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Graphical Abstract 

 

Highlights 

 Electrochemical modification of ITO electrodes increases the energy barriers. 

 Sensing properties of resistors and heterojunctions are enhanced. 

 The sensors operate at RT and in a broad RH range, with a sub-ppm LOD (140 ppb). 
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Abstract 

The energy barrier of an organic heterojunction built on ITO electrodes and combining a low 

conductive sublayer (Cu(F16Pc)) and a highly conductive semiconductor (LuPc2) is modulated 

by electrografting of organic layers. Impedance spectroscopy clearly demonstrates the increase 

of the energy barrier at the ITO – sublayer interface. Additionally, the electrografting is a 

versatile and promising method for the tuning of heterojunctions. The I(V) characteristics of 

the heterojunctions are highly modified by the electrografting. The same modifications of 

electrodes carried out on LuPc2 resistors lead to a modification of their transport properties too. 

The effect of the grafting of four different aromatic moieties bearing electron-donating and 

electron-withdrawing substituents was studied. One important feature is that the sensing 

properties are highly improved compared to the unmodified devices. Thus, the electrografting 

of dimethoxybenzene doubles the relative response of the heterojunction towards 90 ppm NH3, 

as well as the sensitivity in the range 1-9 ppm. This electrografting allows attaining a limit of 

detection as good as 140 ppb. The modified heterojunctions favorably compete other 

conductometric transducers for the detection of ammonia, at room temperature and in a broad 

range of relative humidity. 
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1. Introduction 

In organic electronics, the performances of devices, light emitting diodes, photovoltaic cells 

and field-effect transistors (OFET) depend not only on the chemical nature, morphology and 

structure of the materials that compose them, but also on the interfaces. Thus, in OFET the 

semiconductor-dielectric material interface plays a key role, and in diodes the interface between 

the p-type and n-type materials as well. Different strategies were developed to modify the 

electrode-semiconductor interface, like using self-assembled monolayers (SAMs) of thiol 

derivatives on gold [1-4] or the grafting of organosilicon derivatives or phosphonic acids on 

oxides, via reactions with hydroxyl groups.[3-7] Besides, a particularly powerful method is the 

electrochemical reduction of diazonium salts [8,9] that leads to the electrografting of organic 

layers on conducting substrates,[10] including ITO surfaces.[11-14] 

Furthermore, we developed new heterojunctions that are not simply a p-n junction between 

two materials. Combining a low conductive material deposited on interdigitated electrodes with 

the lutetium bisphthalocyanine, LuPc2, as an intrinsic semiconductor, covering the first layer, 

we obtained a particular device called MSDI for molecular semiconductor – doped insulator 

heterojunction,[15-17] and also double lateral heterojunctions.[18] 

In the present work, we studied the effect of the electrochemical modification of the ITO – 

sublayer interface on the response to ammonia of LuPc2 resistors and MSDI heterojunctions. 

We grafted various benzene derivatives by electrochemical reduction of diazonium salts 

prepared from a series of aniline derivatives. The quality of the grafting was controlled using a 

redox probe and by electrochemical quartz crystal microbalance (EQCM). Then, the impact of 

this functionalization on the behavior of the LuPc2 resistor and the MSDI prepared from the 

perfluoro-copper phthalocyanine (CuF16Pc), as a n-type sublayer, associated with LuPc2, was 

studied by means of I(V) characteristics and impedance spectroscopy. We related the 

enhancement of the sensing properties, in particular the limit of detection (LOD), with the 
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change in electrical behavior of the organic electronic devices caused by electrode surface 

modification. 

 

2. Experimental Section 

Chemicals: 4-Trifluoroethoxyaniline (TFEA), 2,5-dimethoxyaniline (DMA), 2,3,5,6-

tetrafluoroaniline (TFA), perchloric acid 70%, sodium nitrite NaNO2 were purchased from 

Sigma Aldrich and used as received. K3Fe(CN)6 and K4Fe(CN)6 were purchased from Arcos 

Organics and used as received. Absolute ethanol (analaR normapur) was purchased from Carlo 

Erba. Aniline (Aldrich) was distilled at 120°C under reduced pressure before use. All perchloric 

acid solutions were prepared by dilution from HClO4 70 %. Ammonia gas, at 985 and 98 ppm 

in synthetic air, and synthetic air were used from standard gas cylinders, purchased from Air 

Liquide, France. Lutetium bisphthalocyanine (LuPc2) and perfluorinated copper 

phthalocyanine (CuF16Pc) (Fig. S1) were synthesized according to previously described 

methods.[19,20] 

Sample preparation: Grafting of the different molecules was performed as follows: a solution 

of NaNO2 0.1 M in water and a solution of the aniline derivative 2 mM in HClO4 1 M were 

deoxygenated for 15 min with Argon. Then, 40 µL of the first solution was introduced in 1 mL 

of the second one. The mixture is stirred in the dark, during 5 to 10 min. The deposition was 

driven by CV (between 25 and 40 cycles) from 0 to -0.65 V at 40 mV s-1. The experiment was 

stopped after consumption of around 15 mC cm-2 and no more evolution of the voltammogram. 

The modified electrode was rinsed with water, and dried under vacuum at room temperature. 

Cu(F16Pc), 40 nm in thickness, was deposited on IDEs, by sublimation under secondary vacuum 

(ca. 10-6 mbar), in an UNIVEX 250 thermal evaporator (Oerlikon, Germany). The top layer, 

LuPc2, 50 nm in thickness, was deposited on the first layer, without breaking the vacuum 

between the two evaporation steps. LuPc2 resistors were also prepared with the same process 
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and the same thickness (50 nm). All the evaporations were carried out at a rate of 1 Å s-1, by 

heating in a temperature range of 400-500 °C.  

Electrical and chemosensing measurements: All electrical and sensing measurements were 

performed at room temperature, using a 6517B Keithley electrometer equipped with an 

embedded DC voltage supply. The electrometer was controlled through a home-made software 

relying on a GPIB (IEEE488.2) bus connection for data communication. Current-voltage I(V) 

curves were registered between -10 and +10 V, while taking care to start and finish at 0 V bias. 

Impedance data were obtained using a Solartron SI 1260 impedance analyzer. The frequency 

range was 10 Hz to 10 MHz with a fixed ac oscillation amplitude of 200 or 300 mV and a bias 

ranging from 0 V to 10 V. A commercial software Zview from Ametek was used for impedance 

data fitting and parameter extraction. The workbench used for NH3 exposure, at different 

relative humidity (rh) values, was described previously.[16] The total flow was in the range 

0.5-0.55 nccm depending on ammonia concentration and the volume of the test chamber was 8 

cm3. Gas sensing experiments were carried out in a dynamic way, by alternating 4 min-long 

rest periods and 1 min-long exposure periods. 

 

3. Results and discussion 

3.1. Covalent grafting by reduction of diazonium salts 

Because of the strongly fluorinated nature of the Cu(F16Pc) underlayer in the MSDIs, we first 

opted for depositing a fluorinated layer based on 2,3,5,6-tetrafluoroaniline (TFA) and 4-

trifluoroethoxyaniline (TFEA) in order to improve the affinity of the underlayer for the 

electrodes. For comparison, aniline (ANI) was used as a control and a derivative containing 

electron-donating groups, 2,5-dimethoxyaniline (DMA) as well. The diazoniums were 

generated in situ. The voltammograms of the various diazonium salts show a large irreversible 

reduction peak on the first scan, followed by a rapid collapse of the current over cycles, due to 
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a progressive passivation of the electrode (Fig. 1). This behavior is typical of a covalent grafting 

after generation of radicals by the electroreduction of diazonium salts.[10] 

     

Figure 1. CV on IDE of a) DMA and TFA and b) TFEA and ANI at 2 mM
 
+ NaNO2 4 mM

 
in 

HClO4 1 M; v = 40 mV s-1 ; c)
 
monitoring of the consumed charge and the variation of frequency 

in EQCM, in solutions of TFEA, ANI, DMA and TFA. 

 

After reduction of the diazonium function, the use of ANI, DMA, TFA and TFEA leads to 

the grafting of benzene (Bz), 1,4-dimethoxybenzene (DMBz), 1,2,4,5-tetrafluorobenzene 

(TFBz) and trifluroethoxybenzene (TFEBz), respectively.  

 

3.2. Electrochemical characterizations 

Electrochemical methods are detailed in supplementary materials (S2). Before using these 

modified IDEs to build devices, the quality of the grafting on ITO substrates was checked using 

a reversible electrochemical probe, the hexacyanoferrate (III) / (II) couple (Fig. S3). The 

blocking rate (ratio of the anodic peak current after and before grafting) exceeds 99% for the 

grafting of DMBz, TFBz and Bz, and 96% for TFEBz, showing a good coverage. In order to 

guarantee the robustness of the grafting, the stability of the signal was controlled after 

submitting the modified ITO electrode to ultrasounds for several minutes in water and then in 

ethanol.  

The grafting of the various aniline derivatives was followed by coulometry and EQCM (Fig. 

1c). The surface coverage was calculated by coulometry, Γq and by EQCM, ΓΔf (Table 1) (Eq. 

1, 2): 

Γ𝑞 =
𝑞

𝑛∗𝐴∗𝐹
  (1) 
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ΓΔ𝑓 =
−Δ𝑓

𝐾∗𝑀𝑖
  (2) 

with q (C) the consumed charge, F (C mol-1) the Faraday constant, A (cm2) the active area of 

the electrode, n the number of electrons involved in the reaction, Δf (Hz) the frequency shift 

measured by EQCM, Mi (g mol-1) the molar mass of the grafted species and K (Hz cm2 g-1) the 

calibration factor of the microbalance. The theoretical coverage for a close packed monolayer 

of benzene is around 5 10-10 mol cm-2.[21] This value was used to estimate the number of 

deposited layers, Nlayers. 

 

ΓΔf was low for the fluorinated species, 6.9 and 1.2 10-9 mol cm-2, for TFBz and TFEBz, 

respectively, due to the high steric hindrance and strong hydrophobicity of the fluorine atoms 

of these two species that inhibit the radical polymerization mechanism responsible for the 

multilayer formation, whereas it was of the order of 3 10-8 mol cm-2 for DMBz and Bz, because 

Bz and DMBz have positions more accessible for polymerization. The grafting tended to a 

monolayer for TFEBz while the number of layers increased to 60 for DMBz and Bz, evidence 

that a radical polymerization occurred. The fraction of charge that was actually used to grow 

film was less than 20% whatever the compound and even lower than 1% for the grafting of 

TFEBz. Thus, the EQCM allows a more reliable measurement of the surface coverage, which 

was assumed to be identical on IDE and ITO coated quartz. 

3.3. Electrical characterizations of devices 

3.3.1. LuPc2 resistor 

I(V) characteristics: The I(V) characteristics of modified LuPc2 resistors revealed that the 

grafting of Bz and TFBz radically changed the behavior of resistors moving from an ohmic 

regime to a non-linear regime, with a threshold effect at low voltages (Fig. 2a). The threshold 

voltage, Uth, determined by extrapolating to zero current the tangent to the curve at high bias, 

provides an evaluation of the non-linear character of devices. The TFBz-modified resistor 
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exhibited a Uth of 2.4 V, close to that of an n-MSDI, against 1.4 V with Bz, although the Bz 

film is thicker than that with TFBz. The fluorine atoms help to raise the energy barrier at the 

ITO - LuPc2 interface. The grafting of TFBz generated a greater threshold effect despite its 

lower thickness.  

     
 

Figure 2. a) Current-voltage characteristics standardized by maximum current at + 10 V of an 

unmodified LuPc2 resistor on an unmodified (pink) and on TFBz-modified (blue) and Bz-

modified (black) IDEs; Nyquist diagram according to the bias of LuPc2 resistors, b) without 

surface modification, c) with grafting of Bz on the surface of the IDE. Frequency 10 Hz - 10 

MHz, UAC = 200 mV. 

 

Whereas LuPc2 makes ohmic contact with ITO, the grafting induced electron and hole 

injection barriers (Fig. S4) that explain the appearance of a threshold voltage. 

Impedance spectroscopy: The Nyquist diagram of the resistor made on bare ITO revealed a 

single semicircle whose diameter decreased slightly from 1.58 MΩ to 1.45 MΩ when the bias 

went from 0 to 10 V (Fig. 2b). This Nyquist plot was modeled by an equivalent circuit consisting 

in a R1-CPE1 block that corresponds to the electrical properties of LuPc2 (conductivity and 

permittivity) in series with a resistance (R2) that corresponds to the metallic contact of the cell. 

A CPE (Constant Phase Element) represents an imperfect capacitance,[22] its impedance ZCPE 

being defined as follow (Eq. 3): 

𝑍𝐶𝑃𝐸 =  
1

𝑄(𝑗𝜔)𝛼   (3) 

with ω = 2πf, where f is the frequency, Q the non-ideal capacitance, and α a value between 0 

and 1 that reflects the non-ideality of the capacitive element.[23]  
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In order to compare the devices, the effective capacitance, Ceff , was calculated for each R-

CPE element  (Eq. 4) [22]:  

𝐶𝑒𝑓𝑓 =  𝑅
1

𝛼
−1 ∗ 𝑄

1

𝛼  (4) 

For the LuPc2 resistor, Ceff is 6 pF. The  value, very close to 1 (0.97), indicates an 

homogeneous behavior of the material. The surface modification changed the aspect of the 

Nyquist diagram, with the appearance of a second circle at low frequency (LF) (Fig. 2c) whose 

diameter varies significantly with the bias as encountered in n-MSDI.[24] The modeling of the 

Nyquist diagram of the n-MSDI modified with Bz was based on an equivalent circuit 

comprising two R-CPE blocks.  

The R1-CPE1 block, at high frequency (HF), exhibited stable parameters, with an average 

resistance R1 of 760 ± 30 kΩ, a mean coefficient α1 of 0.95 ± 0.01 and an effective capacitance 

Ceff 1 of 5.8 ± 0.1 pF close to that of the resistor without surface modification. The R2-CPE2 

block had a totally different behavior, with a huge decreased of R2 from 2.3 MΩ to 66 kΩ 

between 0 and 10 V, α2 went from 0.83 to 0.65 and Ceff 2 varied from 11 to 3.5 nF between 0 

and 10 V, i.e. a thousand times greater than Ceff 1, which indicates that the phenomenon related 

to the R2-CPE2 block takes place on a very thin layer. R2 became lower than R1 for a bias 

between 1 and 2 V, which was closed to the threshold voltage previously determined on the 

I(V) curve. The resistor modified with TFBz showed the same behavior, with R2 becoming 

lower than R1 for a bias of the order of 3 V. All these observations allowed us to conclude that 

the R2-CPE2 block models the energy barrier at the ITO-LuPc2 interface due to the surface 

modification.  

3.3.2. n-MSDIs 

I(V) characteristics: The influence of the surface modification of IDE on the electrical behavior 

of n-MSDI Cu(F16Pc) (40 nm) - LuPc2 (50 nm) was studied. On the normalized curves, the 

TFBz grafting involved a broadening of the plateau at low current compared to the non-
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modified n-MSDI (Fig. 3). On the contrary, the grafting of TFEBz and DMBz caused only a 

small increase in the non-linear character of the I(V) curve. 

   
 

Figure 3. a) Current-voltage characteristics normalized by the maximum current at + 10 V of 

a n-MSDI Cu(F16Pc) – LuPc2 on TFBz - modified IDEs (red) and on unmodified IDEs (black); 

b) schematic view of the heterojunctions, the arrows indicate the main channel for charge 

carrriers; and c) threshold voltage of different n-MSDIs, depending on the nature of the 

performed grafting. 

 

The threshold voltage allowed a better comparison of the impact of the different graftings. The 

TFBz and Bz graftings resulted in a large increase of Uth, at 6.3 and 5.3 V (Fig. 3c), respectively, 

compared to 2.6 V for the ungrafted MSDI. On the contrary, the grafting of DMBz and TFEBz 

did not significantly increase the energy barrier (3.3 and 3.8 V, respectively). So, Uth increases 

in the order DMBz < Bz < TFBz. This is clearly related to the chemical nature of the grafted 

layer, namely the fluorinated benzene leads to the strongest effect, whereas the benzene bearing 

electron-donating groups (DMBz) leads to the lowest effect. TFEBz has a lower effect than Bz 

because of the very thin deposited layer The origin of this variation of the interfacial energy 

barrier is known to result from the modification of the electrode workfunction because of the 

formation of interface dipoles.[1,7] 

 

Impedance spectroscopy: The n-MSDI Cu(F16Pc) (40 nm) - LuPc2 (50 nm) without surface 

modification exhibited two semicircles. The first at HF was almost independent of the bias and 
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the second at LF underwent a decrease of its diameter when the bias increased (Fig. 4a), whereas 

the LF semicircle became lower than the HF semicircle above 3 V and eventually negligible at 

10 V. 

     

 

Figure 4. Nyquist diagram at different bias values of n-MSDI Cu(F16Pc) (40 nm) - LuPc2 (50 

nm), a) on unmodified IDE; b) with grafting of DMBz, with low impedance zoom and 

equivalent circuit in inserts; c) comparison of the threshold effect of modified n-MSDIs through 

the evolution of (R2 - R1) / R1 as a function of the bias. The pink (bare ITO) and red (ITO / 

DMBz) curves are linked with the left Oy axis and the green curve (ITO / TFBz) with the right 

Oy axis, respectively. Frequency 10 Hz - 10 MHz, UAC = 300 mV. 

 

The surface modification did not modify the overall shape of the diagram (Fig. 4b), but 

affected the relative size of the two semicircles. In the absence of grafting, the LF semicircle 

became smaller than the HF semicircle at a bias of 3 V, but this limit voltage shifted towards 5 

V (Fig. 4b) with the grafting of DMBz and even exceeded 10 V with TFBz. For the latter, the 

increase in the diameter of the LF semicircle was extremely high at low bias. The study by 

impedance spectroscopy confirmed that the surface modification exalts the threshold effect of 

the devices by increasing the energy barriers. 

As for the modified resistors, the device can be modeled by two R-CPE in series (Fig. 4b) as 

detailed in supplementary materials (Fig. S5). 

 

 

The evolution (R2 - R1) / R1 provided an evaluation of the predominance of interface effects 

for the different modified n-MSDIs (Fig. 4c). Indeed, R2 modeled the charge transfer resistance 

of the interfaces whereas R1 is related to the conductivity of the different materials. It was 

clearly shown that the surface modification extended the preponderance of the effect of 
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interfaces when R2 is greater than R1. For the non-grafted device, the ratio vanished between 3 

and 4 V, whereas it was canceled between 5 and 7 V for n-MSDI with DMBz and beyond 10 

V with TFBz. The impedance spectroscopy behavior of the n-MSDI with grafting of TFEBz 

and Bz was very near this of the devices modified by DMBz and TFBz, respectively.  

3.4. Ammonia detection in a humid environment 

3.4.1. LuPc2 resistor 

The pristine LuPc2 resistor was a poor ammonia sensor with a very low current variation 

under ammonia and an important drift of the baseline (Fig. 5a). On the contrary, the resistor 

with a Bz grafting exhibited an excellent baseline stability and a clear decrease under NH3, in 

agreement with the p-type nature of LuPc2 in the air (Fig. 5b).  

The sensor measurements were studied at various bias values, with an optimal response at 

0.5 V, i.e. below the Uth value determined from the I(V) characteristics. Plotting the calibration 

curves in the range 10 - 90 ppm emphasized the impact of the surface modification of ITO (Fig. 

S6). The relative response RR of the device is defined as (Eq. 5): 

𝑅𝑅 (%) =  
𝐼𝑓−𝐼0

𝐼0
∗ 100   (5) 

where If and I0 are the current at the end of the exposure phase (1 min) and of the recovery 

phase (4 min), respectively. 

Grafting increased |𝑅𝑅| at 90 ppm NH3, from 0.9 % for the reference resistor to 8.5 % and 

12.6 % for devices modified by TFBz and Bz, respectively. Thus, the surface modification 

provided a threshold effect that broke the ohmic regime of the LuPc2 resistor and gave it more 

interesting sensing properties, as soon as the chosen bias was below the threshold voltage. 
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c)  

 

Figure 5. Current response through NH3 exposure / recovery cycles of 1 min / 4 min, at 50% 

relative humidity, of a LuPc2 resistor prepared: a) on bare ITO, b) on ITO with grafting of 

benzene; c) schematic view of the modified resistor. Polarization of 1 V for the bare ITO and 

0.5 V for the ITO/Bz curve. 

 

2.4.2. n-MSDI Cu(F16Pc) - LuPc2 on modified ITO 

Response to ammonia in a humid environment: For the DMBz-modified MSDI, a significant 

increase in the current was observed under NH3, in accordance with the n-type nature of the 

fluorinated phthalocyanine (Fig. 6). The baseline of the sensor remained generally stable at 

constant humidity. It decreased only from 61 to 47 nA (bias = 1 V) when the relative humidity 

(rh) decreased from 50 to 10 %. The shift of the baseline was greater between 70 and 50% rh 

because the time of preconditioning between these two moisture levels was higher than for the 
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other transitions. Water and ammonia are electron-donating species that neutralize holes in the 

LuPc2 layer and in turn increase the density of negative minority carriers in this top layer. Thus, 

the response was determined by the minority charge carriers, as already reported in the 

particular case of ambipolar sensing molecular materials.[25] The relative response of the 

sensor to ammonia was little affected by the moisture content. For a concentration of 90 ppm, 

the RR value was between 120 and 147 % over the entire humidity range, while it was between 

94 and 117% at 60 ppm and finally between 62 and 80% at 30 ppm. Actually, this result is 

remarkable if we keep in mind that 70% rh corresponds to about 1.68 x 104 ppm water at room 

temperature. The response of the sensor was also determined in the range 1 - 9 ppm at a constant 

humidity of 50%. The current increased sharply by 22 nA at 9 ppm of ammonia against 2 nA 

at 1 ppm, with an excellent signal-to-noise ratio (Fig. 6b), which will lead to a sub-ppm 

detection limit, as hereafter detailed.  

The grafting of DMBz induced important changes in the sensor response of n-MSDI. Thus, 

in all the NH3 range, RR of the DMBz-modified sensor was about twice this of the unmodified 

MSDI (Fig. 6c).  

     

 

Figure 6. a) Current response of a Cu(F16Pc) - LuPc2 n-MSDI modified with DMBz, upon 

exposure to ammonia via exposure / recovery cycles of 1 min / 4 min, at different rh values. An 

additional 1500 s conditioning period between 70 and 50 % rh was not presented; b) response 

of the same sensor at low concentrations of ammonia (1-9 ppm) and at a constant rh value (50 

%); c) relative responses RR of the different n-MSDIs in the range 1 - 90 ppm of ammonia, at 

50% rh, with the Langmuir fittings and the sensitivity determination by linear regression in the 

range 1 - 9 ppm (modeling parameters in Table S1 and S2). All the measurements were 

performed at 1 V. 
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On the contrary, TFBz grafting that led to a higher threshold voltage altered the ammonia 

detection of n-MSDI Cu(F16Pc) - LuPc2, with a very weak I0 value, namely 30 nA at 50% rh 

and 20 nA at 10% rh, in spite of a bias of 2 V, against 1 V for the DMBz- modified device. At 

low ammonia concentration, the sensor response at 1 ppm was hardly noticeable. This indicates 

that the energy barrier participates to the sensor performances but only up to a limit value. 

 

Calibration curves: The DMBz-modified MSDI exhibited a sensitivity S, defined as the slope 

the curve RR=f([NH3]), of 0.98 % ppm-1 in the range 40-90 ppm NH3, but up to 3.0 % ppm-1 in 

the range 1 - 9 ppm, i.e. twice this of the pristine MSDI. The sensor response followed the 

behavior of a Langmuir adsorption isotherm, characterized by a quasi linear regime at low 

concentration and a saturation of the response at high concentration (Fig. 6c, Table S2). This 

model indicates that the maximal sensitivity could attain 3.6%.ppm-1 for concentrations lower 

than 1 ppm. Taking into account I0 (70 nA) and the noise at 1 ppm (0.1 nA), this device revealed 

a LOD (Eq. 6) of 140 ppb.  

𝐿𝑂𝐷 =
3𝑁

𝑆∗𝐼0
   (6) 

where S is the sensitivity in the 1 - 9 ppm range, I0 and N are the baseline current and the 

noise, determined at 1 ppm on the curve I(t).  

The n-MSDI without surface modification, reported previously, had never been the subject 

of studies at low concentrations. Taking into account its sensitivity (1.52% ppm-1, below 10 

ppm NH3), its I0 (511 nA) and the noise at 1 ppm (0.7 nA), a LOD of 280 ppb was deduced. 

Contrary to DMBz, the grafting of TFBz degraded the sensing performances of MSDI. Indeed, 

for the latter, the sensitivity at low concentration dropped to 1.1 %.ppm-1 and the noise increased 

to 0.3 nA leading to a LOD of 2 ppm. The grafting of TFEBz modifies very weakly the sensing 

properties of the n-MSDI. This device exhibited a sensitivity of 1.35 %.ppm-1 in the range 1 - 

9 ppm and a RR of 45% to 90 ppm. This behavior was similar to that of the sensor modified 

with Bz.  
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It appears that the sensitivity of n-MSDI depends on the energy barriers at the p-n 

heterojunction between LuPc2 and Cu(F16Pc) and at the electrode – sublayer interface. Indeed, 

the sensing measurements were carried out with a bias value lower than the total energy barrier, 

i.e. at a voltage where the current was limited by this energy barrier. The RR of n-MSDIs 

decreased when the voltage was increased, a too strong bias abolishing the energy barrier effect.  

 

3.4.3. Comparative overview 

We summarized the relative response of the present devices, with modified and unmodified 

electrodes, to a given concentration of ammonia, their average sensitivity and their LOD, by 

comparing them with the literature (Table 2). The n-MSDI Cu(F16Pc) - LuPc2 with grafted 

DMBz is the best MSDI developed in the laboratory.[16,26] Its sensitivity was of the same 

order of magnitude as the polymer-based devices [27-31] but lower than devices made from 

graphene [32] for which desorption is obtained by heating at ca. 200°C, or from hybrid 

materials, e.g. those that contain carbon nanotubes and gold nanoparticles (AuNP).[33] The 

grafted n-MSDI is not the most sensitive but has the great advantage of operating in a humid 

environment unlike the other reported devices.[34,35] Indeed, humidity, because of its high 

concentration, is the main interfering gas for most of NH3 sensors. On the other hand, the 

excellent sensitivity of the devices based on tungsten oxide and molybdenum was obtained at 

very high operating temperature (450 °C),[34] while the present organic devices have the 

advantage of operating at room temperature. Finally, the heterojunctions exhibit very good 

signal over noise ratios that lead to excellent LOD, comparable to the best LOD reported in the 

literature,[30,33] and even better for the DMBz modified MSDI. 

 

4. Conclusion 

Functionalization of ITO was carried out by reduction of four diazonium salts in aqueous 

medium. Although the blocking rate of a redox probe remained very good in all cases, the 
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EQCM measurements revealed that the trifluoroethoxy group in the para position led to a very 

thin film, near a monolayer, the formation of about ten monolayers for the grafting of TFBz and 

up to several tens of monolayers for the grafting of Bz and DMBz. 

In the case of LuPc2 resistors, the surface modification induced the ITO-LuPc2 interface did 

not form anymore an ohmic contact and the I(V) characteristics became nonlinear. By 

impedance spectroscopy, grafting revealed a second semicircle at low frequency associated to 

interfacial effects. The n-MSDIs that display nonlinear I(V) characteristics saw their threshold 

voltage increase by the modification of the ITO-Cu(F16Pc) interface. It highlights that the 

detection capacity of n-MSDI was due to the energy barrier coming from the p-n heterojunction 

and from the interface between the electrodes and the sublayer. The interaction between NH3 

molecules and LuPc2 modifies the density of majority charge carriers and therefore indirectly 

the depletion zone that limits the current through the device. About ammonia detection, the 

surface modification significantly increased the relative response of LuPc2 resistors that went 

from 0.9 % at 90 ppm to 12 %, after grafting of benzene. In the case of n-MSDI, the results 

were more contrasted; with DMBz, the sensitivity of the device was doubled, from 1.5 to 3 

%.ppm-1, in the range 1 - 9 ppm, compared to n-MSDI without surface modification, whereas 

it decreased for the other graftings. These experiments provided for the first time the LODs of 

n-MSDI, reaching 140 ppb for the most efficient one. It is worth noting that all the studies were 

achieved at room temperature in a humid environment. This work paves the way for the use of 

such conductometric sensors not only in the field of air quality monitoring but also in the field 

of health diagnosis by measurement in human breath. It also highlights the possibility of 

improving the performance of existing sensors by electrochemical modifications of electrodes, 

whatever the sensing material used.  
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Table 1. Determination of the surface coverages of the different graftings carried out on 

quartz covered with ITO, calculated from coulometric and EQCM results. 

 

 DMBz Bz TFBz TFEBz 

q/A [mC cm-2] 10.4 19.6 18.3 10.4 

-f [Hz] 520 280 133 28.3 

q [nmol cm-2] 200 175 186 106 

f [nmol cm-2] 25 28 6.9 1.2 

Nlayers 60 56 14 2 

 

 

Table 2. Summary of the sensing properties (RR, S, LOD) of the present devices compared to 

the literature. 
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Devices 

RR 

[%] 

[NH3] 

[ppm] 

S 

[% ppm-1] 
LOD 

[ppb] 

[NH3]  

[ppm] 

T 

[°C] 

rh 

[%] 
Ref. 

F16CuPc – LuPc2 MSDI on bare ITO 67 90 1.5 280 1 - 9 25 50 This work 

F16CuPc – LuPc2 MSDI on DMBz / ITO 138 90 3 140 1 - 9 25 50 This work 

F16CuPc – LuPc2 MSDI on TFBz / ITO 50 90 1.1 2000 1 - 9 25 50 This work 

F16CuPc – LuPc2 MSDI on TFEBz / ITO 45 90 1.3  1 - 9 25 50 This work 

PTCDI – LuPc2 MSDI 34 90 0.6  
10 - 

30 

25 
50 [16] 

TPDO – Lu Pc2 MSDI 26 90 0.2  
30 - 

90 

25 
50 

[26] 

PTFA – LuPc2 heterojunction 14 90 1.05 450 1 - 6 25 50 [18] 

PDMA – LuPc2 heterojunction 14 90 2.23 314 1 - 6 25 50 [31] 

PANI-CuTsPc resistor 78 30 1.9  
10 - 

30 

25 
50 

[27] 

PPy resistor 16 40 0.2 1000 40-75 25  [28] 

PPy - SWCNT resistor 26 10 0.5  
10 - 

140 

 
 

[29] 

PEDOT/PSS-SWCNT resistor 33 300 0.21 200 
2 - 

100 

 
 

[30] 

AuNP-PANI-MWCNT resistor 64 25 6 200 1 - 10   [33] 

CVD synthesized graphene resistor 40 40 6 – 0.09* ≈ 500 
0.5 – 

1000* 
25**  [32] 

MoO3-WO3 resistor 1000 5 200  5   [34] 

CeO2 – PANI resistor 550 50 11  2 - 50   [35] 

* non-linear but measured down to 0.5 ppm; ** measured at 25°C but desorption was achieved by heating under 

vacuum at ca. 200°C 


