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Abstract In this paper, a frequency-domain characterisation
of the period-doubling bifurcation is proposed. This allows
an efficient detection and localisation of such points along
frequency-response curves computed through continuation
and the harmonic balance method. A simple strategy for
branch switching to sub-harmonic regimes is presented as
well. Furthermore, these bifurcations are tracked in a two-
dimensional parameter space, and extremum points with re-
spect to the tracking parameter are characterized and linked
to sub-harmonic isola formation. As a test case for these
methods, a forced Duffing oscillator with asymmetric clear-
ances is studied numerically. The results, which include the
prediction of period-doubling cascades and sub-harmonic
isolas, are then compared to experimental results, yielding
an excellent agreement.

Keywords harmonic balance · bifurcation tracking · period
doubling · isola formation · clearance systems

1 Introduction

Strong nonlinearities, such as impacts or friction, give rise
to complexity and multiple possible dynamic regimes, corre-
sponding to specific zones in parameter space delimited by
stability boundaries. A small variation in a given parameter,
through which the system crosses one of these boundaries,
may thus entail significantly different responses from an oth-
erwise unchanged system. This corresponds to a bifurcation
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event, whose prediction is of utmost importance in the con-
text of engineering design and analysis.
An efficient way of directly determining stability boundaries
is to employ continuation algorithms, which allow bifurca-
tions to be tracked with respect to the system’s parameters.
This can be accomplished for bifurcations of a given type if
a characterization is available, as is the case for all one and
two-parameter-dependent bifurcations of cycles. The corre-
sponding expressions represent constraints which, together
with the equations of motion, constitute so-called extended
systems. These can be found in textbooks on bifurcation
theory, e.g. [1], and have been successfully incorporated
into continuation codes such as AUTO [2], MATCONT [3]
and COCO [4] for bifurcation analyses. It should be noted
that all of the aforementioned codes rely on time-domain
methods (namely, orthogonal collocation) to find periodic so-
lutions to the non-linear equations of motion. An interesting
alternative is to use frequency-domain methods such as the
well-known Harmonic Balance Method (HBM), which are
by their very nature well-suited to study periodic phenomena
such as forced oscillations. This requires the equations char-
acterizing bifurcations to be re-formulated in the frequency
domain, but the principles of bifurcation tracking remain the
same.

Xie et al. [5] characterized and tracked bifurcations of
cycles from frequency-response curves by using pseudo ar-
clength continuation on fully extended systems in the fre-
quency domain. Minimally extended systems for the same
purpose were proposed by Detroux et al [6]. Specifically,
both of these works treated Limit Point (LP), Branch Point
(BP) and Neimark-Sacker (NS) bifurcations of cycles, but
not Period Doubling (PD), which is nonetheless a generic
scenario that is common, amongst others, in systems with
clearances [7], squeeze-film dampers [8], 1:2 internal res-
onances [9] or unilateral constraints [10, 11]. Also in [6],
local extrema of LP bifurcation curves were found to in-
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dicate existence regions for detached resonances, or isolas.
While the nonlinearity in that case was a piecewise-linear
stiffness stemming from elastic contacts, a similar behaviour
has also been observed in vibration absorbers [12] and beams
attached to nonlinear springs [13], both of which include
cubic restoring forces. As discussed by the authors of the
latter paper, interactions between nonlinear modes lead to the
birth of isolas in MDOF systems. Nonetheless, even SDOF
systems have been reported to exhibit detached resonances
in the presence of nonlinear damping [14, 15] or asymmetric
clearances [16]. This last example is remarkable since, in
contrast to all the other cited examples, the periodic cycles
on the isolas were sub-harmonic: they responded at one half
of the excitation frequency. As this is the main characteristic
of oscillatory regim es past a PD bifurcation point, one could
expect the formation of this particular kind of isola to be
somehow related to period doubling. To the authors’ best
knowledge, however, no studies on the link between these
two phenomena have been presented so far.
The purpose of the present work is twofold: firstly, an original
frequency-domain extended system for calculating PD bifur-
cations in the framework of the HBM is proposed. Secondly,
some local extrema of PD bifurcation curves are shown to
be characteristic of sub-harmonic isola merging with the
main response branch of forced vibrating systems. In addi-
tion, a test case consisting of a Duffing-like oscillator with
asymmetric clearances is presented. Although the specific
system under consideration was studied previously [17], the
presence of sub-harmonic isolas was undetected before the
present study. Furthermore, the analysis reveals that the de-
gree of symmetry in the system is the fundamental parameter
driving the behaviour of isolas for this case. This paper is
organized as follows: Section 2 offers a quick review of the
concepts associated with the solution of non-linear equations
by the HBM, pseudo-arclength continuation and the notion of
extended systems in bifurcation analysis. Section 3 presents
the theoretical contributions of this work, which consist of an
application of the previous techniques to the case of the pe-
riod doubling bifurcation: detection, localisation and tracking.
A simple method for switching to sub-harmonic branches is
also discussed. Moreover, we propose an extended system
for the detection and localisation of local extrema of bifur-
cation curves. The proposed methods are then applied to a
test case, described in Section 4. The analysis, in Section 5,
is divided into two parts: our new methods are first validated
by comparison to the previously obtained results; next, new
results made possible by bifurcation tracking are presented.
We particularly discuss isolated sub-harmonic resonances,
and proceed to show experimental measurements regarding
this phenomenon. Finally, conclusions are drawn in Section
6.

2 Numerical background

2.1 The Harmonic Balance Method

We consider the generic vibration equations for a nonlinear
system with n degrees of freedom:

Mẍ(t)+Cẋ(t)+Kx(t)+ fNL(x, ẋ) = p(t) (1)

where M, C and K are repectively the mass, damping and
stiffness matrices of the underlying linear system, nonlinear
forces are contained in the vector fnl(x, ẋ) and p(t) is the
external forcing. The main idea of the method is to look
for a steady-state solution of Eq. (1) that is periodic, with
minimal period T = 2π

ω
. Thus, all variables and force vectors

are expanded as Fourier series up to the H-th harmonic:

x(t) = [T(ωt)⊗ In]X
ẋ(t) = ω [T(ωt)∇⊗ In]X

ẍ(t) = ω
2 [T(ωt)∇2⊗ In

]
X

fNL(x, ẋ) = [T(ωt)⊗ In]FNL(X)

p(t) = [T(ωt)⊗ In]P
T(ωt) = [1,cos(ωt),sin(ωt), ...,cos(Hωt),sin(Hωt)]

(2)

Here, ⊗ and ∇ represent the Kronecker tensor product and
the frequency-domain differential operator, respectively [5].
Uppercase vectors represent the Fourier coefficients of their
lowercase counterparts. Autonomous systems (p(t)= 0) have
an undetermined phase due to the fact that they are invariant
with respect to temporal translations; i.e., for any solution x(t)
of (1), x(t+ t0) is also a solution for any t0 ∈R, which means
that the Fourier coefficients are not uniquely determined.
Thus, a particular solution must be fixed by imposing a so-
called phase condition as an additional constraint and taking
the oscillation frequency 1 as an unknown. On the other hand,
if p(t) 6= 0, the phase is imposed by the forcing. Only the
latter case is treated in what follows.
The transposition to the frequency domain is completed by a
Galerkin projection of Eqs. (1) over the Fourier basis T(ωt)
through the inner product:

〈u,v〉= 2
T

T∫
0

u∗(τ) ·v(τ)dτ (3)

where the symbol ∗ denotes the transpose of a vector. This
operation is classical for Hilbert spaces, and in particular
for the space of square-integrable functions on the interval
[0,T ], L2([0,T ]), where the solutions of (1) over one period
are sought. Harmonic functions form an orthonormal basis,
so that 〈T(ωt),T(ωt)〉 = I2H+1, and this projection yields

1 Throughout this paper, the term frequency will be systematically
used to refer to an angular frequency in rad/s.
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the following set of n(2H +1) nonlinear algebraic equations
for the Fourier coefficients X of the displacements:

R(X) = ZX+FNL(X)−P = 0 (4)

where the dynamic stiffness matrix is expressed as:

Z = ω
2
∇

2⊗M+ω∇⊗C+ I2H+1⊗K (5)

Given an initial guess X0, Newton-Raphson iterations are
used to find a solution of Eq. (4). Thus, at the k-th iteration:

Xk+1 = Xk−
(

RX(Xk)
)−1

R(Xk) (6)

with the Jacobian:

RX = Z+
dFNL

dX
(7)

These corrections are performed until a given accuracy is
attained, for instance:

||
(
RX(Xk)

)−1 R(Xk)||
||Xk||

< ε , ε ∈ R+ (8)

Nonlinear forces and their derivatives in the frequency do-
main are required for the computation of FNL and the Jaco-
bian matrix RX, respectively. These are generally difficult to
obtain analytically for multiple harmonics and strong nonlin-
earities, but this is not the case for their time-domain coun-
terparts, where a closed-form expression is usually available.
As such, we apply the alternating frequency-time (AFT) tech-
nique [18]. This means that the Fourier coefficients X are
first transformed to the time domain by an inverse FFT so
that the derivatives can be evaluated analytically. Afterwards,
a direct FFT is applied on the resulting signal to yield the
frequency-domain derivatives.
Let us highlight two important features of this approach:

1. Certainly, the back-and-forth transformations are the most
time-consuming part of the process. However, a high ef-
ficiency can be achieved by expressing the inverse and
direct FFT as linear operators. The details can be found,
for example, in [19].

2. Arbitrary nonlinearities may be treated in this manner
without further work, which is convenient from an im-
plementation viewpoint. This is true, in particular, for
localised forces such as contacts, although a high number
of harmonics and/or FFT sampling points may be re-
quired for the approximation to be accurate. Furthermore,
note that Fourier basis functions are smooth (class C∞),
hence some non-smooth non-linearities may pose con-
vergence problems due to the Gibbs phenomenon [20].
However, piecewise continuous systems such as the one
described in Section 4 represent a “mild” non-smoothness
which can still be directly tackled by the HBM in some
cases. An example of this was presented in [21]. Artifi-
cial regularization of non-smooth forces can, on the other

hand, improve performance, at the cost of introducing an
additional parameter. A discussion on different regular-
ization strategies may be found in [22] and more recently
in [23].

2.2 Pseudo-arclength continuation

A converged solution of Eq. (4) is associated to a set of fixed
values of its parameters. Now, if one parameter is freed, this
solution corresponds to a point on a curve in (n(2H+1)+1)-
dimensional space under the assumptions of the implicit func-
tion theorem [24]. Such a system is commonly said to have
a codimension of 1 (denoted ”codim-1”). By freeing ω and
taking steps in codim-1 space, so-called frequency-response
curves are obtained. Several different options exist concern-
ing the way in which these steps are taken, the most popular
ones being the Asymptotic Numerical Method [25] or the
more traditional prediction-correction approaches, which in-
clude the well-known pseudo-arclength continuation method
that we adopt herein.

Prediction A predicted solution is computed along the di-
rection tangential to the curve at a given point (Xp,ωp):
tp = [∆X;∆ω]T . Since the system is underconstrained at this
stage, an arclength equation is appended to provide closure:

||∆X||2 +∆ω
2 = ∆s2 (9)

This equation fixes a step size in arclength coordinates. The
predicted solution is given by:

(
Xp+1
ωp+1

)
=

(
Xp
ωp

)
+

(
∆X
∆ω

)
(10)

where:[
RX Rω

∆XT ∆ω

](
∆X
∆ω

)
=

(
0

∆s2

)
(11)

Correction As the predicted solution is unlikely to lie on the
response curve, Newton-Raphson corrections are made in a
direction orthogonal to tp. At the k-th iteration, the correction
is computed as the solution to the system:

[
Rk

X Rk
ω

∆XT ∆ω

](
δX
δω

)
=−

(
Rk

0

)
(12)

where the superscript denotes evaluation at point (Xk
p,ω

k
p).
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2.3 Stability: Hill’s method

As the continuation procedure described in the last section
computes both stable and unstable solutions, discrimination
must be made between the two cases for each converged
solution on the response curve. As an alternative to the usual
time-domain method involving the monodromy matrix, sta-
bility can be evaluated directly in the frequency domain by
applying Hill’s method as proposed by [26]. It can be shown
that this amounts to solving the quadratic eigenvalue problem:

[
RX(X,ω)+λiD1(ω)+λ

2
i D2

]
φi = 0 (13)

with:{
D1(ω) = 2ω∇⊗M+ I2H+1⊗C

D2 = I2H+1⊗M (14)

Amongst the 2n(2H +1) solutions of (13), only 2n actu-
ally correspond to the Floquet exponents of the system while
the rest are a numerical artifice due to the multiplicity of har-
monics, and provide redundant information. To extract the
pertinent solutions, one can either sort eigenvalues or eigen-
vectors, the latter being seemingly a more robust approach
[27]. A point (X,ω) on the response curve corresponds to
a stable periodic motion if the real parts of all its Floquet
exponents is negative, and to an unstable one otherwise.

2.4 Bifurcations in codimension-1

Changes of local (linearised) stability along solution branches
indicate the appearance of new dynamical regimes, whose
characteristics depend on the way that Floquet exponents λi
cross the imaginary axis under parameter variation. Three
different scenarios may arise:

1. Im(λi) = 0 =⇒ static bifurcation: limit point (generic
case) or branch point (degenerate case)

2. Im(λi, j) =±m, m ∈
]
0, ω

2

[
=⇒ Neimark-Sacker bifur-

cation: appearance of a branch of quasi-periodic solu-
tions.

3. Im(λi, j) =±ω

2 =⇒ period doubling bifurcation: appear-
ance of a branch of double-period solutions.

In the context of numerical continuation, it is usual to define
test functions whose zeros correspond to bifurcation points,
see [28] for examples. If a sign change occurs between two
consecutive steps, a bifurcation is detected and can then
be precisely localized by iteratively solving an appropriate
extended system composed of the dynamical equilibrium
equations (1) and additional equations characterizing a par-
ticular bifurcation. For instance, an extended system for LP
calculation is:

YLP (X,φ ,ω) =

 R(X,ω)

RX(X,ω)φ

φ ∗φ −1

 (15)

It can be seen that the eigenvector φ becomes an additional
unknown and that both a normalization and the singularity
of the Jacobian are imposed, thus yielding a closed system.
A bifurcation point corresponds to (X0,φ0,ω0) such that
YLP (X0,φ0,ω0) = 0.

3 Period doubling

3.1 Characterization

As stated in Section 2.4, the condition to be fulfilled is to
have a unique pair of purely imaginary Floquet exponents
with magnitude λi, j =±i ω

2 , while all other exponents have
negative real parts. Replacing for λi in (13), writing the com-
plex eigenvector as φ = φR + iφI and separating real and
imaginary parts, we obtain the following set of equations:[

RX−
(

ω

2

)2 D2
ω

2 D1

−ω

2 D1 RX−
(

ω

2

)2 D2

](
φR
φI

)
=

(
0
0

)
(16)

Notice that, by appending (16) to the equilibrium equations
(4), we are left with 3n(2H+1) equations for 3n(2H+1)+1
unknowns. Closure comes from a normalization equation for
the eigenvector φ . This can be done in a number of ways,
such as imposing g(φR,φI) = ||φ ||−1 = 0. However, in this
paper we choose:

g(φR,φI) = q∗ ·φI−b = 0 (17)

where b ∈ [0,1] and q is a vector with non-zero projection
over Span(φR,φI). In practice, the actual choice for q is unim-
portant, but it is recommended to take a vector with unit norm
for numerical convenience. For instance, one could choose
q = ei, a unit vector, thus fixing the magnitude of the i-th
component of φI. Since the eigenvector is defined up to a
multiplicative constant and, given Eq. (16), a non-trivial φR
is associated to any non-zero vector φI, this is a reasonable
choice.
Hence, our new extended system is:

YPD (X,φR,φI,ω) =


R(

RX−
(

ω

2

)2 D2

)
φR + ω

2 D1φI(
RX−

(
ω

2

)2 D2

)
φI− ω

2 D1φR

g(φR,φI)


(18)

Letting U = (X,φR,φI,ω), we have at the k-th solver itera-
tion:

Uk+1 = Uk−
[
JA(Uk)

]−1
YPD(Uk) (19)
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with the extended Jacobian given by:

JA(U) =


RX 0L 0L Rω

(RXφR)X RD
ω

2 D1 R̃1

(RXφI)X −ω

2 D1 RD R̃2
0∗ 0∗ p∗ 0

 (20)

and:
RD = RX−

(
ω

2

)2 D2
R̃1 = (RXφR)ω

− ω

2 D2φR + D̂1φI
R̃2 = (RXφI)ω

− ω

2 D2φI− D̂1φR
D̂1(ω) = 2ω∇⊗M+ 1

2 IL⊗C

(21)

The computation of the second-derivative terms defined in
(21) is once again achieved through the AFT procedure. De-
tails on this can be found, for instance, in [5]. As usual, the
equality YPD(U0) = 0 is not enforced but rather the iterations
are stopped when a certain U0 satisfies a criterion similar to
(8):

||
(
JA(Uk)

)−1 YPD(Uk)||
||Uk||

< ε , ε ∈ R+ (22)

3.2 Detection: Test function

We propose two different test functions for detecting period
doubling bifurcations.
First, notice that the matrix on the left-hand side of (16),
which is called B hereafter, is singular for a solution of the
extended system (18). One could then be tempted to use its
determinant as a test function ϕPD = det(B), but this is not
an appropriate choice since this function is positive-definite2.
However, for this same reason, bifurcation point is a local
minimum for the determinant, i.e. the derivative of the de-
terminant changes sign at such a point. Thus, one can use a
finite-difference approximation to the derivative and define:

ϕ
1
PD,p = sign(det(Bp)−det(Bp-1)) (23)

Then, a period doubling bifurcation is detected between two
consecutive continuation steps p and p+1 if:
ϕ1

PD,p ·ϕ1
PD,p+1 < 0.

While this function accomplishes its purpose, it is some-
what inconvenient due to the fact that it may not be used at
the very first continuation step. Alternatively, note that the
Floquet exponents are available from Hill’s method. Thus,
by letting:

λ̄ = max
j={1,...,2n}

∥∥∥∥e
2πλ j

ω

∥∥∥∥ (24)

2 In the sense that, following a coordinate transform which places
the bifurcation point at the origin, f (0) = 0 and f (x)> 0 ∀x 6= 0.

a simple test function is given by:

ϕ
2
PD = sign(Re(λ̄ ))|λ̄ |+1 (25)

and, similarly, ϕ2
PD,p ·ϕ2

PD,p+1 < 0 implies the presence of a
bifurcation between steps p and p+1. Since no additional
determinant calculations are required, this latter test function
is more efficient than the previous one.
The two points between which a bifurcation has been detected
represent suitable starting guesses for the iterations (19), but
performance may be enhanced by selecting the one with the
smaller magnitude of the test function.

3.3 Branching

Recall that the Fourier basis T(ωt) from (2) includes only
terms whose frequencies are multiples of the fundamental
frequency ω . This means, first of all, that sub-harmonic re-
sponses can not be accurately computed with this basis alone,
but also that period-doubling bifurcations can be readily iden-
tified as such. Indeed, consider the alternative basis:

TH
s (ωt) =

[
1,cos(

ω

2
t),sin(

ω

2
t),cos(ωt),sin(ωt), ...

]
(26)

Since TH(ωt)⊂TH
s (ωt), any T-periodic solution to the equa-

tions of motion can be constructed in this new basis. How-
ever, the addition of sub-harmonic functions means that the
minimal period is now 2T . As a consequence, the period
doubling bifurcation is not associated with a change in pe-
riod any more: instead, it identifies a symmetry-breaking
phenomenon, which corresponds to a degenerate static bi-
furcation, or branch point. This is no novelty, as various
authors [1] have recognized the relation between this two
types of bifurcations in terms of the underlying Poincaré
maps of dynamical systems. The operation ω ← ω

2 which
transforms T(ωt) into Ts(ωt) is equivalent to considering
the second-iterate application of the original system, with the
corresponding Poincaré map.
By grouping the sub-harmonic sine and cosine functions in:

TH
1
2
(ωt) = [ cos

(
ω

2
t
)
,sin

(
ω

2
t
)
, ...,

cos
(
(2H +1)ω

2
t
)
,sin

(
(2H +1)ω

2
t
)] (27)

it is easily be seen that TH
s (ωt) = TH(ωt)∪TH

1
2
(ωt) and

that these two sets are mutually orthogonal through the inner
product (3), as illustrated in Fig. 1. Geometrically, this means
that we can construct a vector tangent to the sub-harmonic
branch by simply taking the tangent vector from the most
recent predictor step and adding a component belonging to
the subspace generated by TH

1
2

:

tPD = tp +δ t 1
2

(28)
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ω

Fig. 1: Branching onto a sub-harmonic branch.

Determining the vector tPD is straightforward by apply-
ing the well-known Algebraic Branching Equation (ABE)
[29] to the system expressed on the TH

s (ωt) basis; details on
this are given in Appendix A.

The following steps summarize the procedure for sub-
harmonic branching:

1. Localize a period-doubling bifurcation by the techniques
from Sections 3.1 and 3.2.

2. Include sub-harmonics, i.e. change the original Fourier
basis from TH to TH

s .
3. Use the ABE to find a tangent vector tPD along the sub-

harmonic branch.
4. Take a predictor step in the direction given by tPD.
5. Apply corrections by orthogonal Newton-like iterations

until convergence to a solution of (4).

It should be noted that, while following a sub-harmonic
branch, further period doubling bifurcations may be encoun-
tered. This may indicate the presence of a sub-harmonic
cascade, one of the best known routes to chaos [30]. If this
is the case, one can follow the cascade up to arbitrary or-
ders by repeatedly applying the procedure described above.
However, the result of directly doubling the number of sub-
harmonics at each new bifurcation is a large system with
mostly null terms. A (sub-) harmonic selection procedure
similar to those proposed by [31], for example, is useful to
avoid this unnecessary numerical burden.

3.4 Tracking

Consider a parameter γ of system (1) which was kept fixed at
a value γ0 up to this point. By the Implicit Function Theorem,
the point (U0,γ0) corresponding to a period doubling bifur-
cation belongs to a curve in a codimension-2 vector space.
As before, we can fully determine this bifurcation curve by
pseudo-arclength continuation, with γ now included amongst

the unknowns of the problem. This means that the extended
Jacobian is now given by:

JAA =

[
JA

∂ (YPD)
∂γ

∆ Ũ∗ ∆γ

]
(29)

where:

∆ Ũ = (∆X∗, 0∗, 0∗, ∆ω)∗ (30)

When projected on the (ω,γ)-plane, the curves obtained in
this manner define stability boundaries across which the sys-
tem shows quantitatively different dynamical behaviours.

3.5 Local extrema in codimension-2

While performing bifurcation tracking, a constraint equation
fixes some of the eigenvalues of the system’s Jacobian ma-
trix. For instance, in the case of a period doubling curve, two
eigenvalues are imposed to be purely imaginary and to have
a magnitude of

ω

2
on every point. However, all the remaining

eigenvalues can vary as a function of the bifurcation parame-
ters (ω and a second parameter γ). As a result, it is possible
that another eigenvalue reaches a critical value such as 0
or ±κi,κ ∈]0, ω

2 ] for some point (ω0,γ0), referred to as a
codimension-2 bifurcation. Hereafter we focus on the case of
an additional zero eigenvalue appearing along a bifurcation
curve. By analogy with the codim-1 case, this can be called
a codim-2 LP and corresponds geometrically to a turning
point, thus to a local extremum with respect to the tracking
parameter.

Such a point is of great practical interest due to its role
as an organizing centre for the dynamics. As shown schemat-
ically in Fig. 2, the local extremum marks the limiting value
of γ beyond which multi-stability occurs for certain ranges
of ω .

It should be noted that, actually, limit points themselves
correspond to local extrema with respect to ω in codim-1
space, since:

dX
dω

=−(RX)
−1 Rω (31)

is undetermined due to the singularity of the Jacobian, which
indicates a vertical tangent in (X,ω) coordinates 3. In the
same way, generic local extrema are nothing but limit points
of the bifurcation curve with respect to γ . This viewpoint
is convenient from a computational perspective, since it al-
lows us to re-use the typical extended system for limit points
(15) to detect, localise and eventually track local extrema. As

3 Note that a vertical tangent may also occur in the case of a pitchfork
bifurcation, see Appendix A. However, assuming that the singularity
indeed corresponds to an LP, the geometrical argument presented here
holds true.
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ω γ

|x|

Fig. 2: Schematic representation of a codim-2 bifurcation:
(ω,γ) are parameters, |x| is a given measure for displace-
ment.

before, let U= (X,φ ,ω) and consider a generic extended sys-
tem Ybif defining a codimension-1 bifurcation being tracked
with respect to γ . A local extremum of the bifurcation curve
is a point (U,γ) which is a root of the new extended system
defined by:

Wbif
ex (U,Ψ ,γ) =

 Ybif

Ybif
U Ψ

Ψ ∗Ψ −1

 (32)

where Ψ is the eigenvector associated to the zero eigenvalue
of the extended Jacobian Ybif

U . Note that one might use:

ϕex,p = det
(

Ybif
U,p

)
(33)

as a test function. Likewise, a local extremum may be de-
tected by a change of sign of ∆γ , and thus a simple alternative
is to use:

ϕex,p = ∆γp (34)

In what follows, we will focus on the case of period-doubling
curves: Ybif := YPD. Thus, we may re-write (32) as:

WPD
ex (U,Ψ ,γ) =

 YPD
JAΨ

Ψ ∗Ψ −1

 (35)

The Jacobian matrix associated with this extended system
has indeed the same form as the one for a classical limit point:

JW
A =

 JA 0L
∂ (YPD)

∂γ

∂ (JAΨ)
∂U JA

∂ (JAΨ)
∂γ

0∗ 2Ψ ∗ 0

 (36)

Letting V = (U,Ψ ,γ), the bifurcation may be approximated
through Newton-like iterations:

Vk+1 = Vk−
(

JW
A (Vk)

)−1
WPD

ex (Vk) (37)

Afterwards, it is straightforward to go one step further and
use continuation on the extended system (35) to track these
bifurcations in a codimension-3 space, but this is not consid-
ered in this paper.

3.6 Sub-harmonic isolas

Recently, LP tracking has been found to reveal the presence
of isolas in forced, nonlinear mechanical systems. As seen
e.g. in [6] and [13], extrema in the LP curves indicate the
formation of isolas at low forcing and their merging with the
resonance peak of the main response curve at high forcing.
Between these two points, isolas can be found. Moreover,
since the LPs on the isolas and on the main response curve
lie on the same bifurcation curve, it follows that the cycles
on both of them are qualitatively similar. In particular, this
means that the frequency of isolated solutions corresponds to
the excitation frequency, as is the case for resonant solutions.
Thus, if sub-harmonic or other kinds of isolas are present,
they will not be detected by directly applying this method.

We now discuss a mechanism of sub-harmonic isola for-
mation. A non-degenerate local extremum of the PD curve
as discussed here is indeed an instance of the generalized pe-
riod doubling bifurcation as defined and investigated in [32].
Interestingly, besides the collision of the two PD branches,
the theory also predicts the emergence of a limit point curve
at this point, as shown schematically in Fig. 3. This can be
understood easily in terms of eigenvalues: a zero eigenvalue
of the system’s Jacobian exists at a local extremum of the PD
curve, and so this point also belongs to an LP curve, which
is entirely composed of solutions with a zero eigenvalue.
However, the saddle cycles which make up this LP curve
are necessarily sub-harmonic, implying the existence of a
pair of 2T-periodic cycles (one stable, the other unstable) in
the immediate vicinity of the bifurcation. In the context of
forced responses of mechanical systems, it is clear that these
cycles cannot be part of the main response branch, which is
composed of T-periodic solutions. The only option left for
them is then to form isolas, i.e., closed loops of solutions
detached from the main branch. Moreover, since having a
single point of change of stability in a closed loop is impos-
sible, a second LP must necessarily exist on the isola. Thus,
one can hypothesize that further varying the parameter which
caused detachment will result in these saddle cycles coming
closer together until they finally meet and the isolated curve
collapses to a codimension-2 point beyond which no isola
exists at all. Such a point is then an isola centre, correspond-
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γ

ω

PD
(-)

PD
(+)

LP2T

Fig. 3: Local bifurcation diagram near a Generalized Period
Doubling point.

ing to the birth of a sub-harmonic attractor 4. The practical
steps for localizing a sub-harmonic isola centre can then be
expressed as follows:

1. Detect and localize a PD bifurcation on the main response
curve, as per Sects. 3.1 and 3.2.

2. Track this bifurcation with respect to a parameter γ , as
per Sect. 3.4.

3. Detect and localize a generalized period doubling point
on the PD curve, as per Sec. 3.5.

4. Change to sub-harmonic basis (Sect. 3.3) and use this
point to launch the tracking of LP bifurcations with re-
spect to γ .

5. Detect and localize a local extremum on the LP curve.

To conclude this section, let us remark that local extrema
have long been recognized as being characteristic of isola for-
mation in a general sense. Indeed, Dellwo et al. [33] explore
this idea and use a perturbation method to solve for isola
centres, with an application to chemical reactors. Later on,
Kernevez et al. [34] applied continuation of isola formation
points with a design perspective on a similar chemical system
with the help of the software AUTO. Both of these papers
formulate extended systems equivalent to (32), but differ in
their approach to tackle the problem. The present contribu-
tion offers yet another option, this time in the framework of
frequency-domain methods.

4 As before, note that we can talk about supercritical as well as
subcritical isola centres, corresponding to the ”birth” and ”death” of
isolas, respectively.

4 Test case

4.1 System description

In this section, the techniques and concepts discussed previ-
ously are applied to an example system, shown in Fig. 4.
The apparatus in this photograph was first studied by de
Langre et al. in [17]. It was conceived as a simple mecha-
nism which exhibits chaos, with the purpose of validating
time integration algorithms. In that paper, it was observed
that both measured and calculated chaotic regimes had a
rich sub-harmonic spectrum, i.e., frequencies below that of
the external forcing, and thus a sub-harmonic cascade was
suggested as the likely route to chaos. However, a detailed
bifurcation analysis was deemed out of the scope of their
study. This is, in turn, the objective of the remainder of this
paper.

4.2 Modelling

Fig. 5(a) shows a schematic representation of our system. It
consists of a heavy concrete block supported by two clamped,
slender steel bars on its sides. A mono-harmonic external
excitation p(t)= pcos(ωt) is provided by a fixed electromag-
net whose oscillating magnetic field drives a coil, attached to
the main block, sinusoidally. In this configuration, the system
is constrained to move in only one direction. Displacement
amplitude, denoted by x(t), is measured relative to the rest po-
sition of the block’s centre of mass, which coincides with the
location of a rigid stop. One elastic spring lies on each side
of the stop, so that the mass undergoes intermittent contacts
when the displacement amplitude is greater in magnitude
than at least one of the gaps, which are adjustable and al-
lowed to be asymmetrical: contacts happen for x(t)> j2 or
x(t)<− j1. In this study, we limit ourselves to the clearance-
type system, where both j1 and j2 are positive, as opposed to
the pre-loaded type. The springs are chosen to have a stiffness
Kc which is larger than the stiffness k of the linear system’s
first bending mode. As explained in [17], the geometrical and
material parameters were carefully chosen so that the sys-
tem’s first natural frequencies were far apart on the spectrum.
Indeed, for the first bending mode, f1 = 5 Hz and f3 = 80 Hz
for the third mode, whereas the second one has no contri-
bution on the motion of the mass. Thus, if the frequencies
associated to both the external forcing and the contact stiff-
ness are kept low enough we can consider the motion to be
largely dominated by the first mode. The limited parameter
ranges used later in this paper are chosen to verify this con-
straint. As a consequence, the system is modelled by a forced
SDOF oscillator of the form:

mẍ(t)+ cẋ(t)+ kx(t)+ fNL(x) = pcos(ωt) (38)
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Fig. 4: Experimental apparatus
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Magnetic	coil
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(a) Experimental configuration.

m

j1

k
j2

α

c Kc Kc

p(t)
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(b) SDOF model.

Fig. 5: Idealized system

and depicted in Fig. 5 b).
Nonlinear terms, included in fNL, come from two distinct
effects:

1. During vibration, the clamped bars are bent perpendic-
ularly to their length, which produces tension. The pro-

jection of this force onto the direction of motion gives
rise to a cubic stiffness term fNL,g = αx3, where α is a
constant depending on the geometry of the bars and their
Young modulus.

2. A piecewise-linear stiffness induced by the clearances:
fNL,c = Kc [(x+ j1)H(x+ j1)+(x− j2)H(x− j2)].
H(·) represents the Heaviside step function.

Note that, in general, some amount of dissipation can be
expected due to contact, which would require the inclusion
of a piecewise-linear damping force in our model as was
done in [35]. However, a combination of force measurements
and free-oscillation tests revealed this effect to be negligible
compared to modal damping, and thus it was omitted from
the present model.

Before proceeding further, equation (38) is recast into
non-dimensional form. Introducing the following dimension-
less quantities:

x(t) = j1x̄(t), ω0 =
√

k
m , τ = ω0t, c = 2ω0mζ , ω = ω̄ω0,

p = k j1 p̄, j2 = j1 j̄, α = ᾱ
k
j21
, Kc = K̄ck

(39)

the equation of motion is written as:

x̄′′(τ)+2ζ x̄′(τ)+ x̄(τ)+ ᾱ x̄3(τ)+ F̄c(x̄(τ)) = p̄cos(ω̄τ)

(40)

where (·)′ represents derivation with respect to τ and the
restoring force from the clearances is:

F̄c(x̄(τ))= K̄c [(x̄(τ)+1)H(x̄(τ)+1)+(x̄(τ)− j̄)H(x̄(τ)− j̄)]

(41)
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The choice of using j1 rather than j2 as a reference length is
arbitrary and would not change the results if reversed. It is,
however, convenient to introduce the ratio of clearances j̄ as
a parameter, since this provides a way to quantify the symme-
try of the system. As shown next, this symmetry factor has a
defining influence on the system’s bifurcation behaviour.
As a final preliminary step before analysis, we replace the
non-smooth contact force (41) by a regularized approxima-
tion. This is not necessary for the HBM-based continuation to
succeed, as stated in Sect. 2.1. However, for stiff springs, we
found that some LP were actually discontinuous bifurcations
[36]. This means that, at these points, the system changes sta-
bility with one Floquet multiplier jumping over the imaginary
axis instead of smoothly crossing it. Classical root-finding
algorithms are then sure to fail, and a way to get rid of this
inconvenience consists in introducing a regularization such
as the following:

F̄c,r(x̄(τ)) = K̄c

[
x̄(τ)+

1
π

(
f−− f++

1
2σ

f L +ac

)]
(42)

where:

f+ = (x̄(τ)+1) tan−1(σ(x̄(τ)+1))

f− = (x̄(τ)− j̄) tan−1(σ(x̄(τ)− j̄))

f L = log
[

1+(σ(x̄(τ)+1))2

1+(σ(x̄(τ)− j̄))2

]

ac =

[
tan−1(σ)− j̄ tan−1(−σ j̄)− 1

2σ
log
(

1+σ2

1+(σ j̄)2

)]
The function F̄c,r from (42) tends to the non-smooth contact
force as σ →∞. In the case of the results presented hereafter,
σ = 3 · 103 was fixed. The choice of this value was made
after numerical tests, which showed that further increasing σ

beyond this point had a neglectable effect on the position of
bifurcations.

5 Analysis

5.1 Period doubling and route to chaos

The values of parameters used in this study are summarized
in Table 1. Numerical calculations were carried out using a
MATLAB implementation of the AFT-HBM with pseudo-
arclength continuation as described in Sections 2 and 3. The
results of HBM calculations can greatly depend on the num-
ber of harmonics used in the approximation. Thus, the choice
must be made carefully. This is especially true in the case of
stiff problems like the one at hand: whereas the frequency
content of displacements is usually limited to a few harmon-
ics, a higher number is generally required to appropriately
represent the contact forces. For the present case, a simple

convergence criteria based on the energy of neglected har-
monics was implemented as proposed in [37]. On this basis,
it was found through numerical tests that choosing H=15 was
enough to guarantee that higher harmonics had a neglectable
effect on even the most nonlinear responses for the present
system, which correspond to the strongly forced, asymmetric
configuration. For the sake of simplicity, the same number of
harmonics (H=15) was used for all tested cases (even though
convergence could be obtained with a lower H), with 256
sampling points used for the AFT algorithm. It should be
stressed that using such a high number of harmonics is not
needed for frequency intervals away from resonances, where
the response amplitudes (and thus the magnitudes of nonlin-
ear forces) are small. However, this does not substantially
increase computation times in this case since only one de-
gree of freedom is considered in this model. Of course, more
refined harmonic selection strategies should be adopted for
higher-dimensional systems.

Table 1: Parameter values for Section 5.1.

ζ ᾱ ω̄ p̄ K̄c j̄

0.03 0.16 [1.3 ; 4.0] [0.0 ; 2.0] [0.0 ; 6.0] [0.0 ; 1.0]

Following [17], we focus our interest on the post-resonant
(ω̄ > 1) behaviour of the system as a function of the forcing
frequency.

Frequency-response curves
The contact stiffness is initially set to K̄c = 4.7. Figure 6
shows two frequency response curves, corresponding to per-
fect symmetry ( j̄ = 1) and ”maximum” asymmetry ( j̄ = 0),
for a weak forcing case: p̄ = 0.55. The results are quite dif-
ferent: while they have comparable peak amplitudes and both
show a bi-stable zone between two LP bifurcations, the loca-
tions of these points differ. More importantly, an additional
unstable region appears in the asymmetric case for excita-
tion frequencies beyond twice the natural frequency. Two
period doubling bifurcations, which are absent in the sym-
metric case, border this region, where the system enters a
sub-harmonic vibration regime. This new branch has also
been computed using the branching algorithm of Sect. 3.3,
and it can be observed that it contains no bifurcations at this
forcing level. The same qualitative behaviour as the main
resonance is displayed, with a bi-stable zone generated by a
hardening effect.
Now we consider the case of a strong forcing: p̄= 1.7. As the
symmetric case showed no qualitative changes with respect
to the former case, it is not presented here. On the other hand,
as seen in figure 7, the sub-harmonic branch of the system
with asymmetric gaps contains two additional PD bifurca-
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tions. Between them, the 2T-periodic solutions are unstable,
giving rise to 4T-periodic motions.
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(a) Symmetric case ( j̄ = 1)
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(b) Asymmetric case ( j̄ = 0)

Fig. 6: Frequency-response curves, weak forcing.
(◦: Limit Point; O: Period-Doubling bifurcation point)

The cycles corresponding to the points labelled A and B
in Fig. 7 (respectively before and after the lowest-frequency
PD bifurcation) are shown in phase space in Fig. 8. The latter
can be seen to contain an additional loop when compared
to the former. Thus, in the span of one forcing period, the
whole of cycle A is described, whereas only half of B is. This
provides visual evidence of a double-period response.
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Fig. 7: Successive PD bifurcations in the asymmetric config-
uration, strong forcing.
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Fig. 8: Phase space plots of cycles A and B from Fig. 7.

Forcing amplitude
The PD bifurcations presented above for ( j̄ = 0) were tracked
with respect to the forcing amplitude p̄ by means of the
continuation algorithm presented in Sect. 3.4. The resulting
curves, as well as their projection on the codimension-2 plane
(ω̄, p̄), are presented in Fig. 9. For visualization purposes,
response curves at different values of p̄ are included as well.

It can be seen that the first pair of PD points happens
independently of the forcing amplitude over the considered
range, thus implying that this phenomenon is not driven
by external forcing. On the contrary, the stability boundary
corresponding to the second stage of the cascade, labelled
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(b) Period doubling boundaries on (ω̄, p̄) plane. Labels indicate the
periodicity of solutions in each zone.

Fig. 9: Forcing amplitude as tracking parameter.

“4T+” (solutions whose period is at least 4T), only exists for
high forcing amplitudes.

Contact stiffness
While varying the contact stiffness in a continuous fashion is
evidently infeasible in practice, this can be done with ease
by continuation methods. The four PD bifurcations from Fig.
7 were tracked with respect to the contact stiffness K̄c, as
shown in Fig. 10, with forcing amplitude p̄ = 1.7.
From these curves, it is easily seen that the first period dou-
bling is quite sensitive to contact stiffness, in contrast with
the case of forcing amplitude, since the location of bifurca-
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(a) PD bifurcation tracking

2 2.5 3 3.5 4 4.5
/
0

0

1

2

3

4

5

6

1T

1T

2T

4T+

BA

(b) Period doubling boundaries on (ω̄, K̄c) plane. Labels indicate
the periodicity of solutions in each zone.

Fig. 10: Contact stiffness as tracking parameter.

tion points changes significantly as this parameter is varied.
Nonetheless, consider the local extremum close to null con-
tact stiffness. From physical grounds, a value of zero simply
indicates an absence of springs, and the system reduces to a
typical, symmetrical Duffing oscillator in such a case. It is
seen here that the boundary folds back shortly before reach-
ing the ω-axis, but we can state that period doubling occurs
over practically the whole interval of contact stiffness val-
ues, and so this parameter is also not the main trigger for
bifurcation in this case.



Period doubling bifurcation analysis and isolated sub-harmonic resonances in an oscillator with asymmetric clearances 13

Chaos
So far, we have confirmed the well-understood fact that high
inputs of energy by external forcing, as well as increasingly
stiff contacts, have a tendency to promote bifurcation. Suc-
cessive sub-harmonic branching such as the one observed
here hints to the presence of a sequence of PD bifurcations
leading to chaos. It is, of course, not possible to use harmonic
balance to compute chaotic regimes, since these are aperiodic
by definition. Nonetheless, the search for parameter regions
associated with chaos can be limited to those in the neigh-
borhood of high-period boundaries. An example of this can
be seen in Fig. 11. Here, the values (p̄, K̄c) = (1.6,4.2) were
fixed and a constant-acceleration Newmark scheme was used
to numerically integrate the equation of motion over a range
of frequency excitation values. A Poincaré map was then
established by sampling the response signal (amplitudes and
velocities) at intervals equal to the excitation period. Inte-
gration was carried out over 1000 periods to ensure that the
steady state had been reached, and the amplitudes of the last
100 samples are plotted as a function of frequency.
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Fig. 11: Bifurcation diagram. Blue and yellow zones corre-
spond to predicted 2T and 4T-periodic regimes, respectively.

The results observed in this figure match the predictions
from Figs. 9 and 10 in terms of bifurcation behaviour. More-
over, regions of erratic responses can be found within the
predicted 4T+ frequency interval. It can be noted that, while
4T-periodic responses are clearly visible, the transition to
chaos is rather abrupt, and thus additional steps in the period-
doubling cascade (8T, 16T...) can only be observed over
extremely narrow ranges of forcing frequency.
Fig. 12 shows the region of predicted and experimentally
observed chaos for the same system from de Langre and
Lebreton’s paper [17], with respect to forcing amplitude. It

can be seen that the main boundary is both quantitatively
and qualitatively similar to the 4T+ boundary of Fig. 9 (b),
which once again suggests a rapid transition once the period
doubling sequence is triggered. Furthermore, this highlights
the usefulness of bifurcation tracking as a predictive tool, as
it yields results close to those obtained with the more compu-
tationally intensive method employed in the cited paper.

Fig. 12: Region of predicted chaos, from [17].

The point labelled A in Figs. 9 and 10, for which a fractal
attractor was reported in [17], is included in this zone as
well. Other points inside this boundary also exhibit aperiodic
motion, an example of which is seen in Fig. 13. These results
were obtained by fixing parameter values to those of point B:
(ω̄, p̄, K̄c) = (2.6,1.6,4.2).

The pattern formed on the Poincaré section of Fig. 13 (b)
strongly suggests a chaotic nature, as the orbit is confined to
a specific region in phase space (implying the presence of an
attractor) and no periodicity is evident. To verify that this re-
sponse is indeed chaotic, its leading Lyapunov exponent, λL,
was computed. As explained e.g. in [38], a positive value of
this quantity indicates that two initially close trajectories di-
verge exponentially fast, which is a signature of chaos. Thus,
letting δ (τ) represent the instantaneous distance between
these in phase space, we may write:

δ (τ)' δ (0)eλLτ (43)
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(a) Time series over 50 excitation periods.
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Fig. 13: Response at point B in Figs. 9 and 10.

Fig. 14 shows the time history of δ (τ) as obtained from
two response signals: the first one, corresponding to Fig. 13,
was computed for null initial conditions (position and veloc-
ity equal to 0), whereas a perturbation of magnitude 10−14

was added to initial position for the second one. Sensitivity
to initial conditions is clearly evidenced by the exponential
growth of the distance with time at a rate approximately equal
to λL = 0.1918. On the other hand, the distance can be seen
to saturate, since the trajectories pertain to an attractor of
fixed length and thus cannot separate indefinitely.
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Fig. 14: Distance between two signals with close initial con-
ditions.

5.2 Part 2: Symmetry and sub-harmonic isolas

Previous studies of this system focused on the two extreme
cases j̄ = 1 and j̄ = 0. There are two reasons for this: firstly,
from an experimental perspective, they are the simplest con-
figurations to implement. Fine-tuning the value of j̄ in prac-
tice is quite a delicate task, and extreme values are thus more
convenient. Secondly, from a phenomenological point of
view, it is well-known fact that asymmetry has the tendency
to promote bifurcation. Hence, if the objective is solely to
observe chaotic motions, it is the “most asymmetric” config-
uration which offers the optimal conditions. Yet, as observed
in the previous section, even the first period doubling of the
cascade is absent in the symmetric case, and so no chaos at
post-harmonic excitation frequencies may be observed by
this route. Therefore, asymmetry is a necessary condition for
period doubling. It should be noted that, generally speaking,
initially symmetric systems can have their symmetry bro-
ken through a regular BP and then undergo period doubling
along the asymmetric branches. However, for the parameter
intervals considered in this study, this behaviour was not ob-
served. An interesting question which immediately arises is
then: how asymmetric must the clearances be in order for
period doubling to be possible?

Table 2: Parameter values for Section 5.2.

ζ ᾱ p̄ K̄c

0.15 0.03 0.55 2.48
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For the remainder of this section, we set the parameters
at the values shown in Table 2, which correspond to the
characteristics of the current experimental setup. Figure 15
shows PD bifurcation tracking with respect to the symmetry
factor, starting from j̄ = 0, while Fig. 16 shows a projection
of this curve on the parameter plane (ω̄, j̄).

It is clear that j̄ has a very strong influence on period
doubling, since the first stability boundary is only defined
over a limited range of values: the bifurcation curve has a
single local extremum (ω̄, j̄) = (ω̄det, j̄det), whose concavity
is opposite to those observed while tracking PD bifurcations
with respect to other parameters. At this point, two PD bifur-
cations coalesce, but the associated sub-harmonic resonance
peak does not disappear: rather, it forms a closed loop which
is tangent to the main branch. A further increase in j̄, towards
symmetry, causes the loop to detach and form an isola. Of
course, one can also see the situation in the reverse way:
as the system strays further away from symmetry, an isola
approaches the main branch until merging at a codim-2 local
extremum of the PD stability boundary, localized by means
of the extended system presented in Sect. 3.5.

Thinking back to the theory of Sect. 3.6, this point should
be a LP when calculated on the augmented Fourier basis
TH

s (ωt). It can therefore be used, after changing bases, as
a starting point for the LP tracking algorithm with respect
to j̄ (step 4 of the algorithm of Sect. 3.6). This LP tracking
shows that, for any j̄ larger than the critical value j̄det, the sub-
harmonic branch detaches and continues to exist as an isola
over a certain range of j̄. The existance of LPs on the isolas
allows the use of bifurcation tracking, which in turn reveals
the presence a codim-2 local extremum at j̄ = j̄max where
the two branches coalesce and the isola collapses into a point
corresponding to a sub-harmonic isola centre. At this state,
the system is “critically symmetric”, so that the contribution
of the asymmetric harmonics from the nonlinear forces is just
important enough to induce bifurcation. For j̄ > j̄max, the
isola does no longer exist. From these observations, it results
that bifurcation tracking (LPs and PDs) is an efficient tool
which provides, with few computations, the curves delimiting
the regions of existence of 2-T periodic solutions as well as
2T-isolas. This information is very useful for choosing the
parameters of the experimental setup as shown in following
sections, and is of great importance in the larger context of
mechanical system design.

5.3 Global dynamics

Isolated sub-harmonic resonances have been shown to exist
for system (40) for certain parameter combinations and over
determined ranges of excitation frequency. Moreover, since
they contain a stable branch, they can theoretically be reached
by choosing appropriate initial conditions or by adding a
perturbation to a stable solution on the main branch. However,
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Fig. 15: Symmetry factor as tracking parameter.
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Fig. 16: Tracking of limit points from an isola merging point.
Region I (blue): 2T-periodic solutions.
Region II (green): 2T-isolas.

in practice, the basin of attraction associated to the isola can
be small compared to that of the T-periodic solution, in which
case it would be difficult to observe them experimentally.
To assess the robustness of the isolas, we have numerically
computed basins of attraction for fixed (ω̄, j̄) pairs within
their predicted range of existence, i.e. for j̄ ∈ [ j̄det, j̄max] as
shown in Fig. 16. For (non-dimensional) initial conditions
[x0, ẋ0] ∈ [−2,2]× [−2,2], the equation of motion (40) was
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integrated over several excitation periods until a steady state
was established. Using the absolute norm:

xmax = ‖x̄(τ)‖= max
τ=0,...,2π

{|x̄(τ)|} (44)

contour plots xmax = f (x0, ẋ0) were constructed. Fig. 17 shows
the results obtained for (ω̄, j̄) = (2.09,0.5).
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Fig. 17: Basins of attraction, showing coexistence of three
regimes for ω/ω0 = 2.09

Three basins are clearly visible, two of which correspond
to the low and high-amplitude regimes in the bi-stable zone
of the main resonance as in a typical Duffing-like oscillator.
The remaining basin is associated with the sub-harmonic
regime on the isola, as illustrated by Fig. 18. No attractor
seems to be particularly dominant, i.e., for random initial
conditions, the chances of finding any one of this regimes are
roughly equally likely, which means that these isolas must
be robust, thus observable. For completeness, Fig. 19 shows
the harmonic content of the three numerically calculated so-
lutions. As expected, the low-amplitude (non-resonant and
non-impacting) regime is mono-harmonic, the isolated one
is predominantly sub-harmonic and the large-amplitude, non-
linear resonant response shows slight harmonic distortion as
well as a static component due to asymmetry.
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Fig. 18: Frequency-response curve for j̄ = 0.5

5.4 Experimental sub-harmonic isolas

Knowing, from last section, that isolated sub-harmonic regimes
indeed exist for this system, they were sought experimentally.
The transverse displacement of the central mass is directly
measured by a LDA-05 laser vibrometer, whereas velocity
data is obtained a posteriori by finite differences.
Foremost, Fig. 20 shows the experimental frequency response
function in a neighbourhood of ω/ω0 = 2, obtained via the
Virtual Step-Sine (VSS) method. Briefly stated, a sine wave
is stepped through the frequency range of interest and the
ratio of input and output signals is displayed as the response
magnitude. It should be noted that this calculation is actually
equal to the ratio of the cross-spectrum and the reference
auto-spectrum, which means that only the fundamental har-
monic of the response is kept by this procedure. Hence, after
conversion to units of length and non-dimensionalization,
the quantity obtained and plotted in the vertical axis is de-
noted |X1|, and can be directly compared to the predicted
non-dimensional amplitudes of Fig. 18.

Two5 sets of data are plotted in Fig. 20. The solid line
corresponds to a usual stepping with increasing forcing fre-
quency, and no bifurcation is present. Then, starting from
a steady oscillating state within the predicted interval of
isola existence, the system was perturbed by a gentle tap,
and a transition to a different regime, with higher oscillation
amplitude and isolated from the main response curve, was
observed. Sine-stepping from this point yielded the dashed

5 The large-amplitude resonance peak seen in Fig. 18 could be ob-
served as well by applying a much stronger perturbation, but it was
omitted from the figure as it is of no interest to the phenomenon of
sub-harmonic isolas.
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Fig. 19: Frequency content for ω/ω0 = 2.09

line. Care must be taken in the interpretation of this figure:
even though it may resemble figures such as 6, where period
doubling happens on the main response branch, this is not
the case. Indeed, the main branch loses stability between
two PD bifurcations, and so the experimental stepping would
only capture one continuous, stable branch whose frequency

content changes qualitatively over an interval. In contrast,
here two distinct stable branches were captured.

Within the isola, the magnitude of X1 drops. However,
as shown in Fig 19 (b), the dominant frequency component
should be not the fundamental harmonic but the 1

2 -th one
on the predicted isola. Likewise, the response on the isola
should have a greater amplitude than the harmonic one on
the main response curve.
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Fig. 20: Fundamental harmonic of the experimental fre-
quency response. Coexisting regimes for ω ∈ [2.03,2.51].

For a fixed frequency of ω/ω0 = 2.17, represented by
the vertical line in Fig. 20, Fig. 21 shows time series of the
two output regimes, over two excitation periods6. Clearly, the
response on the isola it at half the excitation frequency, and
in agreement with the predicted quantitative and qualitative
computations from Figs. 18 and 19.

6 Concluding remarks

In this work, an original extended system for calculating
period-doubling bifurcations was proposed. This includes
their detection, localisation and tracking, as well as a simple
algorithm for switching to sub-harmonic branches. Moreover,
a characterisation of local extrema of bifurcation curves was
proposed in a general form and then specialized to the case
of period doubling, where it is an indicator of sub-harmonic
isola formation. Based on these concepts, a bifurcation study

6 In terms of non-dimensional quantities, the duration of two excita-
tion periods is 4π .
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Fig. 21: Experimental time series, ω/ω0 = 2.17. Labels cor-
respond to points in Fig. 20.

was carried out on a forced nonlinear oscillator with clear-
ances. While fairly simple, it is rich in bifurcation phenom-
ena and thus offers a satisfying test case for our algorithms.
Besides verifying the success of the latter in reproducing
and explaining the results of previous studies, the birth of
sub-harmonic isolas for the test system at a codimension-2
extremum point was explained and quantified, which is an
originality of this paper. Asymmetry was identified as the
main factor responsible for isola birth and merging with the
main response curve, at which point period-doubling bifur-
cations appear. Finally, experimental results were presented
which showed agreement with numerical predictions.

Appendix A The Algebraic Branching Equation

At a singular point (X0,ω0), the Jacobian has a simple rank
deficiency, which is equivalent to the existence of a single
right eigenvector φ such that:

RX
0
φ = 0 (45)

and a single left eigenvector ψ verifying:

ψ
∗RX

0 = 0∗ (46)

If, in addition, R0
ω belongs to the image of RX

0, the tangent
is not uniquely defined at this point: this is the condition for
a BP to occur. In this case, we also have:

ψ
∗R0

ω = 0 (47)

Note that this implies the existence of a unique vector v such
that:[

RX
0 R0

ω

ψ∗ 0

](
v
1

)
=

(
0
0

)
(48)

Now, at any point of the frequency-response curve, the fol-
lowing equation holds according to (4):

RX∆X+Rω ∆ω = 0; (49)

Moreover, at a bifurcation point, this equation admits two
solutions (∆X,∆ω)1,2 corresponding to the intersecting tan-
gent vectors. One of these, say (∆X1,∆ω1), is already known
from the previous continuation step, so:

RX
0
∆X1 =−R0

ω ∆ω1 (50)

Taking into account (45) and (50), it is straightforward to
show that the second tangent vector can be written as:

(∆X2,∆ω2) = (φ +β∆X1,β ) (51)

where β ∈R is a constant to be determined as follows. Since
we are using arclength s as our continuation parameter, X =

X(s) and ω = ω(s). Hence ∆X = dX
ds and ∆ω = dω

ds . We
differentiate (49) with respect to arclength, pre-multiply it by
ψ∗ and simplify to obtain:

ψ
∗ ((RX∆X)X∆X+RXω ∆X∆ω +Rωω ∆ω∆ω) = 0 (52)

Evaluating derivatives at the bifurcation point and substi-
tuting the components of the new tangent (∆X2,∆ω2) into
this expression, we get the following second-order algebraic
equation for β :

aβ
2 +bβ + c = 0 (53)

a = ψ
∗ ((RX

0
∆X1)X∆X1 +2R0

Xω ∆X1 +R0
ωω

)
b = ψ

∗ ((RX
0
φ)X∆X1 +R0

Xω φ
)

c = ψ
∗(RX

0
φ)Xφ

Eq. (53) is the Algebraic Branching Equation, whose so-
lutions (β1,β2) yield the directions tangent to bifurcating
branches. Notice that, if c = 0, one of the roots is null; this
“vertical” tangent (in the sense that ∆ω = 0) is characteristic
of a pitchfork bifurcation, while the case c 6= 0, with two
transversally intersecting branches, is a transcritical one.
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