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Abstract

We study the flow of a thin layer of fluid over a flat surface. Commonly, the 1-D Shallow-water or Saint-
Venant set of equations are used to compute the solution of such flows. These simplified equations may
be obtained through the integration of the Navier-Stokes equations over the depth of the fluid, but their
solution requires the introduction of constitutive relations based on strict hypothesis on the flow régime.
Here, we present an approach based on a kind of boundary layer system with hydrostatic pressure. This
relaxes the need for closure relations which are instead obtained as solutions of the computation. It is
then demonstrated that the corresponding closures are very dependent on the type of flow considered, for
example laminar viscous slumps or hydraulic jumps. This has important practical consequences as far as
the applicability of standard closures is concerned.

Keywords: Shallow Water, Saint-Venant, boundary layer flows.

1. Introduction

The ”shallow water equations” or ”Saint-Venant Equations”, from the author of the first proposition [1],
are a classical model useful for a large variety of practical configurations in coastal and hydraulic engineering.
For example, they are used to predict flows in rivers, in open channels, in lakes, in shallow seas. Floods are
simulated with the shallow water equations, as well as tides and many other environmental applications (see
for instance Chanson’s book [2]). The depth averaging strategy to obtain them is also used for many non-
Newtonian flows [3] useful in industrial (concrete) or environmental applications (mud flows, avalanches).
Moreover, the Saint-Venant equations are an hyperbolic system analogous to compressible gas flow so that
the problem has some universality [4].

Nevertheless, the Saint-Venant equations are based on vertical averaging, which gives rise to several10

problems as it over-simplifies the physics. One of the approximation comes from the hypothesis of small
depth compared to the length of the phenomena. This fundamental hypothesis is not relaxed here, but
it is known that if depth increases, dispersive effects appear (the celerity of the waves depends on their
wavelength [5]). What will be discussed here is the fact that one needs strong hypothesis on the shape of
the velocity profile and on the wall shear stress to close the system of equations. Indeed, the Saint-Venant
equations were originally proposed on a phenomenological basis. In [6] an asymptotic analysis is proposed
to derive them from the 2D Navier–Stokes equations with mixed boundary conditions. In that derivation,
only the laminar case is considered and the derived one-dimensional unclosed equations are closed primarily
through a simple constant velocity assumption. Since then, while some attempts have been made to justify
the different approximations and to point out more general non-constant closures [7], most often the constant20

closure is retained in practical computations [8]. All the numerical schemes set the so called Boussinesq
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coefficient (which accounts for the non-uniform velocity profile in the transverse direction) to one; recently,
[9] proposed to artificially increase the Boussinesq coefficient in order to reduce oscillations in transcritical
flows or unsteady flows over frictional beds. The influence of the modelling of the wall shear stress has been
recently discussed for jumps in water and granular flows, where closure is very different. [10].

Furthermore, the range of application of the Saint-Venant model is notably limited because it does not
describe the vertical profile of the horizontal velocity. For this reason, the multilayer approach to the Shallow
Water equations has been developed, and in particular in the form of numerical schemes for a set of Saint-
Venant-like systems. It consist in dividing the liquid depth in layers, each one described by its own height
and velocity [11, 12], thus modelling the fluid as composed of layers of immiscible liquids. Mass exchanges30

between layers have also been considered[13, 14, 15]. From a numerical point of view, the global stability of
weak solutions for the method proposed in [13] has been demonstrated in [16], while new efficient techniques
have been recently developed [17, 18, 19]. Concerning applications beyond Newtonian fluids, a multilayer
method with µ(I) rheology and side walls friction has also been derived [20]. It is important to note that
since these multilayer schemes have been developed as mathematical / numerical schemes, less attention has
been paid to the physical boundary conditions and the relevant friction coefficients. An alternative method
is also worth mentioning, consisting in performing a gradient expansion of the depth-averaged Navier–Stokes
equations which gives a system of equations for the depth, the flow rate and an additional variable which
accounts for the deviation of the wall shear from the shear corresponding to a parabolic velocity profile
[21, 22]. This approach has had some success in particular in the analysis of the motion of viscous liquid40

films.
Here we follow a different path to present an unified picture of the problem. We hope in this way to shed

some light on the links between different approaches, which are either more physically or mathematically
grounded. Starting from the Saint-Venant model, we would like to address the issue of the value of the
Boussinesq coefficient. In order to get information on this coefficient, we deal with a reduced system
obtained from the Navier–Stokes equations using an asymptotic thin-layer expansion, which results in fact
in the classical boundary layer or Prandtl equations. From a conceptual point of view, it means that
the domain may be divided into two physically separated regions: an ideal fluid and a viscous boundary
layer [23]. The equations we obtain asymptotically, are actually the same already proposed to tackle the
problem of the standing hydraulic jump on phenomenological grounds [24], when considering the limit of50

infinite Reynolds number. In particular, Higuera [25, 26] was the first to use these boundary layer equations
to study a viscous hydraulic jump. This is an important test case that we shall repeat in the present work
with a different numerical approach.

This simplified set of boundary layer or Prandtl equations will allow to compute directly the shape factor
and the wall shear stress, whereas they are parameters in standard Saint-Venant approaches. Indeed, from a
practical point of view, one success of the Shallow Water equations is its ability to describe a standing jump.
This is known as Bélanger equations [27]. Indeed, as shown by Watson [28], the position of the standing
jump within the Saint-Venant description depends on the modelling of viscous effects. Many authors have
tried, since then, to understand the structure of the radially-symmetric or 2D hydraulic jump [29, 30, 31]
using various techniques issued from simplified boundary layer theory [32, 29, 33]. At the same time, thanks60

to 2D Navier–Stokes computations, Dasgupta et al. [34] were able to simulate completely the problem, while
a similar analysis was performed for a flow over a bump [35]. In this work, we will characterise clearly what
is the actual friction in terms of the Boussinesq coefficients in order to assess the validity of the different
hypothesis usually adopted together with the Saint-Venant model. Besides, similar closure problems are
encountered in different physical phenomena: granular flows when modelled by a Savage-Hutter depth-
averaged model [36]; or flows in arteries when modelled by averaging over the circular cross section. Note
that the same idea has already been applied for these problems [37, 38, 39].

Starting from a physically-sound model, we need a numerical scheme to discretize and simulate it. It
turns out that the natural scheme for our model is the one proposed for the multi-layer Saint-Venant
equations [13, 14] with the introduction of an appropriate boundary condition that allows to compute the70

wall shear stress without the input of friction coefficients. This is fundamental for the proper description of
transcritical flows or hydraulic jumps where errors in the quantification of the bottom friction and in the
reconstruction of the vertical velocity profile can lead to instabilities or overestimation of the dissipation.
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The aim of this paper is thus to present in a general way a theoretical boundary layer model coupled
with a versatile numerical model [13, 14]. The relation between the boundary layer model and the numerical
multi-layer schemes developed for the Saint-Venant equations will therefore be emphasized. The ensemble
constitutes a general framework applicable to a wide range of phenomena. For instance, a boundary layer
interacting with an external flow may lead to a ”jump” in several different contexts [40]: it was first observed
by [41] for compressible flows, and has been identified by [42, 43, 44] for boundary layer mixed convection
flows. This behaviour often corresponds to a ”triple deck” structure [45, 46]. To support this view, we80

will recompute the Higuera solution, and we will present several other similar test cases while comparing
the numerical solutions with the analytical ones whenever possible. We also discuss in some details the
numerical scheme used to solve the equations via the free solver Basilisk [47].

The paper is organised as follows: in the first section, the Navier–Stokes equations are presented with
their thin layer approximation leading to the Reduced Navier–Stokes set, which are Prandtl equations with
specific boundary conditions and hydrostatic pressure. This system is integrated over the depth to obtain
the Saint-Venant equations. Then, in the second section, the numerical ”multilayer technique” is presented
to solve the system. In the third section, some viscous slump flows are presented (Huppert slumps), then
the Higuera standing jump solution is re-simulated. Finally, the influence of a bottom slope on the position
of the standing jump is presented.90

2. Governing equations

2.1. Navier–Stokes equations

The overall multiphase flow problem of two fluids (say a liquid and a gas) with a separating free surface
over a given bottom may be simplified if one of the fluid is much heavier than the other. In this case,
free surface flow phenomena can be fully described by the incompressible Navier–Stokes equations for the
heavy fluid only, with proper boundary conditions at the interface. For simplicity we will consider a two-
dimensional flow with x the horizontal axis and z the vertical axis, pointing upward. The location of the
free surface is denoted as η(x, t), and the position of the bottom (or bathymetry) is denoted as zb(x), so
that the depth is h = η − zb. Across the depth the Navier–Stokes equations can be written as:

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν0∇2u + f , ∇ · u = 0, (1)

where u = (u,w) is the velocity field, p the pressure, ν0 the kinematic viscosity, ρ the mass density ( µ = ρν0

is the dynamic viscosity), and f = −gẑ the gravitational force. The two boundary conditions closing the
system of equations (1) are the kinematic boundary condition at the free surface

∂η

∂t
+ us

∂η

∂x
− ws = 0, (2)

with no tangential stress at the surface and continuity of the normal stress, and the impermeability condition
at the bottom (and no slip for viscous flow)

ub
∂zb
∂x
− wb = 0. (3)

The subscripts s and b denote quantities at the free surface and at the bottom respectively. Let us rescale
the equations (1) introducing two characteristic dimensions h0 (typical depth) and L (a typical evolution
length), in the z and x direction respectively, a typical wave amplitude as and a characteristic wave speed
c0 =

√
gh0. With these quantities we can define two dimensionless parameters:

ε =
h0

L
and δ =

as
h0

;

we do not take into account the possibility of dispersion leading to solitary waves [5, 48]. The classical
Saint-Venant derivation assumes the characteristic length in the vertical direction z to be smaller than in
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the horizontal direction, i. e. ε � 1, and δ = O(1) which allows to produce jumps. On the contrary, the
Airy linearised wave theory on arbitrary depth requires ε = O(1) and δ � 1. With the scales defined above
it is possible to make dimensionless all the quantities in the Navier–Stokes equations:

x̃ =
x

L
=
εx

h0
, z̃ =

z

h0
, t̃ =

εc0t

h0
, ũ =

u

c0
and w̃ =

w

εc0

where scales of time and transverse velocity are chosen assuming that inertial terms are dominant over
viscous ones. For pressure, assuming the reference pressure to be zero at the surface, the following scales
are taken:

p̃ =
p

ρgh0
, η̃ =

η

h0
, h̃ =

h

h0
,

Thus the rescaled system of Navier–Stokes equations is:

∂ũ

∂x̃
+
∂w̃

∂z̃
= 0, (4a)

∂ũ

∂t̃
+
∂ũ2

∂x̃
+
∂ũw̃

∂z̃
= −∂p̃

∂x̃
+

µ

ερc0h0

(
∂2ũ

∂z̃2
+ ε2 ∂

2ũ

∂x̃2

)
, (4b)

ε2

(
∂w̃

∂t̃
+
∂ũw̃

∂x̃
+
∂w̃2

∂z̃

)
= −∂p̃

∂z̃
− 1 + ε

µ

ρc0h0

(
∂2w̃

∂z̃2
+ ε2 ∂

2w̃

∂x̃2

)
. (4c)

Note that the topography variations are supposed compatible with the long-wave hypothesis:
∂zb
∂x

= ε
∂z̃b
∂x̃

.

Note as well that the Froude number is one by construction, since we are considering flows with a single
velocity scale. The velocity ũ can still be smaller or larger than one, as a result of the computation.

2.2. Reduced Navier–Stokes equations in the boundary-layer approximation

Since we have assumed that ε << 1, equations (4) can be simplified through elimination of the terms
of order O(ε) and, defining Reynolds number Re = ερc0h0/µ which may be large or small (but not smaller
than ε), gives:

∂ũ

∂x̃
+
∂w̃

∂z̃
= 0, (5a)

∂ũ

∂t̃
+
∂ũ2

∂x̃
+
∂ũw̃

∂z̃
= −∂p

∂x̃
+

1

Re

∂2ũ

∂z̃2
, (5b)

0 = −∂p
∂z̃
− 1 (5c)

This system of equation has the following boundary conditions at the free surface z̃ = z̃b + h̃(x̃, t̃), namely
velocity of interface, reference pressure, and no shear stress:

w̃ =
∂η̃

∂t
+ ũ

∂η̃

∂x̃
, p̃(x̃, z̃ = z̃b + h̃(x̃, t̃)) = 0,

∂ũ

∂z̃
= 0, (6)

and at the solid bottom z̃ = z̃b there is the no-slip boundary condition for both ũ = 0 and w̃ = 0. The set
of equations (5a-5c) are the Prandtl equations for boundary-layer flows, and for this reason we call them
Reduced Navier–Stokes Prandtl equations (RNSP). Together with the above boundary conditions, they are
the system which we employ in this study.100
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2.3. RNSP equations with Prandtl transposition theorem

Note that the classical Prandtl transposition theorem may be used here [49]; it consists in changing z̃ in
z̃− z̃b, while ũ is unchanged, and w̃ is replaced by w̃− ∂z̃b

∂x̃ ũ. With this transformation, the no-slip boundary

condition is at z̃ = 0. The pressure term − ∂p̃
∂x̃ changes to (using the chain rule derivative and 5c):

−(
∂p̃

∂x̃
− ∂z̃b
∂x̃

∂p̃

∂ỹ
) = −∂p̃

∂x̃
− ∂z̃b
∂x̃

.

Hence the momentum equation reads:

∂ũ

∂t̃
+
∂ũ2

∂x̃
+
∂ũw̃

∂z̃
= −∂p̃

∂x̃
− ∂z̃b
∂x̃

+
1

Re

∂2ũ

∂z̃2
, (7)

where z̃ = 0 is now the bottom and z̃ = h̃ the free surface.

2.4. Shallow Water or Saint-Venant equations

The set of equations (5a)-(5c) can now be integrated over the depth using Leibniz rule and boundary
conditions to obtain the system linking the two variables (Q̃, h̃):

∂h̃

∂t̃
+

∂

∂x̃

∫ η

zb

ũdz̃ = 0, (8a)

∂

∂t̃

∫ η

zb

ũdz̃ +
∂

∂x̃

∫ η

zb

ũ2dz̃ = −h̃∂h̃
∂x̃
− h̃∂z̃b

∂x̃
− 1

Re

(
∂ũ

∂z̃

)
b

, (8b)

where we recall that h̃ = η̃ − z̃b. The mass flow rate is then

Q̃ =

∫ η̃

z̃b

ũ dz̃. (9)

Thus, a closed 2D problem has been transformed into a not-closed 1-D problem. Therefore, an hypothesis

on the shape of the profile is required to obtain a relation between the unknowns (
∫ η̃
z̃b
ũ2 dz̃, ∂ũ

∂z̃ |b) and the

variables (Q̃, h̃). This allows to close the problem. Let us define τ̃b the bottom stress, or wall shear stress,
and Γ the shape factor coefficient, or Boussinesq coefficient as:

τ̃b =
1

Re

(
∂ũ

∂z̃

)
b

, Γ =
h̃
∫
ũ2dz̃

(
∫
ũdz̃)2

. (10)

In general, these quantities are functions of x, where the integral
∫
·dz̃ is a short hand for integration from

the bottom to the free surface. The main hypothesis for Saint-Venant models is to suppose that the velocity
profile has always the same ”shape” in the longitudinal direction x̃, so that Γ is supposed to be constant.
The previous equations then read

∂h̃

∂t̃
+
∂Q̃

∂x̃
= 0, (11a)

∂Q̃

∂t̃
+

∂

∂x̃

(
Γ
Q̃2

h̃
+
h̃2

2

)
= −h̃∂z̃b

∂x̃
− τ̃b (11b)

in which τ̃b has still to be written as a function of (Q̃, h̃) and Γ is a constant. If one considers a steady viscous
homogeneous flow in x̃ with a constant pressure gradient, the solution of (5a)-(5c) is a half-Poiseuille (Nusselt

film solution): the shape is ũp = 3
2 z̃(2− z̃). This profile has the following characteristics:

∫ 1

0
ũpdz̃ = 1 and
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∫ 1

0
ũ2
pdz̃ = 6

5 , and the slope at the wall is ∂ũp/∂z̃|0 = 3. This gives the final closure (Boussinesq and friction
coefficients) for laminar flows:

Γ =
6

5
and τ̃b =

3

Re

Q̃

h̃2
.

For turbulent flows, an heuristic approach is necessary. In this framework, equations have to be meant
as statistical ones, and hence Q̃, h̃ represent the statistical averages over many realisations of the flow [50].
Moreover, since the higher the Re number the flatter the velocity profile, it is usually assumed to be a simple
plug-flow, which corresponds to Γ = 1. Furthermore, following Prandtl analysis, the friction is taken to be
proportional to the square of the mean velocity (Q̃/h̃) with a coefficient cf/2 proportional to Re−1/4 (and
maybe function of the bottom rugosity, see Schlichting’s book [49]). This gives the following closure for
turbulent flows:

Γ = 1 and τ̃b =
cf
2

Q̃2

h̃2
,

(see [51] for an example with a transition from one to the other model in the Shallow Water approximation).
This kind of closure deserves a critical assessment. In particular, the hypothesis underlying these closures

cannot be general. For instance, Watson [28] found a laminar self-similar solution of (5a)-(5b)-(5c) with
no pressure gradient (steady flow, large velocity). This solution comes from a balance between inertia and
viscosity only, it gives a linear profile in x for h and a velocity profile. The associated closure is:

Γ = 1.25697 and τ̃b =
2.2799

Re

Q̃

h̃2
.

This shows clearly that, in general, it is necessary to solve eqs. (5a)-(5c) to directly compute the correct
coefficients Γ and τ̃b.

3. Multilayer Strategy

3.1. Motivation

The proposed system (5a)-(5b)-(5c) with its boundary and initial conditions can be written back with
dimensions:

∂u

∂x
+
∂w

∂z
= 0, (12a)

∂u

∂t
+
∂u2

∂x
+
∂uw

∂z
= −g ∂h

∂x
− g ∂zb

∂x
+

∂

∂z

(
ν
∂u

∂z

)
, (12b)

where we have dropped the hydrostatic pressure equation. Note that the viscosity ν is in fact not necessarily
a constant ν0 (which is the case for Newtonian flows) but may be a function of the fields for non-Newtonian
flows. For example for Bingham flows with a yield stress τ0, the equivalent viscosity is variable and is such
that:

ν =

(
(τ0/ρ)
∂u
∂z

+ ν0

)
.

For granular µ(I) flows [38, 20, 37] (see details on definition of µ(I) there):

ν =

(
(µ(I)p/ρ)

∂u
∂z

)
.

For a turbulent flow a turbulent viscosity may be used [52], for example a Prandtl mixing length model [49]:

ν = ν0 + κz2 ∂u

∂z
,

with κ = 0.41 the Von Kármán constant. It is straightforward to generalise to any other viscous non-110

Newtonian laws, for example Herschel–Bulkley or power laws [3, 37].
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z

x
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h(x,t) h1(x,t)

h2(x,t)

h3(x,t)

h4(x,t)

u4(x,t)

u3(x,t)

u2(x,t)

u1(x,t)
zb(x)

z1+1/2(x,t)

z2+1/2(x,t)

z3+1/2(x,t)

z4+1/2(x,t)

Figure 1: Sketch of the multilayer discretization, N superimposed layers of thickness hα with the horizontal velocity uα. Figure
adapted from [13].

3.2. Interpretation as a superposition of layers

System (12a)-(12b) with the boundary conditions (3) is then discretized using the ideas of Audusse et al.
[12, 13]. The total fluid depth is divided in N superposed layers each with its own height hα and vertically
averaged horizontal velocity uα. Each layer is advected by the flow with mass exchange across the layers as
shown in figure 1. The height hα is a fraction of the total height h:

lαh = hα with

N∑
α=1

lα = 1, so that h =

N∑
α=1

hα.

The vertical position of the interface between the layers is given by:

zα+1/2(x, t) = zb +

α∑
j=1

hj(x, t) (13)

and the mean horizontal velocity in each layer uα is defined as:

uα(x, t) =
1

hα

∫ zα+1/2

zα−1/2

u(x, z, t) dz

where uα+1/2 = u(x, zα+1/2, t) denotes the velocity at each interface. This discretization has been further
extended in [13] where only the total height h is advected by the flow allowing mass exchanges between
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layers. The complete multilayer version of equations (12a,12b) is then

∂h

∂t
+

N∑
α=1

∂(hαuα)

∂x
= 0, (14a)

∂(hαuα)

∂t
+

∂

∂x

(
hαu

2
α +

g

2
lαh

2
)

= −ghα
∂zb
∂x

+ uα+1/2Gα+1/2+

− uα−1/2Gα−1/2 +
2να

lα+1 + lα

uα+1 − uα
h

− 2να−1

lα + lα−1

uα − uα−1

h
(14b)

where Gα±1/2 are the mass transfers from layer α to α + 1 and α − 1 respectively. The last two terms
in equation (14b) represent the friction between the layers, with να the mean value of viscosity in this
layer. In [13] this was presented as an ad hoc friction between layers, here it is the effective finite volume
discretization of the gradient of the stress ∂

∂z

(
ν ∂u∂z

)
. Moreover, there is no need for a shape factor as each

layer is characterised by its mean velocity, which is supposed ”flat” in the finite volume discretization,
Γα = 1. The mass term Gα+1/2 expresses the kinematic condition at the interface zα+1/2 of layer α:

Gα+1/2 =
∂zα+1/2

∂t
+ uα+1/2

∂zα+1/2

∂x
− w

(
x, zα+1/2, t

)
(15)

and provides the mass flux leaving or entering the layer through the interface. The horizontal velocity of
the interface uα+1/2 is computed using upwinding :{

uα+1/2 = uα if Gα+1/2 < 0,

uα+1/2 = uα+1 if Gα+1/2 ≥ 0.

We remark here that there is an error in sign in the original paper that presents this scheme [13]. Notice
that the term Gα+1/2 can be computed also as [13]:

Gα+1/2 =

α∑
j=1

(
∂hjuj
∂x

− lj
N∑
p=1

∂hpup
∂x

)
. (16)

As a general comment, while originally this scheme was proposed to represent several shallow-water lay-
ers interacting with each other with ad-hoc friction terms, here we consider it as a natural finite-volume
discretization of the 2-D reduced Navier–Stokes equations (12a)-(12b).

3.3. Numerical scheme

Equations (14a) and (14b) can be seen as a system of equations of the form:

∂X

∂t
+
∂F(x)

∂x
= Sb(X) + Se(X) + Sv(X)

with X = [h, h1u1, h2u2, ..., hNuN ]T , F(x) the flux, Sb(X) the topographic source term, Se(X) the mass
transfer in the vertical direction and Sv(X) the viscous term. The solution procedure consists of two steps:
one explicit, in which the topographic source term and the mass transfer are computed, and one implicit in
which the viscous part is solved:

X̃n+1 −Xn

∆t
+

Fni+1/2 − Fni−1/2

∆x
= Sb(Xn) + Se(Xn),

Xn+1 − X̃n+1

∆t
= Sv(Xn+1)

with n the time step and i the index of the cell.
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3.3.1. Explicit Step

In the explicit step the fluxes F, the source term Sb and the mass term Se are evaluated. The fluxes are
computed solving a Riemann problem. The procedure consists in computing the gradient of the primary
fields h, u and z, reconstructing the left and right states and applying a Riemann solver, e.g. [53]. For the
topographic term the hydrostatic reconstruction presented in [54] is used:

Sbnα,i = lα

(
g

2

(
hni+1/2−

)2

− g

2

(
h2
i−1/2+

)2
)

(17)

with the following re-estimated values:

hni+1/2− = hni + zb,i − zb,i+1/2,

hni+1/2+ = hni + zb,i+1 − zb,i+1/2,

zb,i+1/2 = max {zb,i, zb,i+1} .

In [54] it has been shown that this discretization of the source term preserves the steady state given by a
“lake at rest”. Once the fluxes F are known it is possible to compute the mass fluxes between the layers
Gα+1/2 from equation (16). Then it is possible to compute the vertical velocity from the definition of the
mass flux (equation (15))

w(x, zα+1/2) =
∂zα+1/2

∂t
−Gα+1/2 + uα+1/2

∂zα+1/2

∂x

which combined with equation (13) gives

w(x, zα+1/2) =
∂h

∂t

α∑
j=0

lj −Gα+1/2 + uα+1/2

∂zb
∂x

+
∂h

∂x

α∑
j=0

lj

 ,
for the final expression of the transverse velocity.

3.3.2. Viscous Step120

The final output vector is computed starting from the output of the explicit step and adding the viscous
term:

Xn+1 = X̃n+1 + ∆tSv. (18)

The system (18) is composed of N equations of the type

hn+1
α un+1

α = hn+1
α ũn+1

α +
2∆tnνα
hn+1

un+1
α+1 − un+1

α

lα+1 + lα
− 2∆tnνα−1

hn+1

un+1
α − un+1

α−1

lα + lα−1
(19)

and the solution is obtained by solving a trilinear system NxN . Note that the viscous step does not modify
h. Equation (19) can be written as:

−un+1
α−1

2∆tnνα−1

(lα + lα−1)hn+1
+ un+1

α

[
hn+1
α +

2∆tnνα
(lα+1 + lα)hn+1

+

+
2∆tnνα−1

(lα + lα−1)hn+1

]
− un+1

α+1

2∆tnνα
(lα+1 + lα)hn+1

= hn+1
α ũn+1

α

which is equivalent to:
An+1
α un+1

α−1 +Bn+1
α un+1

α + Cn+1
α un+1

α+1 = Dn+1
α .
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The coefficients Aα, Bα, Cα and Dα are equal to

An+1
α = − 2∆tnνα−1

(lα + lα−1)hn+1

Bn+1
α = hn+1

α +
2∆tnνα

(lα+1 + lα)hn+1
+

2∆tnνα−1

(lα + lα−1)hn+1

Cn+1
α = − 2∆tnνα

(lα+1 + lα)hn+1

Dn+1
α = q̃n+1

α α = 2, ..., N − 1

in all the intermediate layers whereas for the first and the last layer it is necessary to add boundary conditions
to close the system for the viscous stress, as discussed in the next section. With this notation the system
(18) can be written in matrix form as:

Bn+1
1 Cn+1

1

An+1
2 Bn+1

2 Cn+1
2

. . .
An+1
N−1 Bn+1

N−1 Cn+1
N−1

An+1
N Bn+1

N



un+1

1

un+1
2
...

un+1
N−1

un+1
N

 =


Dn+1

1

Dn+1
2
...

Dn+1
N−1

Dn+1
N


and using the Thomas algorithm it is possible to compute the vector Xn+1 and get the solution at time step
n+ 1, provided the value of An+1

α , Bn+1
α Cn+1

α , Dn+1
α for α = 1 and N are given, as described below.

3.3.3. Boundary conditions

On the top layer a zero Neumann condition is imposed (free-slip condition on the top boundary), while
on the bottom layer a no-slip boundary condition is imposed. This may be generalised as:

∂uN+1/2

∂z
= u̇t (20)

and imposing a Navier slip (Robin, or mixed) condition at the bottom:

u1/2 = ub + λb
∂u1/2

∂z
. (21)

In the following we will consider a free-slip condition on the top boundary i.e. u̇t = 0, and a no-slip condition
on the bottom boundary i.e. ub = 0 and λb = 0. We now consider equation (19) for layer N

hn+1
N un+1

N = hn+1
N ũn+1

N +
2∆tnνN
hn+1

un+1
N+1 − u

n+1
N

lN+1 + lN
− 2∆tnνN−1

hn+1

un+1
N − un+1

N−1

lN + lN−1
(22)

Layer N + 1 is a ghost layer used to impose the boundary condition on the top layer (the same is done for
the bottom layer). Because the ghost layer has the same thickness as the top layer i.e. lN+1 = lN , from
equation (20) it follows that

uN+1 = uN + u̇thN = uN + u̇tlNh

which, substituted in equation (22), gives the coefficients:

An+1
N = − 2∆tnνN−1

(lN + lN−1)hn+1

Bn+1
N = hn+1

N +
2∆tnνN−1

(lN + lN−1)hn+1

Cn+1
N = 0

Dn+1
N = q̃n+1

N + ∆tnνN u̇t

10



The equation for the first layer is (α = 1 in equation (19))

hn+1
1 un+1

1 = hn+1
1 ũn+1

1 +
2∆tnν1

hn+1

un+1
2 − un+1

1

l2 + l1
− 2∆tnν0

hn+1

un+1
1 − un+1

0

l1 + l0
(23)

and from the Navier slip boundary condition (21) it is possible to express the velocity u0 as

u0 =
2h1

2λb + h1
ub +

2λb − h1

2λb + h1
u1

which substituted in (23) gives the coefficients

An+1
1 = 0

Bn+1
1 = hn+1

1 +
2∆tnν1

(l2 + l1)hn+1
+

2∆tnν1

2λb + l1hn+1

Cn+1
1 = − 2∆tnν2

(l2 + l1)hn+1

Dn+1
1 = q̃n+1

1 + ub
2∆tnν1

2λb + l1hn+1
.

(24)

Hence, the values of An+1
α , Bn+1

α Cn+1
α and Dn+1

α for α = 1 and N are indeed obtained.

3.3.4. ”Standard” Shallow-Water limit

Of course, with only one layer N = 1 the same algorithm corresponds to the standard Shallow Layer
equations (11a)-(11b). The shape factor Γ1 is indeed equal to one. The sole difference lies in the viscous
step which is written in a semi implicit way :

un+1
1 =

un1
1 + 3ν1∆tn/(hn1 )2

for laminar flows, but any other friction law may be easily adapted.

3.4. Stability and scheme properties

The stability condition for the multilayer Saint-Venant equations needs to ensure that the water leaving
a cell in a timestep is smaller than the actual value of the depth [13]

∆tn ≤ min


lαH

n
i ∆xi

lαHn
i

(
|unα,i|

)
+ ∆xi

([
G
n+1/2
α+1/2,i

]
−

+
[
G
n+1/2
α−1/2,i

]
+

)
 (25)

with α going from 1 to the number of layers and i going from one to the number of points in the x-coordinate.
In our implementation, we have not applied any modification to the scheme, but we have introduced an
adequate boundary condition to handle the bottom friction. For this reason our implementation preserves130

all the properties of the scheme already demonstrated for the original one [54, 13].

4. Results

Having presented the Boundary-Layer model and the numerical scheme, this section is devoted to illus-
trating some numerical applications. These examples are used both to validate the method and to point out
the differences with the ”standard” Saint-Venant approach. In particular, the impact of the shape factor
and friction coefficient which are to be closed in shallow-water approximation, are assessed. First the viscous
examples of slumps by Huppert [55] and [56] are considered. In these cases, the flow is so viscous that the
velocity remains always a half-Poiseuille one and the inertia is negligible in (11a)-(11b). Non-linearity is
introduced afterwards in the standing jump cases [25]. Web links for the codes of most of the examples
presented here are given in the appendix. Among them one of the example of [11, 12, 13] is reproduced.140
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Figure 2: Comparison between analytical solution and numerical solution (left); order of convergence (right).

4.1. Stress induced flow

To validate our implementation we consider the flow of a fluid in a closed basin driven by a constant
wind stress at the top (wind-driven cavity, as proposed in [57]). The action of the wind induces a stress
on the free surface which causes the motion of the liquid. The value of the wind stress gives the scale of
the flow. Because the fluid is confined, the only stationary solution is a steady-state recirculation inside the
basin. The boundary conditions on the horizontal velocity are Neumann on the top and no-slip on the other
sides. The solution for the vertical profile of the horizontal velocity at the centerline is, by symmetry:

ũ =
z̃

4
(3z̃ − 2)

so that the stress at the surface is unity and the mass flow is zero. If the domain is long enough this solution
is valid for a large part of the flow, except at the boundaries (left and right). We report in figure 2 (left)
the comparison between results obtained with our solver and the analytical solution. We vary the number
of layers from 4 to 32 and keep constant the horizontal resolution to 64 grid cells. We compute the norm
L1 of the error and verify that the use of the boundary condition (23) gives a second-order convergence rate
while in [13] it is reported that the use of a Navier friction coefficient for the bottom condition reduce the
convergence rate order from 2 to 1.7.

4.2. Viscous collapse on a plate

4.2.1. Horizontal plate150

The slump of an initial heap of viscous fluid on a horizontal plate is considered. This is a double dam
break viscous problem. In this flat bottom case ([55]), z̃b = 0, the pressure gradient balances friction so that
from (11b) one obtains Q̃, which is substituted in mass conservation (11a), and the laminar Saint-Venant
equations simplify into a single evolution equation (with k = Re

3 ):

∂h̃

∂t̃
− k ∂

∂x̃

(
h̃3 ∂h̃

∂x̃

)
= 0. (26)

This equation has a self-similar solution h̃ = t̃−1/5H(x̃t̃−1/5) of the self-similar variable η = x̃t̃−1/5 which
turns out to be:

H(η) =
32/3η

2/3
f

101/3

(
1− η2

η2
f

)1/3

where ηf =
21/554/5Γ

(
5
6

)3/5
32/5π3/10Γ

(
1
3

)3/5 ,
with Γ the Euler function, not to be confused with the Boussinesq coefficient. On figure 3, an example
of the full resolution of (12a)-(12b) is presented, showing some profiles of h̃(x̃, t̃) during the collapse. The
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Figure 3: Collapse of a viscous flow on a flat surface. Left: at t̃ = 100, 300, 500...1500 plot of h̃(x̃, t̃) for Saint-Venant (solid

purple line) and multilayer resolution (green �). The initial height is h̃(x̃, 0) = 1 for −1 < x̃ < 1, and surface
∫ 1
0 h(x̃, 0)dx̃ = 2.

Right: plot for t̃ > 500 of H(η) = t̃1/5h̃(x̃, t̃) as function of η = x̃/t̃1/5 with Saint-Venant (purple �) and multilayer resolution
(green ◦), and analytical (solid black line), which is here numerically (0.9(1.28338− η2))1/3.

same curves are plotted in self-similar variables demonstrating the collapse of all the rescaled heights on the
master curve H(η) with the self-similar variable η. The solution of (11a)-(11b) gives almost the same result,
as well as the direct resolution of Eq. (26) (not presented here). As expected, the resolution of (12a-12b),
after a short transient phase, gives the computed values:

h̃
∫
ũ2dz̃

(
∫
ũdz̃)2

' 1.2 and
∂ũ

∂z̃ 0

h̃2

Q̃
' 3.0

which are the half-Poiseuille Nusselt values.

4.2.2. Inclined plate

An initial heap of viscous fluid is released on an inclined plate with a constant slope [56]. In this case,
pressure gradient and inertia are negligible, there is only a balance between the projection of gravity along
the plate and the viscous friction. The laminar Saint-Venant equations simplify into a single evolution
equation: (k = Re∂z̃b∂x̃ ):

∂h̃

∂t̃
− kh̃2 ∂h̃

∂x̃
= 0.

This equation has a self-similar solution t̃−1/3H(x̃/t̃1/3) which turns out to be:

H(η) =
√

(η)/k.

so that for a given initial mass A0 =
∫ x̃1

0
h(x̃, 0)dx̃, the flow spreads up to x̃f = (

9A2
0kt̃
4 )1/3 and

h̃ = t̃−1/3
√

(x̃)t̃−1/3)/k =

√
x̃

kt̃
.

Huppert’s resolution to find the solution is based on the method of characteristics. It is not based on this
self-similar analysis. See on figure 4 the numerical resolution and some profiles at different times. Again,
numerical resolution of (12a)-(12b), after a short transient phase, gives the half-Poiseuille Nusselt profile.
The self-similar solution is obtained (figure 4) for large times for the Saint-Venant (eq.(11a)-(11b)) and the
multilayer resolution of RNSP (eq. (12a-12b)). The profiles are plotted in self-similar variables showing the
collapse of all the rescaled heights on the master curve H(η) with the self-similar variable η.

13



Note that a small time step ∆t (small CFL condition) is needed in the Saint-Venant approximation, in
order to prevent an artificial numerical slip of the bump. Moreover, with the Saint-Venant model, a spurious160

small numerical overshoot appears at the shock, which is also present in the multilayer solution, when N is
small.
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Figure 4: Collapse of a viscous flow along a slope. (left) at t̃ = 100, 300, 500...1500 plot of h̃(x̃, t̃) for Saint-Venant (purple
solid line) and multilayer resolution (empty green square). The initial height is h̃(x̃, 0) = 1 for 0 < x̃ < 1, and surface∫ 1
0 h̃(x̃, 0)dx̃ = 1. (right) plot for t̃ > 500 of H(η) = t̃1/3h̃(x̃, t̃) as a function of η = x̃/t̃1/3 with Saint-Venant (empty purple

circle), multilayer resolution (empty green square), and analytical square root self-similar solution. Here α = 1/2, so that
x̃f = (32/3/2)t̃1/3, with (32/3/2) ' 1.04.

4.3. Hydraulic jumps on flat surfaces

The previous two examples were relevant for the viscous and the topographic terms. In this section,
we show the application of the proposed model to the study of a standing jump. This is a particularly
interesting case where all the terms, inertia, viscosity, pressure gradient and topography are important
(dominant balance).

g

Figure 5: Sketch of the flow, the free surface is in blue, longitudinal velocity profiles in red. The fluid is falling on the left
(represented by the long vertical arrow) and turns to be parallel to the plate. A thin supercritical layer grows gently. At the
end of the plate, fluids falls down. A jump in the height of the free surface appears, the flow slows down across this abrupt
variation.

4.3.1. Hydraulic jump on a horizontal surface

First the application of the proposed multilayer model is used to study a standing jump problem previ-
ously analysed by [25]. The flow is sketched in figure 5. A vertical 2D jet, not described in the thin layer
approximation, with flow rate Q0, impacts at the center of a plate of length 2L (only one half is presented).
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At the beginning of the plate, the flow is very fast and supercritical. Then, due to the fact that the flat plate
is of finite extent, and due to viscous effects, a deceleration occurs downstream. Hence, a jump connects a
region of fast flow (supercritical) to another of slower velocity (subcritical). This decrease is due to viscosity
so that for this configuration Re = 1 which gives L = h0(c0h0)/ν0. This problem has been described, for a
plane surface using the steady RNSP model [25], and in the axi-symmetric case [26], yet using a different
scaling of the equations. Instead of scaling velocity with c0, Higuera uses Q0/h0 were Q0 is the flow rate.
The steady equations obtained in [25] are therefore

∂ū

∂x̄
+
∂w̄

∂z̄
= 0, ū

∂ū

∂x̄
+ w̄

∂ū

∂z̄
= −S ∂h̄

∂x̄
+
∂2ū

∂z̄2
given

∫ h̄

0

ūdz̄ = 1, (27)

with this choice the Froude number is S−1/2. With our choice, those equations are:

∂ũ

∂x̃
+
∂w̃

∂z̃
= 0,

∂ũ

∂t̃
+
∂ũ2

∂x̃
+
∂ũw̃

∂z̃
= −∂h̃

∂x̃
+
∂2ũ

∂z̃2
given

∫ h̃

0

ũdz̃ = Q̃. (28)

It is straightforward to see that the relation between S and Q̃ is:

S−1/2 = Q̃5/2.

For steady flow Q̃ is indeed constant, then the value of Q̃5/2 is a global Froude number.
Let us begin with analysing some asymptotic behaviours, for which analytical results can be obtained.170

For small S, or large Q̃, the pressure gradient is negligible, from eq. (28) one obtains the Watson self-similar
solution (steady flow, balance between inertia and viscosity) uw = 1

xf(η) with η = y/x. The function f is

solution of the equation f ′′ = −f2 with f(0) = 0, f ′(Hw) = 0 for a unit flow rate
∫Hw

0
f(η)dη = 1. After

solving the equation, one finds: Hw = 1.8138, f(Hw) = 0.8964 and f ′(0) = 0.693. So that h̃(x̃) = 1.8138x̃.

The already mentioned shape factor is Γ = Hw

∫Hw
0

f(η)2dη

(
∫Hw
0

f(η)dη)2
= 1.25697, the shear is τb = f ′(0)H2

w = 2.2799.

Another limit of eq. (28) may be obtained for large S, or small Q̃, when the pressure gradient is no
more negligible, but inertia is now negligible, one obtains the Poiseuille solution (balance between pressure
gradient and viscosity).

ũ = −h̃2 ∂h̃

∂x̃

(ỹ)

2h̃
(2− (ỹ)

h̃
), Q̃ = − h̃

3

3

∂h̃

∂x̃

so that one can solve the equation for h̃(x̃), and as a small height (even 0) is given at the boundary condition,
we neglect it and obtain as an approximation of the surface position for small flow rate near the output:

h̃(x̃) = (12Q̃)1/4(1− x̃)1/4,

the shape factor is Γ = 6
5 and shear is τ̃b = 3.

We present here the numerical results for the full problem. The system of equations is solved using Q̃
(or S) as a parameter. A first flat profile is imposed at the input at x̃ > 0 on a small given height (say 0.1)
compatible with Watson’s solution. At the outlet a zero Neumann boundary condition is imposed on the
velocity and a zero depth, h̃→ 0. The simulations have been performed using 256 points in the horizontal180

direction and 30 layers in the vertical direction. These values have been chosen checking the convergence
both on the thickness of the hydraulic jump, influenced by the horizontal resolution, and on the skin friction
which is affected by the number of layers.

Figure 6 shows a comparison of the free surface profile and the skin friction (resp. h̄(x̄) and ∂ū/∂z̄|0),
for different values of S, between the solution obtained with the proposed solver, written in ”bar” variables,
eq. (28), and the data from [25]. The agreement is quite good.

Figure 7 shows an example of the free surface height, the shape factor and the skin friction (resp. h̃(x̃),
Γ and ∂ũ/∂z̃|0), for Q̃ = 1. Consistently with previous results, the numerical solution after a small entrance
effect due to the flat profile boundary condition, is close to Γ = 1.25697 corresponding to the shape factor
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Figure 6: Comparison of the liquid depth h̄ (a) and skin friction (b) solution of eq. 27 with the data from [25]. Multilayer
solver (ML) in ”bar” variables (Froude number is S−1/2): S = 0.5 solid purple line, S = 1 solid green line, S = 2 solid blue
line. Data from [25]: S = 0.5 red +, S = 1 green ×, S = 2 blue ∗.

value of Watson’s solution. The reduced bottom stress has also a value close to the Watson one, that is190

2.2799. Then Γ increases across the jump, this corresponds to a flow separation, which is associated with a
recirculation bubble with ∂ũ/∂z̃|0 < 0 and a large value of h̃. Then it decreases to a value close to Γ = 1.2
corresponding to the half-Poiseuille profile. This regime develops after the jump and before the end of the
plate where it is accelerated and goes to 1. The shear, after being negative in the recirculation bubble
associated to the increase of h̃, crosses the value 3 associated to the Nusselt solution. Finally, it increases
as the velocity increases at the output.

This scenario is the same for all the values of Q̃: values of
h̃
∫
ũ2dz̃

(
∫
ũdz̃)2

and of ∂ũ
∂z̃ |0

h̃2

Q̃
are plotted for a wide

range of Q̃ on figure 8. Focus on Q̃ < .3 shows that the curves collapse on 6/5 (figure 8a) and 3 (figure 8b),
which are the values of the Poiseuille profile. Focus on Q̃ > 1.3 shows that the curves collapse on 1.25697
(figure 8a) and 2.2799 (figure 8b), which are the Watson values. Note that the shape factor is never one.200

To conclude, on figure 9 the impact of the value of the friction on the results obtained via the 1-D Saint
Venant model is shown. In particular, the comparison is made with the cases in which the friction term τb is:
−3Q̃/h2 and −2.2799Q̃/h2. The value of Γ is set to one. One can see that in 1-D Shallow Water theory, the
jump is very sharp. The position of the jump is delayed with Watson’s friction estimation, when compared
to Poiseuille’s. The shear stress is always positive, though small. For the sake of comparison, the complete
BL solution is plotted as well. One can appreciate the main differences: (i) the jump is smoothed, which is
physically sound; (ii) the shear-stress is correctly negative in correspondence with the recirculation. It can
be noted that the position of the jump is better predicted by the 1-D shallow-water model with Watson’s
friction.

4.3.2. Hydraulic jump on an inclined surface210

In this final section the effects of the inclination of the plate on the hydraulic jump are investigated. The
topography is defined as z = ax and a varies between -1.6 and 0.8 for three different values of S, 0.5, 1 and
2. The values of a are chosen such that the position of the hydraulic jump is not too close to the inlet or
the outlet.

Figure 10 shows the liquid depth and the skin friction for all the cases with negative values of a. In this
case, increasing the inclination of the plate the position of the hydraulic jump moves downstream due to
the presence of a favourable component of the acceleration of gravity. The maximum height of the surface
decreases and the hydraulic jump becomes less abrupt, i.e. the rise of the liquid depth after the jump is
less rapid, leading to a more ”gentle” hydraulic jump. In all the cases the liquid depth tends towards an
horizontal profile and this effect is more clearly visible in figure 10e because for S > 1, the jump has more220
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factor Γ (dashed blue line) and computed skin friction ∂ũ/∂z̃|0 (dash-dotted cyan line) rescaled by Q̃/h̃2 as a function of x̃.

space to develop. The skin factor increases with the inclination of the plate and tends towards a constant
value for the cases with a = −1.6. On the contrary, for positive values of a the hydraulic jump moves
towards the inlet, because gravity opposes to the flow. As the inclination increases the maximum height of
the surface rises and the skin factor becomes larger. The results, in terms of water depth and skin factor,
for the case with positive values of a are drawn in figure 11.

Figure 12a shows the position of the jump xj , computed as the location of the point with maximum
second derivative of the liquid depth, as a function of a. With the hydraulic jump located closer to the inlet,
for the case with horizontal plate, the position of the jump varies faster for positive values of a. In contrast,
for negative values of the inclination, it seems to reach a plateau around a = −1.6.

As observed before, the maximum height decreases for negative values of the inclination of the plate.230

We have seen that h also decreases as an effect of increasing S. For this reason we show in figure 12b the
maximum height, normalized with the maximum height for the case with no inclination. The maximum
liquid depth decreases faster for higher values of S because for S > 1 gravity is more effective.

5. Conclusions

This work presents a reduced set of Navier–Stokes equations leading to a kind of Prandtl system of
equations (RNSP equations), obtained through the asymptotic thin-layer expansion. These are the Prandtl
equations with different boundary conditions (Schlichting [49]) and they have already been derived on
more phenomenological grounds [24, 25, 26]. These thin-layer incompressible equations assume hydrostatic
pressure by construction. If they are integrated over the depth of fluid, they give the Saint-Venant equations
(or Shallow Water equations). In these reduced Navier–Stokes equations no hypothesis is made about the240

velocity profile, which is a result of the computations, whereas in the Saint-Venant equations a closure
hypothesis is necessary.

An efficient numerical scheme issued from a large recent literature is proposed to solve the RNSP system
using a discretization in several layers (as a discretization of the viscous diffusive term). The same numerical
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∂z̃
|0 h̃

2

Q̃
for Q̃ < .3

(purple dashed lines) and Q̃ > 1.3 (cyan dashed-dot lines). Poiseuille is 6./5 and 3 (green solid lines), Watson is 1.25697 and
2.2799 (orange solid lines). Note that the value of Γ is never 1.

scheme solves also the standard Saint-Venant set of equations in one layer. We have thus clarified how the
numerical boundary-layer approach to solve hydraulic jump problems and the numerical schemes developed
to improve the solution of Saint-Venant equations are in fact intimately related.

For the sake of validation, the viscous collapse on a horizontal and on an inclined infinite flat plate is
presented. In this case RNSP and Saint-Venant give the same self-similar solution. The next example is the
hydraulic jump induced on a parietal jet over a finite plate. This case corresponds to a full balance of inertial,250

pressure and viscous terms. The steady solution of Higuera is recomputed. The hydraulic jump is no more
a discontinuity (as in Saint-Venant) but is a region where the depth of the fluid increases continuously, on
a short distance. A separation bubble appears under the jump, due to the strong deceleration. Compared
with a one layer Saint-Venant model we showed the influence of the chosen profile (Watson or Poiseuille)
on the wall friction. In the one layer Saint-Venant description friction at the wall is always positive whereas
there is flow separation under the jump as computed first by Highera. Furthermore, we recomputed the
Boussinesq velocity shape coefficient which is mainly approximated to unity in a one layer Saint-Venant
model. We show that its value changes and remains of order one, but not equal to one, in the proposed
examples.

To a certain extent, this is a beginning of response to Bélanger’s question about the real shape of the260

hydraulic jump, see figure 13. It is shown that the shape factor and friction are indeed different from
the usual ones used in Shallow Water theory. Therefore, we have shown that the present Boundary Layer
approach should be preferred when dealing with phenomena where several mechanisms occur concurrently,
and for which the Saint-Venant approximation is too crude. Finally the plate is inclined and the change of
position of the jump is discussed.

Concerning the perspectives, the extension in the transverse direction is straightforward and has been
already integrated to the code. An open issue is related to the fact that the theoretical model discussed
here does not take into account the possibility of dispersion, which may allow for solitary waves, ”ondular
bore” or ”mascaret” [48].

An interesting development would be to solve the Navier–Stokes equations with this kind of method270

while being able to automatically and continuously switch between the hierarchy of models: Shallow Water
/ RNSP / Navier–Stokes, depending on the desired degree of accuracy.
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Appendix

All the codes are free to download on the Basilisk web pages:
http://basilisk.fr/

http://basilisk.fr/src/saint-venant.h

http://basilisk.fr/src/test/wind-driven.c

http://basilisk.fr/sandbox/M1EMN/Exemples/viscous_collapse.c

http://basilisk.fr/sandbox/M1EMN/Exemples/viscous_collapse_noSV.c

http://basilisk.fr/sandbox/M1EMN/Exemples/viscous_collapse_ML.c280

http://basilisk.fr/sandbox/M1EMN/Exemples/viscolsqrt.c

http://basilisk.fr/sandbox/M1EMN/Exemples/viscous_collapsesqrt_ML.c

http://basilisk.fr/sandbox/M1EMN/Exemples/svdbvismult_hydrojump.c

http://basilisk.fr/src/test/higuera.c

http://basilisk.fr/src/test/layered.c
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Figure 10: Water depth (a, c, e) and skin friction (b, d, f) for the case with negative value of a at different value of S (the
Froude number is S−1/2): S = 0.5 (a, b), S = 1 (c, d), S = 2 (e, f).
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Figure 11: Water depth (a, c, e) and skin friction (b, d, f) for the case with positive value of a at different value of S: S = 0.5
(a, b), S = 1 (c, d), S = 2 (e, f).
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Figure 13: The sketch of the hydraulic jump by Bélanger [58] and the sentences about the influence of skin friction on the two
levels of the jump: For the analysis of no 178 and 179, we did not take into account either the length of the jump or the bed
friction. It will be enough in applications to connect by a curve the two lines of profile obtained upstream and downstream of
the jump. Experiments are lacking to determine the extent of this curve.
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