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Mid-mantle deformation inferred
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With time, convective processes in the Earth’s mantle will tend to
align crystals, grains and inclusions. This mantle fabric is detect-
able seismologically, as it produces an anisotropy in material
properties—in particular, a directional dependence in seismic-
wave velocity. This alignment is enhanced at the boundaries of the
mantle where there are rapid changes in the direction and
magnitude of mantle flow', and therefore most observations of
anisotropy are confined to the uppermost mantle or lithosphere®
and the lowermost-mantle analogue of the lithosphere, the D"
region®. Here we present evidence from shear-wave splitting
measurements for mid-mantle anisotropy in the vicinity of the
660-km discontinuity, the boundary between the upper and lower
mantle. Deep-focus earthquakes in the Tonga—Kermadec and
New Hebrides subduction zones recorded at Australian seismo-
graph stations record some of the largest values of shear-wave
splitting hitherto reported. The results suggest that, at least
locally, there may exist a mid-mantle boundary layer, which
could indicate the impediment of flow between the upper and
lower mantle in this region.

Seismic anisotropy in the upper 200 km of the Earth’s mantle is
primarily attributed to the preferred alignment of olivine crystals
which have deformed by dislocation creep’. The origin of aniso-
tropy at greater depths is more speculative, but there is evidence for
anisotropy in the transition zone in some regions®™, but not in
others®"’. In an effort to reconcile discrepancies in global velocity
models derived from body-wave travel times and normal-mode
observations, Montagner and Kennett" allowed both anisotropy
and attenuation in a joint inversion of these data sets. Their final
model shows significant levels of anisotropy in the uppermost and
lowermost mantle, but also in the vicinity of the 660-km disconti-
nuity (hereafter referred to as the ‘660’). This motivated an
investigation of mid-mantle anisotropy on a regional scale. Here
we investigate shear-wave splitting in deep-focus events that image a
region below the Australian plate (Fig. 1).

Stations in Australia are ideal for investigating near-source
anisotropy, as studies have shown that they exhibit very little, if
any, receiver-side shear-wave splitting'>™"* (see Supplementary
Information for a summary of observations). For example, 52
SKS measurements with good azimuthal coverage at the station
CAN (see Fig. 1 for location) show that shear waves that are
travelling nearly vertically are not split while crossing the Australian
lithosphere beneath this station'. In contrast, we find that deep-
focus events from the Tonga—Kermadec and New Hebrides sub-
duction zones show very large degrees of shear-wave splitting at this
and four other Australian stations (Fig. 2), suggesting anisotropy
deeper in the mantle, away from the receiver.

We made splitting measurements from 92 events, at epicentral
distances of 24° to 59° from the Australian stations, using the
method of ref. 15, which estimates the time separation between
the fast and slow shear wave, 8¢, and the polarization of the fast shear
wave at the receiver, ¢. This method attempts to remove the
anisotropy-induced splitting by minimizing the shear-wave signal
in the direction perpendicular to the polarization direction of the
shear wave before entering the anisotropic region'’. A grid search
over 9t and ¢ is used to estimate the splitting parameters, and a
statistical F-test is used to assess errors. The correction for splitting




should produce a linear S-wave particle motion, thus providing a
further measure of confidence in the results. Of 164 splitting
measurements, 66 gave very convincing results—that is, the error
in 8¢ is less than 0.5 s, and the error in ¢ is less than 10°. In an effort
to isolate mid-mantle anisotropy, we further restricted our study to
the 30 events deeper than 300km which gave 35 high-quality
splitting estimates (see Supplementary Information; 75% of the
events are greater than 500 km deep). The magnitude of splitting for
these events ranges from 0.6s to 7.1s. Many measurements show
splitting in excess of 4 s (Fig. 2), and suggest either very high degrees
of localized anisotropy or wave propagation through a more
moderately anisotropic region of large extent. It should be noted
that the maximum free-surface incidence angle for our data set is
less than 32°, thus avoiding the effects of waveform distortion due to
free- and near-surface coupling.

The azimuthal ray coverage at the midpoint between source
and receiver spans a 60° region centred around 260°. The polariza-
tion of the fast shear wave is roughly aligned with the transverse
component, but there is some scatter in this (back-azimuth —¢ =
108° = 31°). Although the azimuthal ray coverage is not complete,
the results suggest a transversely isotropic symmetry with the
symmetry axis in the vertical plane, perpendicular to the ray
direction. For horizontally travelling rays, this would imply a
horizontally polarized fast shear wave (that is, SH leads SV).

To help guide interpretations of these observations, we model
wave propagation through an anisotropic slab region using ray
theory". The linear slab extends to a depth of 660 km and has a 60°
dip angle. Anisotropy in the deeper parts of the slab may be due to
the alignment of metastable olivine®, or the preferred alignment of
akimotoite, a polymorph of enstatite, which may exist under slab
pressures and temperatures'. Alternatively, transition-zone defor-
mation above the slab may align its dominant minerals, wadsleyite
and ringwoodite. Finally, anisotropy below the ‘660’ may be due to
the alignment of lower-mantle minerals such as perovskite, periclase
and/or stishovite, all of which are highly anisotropic®. Perovskite is
the most likely candidate as it constitutes nearly 80% of the minerals
in this region, but an alignment mechanism for perovskite is still
uncertain®"*%, Both experimental measurements® and first-princi-
ples calculations*** suggest that perovskite is only mildly orthor-

hombic in symmetry and can be well approximated as being
transversely isotropic. Unfortunately, these elastic constants predict
that for horizontally travelling waves, vertically polarized shear
waves are faster than horizontally polarized shear waves. Alterna-
tively, the anisotropy may not be due to crystal alignment, but
rather to the horizontal alignment of tabular inclusions, as has been
suggested for the lowermost mantle*.

Figure 2 compares predicted splitting for a variety of models and
the observed splitting values. Consistent with the observations, the
anisotropy is constrained to have a fast horizontally polarized shear
wave. Very high degrees of anisotropy, distributed throughout the
slab, are required to explain the observations with slab anisotropy. It
is virtually impossible to explain 6 seconds of splitting in the deepest
events (>600km) with slab anisotropy. An absence of slab aniso-
tropy is further suggested from an analysis of depth-dependent
splitting for vertically travelling shear waves beneath Tonga, which
shows no evidence of azimuthal anisotropy below 400 km (ref. 10).
Alack of SKS splitting does not necessarily mean that the uppermost
mantle beneath the receivers is isotropic. Transverse isotropy any-
where in the mantle will not split vertically polarized SKS phases,
but will split an arbitrarily polarized S wave. However, Fig. 2 shows
that the splitting for an uppermost mantle with 4% anisotropy*
cannot explain the results. Similarly, they cannot be explained with
anisotropy confined to the transition zone, a conclusion reinforced
by the fact that ringwoodite, the dominant mineral between depths
0f 520 and 660 km, is thought to be only very mildly anisotropic®. It
is difficult to explain the splitting with combinations of transverse
isotropy in the uppermost mantle and in transition-zone regions. A
problem with models where anisotropy is confined to the upper
mantle is that they predict very large amounts of splitting at near
offsets and little at large offsets, an effect not seen in the data. Such
anisotropy may contribute to the splitting, but cannot explain the
observations.

The modelling shows that moderate amounts of anisotropy in the
lower mantle generate large amounts of splitting owing to long
horizontal ray-paths below the ‘660’ at these epicentral distances.
Assuming that the anisotropy is confined to a layer 100 km below
the ‘660’, the average anisotropy magnitude is 3.0%. However, Fig. 1
shows that there is spatial variation in this estimate, with the largest
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Figure 1 Event—station combinations used to study mid-mantle anisotropy. Small red
dots show events; blue dots show stations; red swaths show corresponding lower-mantle
ray-paths. Subduction zones and directions of absolute plate motion are also indicated.
The larger circles near the events are colour-coded averages (minimum 3 hits) over a 2°
radius surface region of the anisotropy magnitude required to explain observed shear-

wave splitting, plotted at the point a ray enters the lower mantle. This is calculated
assuming that the anisotropy is distributed throughout a 100-km-thick layer just below
the 660-km discontinuity (the ‘660’). Colour scale bar to the right indicates the magnitude
of the anisotropy (fractional difference between slow and fast shear wave velocity).
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Figure 2 Shear-wave splitting versus epicentral distance. Circles with error bars show
observations and estimated uncertainty. Solid lines show predictions for a 500-km-deep
source in models with a fast horizontally polarized shear wave: trace a, 4% transverse-
isotropy in the uppermost 210 km of upper mantle; b, 5% anisotropy in a subducted slab
that extends to a depth of 660 km; ¢, 5% anisotropy confined to a 100-km-thick layer
immediately beneath the ‘660’; d, anisotropy that grades from 3% to 1% between the
‘660’ and 900 km; e, 2% anisotropy in 100-km-thick layers above and below the ‘660,
and 1% anisotropy in a layer between 760 km and 900 km; f, 4% anisotropy in the
uppermost 210 km, 2% anisotropy in 100-km-thick layers above and below the ‘660’,
and 1% anisotropy in a layer between 760 km and 900 km; g, anisotropy that grades from
2.5% t0 1.5% in a layer between 760 km and 900 km. Although there is some ambiguity
as to the best model, only models with anisotropy in the lower mantle can explain the large
splitting observations.

magnitude of anisotropy lying in the northernmost and southern-
most regions. This north—south variation is also seen in the raw
splitting values, with a large range of splitting near 20°S (see
Supplementary Information). Alternatively, the magnitude of the
anisotropy may grade into the isotropic mantle over a few hundred
kilometres, thereby requiring even less anisotropy. Figure 2 also
shows that it is difficult accurately to constrain the anisotropy to a
layer immediately beneath the ‘660’ In fact, anisotropy between
depths of 760km and 900km explains the trend in the large
residuals quite well. In summary, the modelling shows that there
must be anisotropy below the ‘660, but not deeper than 900 km, and
there may or may not be a contribution from anisotropy above the
‘660’

Although there must be anisotropy in the lower mantle, it may
still be slab related. Numerical simulations have shown that large
deviatoric stresses are transmitted into the lower mantle when a
rigid slab encounters an increase in viscosity at the ‘660’ (ref. 27).
Large stresses increase the likelihood of dislocation creep mechan-
isms being active. With time, the associated strains will induce
alignment in a broad region below the slab. Perovskite may
therefore align with a rotated symmetry axis conformal to the
shape of this region. Aligned perovskite rotated more than 30°
predicts SH waves faster than SV wave for horizontally travelling S
waves.

Another possibility is that the anisotropy is associated with slab
material which has broadened and pooled at the ‘660, before
sinking into the deeper mantle. This may be slab material
horizontally emplaced on the ‘660, but our modelling shows
that a significant portion of the slab must be well below a depth
of 660 km. An alternative is the idea that eclogitic oceanic crust
delaminates from the slab, residing in a ‘megalith’ just below the
‘660’ (ref. 28). This thin crustal layer may thicken appreciably with
long-lived subduction into the high-viscosity lower mantle®.
Furthermore, it has been argued that basalt may be near its
solidus in the uppermost and lowermost parts of the lower
mantle®. Thus the anisotropy may be due to the preferred
alignment of melt inclusions (a mechanism which generates
anisotropy very effectively*), which results from shear deformation
at the ‘660’

Supporting evidence for the anisotropy being confined to a broad
region around the base of the slab comes from recent tomographic
images for both P and S waves for the Tonga—Kermadec region’'.
This raises the question of to what degree tomographic images
obtained assuming isotropy are influenced by anisotropy. Tomo-
graphic images also show along-strike variations in the Tonga—
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Figure 3 Three models for anisotropy below the 660-km discontinuity. a, An anisotropic
mid-mantle boundary layer near the ‘660’ that may or may not be a global feature of this
boundary. Our results suggest that the magnitude of anisotropy in such a layer must vary

laterally quite significantly. b, Slab forces on the surrounding mantle lead to strain-
induced anisotropy. ¢, Anisotropy associated with slab material pooling in the lower
mantle.




Kermadec slab morphology, with a significant change in slab dip
near 25° (ref. 32). We note that it is from this region that we observe
the smallest amounts of splitting.

Although the precise origin of the anisotropy is not clear at
present, our observations and linked modelling show evidence for
anisotropy in the uppermost lower mantle beneath the eastern part
of the Australian plate. The anisotropy is probably inhomogeneous,
as there appears to be an appreciable north—south variability in its
magnitude. There must be large strains in this region, which are
probably related to slab interaction with the sharp increase in
viscosity at this boundary. Figure 3 summarizes the potential
mechanisms that we propose. Our results may help describe to
what extent there is an impediment of flow at this boundary
between the upper and lower mantle. O
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