N
N

N

HAL

open science

Towards an Autonomic and Distributed Device
Management for the Internet of Things
Neil Ayeb, Eric Rutten, Sebastien Bolle, Thierry Coupaye, Marc Douet

» To cite this version:

Neil Ayeb, Eric Rutten, Sebastien Bolle, Thierry Coupaye, Marc Douet. Towards an Autonomic and
Distributed Device Management for the Internet of Things. FAS*W 2019 - IEEE 4th International
Workshops on Foundations and Applications of Self* Systems, Jun 2019, Umea, Sweden. pp.246-248,
10.1109/FAS-W.2019.00065 . hal-02295409

HAL Id: hal-02295409
https://hal.science/hal-02295409

Submitted on 24 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02295409
https://hal.archives-ouvertes.fr

Towards an autonomic and distributed device
management for the Internet of Things

Neil Ayeb
Orange
Meylan, France

Eric Rutten

Abstract—Device Management (DM) is currently industrially
deployed for LAN devices, phones and workstation management.
Internet of Things (IoT) devices are massive, dynamic, hetero-
geneous, and inter-operable. Existing solutions are not suitable
for IoT management. This doctoral research in an industrial
environment addresses these limitations with a novel autonomic
and distributed approach for the DM.

Index Terms—autonomic computing, device management,
firmware update, configuration, distribution, internet of things.

I. CONTEXT AND MOTIVATION
A. Motivation: DM for the loT

ABIResearch affirm that Device Management (DM) of the
Internet of Things (IoT) will grow to US$20.5 Billion by 2023
[1]. DM consists of remote and potentially massive operations
on a fleet of deployed devices (e.g., home gateways, Set-top-
boxes, IoT gateways, sensors ...). It is currently massively
used by Internet Service Providers (ISP) for LAN devices
management and industrials for smartphones and workstations
management.

Main features of DM are the following

o Provisioning: initial and ‘in-life’ setup and configuration

« Monitoring: probe data pushing

o Assistance: remote troubleshoot

« Maintenance: firmware updates

IoT relies on massive deployment of connected devices.
This implies several constraints such as high number of
devices, heterogeneity their types and capabilities and dynamic
environments. Challenges emerge from IoT DM:

o Heterogeneity: Current use-cases are targeting a small
and fixed set of device types. For instance, ISPs usu-
ally manage consumer premises equipments (CPE) such
as home gateways and set-top-boxes. IoT implies that
numerous device types will be dynamically managed by
multiple actors (owners or users).

o Dynamicity: Device Management is commonly designed
to be static and ad-hoc (i.e., static operation-rules, behav-
ior, device targets). IoT requires a more state-aware DM
(e.g., device internal and external environments).

« Interoperability: Usual DM supposes that for each device
type and its management platform there is no need for
external communication or coordination. This assumption

Academic Supervisor:

INRIA / LIG: Ctrl-A
firstname.lastname @orange.com Montbonnot-Saint-Martin, France
firstname.lastname @inria.fr

Industrial Supervisors:
Sebastien Bolle, Thierry Coupaye, Marc Douet
Orange
Meylan, France
firstname.lastname @orange.com

should be reconsidered in an IoT context with the pro-
liferation of over the top (OTT) services deployed on
non-fully managed devices.

o Scalability: Current DM is based on centralized designs
that are manually configured [2] [3] [4] [5]. IoT’s high
number of devices [6] implies a significant increase of
monitoring data sent to the DM platform. Thus distribut-
ing these will allow more efficient network usage and
lower reaction times to errors or alerts.

B. Limitations

1) Classical DM solutions limitations: Administrators, in-
dustrials, and service providers resort to various DM solutions
depending on their device target. ISP’s and LAN device
manufacturers tend to use TR-069 based DM platforms such as
GenieACS [7], FreeACS [8] or internally developed solutions.

Industrials utilizes Mobile Device Management solutions [3]
[4] and workstation administration tools to remotely manage
their device fleets (phones, tablets, servers, workstations...).
For instance, Microsoft System Configuration Manager [5]
allows the aforementioned devices to be managed via a single,
yet closed, non-standardized and mono-actor platform.

These solutions rely on manual configuration and driving
by a system administrator. Experience reports from industrials
shows that even with a small and fixed set of device types,
these solutions are complex to operate.

2) Industrial IoT platforms DM limitations: Commercial
IoT platforms such as AWS IoT [9], Azure IoT Hub [10],
or Orange Live Objects [11] claim to be able to execute
an operation on a massive float of devices with conditions
on their state (values of their data-model). Actions targets
and conditions are still managed by the administrator via a
platform-wide dashboard. To the extent of our knowledge,
these commercial platforms do not include an operation model
allowing granular tracking of the execution. Such mechanisms
would help (in case of operation failure) identifying what
step failed and aborting operations on pending and on-going
devices.

Current industrial solutions are centralized and designed to
manage a small and static set of devices. These solutions are
driven by a single actor’s administrator. With IoT’s challenges
(i.e., heterogeneity, dynamicity, interoperability, scalability)

complexity will be challenging system administrators making
them less efficient in DM solutions configuration and opera-
tion. Moreover, centralized designs are not adequate to manage
massive remote DM operations and their granular tracking.

II. OBJECTIVES & CONTRIBUTION
A. Objectives

1) Automation: In order to tackle complexity challenge,
automation is used as a means of abstracting a system’s gran-
ular functioning details and system initiated action triggering.
Autonomic Computing (AC) is defined by [12] as the self-
management capabilities of a system. AC purpose is address-
ing the increasing complexity of the system administration.
An autonomic system can react and adapt to external and
internal changes by reconfiguring itself. This behavior has
been traditionally within the responsibilities of the system
administrator. AC allows to reduce the complexity of system
management via less interactions with the administrator and
complexity abstraction. The autonomic behavior of a system is
enabled via autonomic managers dispatching and coordination
[13] [14].

2) Distribution: In order to tackle the scalability issues
of the static and centralized design of currently used DM
solutions, it is aimed to dynamically distribute the platform
and its managing system. Such design allows more efficient
usage of the infrastructure (network, computing and memory
capabilities). For instance, monitoring data will be pushed to a
geographically close node instead of the existing cloud hosted
storage. Besides, having parts of the DM platform closer to
managed devices allow better reactivity, higher privacy, and
enhanced troubleshooting.

B. Contribution

1) Originality: DM Platforms are not designed with the
IoT in mind. Main solutions target LAN devices, phones or
workstations. Even though IoT Platforms (e.g., Azure, AWS,
Live Objects) include a DM module, they are centralized and
manually configured. Distribution for the IoT is mainly about
data and services are rarely tackles DM challenges.

2) Adequacy: In order to address the complexity brought
by heterogeneity, automation seems adequate. For dynamicity,
loop-based control and automation is identified. Interoperabil-
ity is tackled with model-based aspect of DM automation.
Scalability is treated via distribution.

III. METHODOLOGY & EARLY RESULTS
A. Methodology

1) Operation automation and tracking: This loops objec-
tive is to keep the fleet up to date, potentially considering
interdependencies between devices. It consists of monitoring
the device fleet states (i.e., internal and external environments),
then computing if DM operations are required. An admin-
istrator still can manually trigger these operations. Then it
reschedules or modifies the pending or on-going operations if
needed. Finally, it keeps tracking the execution of the pushed
operations for error management policies enforcement (e.g.,

stop applying a faulty operation, rollback, alert triggering).
The control loop can be operating at a fixed frequency (using
parameters such as: amount of on-going operations, fleet size,
device type...) or event-triggered.

Via this autonomic manager, the DM platform is going
towards self-operation and self-healing. Indeed, beside the
traditional configuration by the administrator, the platform can
trigger DM operations in an autonomous manner. It is also able
to track operations and react to errors unlike existing designs
where error detection and reaction is not fully automated and
tracking manually realized by the administrator.

2) DM platform and control resource usage regulation:
This loops objective is to scale up and down depending on
high level objectives and load. It monitors the infrastructure
used to operate the DM platform and its autonomic managers
(e.g., network load, hops, memory and CPU usage). Based on
KPIs received from the platform administrator, reconfiguration
will be considered and if needed applied. Actual enforce-
ment of the reconfiguration plan is executed via DM servers
(de)instantiation or control loops distribution or centralization.
For this manager we will consider model-based appraoches,
related to application of control theory [15].

3) Multi-loop coordination and distribution: The two iden-
tified managers need interaction and coordination either via a
higher global manager (hierarchical) or via direct connection
(e.g., master/slave, local coordination, shared elements) [13]
[14] [16].

B. Early results

A first proof-of-concept that has been implemented and is
composed of the following entities:

« Two DM Clients (representing two devices) with different
battery level and firmware version.

o A single DM Server that manages both devices.

« An autonomic manager which manages the DM platform.

For the implementation, we used Python [17] for the auto-
nomic loop design and the open-source project Eclipse Leshan
[18] that we modified for the client and the server.

Leshan project is a Java implementation of an OMA
LightWeight M2M [19] DM Protocol, client and server
(among other components). The LWM2M Client has been
modified to simulate a charging device and an always plugged-
in device.

A device that is compliant (state-wise) to a pushed operation
condition will be updated, while the other will stay on a
"pending’ state until compliance or operation expiry.

IV. FUTURE WORK

Next steps consists of multiple decentralized DM instance
and distributed control and current loop elaboration and in-
teraction. Besides, modeling work is currently on-going to
achieve model-based control [15]. This will allow interoper-
ability, granular DM operation tracking and troubleshooting,
and scalability. Distribution criteria (e.g., geoloc, topology,
load...) will also be studied.

REFERENCES

[1] “IoT Device Management Revenues to Climb to US$20.5 Bil-
lion by 2023”. Available: https://www.abiresearch.com/press/iot-device-
management-revenues-climb-us205-billion-2023/ [Accessed: 20-Feb-
2019]

[2] Broadband Forum, “CPE WAN Management Protocol, Issue: 1 Amend-
ment 6,(Technical Report 69)”, March 2018.

[3] “Citrix XenMobile” [Online]. Available: https://docs.citrix.com/en-
us/xenmobile.html [Accessed: 28-Feb-2019].

[4] “VMware AirWatch” [Online]. Available:
https://docs.vmware.com/en/VMware-AirWatch/index.html [Accessed:
27-Feb-2019].

[5] “Microsoft System Center Configuration Manager” [Online].
Available: https://www.microsoft.com/en-us/cloud-platform/system-
center-configuration-manager [Accessed: 10-Mar-2019].

[6] Gartner, “https://www.gartner.com/imagesrv/books/iot/iotEbook_digital.pdf,”
[Accessed: 20-Feb-2019]

[71 “GenieACS” [Online]. Available: https://github.com/genieacs/genieacs/
[Accessed: 28-Feb-2019].

[8] “Freeacs” [Online]. Available: https://github.com/freeacs/freeacs [Ac-
cessed: 27-Feb-2019].

[9] “AWS IoT Device Management Documentation.” [Online]. Available:
https://docs.aws.amazon.com/iot-device-management/index.html.
[Accessed: 28-Feb-2019].

[10] “Azure IoT Hub Documentation - Tutorials, API Reference.” [On-
line]. Available: https://docs.microsoft.com/en-us/azure/iot-hub/. [Ac-
cessed: 28-Feb-2019].

[11] “Orange Live Objects.” [Online]. Available: https:/liveobjects.orange-
business.com/ [Accessed: 28-Feb-2019].

[12] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41-50, Jan. 2003.

[13] D. Weyns, B. Schmerl, V. Grassi, S. Malek, R. Mirandola, C. Prehofer,
J. Wuttke, J. Andersson, H. Giese, K. M. Goschka, “On Patterns for
Decentralized Control in Self-Adaptive Systems,” Software Engineering
for Self-Adaptive Systems II, pp. 76-107, 2013.

[14] A. Al-Shishtawy, V. Vlassov, P. Brand, and S. Haridi, “A Design
Methodology for Self-Management in Distributed Environments,” in
2009 International Conference on Computational Science and Engineer-
ing, Vancouver, BC, Canada, 2009, pp. 430-436.

[15] M. Litoiu, M. Shaw, G. Tamura, N. M. Villegas, H. A. Miiller, H. Giese,
R. Rouvoy, E. Rutten, “What Can Control Theory Teach Us About
Assurances in Self-Adaptive Software Systems?,” Software Engineering
for Self-Adaptive Systems III. Assurances, pp. 90-134, 2017.

[16] A. N. Sylla, M. Louvel, E. Rutten, and G. Delaval, “Design Framework
for Reliable Multiple Autonomic Loops in Smart Environments,” in 2017
International Conference on Cloud and Autonomic Computing (ICCAC),
2017, pp. 131-142.

[17] “Python Software Foundation.” Python Language Reference, version 3.7.
Available at http://www.python.org

[18] “Eclipse Leshan.” [Online]. Available: https://github.com/eclipse/leshan
[Accessed: 28-Feb-2019].

[19] “OMA Lightweight M2M.” [Online]. Available:
https://www.omaspecworks.org/what-is-oma-specworks/iot/lightweight-
m2m-lwm2m/ [Accessed: 28-Feb-2019].

