AU B\(Au B) € A U dB and u(dA) = u(@B) = 0. Then,
by Theorem , there exists () € F with P(Q;) = 1 such that for every w € ) and every
B € Ba(X), one has

o Siu(B).w) B[S (U), )] ()
= p(he(B)) ke p(he(U))

(5.6)

Now, set Q' := n¢epfl. Since D is countable, P(Q) = 1. Fix any w € ', any § €
Uyeoint(@,G,) and any B € Ba(X). From (H3) we see that for every ¢t > 0 and every ¢ € D,
St(ha(B),w) Sp(h(B),w) _ Sp(hu(B),w)
p1(he(B)) pu(hi(B)) p1(hi(B))
and so, letting ¢ — oo and using (5.6)), we obtain:

o BI[SE(h(U), )] (w) -  Si((B).w).
kler]{\l* N(hk(U>) 9(€,€)¢(|§ C|)<t_lf?o M(ht(B)) ’
— SE(h(B),w) _ . B[ (h(U), )] (w)

M a(B) AT @y e oeed

By the properties of ¢ and 6 in (H3) and (5.5)), letting D 5 ( — &, it follows that:

e BSE () ))(w) _ (. SE(u(B),w).
relv* 11(hi(0)) i w((B))
— Si(h(B).w) _ o E7[Si(m(U),)](w)

lim

i u(h(B)) - kens 1u(ho(0))

—0(5, QoI — <) <

+0(&,¢)o(I€ — <),
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Consequently, for every w e (¥, every £ € U e0int(Q,G,) and every B € Ba(X),

i SEu(B),w) B[S (), )] ()
P (B) T @) o0

Finally, fix x € O and & € int(Q,G,) (then & € U int(Q,G,)). Taking (5.2) into account,
from (O3) and (F3), we see that for every w € 0/, every B € Ba(X), and every ¢t > 0, one has

§§ (B)) = int{ [ L6k V) ldnl) s w e BRBERR")}
he(B)

_ inf UB Llh(y

= u(hy(U))inf {
But p(he(U)(B) = (hy ') pu(B)

~—

&+ Vyw(hay)) @) Vuly)  w e H2(h(B): W)}

L0+ ynlhu(o)) )dly)  w € HL (B Rm>} .

w(hy(B)) by using (F3), and so from (F5) we obtain

J[BLt(?Jaf + V,w(y),w)du(y) - w e H;fg(B; Rm)}

for all w e ¥, all B € Ba(X) and all £ > 0. Consequently, for every w € 2" and every p > 0,
we have:

091? (ht(B),w) = pu(h:(B)) inf

—

W)
) 7
— 8; (h
Tim 7/ L2, €, w) = (B, (2)) )
o p (he(By(x)))
and the proposition follows by using (5.7) with B = B,(z). B
For each t > 0, let E, : H}?(O; ]Rm) x Q0 — [0,0] be defined by (L.1) with L, given by
. Taking Theorem [2 and Proposition into account, from Propositions [5.7] E 7l and [5 -

respectlvely, we deduce the following two homogenlzatlon theorems

Theorem 5.9 (deterministic case). Assume that p > k. Under (Oy), (O3)—(04), (F1)—(F5)
and (Hy)—(Hs), one has

[(L7)-lim Ey(u) = Jo Lyom (V,u(z))du(z)

t—0o0

lim #ZPL:(z, &, w) = lim S (h(B,(x))
hm ) Ly(, €, )

t—a t—owo 1 (he(By(

for allwe HP(O;R™) with Lyem : M — [0,00] given by

S (h(U)) —
Lion(§) = {0 b =) L)) 1S € @G
o0 otherwise.

Theorem 5.10 (stochastic case). Assume that p > k. Under (01)—(Oy4), (F$)—(F3), (F3)-
(F5), (Hy)—(Hg), (H3), (Ha)—(Hs), (H§)—(HS), there exists Q' € F with P(Y) = 1 such that
for every w € V', one has

D(LE)- lim By (u,w) = Jo Lo (V,u(z),w)dp(z)

t—0o0
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for all we HyP(O;R™) with Luem : M x Q — [0, 0] given by

E7[S7¢ (hi (U), -)](w)

Liom (&, w) = Tlir{l— klerlg* p(hi(U)) iee y<0 @Gy
o0 otherwise,

where B denotes the conditional expectation over F with respect to P, with 5 being the
o-algebra of invariant sets with respect to (Q, F,P,{7y}geq). If moreover (Q, F,P,{7,}4es)
15 ergodic then Lyoy s deterministic and is given by

o E[SE((U), )] __
Lnom(€) = 4 Al == oy Y 6C @G
o0 otherwise,

where E denotes the expectation with respect to P.

REFERENCES

[AH10] Omar Anza Hafsa. On the integral representation of relaxed functionals with convex bounded
constraints. ESAIM Control Optim. Cale. Var., 16(1):37-57, 2010.

[AHCM17] Omar Anza Hafsa, Nicolas Clozeau, and Jean-Philippe Mandallena. Homogenization of non-
convex unbounded singular integrals. Ann. Math. Blaise Pascal, 24(2):135-193, 2017.

[AHLM11] Omar Anza Hafsa, Mohamed Lamine Leghmizi, and Jean-Philippe Mandallena. On a homoge-
nization technique for singular integrals. Asymptot. Anal., 74(3-4):123-134, 2011.

[AHM11] Omar Anza Hafsa and Jean-Philippe Mandallena. Homogenization of nonconvex integrals with
convex growth. J. Math. Pures Appl. (9), 96(2):167-189, 2011.

[AHM12a] Omar Anza Hafsa and Jean-Philippe Mandallena. Homogenization of unbounded singular in-
tegrals in Wb, Ric. Mat., 61(2):185-217, 2012.

[AHM12b] Omar Anza Hafsa and Jean-Philippe Mandallena. On the relaxation of unbounded multiple
integrals. Preprint, arXiv:1207.2652, 2012.

[AHM14] Omar Anza Hafsa and Jean-Philippe Mandallena. Radial representation of lower semicontinuous
envelope. Boll. Unione Mat. Ital., 7(1):1-18, 2014.

[AHM17] Omar Anza Hafsa and Jean-Philippe Mandallena. I'-convergence of nonconvex integrals in
Cheeger-Sobolev spaces and homogenization. Adv. Calc. Var., 10(4):381-405, 2017.

[AHM18] Omar Anza Hafsa and Jean-Philippe Mandallena. Relaxation of nonconvex unbounded integrals

with general growth conditions in Cheeger-Sobolev spaces. Bull. Sci. Math., 142:49-93, 2018.

[AHM20a] Omar Anza Hafsa and Jean-Philippe Mandallena. Lower semicontinuity of integrals of the
calculus of variations in Cheeger-Sobolev spaces. Calc. Var. Partial Differential Equations,
59(2):Paper No. 53, 32, 2020.

[AHM20b] Omar Anza Hafsa and Jean-Philippe Mandallena. On subadditive theorems for group actions
and homogenization. Bull. Sci. Math., 158:102821, 32, 2020.

[AHM21] Omar Anza Hafsa and Jean-Philippe Mandallena. Integral representation of unbounded varia-
tional functionals on sobolev spaces. Ricerche di Matematica, 2021.

[AHM22] Omar Anza Hafsa and Jean-Philippe Mandallena. Integral representation and relaxation of
local functionals on Cheeger-Sobolev spaces. Nonlinear Anal., 217:Paper No. 112744, 28, 2022.

[AHMZ15] Omar Anza Hafsa, Jean-Philippe Mandallena, and Hamdi Zorgati. Homogenization of un-
bounded integrals with quasiconvex growth. Ann. Mat. Pura Appl. (4), 194(6):1619-1648, 2015.

[BBOO] Guy Bouchitté and Michel Bellieud. Regularization of a set function—application to integral
representation. Ricerche Mat., 49(suppl.):79-93, 2000. Contributions in honor of the memory
of Ennio De Giorgi (Italian).



I'-CONVERGENCE OF UNBOUNDED INTEGRALS IN CHEEGER-SOBOLEV SPACES 39

[BBS97]

[BFMOS]

[BH99)

[Buc99]
[CCDAGO02]

[CCDAGO4]

[CDAO2]

[Che99]
[CILP02]
[CM98]

[CPS07]

[DDMM20]
[DG16]
[DGZ14]
[DM93]
[DZ15]
[GTO1]
[Hajo3]
[Hei07]
[HK9g)]

[HKST15]

[Kei04]

Guy Bouchitte, Giuseppe Buttazzo, and Pierre Seppecher. Energies with respect to a mea-
sure and applications to low-dimensional structures. Calc. Var. Partial Differential Equations,
5(1):37-54, 1997.

Guy Bouchitté, Irene Fonseca, and Luisa Mascarenhas. A global method for relaxation. Arch.
Rational Mech. Anal., 145(1):51-98, 1998.

Martin R. Bridson and André Haefliger. Metric spaces of non-positive curvature, volume 319
of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences]. Springer-Verlag, Berlin, 1999.

Stephen M. Buckley. Is the maximal function of a Lipschitz function continuous? Ann. Acad.
Sci. Fenn. Math., 24(2):519-528, 1999.

L. Carbone, D. Cioranescu, R. De Arcangelis, and A. Gaudiello. Homogenization of unbounded
functionals and nonlinear elastomers. The general case. Asymptot. Anal., 29(3-4):221-272, 2002.
Luciano Carbone, Doina Cioranescu, Riccardo De Arcangelis, and Antonio Gaudiello. Homog-
enization of unbounded functionals and nonlinear elastomers. The case of the fixed constraints
set. ESAIM Control Optim. Cale. Var., 10(1):53-83, 2004.

Luciano Carbone and Riccardo De Arcangelis. Unbounded functionals in the calculus of vari-
ations, volume 125 of Chapman & Hall/CRC Monographs and Surveys in Pure and Applied
Mathematics. Chapman & Hall/CRC, Boca Raton, FL, 2002. Representation, relaxation, and
homogenization.

J. Cheeger. Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct.
Anal., 9(3):428-517, 1999.

Gregory A. Chechkin, Vasili V. Jikov, Dag Lukkassen, and Andrey L. Piatnitski. On homoge-
nization of networks and junctions. Asymptot. Anal., 30(1):61-80, 2002.

Tobias H. Colding and William P. Minicozzi, II. Liouville theorems for harmonic sections and
applications. Comm. Pure Appl. Math., 51(2):113-138, 1998.

G. A. Chechkin, A. L. Piatnitski, and A. S. Shamaev. Homogenization, volume 234 of Trans-
lations of Mathematical Monographs. American Mathematical Society, Providence, RI, 2007.
Methods and applications, Translated from the 2007 Russian original by Tamara Rozhkovskaya.
Nicolas Dirr, Federica Dragoni, Paola Mannucci, and Claudio Marchi. I'-convergence and ho-
mogenisation for a class of degenerate functionals. Nonlinear Anal., 190:111618, 25, 2020.
Mitia Duerinckx and Antoine Gloria. Stochastic homogenization of nonconvex unbounded in-
tegral functionals with convex growth. Arch. Ration. Mech. Anal., 221(3):1511-1584, 2016.
Anthony H. Dooley, Valentyn Ya. Golodets, and Guohua Zhang. Sub-additive ergodic theorems
for countable amenable groups. J. Funct. Anal., 267(5):1291-1320, 2014.

Gianni Dal Maso. An introduction to I'-convergence. Progress in Nonlinear Differential Equa-
tions and their Applications, 8. Birkh&duser Boston Inc., Boston, MA, 1993.

Anthony H. Dooley and Guohua Zhang. Local entropy theory of a random dynamical system.
Mem. Amer. Math. Soc., 233(1099):vi4+106, 2015.

Vladimir Gol’dshtein and Marc Troyanov. Axiomatic theory of Sobolev spaces. Ezpo. Math.,
19(4):289-336, 2001.

Piotr Hajlasz. Sobolev spaces on metric-measure spaces. In Heat kernels and analysis on mani-
folds, graphs, and metric spaces (Paris, 2002), volume 338 of Contemp. Math., pages 173-218.
Amer. Math. Soc., Providence, RI, 2003.

Juha Heinonen. Nonsmooth calculus. Bull. Amer. Math. Soc. (N.S.), 44(2):163-232, 2007.
Juha Heinonen and Pekka Koskela. Quasiconformal maps in metric spaces with controlled
geometry. Acta Math., 181(1):1-61, 1998.

Juha Heinonen, Pekka Koskela, Nageswari Shanmugalingam, and Jeremy T. Tyson. Sobolev
spaces on metric measure spaces, volume 27 of New Mathematical Monographs. Cambridge
University Press, Cambridge, 2015. An approach based on upper gradients.

Stephen Keith. A differentiable structure for metric measure spaces. Adv. Math., 183(2):271-
315, 2004.



40
[KM16]
[Kres5]
[Lin99)]
[Lin01]
[Man13]

[MPC21]

[MPSC20]

[Sha00]

[Zhi02]

OMAR ANZA HAFSA AND JEAN-PHILIPPE MANDALLENA

Bruce Kleiner and John M. Mackay. Differentiable structures on metric measure spaces: a
primer. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 16(1):41-64, 2016.

Ulrich Krengel. Ergodic theorems, volume 6 of De Gruyter Studies in Mathematics. Walter de
Gruyter & Co., Berlin, 1985. With a supplement by Antoine Brunel.

Elon Lindenstrauss. Pointwise theorems for amenable groups. Electron. Res. Announc. Amer.
Math. Soc., 5:82-90, 1999.

Elon Lindenstrauss. Pointwise theorems for amenable groups. Invent. Math., 146(2):259-295,
2001.

Jean-Philippe Mandallena. Localization principle and relaxation. Adv. Cale. Var., 6(2):217-246,
2013.

Alberto Maione, Andrea Pinamonti, and Francesco Serra Cassano. I'-convergence
for functionals depending on vector fields. II. Convergence of minimizers. arXiv,
hitps://arxiv.org/abs/2104.12892, 2021.

A. Maione, A. Pinamonti, and F. Serra Cassano. I'-convergence for functionals depending on
vector fields. I. Integral representation and compactness. J. Math. Pures Appl. (9), 139:109-142,
2020.

Nageswari Shanmugalingam. Newtonian spaces: an extension of Sobolev spaces to metric mea-
sure spaces. Rev. Mat. Iberoamericana, 16(2):243-279, 2000.

V. V. Zhikov. Averaging of problems in the theory of elasticity on singular structures. Izv. Ross.
Akad. Nauk Ser. Mat., 66(2):81-148, 2002.

(Omar Anza Hafsa) UNIVERSITE DE NIMES, LABORATOIRE MIPA, SITE DES CARMES, PLACE
GABRIEL PERI, 30021 NIMES, FRANCE.
E-mail address: omar.anza-hafsa@unimes.fr

(Jean-Philippe Mandallena) UNIVERSITE DE NIMES, LABORATOIRE MIPA, SITE DEs CARMES, PLACE
GABRIEL PERI, 30021 NIMES, FRANCE.
E-mail address: jean-philippe.mandallena@unimes.fr



	1. Introduction
	2. The -convergence result
	3. Auxiliary results
	3.1. Cheeger-Sobolev spaces
	3.2. Ru-usc integrands
	3.3. Integral representation of the Vitali envelope of a set function

	4. Proofs
	4.1. Proof of the lower bound
	4.2. Proof of the upper bound
	4.3. Proof of the -convergence result

	5. Applications
	5.1. Relaxation
	5.2. Homogenization

	References

