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ABSTRACT

Aims. Observations of solar protons near comet 67P/Churyumov–Gerasimenko (67P) by the Rosetta spacecraft can be modelled by
the planar motion in an effective magnetic field proportional to 1/r2. We aim to provide a thorough study of such dynamics, with a
clear description of the behaviour of an incoming flux of particles. We will be able, then, to calibrate the free parameters of the model
to Rosetta observations.
Methods. Basic tools of dynamical analysis are used. They lead to a definition of the relevant parameters for the system and a
classification of the possible types of trajectories. Using the so-obtained formalism, the structures formed by a flux of particles
coming from infinity can be studied.
Results. All the trajectories are parametrised by two characteristic radii, rE and rC, derived from first integrals. There are three different
types of motion possible divided by a separatrix corresponding to rE = rC. An analytical expression of the trajectories, defined by an
integral, is developed. Using this formalism, the application to a flux of particles coming from infinity (modelling the incident solar
wind) gives one free parameter only, the radius rE, which scales the problem. A circular cavity of radius 0.28 rE is created, as well as an
overdensity curve (analogous to a caustic in optics). At each observation time, rE can be calibrated to Rosetta plasma measurements,
giving a qualitative understanding of the solar particle dynamics (incoming direction, cavity and density map). We also deduce that,
in order to properly capture the essence of the dynamics, numerical simulations of the solar wind around a comet must use simulation
boxes much larger than rE and grids much finer than rE.

Key words. solar wind – comets: general – magnetic fields

1. Introduction

Plasma instruments on board the Rosetta mission have provided
invaluable information about the dynamics of solar and cometary
ions in a comet neighbourhood (comet 67P/Churyumov–
Gerasimenko, hereafter 67P). For the first time, these dynam-
ics were followed as the comet nucleus activity was evolving,
from more than 3.8 astronomical units (au) to its perihelion at
1.2 au. Because of the lower production rate of 67P’s nucleus
together with these large heliocentric distances, the interaction
between the solar wind and the cometary atmosphere (coma),
was fundamentally different from what was previously observed
at more active comets closer to the Sun (comet Halley or comet
Giacobini-Zinner: Grewing et al. 1988; Cowley 1987). Because
the gyration scale of the cometary ions is larger than the inter-
action region, the classical fluid treatment of the plasmas does
not apply at 67P, and a kinetic description of the interaction is
necessary. In Behar et al. (2018b) the terms “fluid comet” and
“kinetic comet” were introduced to separate these two different
regimes. As of now, only self-consistent numerical models have
tackled the interaction between the solar wind and the coma of a
“kinetic” comet (Bagdonat & Motschmann 2002; Hansen et al.
2007; Rubin et al. 2014b; Koenders et al. 2016a,b; Behar et al.
2016; Deca et al. 2017; Huang et al. 2018). All these models

result in a highly asymmetric plasma environment, in contrast
with the classical symmetric picture obtained for more active
comets closer to the Sun (Rubin et al. 2014a).

In the context of comet 67P and based on in-situ data,
Behar et al. (2017) recently showed that a cavity completely
free of solar particles is created around the comet’s nucleus,
surrounded by a region where they are focused in a specific
direction. Moreover, the measured velocity of the solar protons is
almost constant in norm throughout the mission, indicating that
they are deflected without significant loss of energy. Remark-
ably, the main plasma observations are very well reproduced by
a simple inverse-square-law “effective magnetic field” applied to
the incoming flux of solar protons. Using this model, the density
and velocity profiles become natural geometrical effects, also in
qualitative agreement with numerical simulations (Behar et al.
2016, 2017). Due to the striking success of this empirical ap-
proach, it became necessary to outline the intrinsic properties of
this force field: this will allow us to state clearly what it would
imply for the dynamics of solar wind protons, and hopefully to
link the observables to physical quantities.

The aim of this paper is to provide a full characterisation
of the planar dynamics of charged particles in a magnetic field
proportional to 1/r2. This way, the appropriate formalism will
be available for further applications to the Rosetta mission or

Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A99, page 1 of 15

https://doi.org/10.1051/0004-6361/201832742
https://www.aanda.org
http://www.edpsciences.org
http://creativecommons.org/licenses/by/4.0


A&A 617, A99 (2018)

any analogous physical modelling. In particular, the behaviour
of an incoming flux of charged particles in a 1/r2 magnetic field
has only been explored by numerical means so far, and its pre-
cise characteristics are still missing. Consequently, this paper is
mainly devoted to dynamical aspects, and we will only hint at the
physical considerations regarding its application to comets.
Crucial discussions about the nature of this force and compar-
isons to self-consistent physical models of comet 67P are pre-
sented in companion papers (Behar et al. 2018a,b).

The planar dynamics in an inverse-cube-law magnetic field
has been thoroughly studied by physicists because it describes
the motion of charged particles in the equatorial plane of
a magnetic dipole (e.g. Störmer 1907, 1930; Graef & Kusaka
1938; Lifshitz 1942; de Vogelaere 1950; Avrett 1962). The
interest for such dynamics was greatly enhanced by its direct
applications to the geomagnetic field. Unbounded and bounded
solutions exist and trapped particles are indeed observed around
the Earth (Williams 1971). The deflection of an incoming flux of
particles seems to produce similar structures as for an inverse-
square law (compare Fig. 1 by Shaikhislamov et al. 2015 with
Fig. 3 by Behar et al. 2017). Besides, complex plasma interac-
tions in other physical contexts could possibly be modelled as
well by such simple laws. A comparative study of the different
powers of 1/r would thus be also valuable.

This paper is organised as follows: Sect. 2 presents a gen-
eral study of the inverse-square-law magnetic field. After having
summarised the model developed by Behar et al. (2018b), we de-
fine the different types of possible orbits, outline their properties,
and give for them an analytical expression defined by an integral.
In Sect. 3, we apply this formalism to an incoming flux of par-
ticles, similar to the solar protons. The properties of the cavity
and of the overdensity region reported by Behar et al. (2017) are
fully characterised. Then, Sect. 4 presents order-of-magnitude
estimates of the characteristic quantities of the model calibrated
on the plasma observations realised by the Rosetta spacecraft.

Additionally, the comparison of dynamics produced by mag-
netic fields proportional to an arbitrary power of 1/r is given in
Appendix B: it could serve as reference when dealing with anal-
ogous problems.

2. General study of the dynamics

2.1. The inverse-square law for solar protons around comets

The analytical model introduced by Behar et al. (2018b) is built
from three sub-models. We outline here their main characteris-
tics (readers mainly interested in dynamical aspects can safely
go to Sect. 2.2).

Steady state is always assumed, implying that the change of
heliocentric distance of the comet is slow enough to be consid-
ered as an adiabatic process. The first sub-model is a description
of the ionised coma and its density distribution. The cometary
atmosphere is assumed to have a spherical symmetry: the neu-
tral elements are produced at a rate Q and expand radially in
all directions with constant velocity u0. The cometary ions are
created from these neutral elements with a rate νi (mainly by
photo-ionisation and electron-impact ionisation). They initially
have the radial velocity u0, but they are accelerated by the lo-
cal electric and magnetic fields and lost from the system. This is
taken into account by a “destruction” rate νml (where ml stands
for mass loading). Therefore, in the regime of the system under
study, the local density of cometary ions can be written as

ncom =
νi

νml

Q
4πu0R2 , (1)

where R is the radial distance from the nucleus (see Behar et al.
2018b, for details). In this description, the ionised component
of the coma is essentially made of the slow, new-born cometary
ions, which are steadily created and lost. The second sub-model
is a description of the magnetic field piling up due to the local
decrease in the average velocity of the electrons (as slow new-
born ions are added to the flow). The magnetic field B is consid-
ered frozen in the electron fluid, the latter coming from infinity
on parallel trajectories. The third sub-model is a description of
the electric field, which is reduced to its main component, the
so-called motional electric field,

E =−ui × B , (2)

where ui is the average velocity of all charges carried by solar
and cometary ions. Considering only the Lorentz force, this re-
sults in a generalised gyromotion for both populations, where the
two gyroradii depend strongly on the density ratio. This gener-
alised gyromotion is the core of the model, giving a mechanism
through which energy and momentum are transferred from one
population to the other. For simplicity, we finally consider that
the cometary particles are mainly composed of water, resulting
in the same charge +e for the cometary (H2O+) and solar wind
(H+) ions. Putting all things together, the force applied to the
solar protons is

m ẍ = e
ncom

nsw
ẋ× B∞ . (3)

In this expression, x is the position vector of the proton, m is
its mass, and the dot means time derivative. The magnetic field
B∞ is the one carried by the solar wind before its encounter with
the comet, and nsw is the average density of solar wind protons.
Injecting the expression of ncom from (Eq. (1)), we finally get an
inverse-square law like the one studied in the rest of this article.

It should be noted that the force applied here to solar wind
protons is not a magnetic field as such, but it behaves like one.
Hence, even if we speak generically of “magnetic field” through-
out this article, the reader should understand “effective magnetic
field” to mean a vector field behaving as a magnetic field but pos-
sibly produced as a result of more complex interactions. In our
case, the relevant dynamics takes place in a plane, written (x, y)
in the following. In the comet-Sun-electric frame (CSE) used by
Behar et al. (2017), this plane contains the comet, the Sun, and
the electric field vector produced by the incoming solar wind1.
During its operating phase around comet 67P, the Rosetta space-
craft was not far from this plane (since it was not far from the
comet itself). In other contexts, the (x, y) plane used here could
be the equatorial plane of some source of magnetic field.

2.2. Equations of motion

A particle of mass m, charge q, and position x = (x, y, z)T is sub-
ject to a magnetic field of the form

B(x) =
α

x2 + y2

00
1

 , where α ∈R. (4)

1 The axes in the plane of motion are labelled (x, z) in Behar et al.
(2017, 2018b), which is the traditional convention used in solar wind
studies (the effective magnetic field is thus oriented along the y axis).
We think that the notation (x, y) is more appropriate for the present pa-
per, focussed on dynamics only. This should not be too confusing for
the reader.
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From the classical Lorentz force, the equations of motion are
m ẍ = q ẋ× B(x), that is,ẍ
ÿ
z̈

 =
k

x2 + y2

 ẏ−ẋ
0

 , where k =
α q
m
∈ R, (5)

in which the constant k has the dimension of length time velocity
and the dot means derivative with respect to the time t. From
(Eq. (5)), the vertical velocity is constant and imposed by the
initial conditions. We are interested here in the dynamics in the
(x, y) plane. Let us introduce the polar coordinates (r, θ). The
equations of motion rewrite2 as

r̈ − rθ̇2 =
k
r
θ̇ (6)

rθ̈ + 2ṙθ̇ = −
k
r2 ṙ . (7)

Since the force is always perpendicular to the velocity vector, its
norm is constant (conservation of the total energy E). This leads
to the first integral

v =
√

ṙ2 + r2θ̇2 , (8)

equal to the norm of the velocity projected in the (x, y) plane.
Moreover, (Eq. (7)) is directly integrable:

d(r2θ̇)
dt

= −k
d ln(r/r?)

dt
, (9)

where the arbitrary constant r? is added for dimensionality rea-
sons. This leads to a second first integral,

c = r2θ̇ + k ln(r/r?) = const. (10)

It can be thought as the conservation of a generalised angular
momentum, coming from the symmetry of rotation around the
z-axis.

From dimensionality arguments, the conservation of v makes
a characteristic length and a characteristic frequency of the sys-
tem appear:

rE =
|k|
v

; ωE = −
k
r2

E

= −
v2

k
· (11)

In the same way, the generalised angular momentum c can be
turned into the characteristic length

rC = r? exp(c/k + 1) = r exp(r2θ̇/k + 1) . (12)

As we will see, the dynamics of the particle is entirely contained
inside the independent constants rC and rE. Their physical mean-
ing will appear later.

Similarly to Störmer (1930), it is convenient at this point to
use the normalised quantities

ρ = r/rE; dτ = ωE dt. (13)

2 We get here the same equations as Graef & Kusaka (1938). This
comes from a mistake in their paper: they begin with the equations of a
1/r2 field; they introduce the conserved quantities of a 1/r3 field; they
write down equations mixing both types of fields, and eventually, they
study the 1/r3 one for the rest of the paper. Since they deal with the
motion in the equatorial plane of a magnetic dipole, 1/r3 is the correct
field to use.

We note that if k> 0, the direction of time is reversed. In the new
coordinates, the equations of motion (6–7) become

ρρ̈ − ρ2 θ̇2 = −θ̇ (14)

ρ2θ̈ + 2ρρ̇θ̇ =
ρ̇

ρ
, (15)

where this time the dot means derivative with respect to the nor-
malised time τ (this double use of the dot should not be confus-
ing for the reader, since t is only used with the dimensional r
coordinate, while τ is only used with the dimensionless ρ coor-
dinate). Equations (14–15) are equivalent to:

ρ̇2 + ρ2θ̇2 = 1 (16)

ρC = ρ exp(−ρ2θ̇ + 1) , (17)

coming respectively from the energy and the generalised angular
momentum (we have in particular ρC = rC/rE).

2.3. Geometry of the trajectories

Introducing ρC (Eq. (17)) into the energy expression (Eq. (16)),
we get

ρ̇2 + U( ρ) = 1 with U( ρ) =

(
ln( ρ/ρ0)

ρ

)2

, (18)

where we define

ρ0 ≡ ρC exp(−1) . (19)

We will see below that both ρ0 and ρC have a precise dynamical
meaning. Since they are directly proportional, the problem can
be indifferently parametrised by one or the other. For simplicity,
we will consider either ρ0 or ρC in the following, according to
the dynamical feature under discussion.

The function U can be interpreted as an effective potential,
which counterbalances the kinetic term at all times. Its general
form gives directly the values of ρ allowed as a function of the
parameter ρC (Fig. 1a). Noting {Ti} the different types of trajec-
tories, we have3

ρC > 1
T1 : unbounded orbit ( ρ > ρ1)

ρC < 1{
T2 : bounded orbit ( ρ1 6 ρ 6 ρ2)
T3 : unbounded orbit ( ρ > ρ3)

ρC = 1
T?

2 : asymptotic bounded orbit ( ρ1 6 ρ 6 ρC)

T?
3 : asymptotic unbounded orbit ( ρ > ρC)

T? : circular unstable orbit ( ρ = ρC).

(20)

We note that ρ2 and ρ3 are only defined if ρC < 1. Figure B.2 pro-
vides details of the phase portrait of the system, where the dif-
ferent types of trajectories can be easily identified (panel n = 2).
The extreme values of ρ reachable by the particle (i.e. ρ̇= 0) can
be obtained from (Eq. (18)) by solving the equation U( ρ) = 1.
This equation can be rewritten as

ρ exp(±ρ) = ρ0 . (21)

3 In dimensional coordinates, the three cases correspond to rC > rE,
rC < rE, and rC = rE.
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Fig. 1. Panel a: effective potential as a function of ρ. Changing the value of parameter ρC is equivalent to rescaling the axes. The unit level on the
vertical axis gives the intervals of ρ allowed for the particle, such that U( ρ)< 1. These intervals are delimited by ρ1, ρ2, and ρ3, given at (Eq. (22)).
Panel b: angular velocity as a function of ρ. Panel c: examples of trajectories for three orbit types, obtained by using the expression from (Eq. (26))
with parameters ρC = (1.01, 0.5, 0.9) for (red, green, blue). The axes are rescaled such that ρC appears the same, as in panel a.

The extreme values of ρ reachable by the particle in the different
cases are thus

ρ1 = W0( ρ0); ρ2 = −W0(−ρ0); ρ3 = −W−1(−ρ0), (22)

where W0 and W−1 are the Lambert functions. In accordance
with (Eq. (20)), ρ2 and ρ3 are only defined if ρ0 < exp(−1), that
is, ρC < 1.

On the other hand, the conservation of ρC (Eq. (17)) allows
us to write the angular velocity as a function of ρ only (Fig. 1b).
The stable equilibrium point at ρ= ρ0 corresponds to v= 0 (mo-
tionless particle), and the unstable equilibrium point at ρ= ρC
corresponds to a circular orbit with constant angular velocity.
Whatever the trajectory, the angular velocity vanishes at ρ = ρ0
and changes sign. The inner part of T1 trajectories shows thus a
unique loop away from the origin, whereas T2 trajectories con-
tinuously rotate around the radius ρ0. On the contrary, T3 trajec-
tories always rotate in the same direction around the origin (see
Fig. 1c for some examples).

A parametric expression of the trajectories can be easily ob-
tained from the first integrals. Indeed, from Eqs. (17) and (18)
we get

ρ̇2 =

(
dρ
dθ
θ̇

)2

=

(
dρ
dθ

ln( ρ/ρ0)
ρ2

)2

= 1 −
(

ln( ρ/ρ0)
ρ

)2

⇐⇒ dθ2 =
ln2(ρ/ρ0)

ρ4 − ρ2 ln2( ρ/ρ0)
dρ2,

(23)

which gives

θ( ρ) = θi ±

∫ ρ

ρi

ϕ( ρ′) dρ′, (24)

with

ϕ( ρ) =
ln( ρ/ρ0)

ρ

√
ρ2 − ln2( ρ/ρ0)

, (25)

in which the initial conditions are written ( ρi, θi). One can note
that the integrand is singular in the extrema of ρ (Eq. (22)), but
the integral itself is always convergent (except for ρC = 1, since
in this case the particle makes an infinite number of loops be-
fore eventually reaching ρ= ρC). The ± sign in (Eq. (24)) stands
for the branches approaching (−) and leaving (+) the minimum
radius. This definition by parts can be avoided by parametrising
the trajectories by a parameter s ∈ R. A possible parametrisation(
θ(s), ρ(s)

)
of the three types of non-singular trajectories is given

by

θ(s) = θi +

∫ s

si

ϕ
(
ρ(s′)

)
ds′

and


T1: ρ(s) = ρ1 + |s|

T2: ρ(s) = ρ1 +
∣∣∣∣((s − ∆) mod 2∆

)
− ∆

∣∣∣∣
T3: ρ(s) = ρ3 + |s| ,

(26)

where ∆ = ρ2 − ρ1. With this parametrisation, s(τ) increases with
τ and ρ(s) is minimum at s = 0.

2.4. Time information

By expressing the term ρ2θ̇2 from the energy constant (Eq. (16))
and by injecting it in the first equation of motion (Eq. (14)), we
get

ρρ̈+ ρ̇2 − 1 =−θ̇, (27)

which can be directly integrated to give

θ(τ) = τ− ρρ̇+ const. (28)

The polar angle is thus composed of a linear part plus a term
proportional to ρ̇. The physical meaning of the frequency ωE
(Eq. (11)) is now clear: it is the drift angular velocity of every
particle. This is of particular interest for bounded trajectories.
Indeed, they are quasi-periodic, with two proper frequencies: the
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Fig. 2. Left: ratio of periods TC/TE as a function of the parameter ρC, computed from (Eq. (29)). Some examples of rational values, corresponding
to periodic orbits, are plotted as horizontal lines. Right: same periodic orbits plotted in the physical plane. The corresponding parameter ρC was
obtained by a Newton method applied to (Eq. (29)).

“drift” frequency (rotation around the origin) and the “loop” fre-
quency (small loop around the ρ0 radius). Since ρ̇ vanishes at the
extreme values of ρ (Eq. (22)), the period TC of the loops is

1
2

TC = τ( ρ2)− τ( ρ1) = θ( ρ2)− θ( ρ1), (29)

while the period of the overall rotation around the origin is sim-
ply TE = 2π (that is 2π/ωE in dimensional coordinates). Bounded
trajectories represented in a frame rotating with τ consist thus
only in the small loop around ρ0. Periodic orbits are produced
when the fraction TC/TE is a rational number. Figure 2 shows
the behaviour of TC/TE as a function of the parameter ρC, along
with some examples of periodic trajectories. We note that the
two frequencies tend to be equal at ρC, that is, for the circular
unstable trajectory (for which ρ̇= 0 at all time).

More generally, (Eq. (28)) can be used to express the time
as a function of ρ just like θ in (Eq. (24)). Expressing ρρ̇ from
(Eq. (18)), we get

τ( ρ) − τi = θ( ρ) − θi

±

(√
ρ2 − ln2( ρ/ρ0) −

√
ρ2

i − ln2( ρi/ρ0)
)
,

(30)

where ± means (−) when the particle gets closer to the origin,
and (+) when it goes back. As before, a parameter s ∈ R can be
used to avoid this double definition:

τ(s) = τi +

∫ s

si

φ
(
ρ(s′)

)
ds′, (31)

with

φ( ρ) =
ρ√

ρ2 − ln2( ρ/ρ0)
. (32)

This equation could have been obtained also directly from the
energy constant (see Appendix B). It can be added among the
parametrisation given by (Eq. (26)) in order to compute the time
at every position. From (Eq. (30)), one can note that in order to
compute θ and τ at a given value of s, it is enough to compute
only one integral.

3. Application to an incoming flux of particles

Our first motivation for studying the inverse-square-law mag-
netic field is the deflection of solar wind protons as a result
of their interactions with a cometary-type atmosphere. At very
large distances from the comet, they can be considered as fol-
lowing parallel trajectories. In this section, we thus consider a
permanent flux of particles initially evolving on parallel trajec-
tories. As before, the z-component of the dynamics is trivial. We
choose the orientation of the reference frame such that the ini-
tial velocity of the particles projected in the (x, y) plane is along
the x-axis (ẋi =−v with v > 0). At the position xi = d, the mag-
netic field from (Eq. (4)) is activated. We aim to determine how
the particles are distributed in the plane (x, y) in the permanent
regime, and in particular when d→∞. For finite d distances, as
we will consider in a first step, one can think of a continuous
source of particles with the shape of a vertical infinite “wall”.

A similar setup was studied numerically by
Shaikhislamov et al. (2015) in a dipole 1/r3 field, but with
the addition of a magnetopause (the particles were launched
from a curved line instead of a fixed horizontal distance). As we
will see, the two situations create similar features.

3.1. The cavity

Since the particles have all the same velocity v, they have the
same characteristic radius rE and drift frequency ωE given by
(Eq. (11)). We are thus able to use the normalised variables
ρ= r/rE and τ=ωE t (same as previous section) in order to de-
scribe their motions in a common way. However, the character-
istic radius ρC of each particle is a function of its initial position
along the Oy axis. Using the normalised coordinates Yi = yi/rE
and D = d/rE, we get from (Eq. (17))

ρC(Yi) =

√
D2 + Y2

i exp
(
sgn(k) Yi + 1

)
, (33)

and thus ρ0(Yi)≡ ρC(Yi) exp(−1). The problem is about determin-
ing the different types of orbits followed by the particles as a
function of D and of their initial position Yi. In the following, we
suppose that k is positive4. First of all, we note that
lim

Yi→−∞
ρC(Yi) = 0 and lim

Yi→+∞
ρC(Yi) =∞. (34)

4 Since ρC(Yi)
∣∣∣
−k

= ρC(−Yi)
∣∣∣
k
, it is enough to study the case k> 0. The

case k< 0 is obtained by mirror symmetry Yi→−Yi.

A99, page 5 of 15

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201832742&pdf_id=2


A&A 617, A99 (2018)

The particles have thus all the possible values of ρC, including
the critical one ρC = 1 (Eq. (20)). Let us write

Dlim =
1
2
, (35)

the limiting distance above which ρC(Yi) is monotonous. For
D>Dlim, there is thus only one trajectory with ρC = 1 among the
initial positions Yi. For D<Dlim, on the contrary, ρC(Yi) has a lo-
cal maximum (larger than 1) and a local minimum. It is straight-
forward to show that there is a critical distance,

Dcrit =
1
2

√
−W0(−2 exp[−2])

(
W0(−2 exp[−2]) + 2

)
= 0.4023711712747059 . . . ,

(36)

such that if D<Dcrit, the local minimum of ρC(Yi) is smaller
than 1. This produces two other critical trajectories with ρC = 1
(or only one in the limiting case D = Dcrit). Figure A.1 shows the
behaviour of all the characteristic lengths as a function of D,
where the meaning of Dlim and Dcrit is obvious. As a summary,
the types of orbits followed by the particles are colour-coded
in Fig. 3 as a function of their initial position. Trajectories of
types T2 and T3 can be distinguished by considering their initial

radius ρi =

√
D2 + Y2

i , which should be smaller or larger than 1,
respectively (since ρ2 < 1 and ρ3 > 1).

In order to determine the distribution of the particles in the
plane, useful information is given by the extreme radii reached
by the particles. Each of them can be expressed in terms of D
and Yi by using Eqs. (22) and (33). For a fixed distance D, the
minimum radius reached by the whole flux of particles is given
by the minimum of ρ1(Yi) over the T1 and T2 sets of orbits (red
and green regions of Fig. 3). For D>Dcrit, it corresponds to the
inner loop of the asymptotic trajectory, that is, at the very limit
between the red and blue zones of Fig. 3. On the contrary, for
D<Dcrit, the minimum value of ρ1 is reached in the T2 zone.
The value of the minimum is

ρcav =

 W0

(√
γ exp(−γ)

)
for D 6 Dcrit

W0(exp[−1]) = 0.278464542761... for D > Dcrit,

(37)

where γ= 1
2

(
1 −
√

1 − 4D2
)
. Interestingly, for D>Dcrit, the

value of ρcav is independent of the starting distance D. Moreover,
we note that whatever the value of D> 0, the minimum distance
ρcav is never zero. This implies that among the whole flux of
particles, none reaches the origin. In other words, the magnetic
field naturally creates a cavity around the origin, devoid of any
particle. The shape of this cavity can be inferred as follows:

– For D<Dcrit, the minimal radius is reached by a bounded
orbit of type T2. Hence, particles following this orbit come
back periodically in ρcav and spread at all θ values (if we
exclude periodic orbits as in Fig. 2). The cavity in the perma-
nent regime is thus circular.

– For D>Dcrit, the minimal radius is reached by an unbounded
orbit of type T1 for which ρC→ 1. We note that a particle fol-
lowing the exact critical trajectory ( ρC = 1) never reaches the
minimum radius, because it would have to pass through the
asymptotic circular orbit (around which it circles infinitely,
see Fig. 1a). However, particles starting from a position Yi
slightly larger than the critical one do reach their minimal
radii (though slightly larger than ρcav) in a finite time. More-
over, these “neighbour” trajectories reach the latter with a
different phase θ: the so-formed cavity is thus (asymptoti-
cally) circular with radius ρcav.

Fig. 3. Type of orbit followed by a particle as a function of its ini-
tial position (D,Yi). The regions are coloured according to the value
of ρC(D,Yi), and the level ρC = 1 is represented by the black line. The
types of orbits are labelled as in (Eq. (20)). The magenta dashed line
shows the initial position of the trajectory reaching the minimum radius
over the whole vertical line. For D<Dcrit, it is a trajectory of type T2.
For D>Dcrit, it is a trajectory of type T1 but infinitely close to the ρC = 1
curve (see text).

Some examples of trajectories are presented in Appendix A
(Figs. A.2 and A.3), showing the formation of the cavity in the
two regimes. We insist on the fact that it is circular in both cases,
contrary to what was primarily suggested by Behar et al. (2017).
As we will see in the next section, the fact that it could seem
elongated in the case D>Dcrit comes from important contrasts
in particle densities.

In the case of solar wind protons deflected around an ac-
tive comet, the starting distance can be considered as infinite
(D�Dcrit). Hence, we need to verify that the trajectories pro-
duced by this simple model of the solar wind have a well-defined
limit when D→∞. The function ρC(Yi) presented in (Eq. (33))
being monotonous whenever D>Dlim (Eq. (35)) and spanning
all the possible values (as shown by (Eq. 34)), the particles can
be indifferently parametrised by their initial condition Yi or by
their characteristic radius ρC. For a fixed value of ρC, the ratio
Yi/D tends to 0 when D→∞. This means that the initial angle
θ of particles coming from infinity is 0. From (Eq. (26)), the ex-
pression of the trajectories is thus

θ(s) =

∫ s

+∞

ϕ
(
ρ(s′)

)
ds′ and

{
T1: ρ(s) = ρ1 + |s|
T3: ρ(s) = ρ3 + |s| ,

(38)

where the function ϕ( ρ) is defined in (Eq. (25)). This improper
integral being convergent, the trajectories parametrised by their
ρC constant have indeed a well-defined limit when D→∞.

It should be noted, though, that their initial position Yi tends
to −∞ (even if the ratio D/Yi tends to zero). The notion of “im-
pact parameter” has thus no physical meaning in this problem.
This information is crucial when dealing with simulations based
on more realistic models of the solar wind because they are nec-
essarily performed in a limited region of space (that is, for a finite
value of D and a finite range of Yi). For now, we already know
that the size of the simulation cells (considering a regular grid)
should not exceed the radius of the cavity, which is the smallest
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scale of the system. As we will see in the next section, our sim-
plistic model can also be used to infer the size of the simulation
box required to obtain relevant results.

3.2. The caustic

In this section, we are interested in the relative density of parti-
cles in the (x, y) plane in the permanent regime. As for the geom-
etry of the trajectories (see (Eq. (38)) and text above), we should
first determine if the density of particles in the (X,Y) plane has
a well-defined limit for D→∞. For a fixed value of ρC, we saw
that Yi/D→ 0 when D→∞, that is, Yi becomes negligible com-
pared to D. The function ρC(Yi) from (Eq. (33)) behaves thus like
D exp(Yi + 1), so we can replace the uniform distribution of the
particles along the Yi axis by a uniform distribution of ln( ρC).
Since, as shown above, the geometry of the trajectory for a given
ρC has itself a unique limit (Eq. (38)), the density map has also a
well-defined limit for D→∞.

The relative density of particles can be simulated by dis-
tributing points randomly along trajectories evenly sampled
along Yi (for finite D) or evenly sampled along ln( ρC) (for in-
finite D). Since the particles have all the same velocity, we must
use an homogeneous distribution in time τ. An illustration for
infinite starting distance is given in Fig. 4. As already reported
by Shaikhislamov et al. (2015) for the 1/r3 magnetic field, a line
of overdensity appears. This is a purely geometrical effect since,
in the limit of this physical model, the particles do not interact
which each other. This line is constituted of the points where
two neighbouring trajectories cross each other. We will call it a
“caustic” by analogy to light rays. For small values of D, several
types of caustic appear. We will not go into details here, though,
because small values of D have no physical interest.

In a general way, an overdensity region appears whenever
the flux of particles is contracted, that is, when two trajectories
of neighbouring initial conditions get closer to each other. This is
quantified by the so-called variational equations. Let us consider
a smooth function f of time t, depending on one parameter α ∈ R
(which can be the initial condition f (t = 0)). At a given time t, the
distance d f between two curves with neighbouring values of the
parameter α is at first order

d f (α; t) =
∂ f
∂α

(α; t) dα (39)

(see Milani & Gronchi 2010, for thorough details in the context
of error propagations). Of course, the distance between the two
curves vanishes if they cross, implying that ∂ f /∂α= 0. In our
case, the θ angle (Eq. (38)) plays the part of f , the radial variable
ρ plays the part of t, and the parameter ρ0, itself bijectively linked
to the initial condition Yi, plays the part of α. The variational
equation can thus be written as

dθ( ρ0; ρ) =
∂θ

∂ρ0
( ρ0; ρ) dρ0 . (40)

Using the chain rule, this partial derivative can be computed
from (Eq. (38)), considering s as a function of ρ, itself a func-
tion of ρ0 via ρ1 or ρ3. We obtain

∂θ

∂ρ0
=

∫ s

+∞

(
∂ϕ

∂ρ0

(
ρ(s′)

)
+
∂ρ

∂ρ0

∂ϕ

∂ρ

(
ρ(s′)

))
ds′

− sgn(s)
∂ρ

∂ρ0
ϕ
(
ρ(s)

)
,

(41)

Fig. 4. Top: simulated density map of the particles around the origin for
D→∞ (the particles come from the right). The inner cavity of radius
ρcav = W0(exp[−1]) is visible, as well as a caustic (line of overdensity).
Bottom: some trajectories evenly sampled along ln( ρC) are shown. The
cavity is represented by the white disc.

with

∂ϕ

∂ρ0
=

−ρ/ρ0[
ρ2 − ln2( ρ/ρ0)

]3/2 ,

∂ϕ

∂ρ
=

ln3( ρ/ρ0) + ρ2 [
1 − 2 ln( ρ/ρ0)

]
ρ2

[
ρ2 − ln2( ρ/ρ0)

]3/2 ,

(42)

and

∂ρ

∂ρ0
=


∂ρ1

∂ρ0
=

1
ρ0

ρ1

1 + ρ1
for trajectories of type T1 ,

∂ρ3

∂ρ0
=

1
ρ0

ρ3

1 − ρ3
for trajectories of type T3 .

(43)

For finite values of D, an analogous formula can be obtained from
(Eq. (26)), containing additional terms due to the initial condi-
tions. Figure 5 shows the general form of ∂θ/∂ρ0 in the ( ρC, s)
plane. Particles with ρC < 1 do not produce any accumulation
(they rather spread). Particles withρC > 1, on the contrary, arrive at
a point where ∂θ/∂ρ0 becomes zero and changes sign. This means
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Fig. 5. Value of ∂θ/∂ρ0 in the ( ρC, s) plane for infinite D. Particles come from s =∞, they reach their minimum radii at s = 0, at which the last term
of (Eq. (41)) diverges, and they go on with negative s. The white line shows the level curve ∂θ/∂ρ0 = 0, corresponding to the caustic (overdensity
of particles). It is formed by the set of T1 trajectories (ρC > 1). See Fig. 6 for its shape in the physical plane.

Fig. 6. Form of the caustic obtained numerically by finding the root of ∂θ/∂ρ0 (Eq. (41)). Three different zoom level are used, which can be
interpreted as three levels of cometary activity. The left panel presents the same scale as Fig. 4, in which the density structure is clearly visible.

that neighbouring trajectories cross in this point, creating an
overdensity. The curve along which∂θ/∂ρ0 is zero can be obtained
numerically using a Newton-type algorithm. Its shape in the (X,Y)
plane is presented in Fig. 6 (it should be compared to the density
map of Fig. 4). For particles coming from infinity, the shape of the
caustic only depends on the characteristic radius rE, which acts
as a scaling parameter. For solar wind protons deflected around a
comet, this means that whatever the cometary activity (expressed
in the k parameter), the structure formed by the proton trajectories
is always exactly the same, though it is seen at a different “zoom
level”. This is illustrated in Fig. 6.

As mentioned earlier, complex numerical simulations of the
interaction of solar protons with cometary ions are always lim-
ited to finite simulation boxes. In practice, this means that solar
particles, supposed unaffected yet by the comet, are launched
from a finite distance D. This necessarily distorts the dynamical
structures, as already pointed out by Koenders et al. (2013) for
high-activity comets. In our case, by comparing the shape of the
caustic for different starting distances D, our simplistic model
can give an estimate of the error introduced by the finite-sized

simulation boxes. This is shown in Fig. 7: simulations with a
small box tend to underestimate the opening angle of the caustic.
The error is thus larger at larger distances from the nucleus (but
the cavity radius is unaffected as long as D>Dcrit).

4. Parameter values for a realistic comet

From (Eq. (37)), we know that solar wind protons are in the
regime for which the radius of the circular cavity is indepen-
dent of D. Switching back to dimensional quantities, it writes
rcav ≈ 0.28 rE. The radius of the cavity depends thus only on
rE = |k|/v, that is, on the incident velocity of the particles and on
the k constant of the effective magnetic field. In particular, the
cavity boundary was crossed by the Rosetta spacecraft: know-
ing v, its distance from the comet at time of crossing allows
us to measure the k parameter (assuming that the solar wind
protons did follow this simple model). Order-of-magnitude es-
timates can be obtained from Fig. 1 by Behar et al. (2017): the
spacecraft crossed the boundary from inside to outside the cav-
ity in December 2015, when the comet was at about 1.7 au from
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Fig. 7. Form of the caustic for different starting distances D>Dcrit. The
distortion caused by the use of a finite value of D is shown by the dif-
ference with the D =∞ curve (black line).

the Sun. The data give v= 300 km/s and rcav = 130 km at the time
of crossing, resulting in a characteristic length rE ≈ 470 km and
a k parameter of the order of 105 km2 s−1.

As shown in Sect. 2.1, the value of k is proportional to the
outgassing rate Q of the comet (see the companion paper by
Behar et al. 2018b for details). Actually, considering the very
high velocity of the solar protons, the change of k due to the
varying cometary activity can safely be modelled as an adiabatic
process. Each time of an observation by Rosetta corresponds
thus to a different value of k (or equivalently rE). Still assuming
that the solar wind protons did follow the dynamics described
in this paper, the parameter k can be estimated at any time from
the observed deflection of solar particles. Indeed, knowing the
position of the spacecraft during each observation in the comet-
Sun-electric frame (CSE), we just have to rescale the picture
(that is, to find the unit length rE), such that the incoming flux
of particles is indeed deflected by the observed amount at this
specific position. This method will be presented in detail in a
forthcoming article, in which the data points will be systemati-
cally compared to theoretical values. It leads to the cavity radius
being larger than 5 km when the comet is closer than 2.6 au from
the Sun, and growing beyond 1500 km at perihelion.

5. Conclusion

During most of their trajectory around the Sun, comets are in a
low-activity regime. When studying the dynamics of cometary
and solar wind ions, this results in a gyration scale larger than
the interaction region. In this situation, solar wind protons can
be efficiently modelled by test particles subject to a magnetic-
field-like force proportional to 1/r2 (in a cometocentric reference
frame). In this article, we provided a full characterisation of their
trajectories in the plane perpendicular to this field.

As for every autonomous vector field with rotational symme-
try, the system admits two conserved quantities: the kinetic en-
ergy E and a generalised angular momentum C. In our case, both
of them can be turned into characteristic radii rE and rC, which

entirely define the dynamics (throughout the text, we rather use
the adimensional quantity ρC = rC/rE). There are three families
of trajectories: two of them gather unbounded orbits (rC > rE and
rC < rE), and the other one contains quasi-periodic bounded or-
bits (rC < rE). A bifurcation occurs at rC = rE, with a homoclinic
orbit asymptotic to a circle of radius rC (hyperbolic equilib-
rium point) and two branches coming from and going to infinity.
Generic analytical expressions of the trajectories (r, θ, t) are ob-
tained, of the form θ(r) =ωE t(r) + f (r), where ωE is a constant,
f (r) is an explicit function, and the time t(r) is defined by an
integral.

When considering an incoming flux of particles coming from
infinity on parallel trajectories and at the same velocity, a cavity
is naturally created around the origin. This cavity, entirely free
of particle, is circular with radius rcav ≈ 0.28 rE. Extending away
from it, a curve of overdensity of particles spreads similarly to
an optical caustic. This overdensity curve has no explicit expres-
sion but its shape in the plane can be computed at an arbitrary
precision. The whole setting depends only on rE, which acts as a
scaling parameter.

If we model the motion of solar wind protons around comet
67P by this simple dynamics, the radius rE can be calibrated
from Rosetta plasma observations. From the arrival of Rosetta
in the vicinity of the comet until the signal turn-off when reach-
ing the cavity boundary, rE grew from a few kilometres up to
about 470 km. This gives not only a qualitative understanding of
the observed deflection of solar particles and the formation of the
cavity, but also the relevant scales for the problem. In particular,
if refined simulations of solar wind are used, we stress the need
for simulation boxes much larger than the characteristic radius
rE (to account for the caustic shape) and a grid much finer than
rE (if one wants to resolve the cavity structure).

According to the results by Behar et al. (2018b), it is impor-
tant to note that the capacity of this simple dynamics to account
for the motion of solar wind protons around a comet is increas-
ing with the distance to the nucleus: the farther away from the
nucleus, the better the model. In other words, physical assump-
tions on which the physical model is based may start to crumble
at the origin (the nucleus) first, leaving the modelled deflection
far from the nucleus unaffected.

Comparisons to a generic magnetic field proportional to
1/rn, added in Appendix B, reveal similar features whenever
n> 1. Albeit the radius of the cavity and the precise shape of the
caustic are different for each n, the specific choice of 1/r2, if only
taken on empirical grounds, would be difficult to justify. How-
ever, this law can now be retrieved from the physical modelling
of solar wind protons and cometary activity, as it is presented by
Behar et al. (2018a,b).
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Appendix A: Complementary figures

Fig. A.1. Characteristic lengths along the line of initial position Yi for different distances D. Each curve is labelled above the panels: the parameter

ρC (Eq. (33)) is drawn in yellow; the initial starting distance ρi =

√
D2 + Y2

i is drawn in magenta; the extreme reachable radii ρ1, ρ2, and ρ3

(Eq. (22)) are drawn in red, green, and blue. As a function of Yi, the parameter ρC is monotonous if D>Dlim (panels a, b), it crosses 1 in one
additional point if D = Dcrit (panel c), and in two additional points if D<Dcrit (panel d–f ). The type of trajectory of the particle with initial position
Yi is determined by the location of its initial distance ρi with respect to the characteristic lengths ρ1, ρ2, and ρ3: the trajectory is of type T2 when
ρ1 <ρi <ρ2; T3 when ρi >ρ3; and T1 when ρi >ρ1 (with no ρ2, ρ3). We note that trajectories of type T2 are only possible for D<Dcrit (panel d–f ).
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Fig. A.2. Flux of particles coming from the line X = D, with
D = 1.25>Dcrit. The two types of possible orbits are represented sep-
arately, with the same colour code as in Fig. 3. Top: unbounded trajec-
tories of type T3 are represented in blue. They approach a minimum dis-
tance equal to 1 but never reach it exactly (outer dashed circle, around
which they can perform an arbitrary number of turns before going back).
In the limiting case where ρC = 1 (black initial condition), the particle
makes a infinite number of turns as ρ→ 1. Bottom: unbounded trajecto-
ries of type T1 are represented in red. They cross the characteristic ra-
dius ρ0, at which their angular velocity is inverted (see the small loops).
For initial positions Yi tending to the black point, the minimal distance
reached by the particle tends to ρcav = W0(exp[−1]) (inner dashed circle,
see (Eq. 37)). If we consider an infinite number of particles, this forms
a cavity with radius W0(exp[−1]) (grey disc).

Fig. A.3. Same as Fig. A.2 but for D = 0.25<Dcrit. An interval of ini-
tial conditions produces bounded orbits (in green), which loop forever
inside the unit circle. They approach closer to the origin than the red tra-
jectories, producing a smaller circular cavity (grey disc, see (Eq. 37)).
For comparison, the same circles as in Fig. A.2 are represented. We note
that the red trajectories are still limited by the W0(exp[−1]) radius (inner
dashed circle).
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Appendix B: Comparison to other powers of 1/r
Starting from the pioneering work by Störmer (1907) applied to
the geomagnetic field, there is a vast literature about the trajecto-
ries of particles in the equatorial plane of a magnetic dipole, for
which the magnetic field is perpendicular to the plane and pro-
portional to 1/r3. The present paper reveals that the 1/r2 field
has numerous similarities, so we propose here to compare the
dynamics driven by the different powers of 1/r.

Let us introduce a positive integer n ∈N∗, and a physical
constant kn (in unit length to the power n per unit time). The
equations of motion in polar coordinates for a magnetic field
proportional to 1/rn are

r̈ − rθ̇2 =
kn

rn−1 θ̇ (B.1)

rθ̈ + 2ṙθ̇=−
kn

rn ṙ . (B.2)

As before, these equations imply the conservation of the veloc-
ity norm v=

√
ṙ2 + r2θ̇2 and a generalised angular momentum cn

obtained by direct integration of (Eq. (B.2)).
As for any planar problem with rotational symmetry, there

exists an expression of the solutions (θ, t) as a function of r de-
fined by an integral. Indeed, the conservation of cn allows us to
express θ̇ as a function or r, which can be injected in the ve-
locity norm. The solution is finally obtained by quadrature (see
Formulas 26 and 31 obtained for n = 2).

Despite this general way of resolving the equations, the case
n = 2 is special. Indeed, it is the only one for which (Eq. (B.1))
is also directly integrable, by expressing the θ̇2 term from the
energy. This allowed us to express explicitly the time as a func-
tion of θ and r (Eq. (30)). In practice, this means the case n = 2
is the only one for which the “drift” proper frequency of all the
trajectories is ωE (see Sect. 2.4). For any other power of n, the
quantity ωE is only the frequency of the unstable circular orbit
(see below); the drift frequency of the other trajectories is a func-
tion of cn and thus different for all of them (Hamlin et al. 1961;
Avrett 1962). This somewhat complicates the search for periodic
trajectories (Graef & Kusaka 1938).

The case n = 1 must also be taken separately, because since k1
has the dimension of a velocity, the constant v cannot be turned
into a characteristic length analogous to rE (Eq. (11)). The dy-
namics can though be studied by using the “effective potential”
method. When considering an incoming flux of particles as in
Sect. 3, we show that the launch distance d becomes the scaling
parameter of the system. There is thus no limit when d → ∞.
This means that the case n = 1 has no physical meaning for this
setting.

For n> 2, the parameter kn naturally defines a characteristic
length and a characteristic frequency:

rE =

(
|k|
v

) 1
n−1

; ωE = −
k
rn

E
. (B.3)

Examples for n = 2 and n = 3 can be found in (Eq. (11))
and Störmer (1930). As shown in Sect. 2, they can be used to
define dimensionless coordinates ρ= r/rE and dτ=ωE dt. The
case n = 2 is studied in detail above, so we will now suppose
that n> 2. Using the dimensionless coordinates, the equations of
motion and conserved quantities rewrite as
ρn−1ρ̈ − ρnθ̇2 = −θ̇

ρ2θ̈ + 2ρρ̇θ̇ =
ρ̇

ρn−1

⇐⇒


1 = ρ̇2 + ρ2θ̇2

Cn = ρ2θ̇ +
1

n − 2
1
ρn−2 ,

(B.4)

where, as before, the dot now means derivative with respect
to the normalised time τ. We note that Cn is now the angu-
lar momentum at infinity, or equivalently, the impact parameter
times the constant velocity norm. Using the “effective potential”
method as in (Eq. (18)), we get

1 = ρ̇2 + Un( ρ) with Un( ρ) =

(
(n − 2)Cn ρ

n−2 − 1
(n − 2)ρn−1

)2

. (B.5)

The ρ0 and ρC-like characteristic lengths associated to this po-
tential would be

ρ0 =

(
1

(n − 2)Cn

) 1
n−2

ρC =

(
n − 1

(n − 2)Cn

) 1
n−2

= (n − 1)
1

n−2 ρ0 ,

(B.6)

but since they become negative or complex numbers when Cn <
0 (or even undefined when Cn = 0), they would not have such a
general physical meaning as for n = 2. The system is thus better
parametrised by Cn itself, or by a wisely chosen parameter γn:

γn =
n − 2
n − 1

Cn . (B.7)

This parameter, as well as the characteristic length from
(Eq. (B.3)) has been introduced by Störmer (1907) in the par-
ticular context of n = 3. As we will see, this allows us to describe
all the possible trajectories in a unified way5.

We must now consider the cases of negative, positive, and
zero values of Cn. The effective potential and angular velocity
as functions of ρ are represented in Fig. B.1 in the three cases.
For Cn > 0, the dynamics is pretty similar to the inverse-square-
law field and we have the same types of trajectories. For Cn 6 0,
the only possible trajectories are of a type analogous to T1, but
for which the radius ρ0 would be sent to infinity. Hence, their
angular velocity is always negative.

The extreme reachable radii are the positive roots of the two
polynomials

P±n ( ρ) = ± (n − 2) ρn−1 + (n − 1) γn ρ
n−2 − 1 . (B.8)

From Descartes’ rule of sign, we obtain that P+
n has exactly one

positive root whatever the value of γn (which defines ρ1). On the
other hand, P−n has zero or two positive roots, and exactly zero
if γn < 0. For γn > 0, P−n has only one local maximum for ρ > 0,
equal to γn−1

n − 1. Given that P−n (0) =−1 and P−n (∞) =−∞, we
deduce as expected that P−n has zero positive root if γn < 1 and
two if γn > 1 (which define ρ2 and ρ3). Since the polynomials are
of order n−1, these roots have necessarily an explicit expression
for n 6 5 (Abel’s impossibility theorem). For n> 5, we have
no guarantee that an explicit expression of the three radii exists,
but they are still well-defined from (Eq. (B.8)) and they can be
determined numerically.

Whatever the value of n, the different types of trajectories
can be easily distinguished by plotting a phase portrait of the
system. In our case, the best option is to use the level curves γn
in the plane ( ρ, ψ), where ψ is the angle between the position
and velocity vectors. Indeed, both ρ̇ and θ̇ can be expressed in
terms of ψ, leading to the following expressions:
γ2 = ρ sinψ − ln ρ

γn =
n − 2
n − 1

ρ sinψ +
1

(n − 1)ρn−2 , n > 2.
(B.9)

5 In the case n = 2, the analogous parameter is γ2 =− ln ρ0.
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Fig. B.1. Effective potential and angular
velocity as a function of ρ in the three possi-
ble cases occurring for n> 2. The unit level
on the vertical axis gives the intervals of ρ
allowed for the particle, such that Un( ρ) <
1.

Fig. B.2. Phase portraits of the system in the plane ( ρ, ψ) for different powers n, obtained in terms of the level curves of γn (with, in particular,
γ2 =− ln ρ0). Trajectories of type T1, T2, and T3 are plotted respectively in red, green, and blue. The thick black curve represents the unit level
(separatrix). Along it lie the homoclinic orbit T?

2 and the two branches of the T?
3 orbit, whereas the circular trajectory T? is plotted in orange. The

white level curve represents the zero level. For n > 2, it always remains in the ρ sinψ< 0 side.

The corresponding phase portraits are shown in Fig. B.2, show-
ing that the dynamics in the cases n> 2 are qualitatively similar.

If we consider an incoming flux of particles as in Sect. 3, the
γn constant of the particles for n > 2 is

γn(Yi) =− sgn(k)
n − 2
n − 1

Yi +
1

n − 1

 1√
D2 + Y2

i


n−2

, (B.10)

and it is enough to study the case kn > 0. We note that

lim
Yi→−∞

γn(Yi) =∞ and lim
Yi→+∞

γn(Yi) =−∞, (B.11)

so all the possible values of γn are spanned by the initial posi-
tions Yi, including the critical one γn = 1. The study of γn as a
function of Yi and D shows that the behaviour of the trajectories
is qualitatively similar to what we obtained for n = 2 (Sect. 3).
First of all, there is a limiting distance Dlim above which γn is
monotonous with respect to Yi. It can be written in a very gen-
eral way as

D(n)
lim =

√
n − 1
n

n
n−1

, n > 1. (B.12)

This formula is also valid for n = 2. Then, there is a critical
distance Dcrit <Dlim below which bounded trajectories appear
(as in Fig. 3). Finally the flux of incoming particles naturally cre-
ates a circular cavity similar to the case n = 2. For D>Dcrit, the
radius ρcav of this cavity is also independent of D: it is equal to
the ρ1 radius (Eq. (B.8)) at γn = 1. We give in Tables B.1 and B.2
the values of Dcrit and ρcav for the first few n. We give also their
analytical expression when we found one.

Eventually, one can use the implicit solution obtained by
quadrature in order to compute the shape of the caustic, as we
did in Sect. 3. For n> 2, we get



ϕn( ρ) =
(n − 1)γn ρ

n−2 − 1

ρ

√(
(n − 2)ρn−1)2

−
(
(n − 1)γn ρn−2 − 1

)2

φn( ρ) =
(n − 2)ρn−1√(

(n − 2)ρn−1)2
−

(
(n − 1)γn ρn−2 − 1

)2
.

(B.13)

These functions can be used directly as in Eqs. (26) and (31),
with the same parametrisation s ∈R. If we consider particles
coming from infinity (D→∞), there is a notable difference with
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Fig. B.3. Comparison of the caustics obtained for the first few values of n. We recognise the sizes of the central cavities given in Table B.2.

Table B.1. Critical starting distance below which bounded trajectories
appear, given for the first few powers of 1/r.

n Analytical D(n)
crit Numerical D(n)

crit

2 1
2

√
−H

(
H + 2

)
0.4023711712747059

3
√

2
(
I − 2

)
0.5193929104950238

4 1
2

√
6
√

3 − 9 0.5899798397854929
5 unknown 0.6389216906984257
6 unknown 0.6754661600886492
7 unknown 0.7040804466901285

Notes. We define H = W0(−2 exp[−2]) and I =
3
√

11
√

33
9 + 7−

3
√

11
√

33
9 − 7. The expression for n = 2 is taken from Sect. 3.

respect to the case n> 2. Indeed, the parameter γn of the par-
ticles (Eq. (B.10)) becomes directly proportional to Yi. It is thus
much simpler than in Sect. 3, since Yi now keeps a clear meaning

Table B.2. Radius of the cavity formed by a flux of particles coming
from a distance D>D(n)

crit, for the first few powers of 1/r.

n Analytical ρ(n)
cav Numerical ρ(n)

cav

2 W0(exp[−1]) 0.278464542761074
3

√
2− 1 0.414213562373095

4 1/2 0.5

5 − 1
3 − J +

√
1
3 − J2 + 2

27
1
J 0.560425660450317

6 1
4
(
1 + K 3√5

)
0.605829586188268

7 unknown 0.641465469828847

Notes. We define J = 1
6

√
4 + 6

3
√
√

2 − 1− 6
3
√
√

2 + 1 and K =

3
√

4
√

6
9 + 1− 3

√
4
√

6
9 − 1. The expression for n = 2 is taken from Sect. 3.

even when D is infinite: it becomes the impact parameter of the
particles. For completeness, Fig. B.3 compares the shape of the
caustics obtained for the first few values of n.
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