
HAL Id: hal-02295347
https://hal.science/hal-02295347

Submitted on 24 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Modular Framework for Verifying Versatile
Distributed Systems

Florent Chevrou, Aurélie Hurault, Philippe Quéinnec

To cite this version:
Florent Chevrou, Aurélie Hurault, Philippe Quéinnec. A Modular Framework for Verifying Versatile
Distributed Systems. 5th International Symposium on Formal Approaches to Parallel and Distributed
Systems. (4PAD 2018), part of 16th International Conference on High Performance Computing and
Simulation (HPCS 2018), Jul 2018, Orléans, France. pp.748-755, �10.1109/HPCS.2018.00121�. �hal-
02295347�

https://hal.science/hal-02295347
https://hal.archives-ouvertes.fr

DOI : https://doi.org/10.1109/HPCS.2018.00121

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/22429

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Chevrou, Florent and Hurault, Aurélie
and Quéinnec, Philippe A Modular Framework for Verifying
Versatile Distributed Systems. (2018) In: 5th International
Symposium on Formal Approaches to Parallel and Distributed
Systems. (4PAD 2018), part of 16th International Conference on
High Performance Computing and Simulation, 16 July 2018 - 20
July 2018 (Orléans, France).

A Modular Framework for Verifying Versatile

Distributed Systems

Florent Chevrou

Université de Toulouse, IRIT

ENSEEIHT – 2, rue Camichel

F31000 Toulouse, France

florent.chevrou@enseeiht.fr

Aurélie Hurault

Université de Toulouse, IRIT

ENSEEIHT – 2, rue Camichel

F31000 Toulouse, France

aurelie.hurault@enseeiht.fr

Philippe Quéinnec

Université de Toulouse, IRIT

ENSEEIHT – 2, rue Camichel

F31000 Toulouse, France

philippe.queinnec@enseeiht.fr

Abstract—Putting independent components together is a com-
mon design practice of distributed systems. Besides, there exists
a wide range of interaction protocols that dictate how these com-
ponents interact, which impacts their compatibility. However, the
communication model itself always consists in a monolithic de-
scription of the rules and properties of the communication. In this
paper, we propose a mechanized framework for the compatibility
checking of compositions of peers where the interaction protocol
can be fine tuned through assembly of individual properties on
the communication. These include whether the communication
is point-to-point or multicast, which ordering-policies are to be
applied, applicative priorities, bounds on the number of messages
in transit, and so on. Among these properties, we focus on a
generic description of multicast communication that encompasses
point-to-point and one-to-all communication as special cases.
Eventually we provide theoretical views on the relations between
ordering-policies through the lenses of multicast communication.

Index Terms—Distributed systems; asynchronous communica-
tion; multicast; compatibility checking; TLA+

I. INTRODUCTION

Distributed systems are a composition of individual compo-

nents, the peers, that exchange messages and work towards a

common goal. Their interactions are governed by a protocol,

or communication model, that specifies whether or not the

emission or the reception of a message is possible. For

example, synchronous communication dictates that a message

shall be sent and received at the same time (rendez-vous).

In asynchronous communication, though, which this paper

focuses on, the emission and the reception of a message

do not happen simultaneously: the two events occur with

a delay. This results in many possible interleavings of the

communication events, some of which might jeopardize the

compatibility or the correction of a composition of peers unless

specific properties on the communication are met. Such prop-

erties include whether the communication is point-to-point or

multicast, numerous message-ordering policies that state some

messages have to be delivered in their emission order, bounds

on the number of messages in transit, and applicative priorities

ensuring that some messages or recipients have precedence

over others. Any conjunction of these properties is a unique

communication model. Yet, existing verification frameworks

consider the interaction protocol to be an indivisible entity

that may be, at best, parameterized (e.g. capacity of queues)

or entirely substituted by another.

In this paper, we describe an extensible framework where

the communication model is any desired conjunction of com-

munication properties we call “micromodels”. It allows to

verify with TLC, the TLA+ model checker, properties on

distributed systems depending on the combination of mi-

cromodels. Besides, we allow for different combinations to

apply on different parts of the distributed system: for instance

multicast causally ordered communication on the large scale

but point-to-point capped FIFO ordered communication on a

specific subsystem. Each micromodel is a transition system

specified in TLA+ whose transitions account for an emission

or a delivery of message and whose states may fit any

convenient data structure, no matter how the rest of the com-

munication is described. For instance, a simple specification

of the micromodel corresponding to the property “there are at

most n messages in transit” is a set in which a message is

added after an emission, removed after a reception, and that

prevents any further emissions when it contains n messages.

As an example, it may coexist with a micromodel that enforces

a message delivery order using queues. The product of such

an overall communication model and a composition of peers

specified in TLA+ constitutes the system to verify.

The presented framework handles both point-to-point (a

message is delivered to one peer) and multicast (a message has

several receivers) communication. Another contribution of this

paper is a generic specification (in one single micromodel) of

multicast communication that encompasses point-to-point and

one-to-all communication as special cases. It relies on a notion

called “interest” we motivate and describe.

The outline of this paper follows: Section II provides a brief

introduction to the TLA+ specification language, Section III

presents the overall design of our verification framework and

the modular design of communication models, Section IV

details a universal micromodel of communication for both the

point-to-point and multicast paradigms, Section V studies the

relations between message-ordering multicast communication

models, Section VI illustrates a use case of the verification

tool with an example, Section VII explores related work, and

eventually Section VIII sums this work up and paves the way

for further developments.

II. TLA+ SPECIFICATION LANGUAGE

TLA+ [12] is a formal specification language based on

untyped Zermelo-Fraenkel set theory for specifying data struc-

tures, and on the temporal logic of actions (TLA) for spec-

ifying dynamic behaviors. TLA+ allows to specify symbolic

transition systems with variables and actions. An action is a

transition predicate between a state and a successor state. It

is an arbitrary first-order predicate with quantifiers, set and

arithmetic operators, and functions. In an action, x denotes

the value of a variable x in the origin state, and x ′ denotes

its value in the next state. A specification of a system is

usually a disjunction of actions. Fairness, usually expressed

as a conjunction of weak or strong fairness on actions, or

more generally as an LTL property, ensures progression. The

TLA+ toolbox contains the TLC model checker, the TLAPS

proof assistant, and various tools such as a translator for the

PlusCal Algorithm Language [13] into a TLA+ specification.

III. OVERVIEW OF THE VERIFICATION FRAMEWORK

The verification framework involves several independent

TLA+ modules that are connected during the verification

process carried out by model checking using TLC. The key

feature is a strict separation of concerns between the specifi-

cation of the peers and the specification of the communication

properties. The distributed system consists of the product

of two transition systems: the composition of peers and the

communication model which are both labeled by localized

communication events.

A. Specification of a composition of peers

The specification of a composition of peers is a TLA+

module that describes the state of each peer in the distributed

system and specify their behavior according to transition

predicates (actions). The module parameters the desired layout

of micromodels of communication and instantiates the result-

ing communication model which then enables the peers to

interact and exchange information. The beginning of Figure 6

gives an example set up of a communication model where

a communication model COM is instantiated according to a

layout of micromodels described in COMMODELS . In this

example, one instance of a micromodel corresponds to one

channel but it could be associated to any subset of the set of

channels CHANNELS .

There is no restriction on the design of the specification

of the composition. The actions in the composition may

consist of a conjunction of an action from the instantiated

communication model and a local state change. In practice,

the state of the composition is usually a vector of every

peer’s state and the actions are localized. During an action

in the system, the state of a peer evolves either spontaneously

or alongside an action from the instantiated communication

model. The available communication actions in a specification

of a composition follow.

a) Send: send(sender , receivers, channel , data) is en-

abled when the emission of a message by peer on channel

channel is possible. We use the channel as an indirection on

the notion of destination peer (point-to-point) or destination

group (multicast). Besides, it makes it possible to specify

systems where channels are not statically associated to a given

sender or given group of receivers. receivers restricts the set

of possible receivers for this message: it is usually the set of all

peers since channels dynamically account for the destination

or destination group but it may be used to narrow a possible set

of receivers down, send a message to an explicit destination, or

to optimize the state space during model checking. Eventually,

the payload of the message is data without restriction on

its type which can be adapted on a case-by-case basis. This

payload is retrieved at delivery.

b) Receive: receive(receiver , channel , data) is enabled

when the reception of a message by receiver on channel

channel that contains data is possible. We assume peers

cannot prevent a delivery based on the content data of the

message: the communication model imposes the message to

be received and the content is only available afterwards.

Therefore, in practice, a receive action in the specification

of a composition has the form ∃data ∈ DATATYPE :
receive(_, _, data) ∧ P(data) where P(data) is a transition

predicate that covers all the possible values of data in

DATATYPE . This means that the next state of the receiver

may depend on data but the enabledness of the reception itself

is independent of this value.

c) Ignore: ignore(peer , channels) is always enabled. It

states that peer does not expect to receive messages from the

channels in channels anymore. This cannot be reverted. The

channels a peer has not ignored is called the interest of this

peer. This information is crucial to the specification of some

communication properties including multicast communication

as detailed later in Section IV-B.

B. Specification of a communication model

1) Micromodels of communication: As previously stated,

a communication model is a combination of communication

properties we call micromodels. A micromodel has to answer

the following two essential questions:

q1) When is the emission of a message, on a given channel,

by a given peer, possible?

q2) When is the delivery of a message, on a given channel,

to a given peer, possible?

In order to address these questions, the specification of a

micromodel, a TLA+ module, relies on its current state.

q3) Which information must the state carry?

Besides, a micromodel can be parameterized by constants

in the module. For example, a micromodel corresponding to

the property “the number of messages in transit is capped” has

a parameter: the bound, and the state is the set of messages

in transit. An emission requires the cardinality of this set not

to exceed the limit and a delivery is always possible. This last

point may seem odd, note though that the only purpose of this

micromodel is to limit the number of messages in transit. The

basics of the communication such as “a message must have

been sent before it is delivered” are part of another micromodel

involved alongside. Micromodels are complementary with

minimum overlap.

The remaining questions are then:

q4) What is the initial state?

q5) How does the state evolve after an emission?

q6) How does the state evolve after a delivery?

q7) How does the state evolve after some channels are

ignored by a peer?

Since we aim at modeling both point-to-point and multicast

communication, the answer to the last two questions is not triv-

ial. Consider a micromodel that specifies either point-to-point

or multicast communication and let us combine it with our

example cap micromodel, characterized by a set of messages

in transit. When performing a reception in this micromodel, the

resulting state depends on the communication paradigm: the

delivered message must be removed when the communication

is point-to-point (the message is not in transit anymore) but the

set may be left unchanged when the communication is multi-

cast (the message remains in transit for further deliveries). We

therefore distinguish two classes of micromodels: physical and

non-physical. Physical micromodels specify when a message

is removed from the communication model because it can no

longer be received. Non-physical models specify predicates

which control the sending and receiving of messages but are

not concerned by the lifetime of a message. This information

is fed to non-physical models by the physical models so they

can evolve in a consistent way.

q8) Is the micromodel physical?

The specification of any micromodel, such as our running

example (message cap) whose TLA+ specification is in Fig-

ure 1, must answer each of the eight questions q1 to q8.

The answer to q8 is a boolean PhysicalMicromodel ; q1 and

q2 are predicates preSend and preReceive that depend on

the current state of the micromodel, the sender or receiver,

the channel, and the data contained in the message; q3 is

a type predicate TypeInvariant depending on the current

state s; q4 is the value Init of the initial state; q5, q6, and

q7 are the values postSend , postReceive, postIgnore of the

state after the operation. postSend and postReceive share the

interface of preSend and preReceive, postIgnore depends on

a peer and set of channels to ignore. Additionally, in the

specification of non-physical micromodels, postReceive has

an additional boolean parameter remove stating whether the

received message should be removed or kept in transit, and

postIgnore has a set removedIds of messages to remove.

2) Assembly of a communication model: An actual commu-

nication model is a combination of instances of micromodels,

each corresponding to a subset of channels of the system. The

following details an example communication model whose

structure is summed up and illustrated in Figure 2. For

instance, it is possible to state that, among channels a , b,

c, d , e, and f , the communication has the property of a

MODULE message_cap

EXTENDS Naturals, FiniteSets

CONSTANTS ID , PEERS , CHANNEL, DATATYPE ,

BOUND Maximum nb of messages in transit

PhysicalMicromodel , FALSE q8

The state consists of one field: the ids of the messages in transit.

TypeInvariant(s) , s ∈ [idInTransit : SUBSET ID] q3

Init , [idInTransit 7→ {}] q4

usedIds(s) , s.idInTransit

preSend(s, id , from, to, channel , data) , q1

Cardinality(s.idInTransit) < BOUND

postSend(s, id , from, to, channel , data) , q5

[s EXCEPT !.idInTransit = s.idInTransit ∪ {id}]

preReceive(s, id , to, channel , data) , TRUE q2

postReceive(s, id , to, channel , data, remove) , q6

IF remove THEN [s EXCEPT !.idInTransit = @ \ {id}] ELSE s

postIgnore(s, peer , chan_set , removedIds) , q7

[s EXCEPT !.idInTransit = s.idInTransit \ removedIds]

Fig. 1. TLA+ module of a parameterized micromodel that caps the number
of messages in transit. The annotations q1 to q8 indicate the answers to the
questions a micromodel has to address.

given micromodel on channels a , b, and c (say a message

ordering property) and that another property (hence another in-

stance of a micromodel such as the message cap micromodel)

is associated to channels c and d . Overlaps are possible:

communication on channel c has both the message ordering

and the message cap properties. A micromodel can also be

instantiated more than once: for example the message ordering

micromodel can be instantiated again on channels e and f (i.e.

micromodels 1 and 3 are two distinct instances of the same

micromodel in the figure) which would mean messages on e

and f are ordered, messages on a , b, and c, are ordered, but

there is no guarantee on the ordering of a message of the first

group and a message of the second group. As stated earlier, a

physical micromodel dictates when a message no longer exists

in the communication model (e.g. after the first delivery if

the physical micromodel is point-to-point communication) and

the information is used by the non-physical micromodels to

update their local state. This implies that the sets of channels

of physical micromodels must not overlap. Otherwise, two

physical micromodels could disagree on whether to remove

a message on a shared channel. However, the restriction does

not apply to non-physical micromodels: the sets of channels

may overlap or extend beyond the domains of physical mi-

cromodels. Given a communication model that is part point-

to-point, part multicast, it is possible to limit the number of

messages in transit on the whole communication model with

a message cap instance that encompasses the domains of both

the point-to-point and multicast physical micromodels.

3) Interlinking of the micromodels: The TLA+ module that

exposes the three communication operations available for the

specification of compositions of peers is called the “multi-

Physical Micromodel A
Micromodel 1
Micromodel 2
Micromodel 3

Micromodel 4
Physical Micromodel B

Channels

a

d
c

b

fe

ih

g

j

Fig. 2. A communication model built as a combination of micromodels. Each
channel is associated to a unique physical micromodel.

operation(c, …)

Composition
of peers Multicom

preOperation(c, …)

Physical
µmodel A

 µmodel
1

µmodel
2

µmodel
3

forbidden allowed

postOperation(c, …)

removed messages r

postOperation(c, r, …)

received data

STATE
UPDATE

STATE
UPDATE

STATE
UPDATE

STATE
UPDATE

STATE
UPDATE

Fig. 3. Illustration of the dispatcher role of the multicom. An operation on
channel c is initiated by a peer of a composition. It corresponds to a unique
atomic TLA+ action. The communication model is described in Figure 2: for
channel c, it does not involve micromodel 2. The conjunction of the guards on
the operation determines whether the operation is possible. If so, it is applied
on the physical micromodel first and then on the others with knowledge of
the removed messages.

com”. It is instantiated in the specification of the composition

of peers with a parameter: the specification of the communica-

tion model (see COMMODELS in Figure 6). The multicom is

a dispatcher that gathers the local states of the micromodels,

checks whether an operation is possible (using the pre · · ·
predicates), and how the local states evolve (using the post · · ·
values). The multicom also generates and manages the mes-

sage identifiers: a message has the same identifier across all the

micromodels which makes it possible to maintain coherence.

When an operation is to be performed, say a reception on

channel c, the conjunction of all the preReceive predicates of

micromodels associated to c determines whether the reception

is possible. If so, the new state of the physical micromodel of

c is computed. By comparing it to the former state, the set of

messages identifiers that are no longer in use (i.e. removed

messages) is computed. It is provided to the non-physical

micromodels whose state is updated afterwards. Figure 3 is

a sequence diagram that gives insight into the process. Note

that it is purely illustrative: it actually corresponds to a unique

atomic TLA+ action, that is a transition predicate involving

the conjunctions of the micromodel-specific predicates.

IV. A PHYSICAL MICROMODEL FOR MULTICAST

COMMUNICATION

A physical micromodel for asynchronous point-to-point

communication can be modeled as a set of messages in transit,

initially empty: the network. Sending a message is always

enabled, by adding it to the network. Delivering a message

requires it to be in the network and removes it. Obviously,

a message is delivered at most once. In order to describe

multicast communication which allows multiple deliveries of

a message (at most one per peer), the lifespan of a message

in transit must be subtly extended.

A. Lifespan of messages in transit

1) Sending the messages over and over: A simple solution

would send the message again once it has been received so it

can be received another time by another peer. There are two

problems. This solution does not specify when to stop sending

messages again. Second, when considering message-ordered

communication where the order of the emissions matters (e.g.

messages must be received in their emission order), sending a

message again might modify the ordering. For instance, send

m1 followed by m2, then deliver m1. The semantics of this

solution implies that m1 is put back in the network and the

new ordering is m2 · m1 instead of m1 · m2 the actual order

of the multicast emission.

2) Never removing the messages from the network: Were

the messages to remain in the network forever, they could

be received as many times as needed. Once again however,

this might conflict with some ordering policies. Assume that

messages must be received in their emission order, that is to

say the network can be viewed as a global queue, and consider

two messages in transit. Even after all the peers have received

the first message, since it remains in transit forever, none of

them will ever receive the second (not first in queue) and the

system will deadlock.

3) Removing a message from the network once delivered to

all the peers: The previous issue is overcome by removing

a message from the network after it has been delivered to

every peer. Still, this means that all the peers must be ready

to receive all the messages in order not to block the system.

This requirement is too strong to allow for the verification of

interesting and realistic systems: the specification of a peer

should not depend on the noise in the environment it takes

part in.

4) Removing after delivering to the relevant peers only:

A compromise is to remove a message from the network as

soon as it has been delivered to the peers involved in that

message exchange while ignoring the others. This is remi-

niscent of [6] which specifies point-to-point message-ordering

policies where delivery blockages arising from independent

and irrelevant exchanges in the system are ignored.

B. Channels and interest as an indirection on destination

groups

In order not to impose the delivery of a message that a

peer has nothing to do with, and never will, we rely on the

concept of interest. A peer is interested in some channels

only: it expects messages on these channels. Over time, the

peer may lose interest in some or all of them: either the

expected deliveries have occurred or the peer has ruled out

the possibility of ever receiving the messages. Action ignore

of the communication model allows a peer to lose interest in

a given set of channels, as described in the previous section.

The interest of the peers is part of the state of the multicast

micromodel. The most sensible behavior would be to remove a

message from the network as soon as the last peer interested

in the channel of this message ignores it. However, a more

generic approach is only a few tweaks away from this main

rule.

C. A generic description for point-to-point, multicast, and

one-to-all communication

The proposed operational specification of multicast com-

munication is adapted to become generic and encompass, in

particular, point-to-point communication. Consider two param-

eters of the communication denoted MIN and MAX .

• MIN is the minimal number of times a message must be

received before it is removed from the network.

• MAX is the maximal number of times a message can be

received before it is removed from the network regardless

of the interest.

Let N denote the number of peers in the system. Up

until now, we have described multicast(0,N) communication: a

message is removed from the network when the corresponding

channel does not interest any peer.

Point-to-point communication corresponds to multicast(1,1).

Indeed, a message must be received at least once before it can

be removed from the network and must not be received more

than once. This means it is immediately removed from the

network following the first reception, never before. Similarly,

multicast(1,N) corresponds to multicast communication were

at least one peer must receive a message before it is removed,

and multicast(N,N) models one-to-all communication where

a message must be received by all the peers (including the

sender) before it is removed from the network, regardless of

the interest. MIN and MAX can also take any other value

between 0 and N.

Figure 4 illustrates the differences between multicast(0,N),

multicast(1,1), and multicast(N,N) with a common example

scenario involving a global message-ordering policy (the net-

work consists of a global common queue of messages). It

shows the possible constraints and deadlocks that arise from

combining two micromodels: a variant of multicast, and the

global ordering policy.

The complete specification of the proposed generic mi-

cromodel is presented in Figure 5 and consists of two state

variables network and interest . The first one is a set of

messages in transit which expands after each new emission;

the second one contains, for each peer, the set of channels that

it has not ignored (i.e. its interest). A message is composed

of metadata including its unique identifier provided by the

multicom, the sender, channel, and a set receivedBy of peers

it has already been delivered to in order to prevent multiple

deliveries to the same peer (see preReceive). After a delivery

(see postReceive), the receiver is added to the message’s

receivedBy set but the message remains in the network unless

MAX receptions have occurred (after the first delivery in

interest network

Operation p1 p2 p3 (0,N) (1,1) (N,N)

{a, b} {a, b} {a, b} ∅ ∅ ∅
p1 i a {b} {a, b} {a, b} ∅ ∅ ∅
p1 ! a {b} {a, b} {a, b} a a a
p1 ! b {b} {a, b} {a, b} a · b a · b a · b
p2 ? a {b} {a, b} {a, b} a · b b a · b
p2 i a {b} {b} {a, b} a · b b a · b
p3 ? a {b} {b} {a, b} a · b ⊥1 a · b
p3 i a {b} {b} {b} b a · b
p1 ? b {b} {b} {b} b ⊥2

1 The message is not in the network anymore (MAX = 1).
2 The message on a is still in the network (MAX = N) and must

be received first according to the current ordering policy.

Fig. 4. Evolution of the state of the communication according to different
instances of multicast(*,*) with global message-ordering, channels a and b,
and N = 3 peers (pi)i∈1..N . The network is represented by a queue. !
means “send”, ? means “receive”, i means “ignore”.

point-to-point, i.e. multicast(1,1)). When channels are ignored

by a peer (see postIgnore), the interest is updated, and

messages that no longer interest any peer are removed from

the network unless they have not been delivered at least MIN

times yet.

V. MESSAGE-ORDERING PROPERTIES

We provide non-physical micromodels for a large set of

message-ordering policies. A detailed description, both ax-

iomatic and operational, of classic point-to-point communi-

cation models is found in [6]. They include the following:

• RSC Realizable with Synchronous Communication [4],

[10]. The emission of a message is immediately followed

by its delivery (viewed atomically, it corresponds to

synchronous communication).

• FIFO n–n Messages are globally ordered and are deliv-

ered in their emission order.

• FIFO 1–n Messages sent from a same peer are delivered

in their emission order.

• FIFO n–1 On a given peer, messages are received in

their absolute emission order.

• FIFO 1–1 Messages between a couple of peers are de-

livered in their emission order. Messages from/to different

peers are independently delivered.

• causal Messages are delivered according to the causal-

ity of their emission [11]. If a message m1 is causally

sent before a message m2 (i.e. there exists a causal path

from the first emission to the second one), then a peer

cannot get m2 before m1.

The communication models in [6] are standalone and rely

on message histories. By stripping away the management of

the lifespan of messages in transit, we obtain specifications of

their ordering policies that follow the previous conventions as

pluggable and multicast-ready micromodels that make use of

the concept of interest.

Totally-ordered multicast: Some distributed systems feature

duplicated peers that are supposed to serve the same purpose

and make the overall system more robust. A message that

MODULE multicast

EXTENDS Naturals, FiniteSets

CONSTANTS ID , PEERS , CHANNEL, DATATYPE , MIN , MAX

PhysicalMicromodel , TRUE

LOCAL SendingSubsets , (SUBSET PEERS) \ {}

LOCAL Message , [

id : ID , Message identifier

from : PEERS , Sender

to : SendingSubsets, Possible receivers

channel : CHANNEL, Channel

data : DATATYPE , Payload

receivedBy : SUBSET PEERS] Peers it has already been delivered to

LOCAL Network , SUBSET Message

LOCAL Interest , [PEERS → SUBSET CHANNEL]

TypeInvariant(s) , s ∈ [network : Network , interest : Interest]

Init , [network 7→ {}, interest 7→ [peer ∈ PEERS 7→ CHANNEL]]

TransitingMessages(s) , s.network 6= {}

usedIds(s) , {m.id : m ∈ s.network}

postIgnore(s, peer , chan_set) ,

LET new_peer_interest , s.interest [peer] \ chan_set IN

[s EXCEPT

!.interest = [@ EXCEPT ![peer] = new_peer_interest],

!.network = {m ∈ @ :

∨m.channel ∈ new_peer_interest

∨ Cardinality(m.receivedBy) < MIN not received enough

∨ ∃ p ∈ PEERS \ {peer} : another is still interested

m.channel ∈ s.interest [p]}]

Emission: the message is added to the nework

preSend(s, id , from, to, channel , data) , TRUE

postSend(s, id , from, to, channel , data) ,

LET related_messages , {m ∈ s.network : m.from = from}IN

[s EXCEPT !.network = @ ∪ {[id 7→ id , from 7→ from,

to 7→ to, channel 7→ channel , data 7→ data, receivedBy 7→ {}]}]

preReceive(s, id , to, channel , data) ,

∃m ∈ s.network :

∧m.id = id The metadata of a message in transit match.

∧ to ∈ m.to

∧m.channel = channel

∧m.data = data

∧ to /∈ m.receivedBy The peer has not received it yet.

postReceive(s, id , to, channel , data) ,

LET m , (CHOOSE x ∈ s.network : x .id = id)IN

The message has its receivedBy set updated first.

LET network_preupdate ,

(s.network \ {m})
∪ {[m EXCEPT !.receivedBy = @ ∪ {to}]}IN

The message is actually removed if it was the MAXth reception.

[s EXCEPT !.network =

{m2 ∈ network_preupdate :

Cardinality(m2.receivedBy) < MAX}]

Fig. 5. TLA+ specification of the generic multicast physical micromodel.
The parameters MIN and MAX make it possible to use different instances
of this module to model multicast communication, one-to-all communication,
point-to-point communication, or in-between variants.

would be sent to a single peer in point-to-point communication

is sent, in multicast communication, to all the duplicates. In

such cases, it is interesting to guarantee that the messages are

delivered in the same order to all the duplicates. This way,

the receptions may be viewed as atomic, as if the duplicates

where abstracted by a single peer that receives the message

in question. This property is called totally ordered multicast

and is independent from other ordering policies. As for now,

we do not provide a micromodel of totally-ordered multicast

communication. However, in the following, we identify ways

to enforce the property using existing micromodels.

There exists a hierarchy of message-ordering policies with

point-to-point communication. Consider a set of messages M

and a set of peers P , let E , {s(p,m) | p ∈ P ∧ m ∈
M }∪{r(p,m) | p ∈ P∧m ∈ M } be the set of communication

events: the disjoint union of the set of send and receive events.

Each communication model is characterized by the set of

sequences of events (called executions) it allows to unfold.

For instance, the set of executions of FIFO n–n contains all

the executions (σi)i∈1..N (where N ∈ N ∪ ∞) such that

∀m1,m2 ∈ M : ∀p1, p2, p
′

1, p
′

2 ∈ P : ∀i , j , i ′, j ′ ∈ 1..N :
σi = r(p1,m1) ∧ σj = r(p2,m2) ∧ σi′ = s(p′

1,m
′

1) ∧ σj ′ =
s(p′

2,m
′

2) ⇒
(

(i < j) ⇔ (i ′ < j ′)
)

. This means that if a

reception happens before another, the two emissions of the

messages must have happened in the same order. A commu-

nication model is stricter than another when the executions

set of the former is included in the set of the later. Existing

results with point-to-point communication reveal the following

hierarchy from the strictest model to the most liberal:

Point-to-point communication:

• RSC → FIFO n–n → FIFO n–1 → causal → FIFO 1–1

→ no-ordering

• RSC → FIFO n–n → FIFO 1–n → causal → FIFO 1–1

→ no-ordering

We have extended these results to multicast communica-

tion. As it turns out, the point-to-point hierarchy holds apart

from the 1-n → causal link that no longer stands but more

importantly, we have been able to prove that FIFO n–1

communication suffices to guarantee totally-ordered multicast.

The proof is detailed in [5]. The resulting hierarchy is the

following:

Multicast communication:

• RSC → FIFO n–n → FIFO n–1 → causal → FIFO 1–1

→ no-ordering

• RSC → FIFO n–n → FIFO 1–n 9 causal

• Additionally: FIFO n–1 → totally-ordered multicast

Although we do not propose a micromodel of totally-

ordered multicast communication, we have been able to

identify the more liberal and already available micromodel

that provides the property. In the example described in the

following section, we make use of this knowledge in a use

case involving both multicast(0,N) and FIFO n–1.

VI. EXAMPLE

Let us consider a conference reviewing system. The peers

are the authors, the chairs of the program committee and

the reviewers. Authors send their papers to all the PC chairs

(multicast to the chairs). Each chairperson attributes a paper

number and takes responsibility for a part of the papers, based

on this number. In order that all chairs attribute the same

number to a given paper, and without internal coordination

between the PC chairs, the authors use a totally ordered

multicast so that the papers are delivered in the same order

to all the chairs (fifo n-1 ordering model). After the deadline

has passed, the chairs reject new submissions (point-to-point

communication to the author). After the deadline, each chair

independently sends its papers to some of the reviewers

(bounded multicast to the reviewers), waits for the reviews

(multicast from the reviewers to the chairs), and sends the

acceptance result to the author (point-to-point). The system

must ensure that it does not deadlock and that every author

eventually receives an answer (either rejection for a late paper,

or acceptance result if reviewed). This system exposes both

strict ordering constraints (submissions sent to the chairs),

and high interleaving (each reviewer is independently handling

the papers it has received). The system has been described

in the PlusCal Algorithm Language, which is translated by

the TLA+ tools to a TLA+ specification, which can then be

checked with the TLC model checker. An excerpt1 is given

in Figure 6. Results have shown that the message cap on the

number of messages in transit is instrumental to avoid state

explosion as it ensures that messages are not delayed for too

long. During the development of the system, several bugs were

found. For instance, the logic to split the papers among the

chairs was faulty with an odd number of chairs (e.g. one. . .)

and some authors were never receiving their acceptance result;

in some cases, the same paper was sent twice to the reviewers,

and an unfortunate (but legal) interleaving in the reception

of the reviews led to two acceptance messages to the same

author. This system, albeit simple, already experiences enough

communication interactions to warrant formal verification.

VII. RELATED WORK

Tel’s textbook [17] describes a distributed system as a

“collection of processes and a communication subsystem”.

Each process is a transition system, and the transition system

induced under asynchronous communication is built with the

product of the process transition systems extended with a

collection of messages in transit, and two rules for send

and receive. His formal definition considers synchronous and

fully asynchronous (unordered) point-to-point communication

whereas we explicitly describe the communication subsystem

with a transition system, consider several communication

properties, including multicast and message-ordering policies,

compare them, and offer a mechanized framework for check-

ing compositions of peers.

Promela (Process Meta Language) [9] is used to specify

state transition systems that may describe distributed systems

and asynchronous interactions. The associated model checker,

1The complete files, of the example and of the used communication models,
are available on http://vacs.enseeiht.fr/4pad2018/.

MODULE reviewing

CONSTANT NbAuthors, NbChairs, NbReviewers,
NbMinReviews, NbMaxReviews, Capacity

CHANNELS , {“submission”, “paper”, “review”, “acceptation”}
COMMODELS , {

[name 7→ “multicast”, params 7→ [chan 7→ {“submission”},
min 7→ 1, max 7→ NbChairs]],

[name 7→ “multicast”, params 7→ [chan 7→ {“paper”},
min 7→ NbMinReviews, max 7→ NbMaxReviews]]

[name 7→ “multicast”, params 7→ [chan 7→ {“review”},
min 7→ 1, max 7→ NbChairs]],

[name 7→ “p2p”, params 7→ [chan 7→ {“acceptation”}]],
[name 7→ “fifon1”, params 7→ [chan 7→ {“submission”}]],
[name 7→ “message_cap”, params 7→ [chan 7→ CHANNELS ,

bound 7→ Capacity]]}

COM , INSTANCE multicom WITH

PEERS ← IdAuthors ∪ IdChairs ∪ IdReviewers,
COM ← COMMODELS ,
CHANNEL← CHANNELS

....

--algorithm reviewing

....

fair process Reviewer ∈ IdReviewers

variable

readinglist = {} ; – for each reviewer, the papers he has to review

begin

rl0: – listen only on channel “paper”
await ignore(self , CHANNELS \ {“paper”}) ;

rl1:

while TRUE do

either – receive a paper to review

await Cardinality(readinglist) ≤ 4 ;

with paper ∈ IdPapers do

await COM !receive(self , “paper”, paper) ;

readinglist := readinglist ∪ {paper} ;

end with ;

or – send a review to the chairs

with paper ∈ readinglist do

await COM !send(self , IdChairs, “review”, 〈self , paper〉) ;

readinglist := readinglist \ {paper} ;

end with ;

end either ;

end while ;

end process

end algorithm

Fig. 6. An excerpt of the conference reviewing system. COMMODELS
specifies the properties of the channels (e.g. review is a multicast 1-
NbChairs channel). The peers (processes in PlusCal language) are the
authors, the chairs and the reviewers. The reviewers have two actions: they
can either receive a message on channel paper or send a message on channel
review. The chairs and the authors (not shown here) have respectively five
and two actions.

SPIN, performs efficiently on these specifications. However,

Promela only provides FIFO message channels to model

the communication whereas our work requires an approach

that encompasses the variety of asynchronous communication

properties and the deriving communication models.

Micro-protocols have been used in Horus [16] and Ensem-

ble [15]. The developer arranges a stack of micro-protocols to

obtain precisely the desired properties. Each micro-protocol

layer handles some small aspect of these properties. For

instance, one layer might deal with message loss, one with

encryption, one with group membership, and another one with

multicast ordering. One notable point of Ensemble was the

use of NuPrl for provably rewriting the stack and generating

optimized implementations [14], and of I/O automata for for-

malizing, specifying, and verifying the Ensemble implementa-

tion [8]. The main differences with our work is the hierarchical

structure of the stack, and that the objectives of Horus and

Ensemble was to provide efficient implementations of a group-

communication infrastructure and was not concerned with the

verification of the applications themselves.

Compatibility of services or software components has

largely been studied, especially with regards to collaborations

and choreographies. Usually the interaction model is fixed and

global for all the interactions. The majority of the approaches

consider synchronous communication (e.g. [3], [7]), even

if a few works consider asynchronous communication with

variations of FIFO ordering (e.g. [2], [1]). To the best of our

knowledge, no work has considered multicast communication

or composed communication models.

VIII. CONCLUSION

This paper proposes an approach to the verification of

asynchronous distributed systems that considers the influence

of each individual property of the communication medium on

the peers of the system. The first contribution is a verifica-

tion framework in TLA+ that offers to build communication

models by combining individual communication properties we

call micromodels. It benefits from the TLA+ tools: the model

checker TLC and the proof assistant TLAPS. This allows to

cover a wide range of possible asynchronous communication

variants while existing verification tools usually stick to a

few particular cases and seldom offer much control over the

features of the communication medium. Each specification of

a micromodel follows a simple yet generic template allowing

for easy expansion. Among them, we distinguish physical

micromodels that specify when a message is removed from the

whole communication model, and non-physical micromodels

that provide additional properties among message ordering,

cap on the number of messages in transit, or applicative

priorities. The second contribution is a physical micromodel

that encompasses both point-to-point and multicast commu-

nication thanks to a notion called the interest. The interest

is an indirection on the usual notion of destination group in

multicast communication: a message is proposed for delivery

as long as some peers are or may later be interested in

receiving it. By tweaking this rule with two parameters MIN

and MAX that respectively prevent or force the removal of

a message from the communication model depending on the

current number of deliveries, we describe the whole spectrum

of multicast communication spanning from point-to-point to

one-to-all communication.

Ongoing work aims at specifying a micromodel for totally-

ordered multicast communication. This ordering policy hap-

pens not to integrate as easily as other classic ordering

policies with the notion of interest. Knowledge on the future

behavior of the peers is necessary to check whether a delivery

violates the ordering. Further thinking is thus required. In the

meantime, this paper identifies the weakest classic ordering

policy that provides totally-ordered multicast in a ready-to-

use micromodel. Considering fault models among message

loss, duplication, or crash of a peer, is another perspective.

More generally, we do not specify the behavior of classic

ordering policies after a loss or duplication of a message,

or any other failure. The two challenges involve adapting

existing micromodels and studying how the very notion of

fault models can be integrated in the framework: it may require

small adaptations or deeper refactoring.

REFERENCES

[1] Samik Basu, Tevfik Bultan, and Meriem Ouederni. Deciding choreog-
raphy realizability. In 39th Symposium on Principles of Programming

Languages, POPL ’12, pages 191–202. ACM, 2012.
[2] Daniel Brand and Pitro Zafiropulo. On communicating finite-state

machines. Journal of the ACM, 30(2):323–342, April 1983.
[3] Antonio Brogi, Carlos Canal, Ernesto Pimentel, and Antonio Vallecillo.

Formalizing web service choreographies. Electronic Notes in Theoretical

Computer Science, 105:73–94, December 2004.
[4] Bernadette Charron-Bost, Friedemann Mattern, and Gerard Tel. Syn-

chronous, asynchronous, and causally ordered communication. Dis-

tributed Computing, 9(4):173–191, February 1996.
[5] Florent Chevrou. Formalisation of Asynchronous Interactions. Phd

thesis, Institut National Polytechnique de Toulouse, Toulouse, France,
November 2017.

[6] Florent Chevrou, Aurélie Hurault, and Philippe Quéinnec. On the di-
versity of asynchronous communication. Formal Aspects of Computing,
28(5):847–879, September 2016.

[7] Francisco Durán, Meriem Ouederni, and Gwen Salaün. A generic
framework for n-protocol compatibility checking. Science of Computer

Programming, 77(7-8):870–886, July 2012.
[8] Jason J. Hickey, Nancy Lynch, and Robbert van Renesse. Specifications

and proofs for Ensemble layers. In R. Cleaveland, editor, Fifth Inter-

national Conference on Tools and Algorithms for the Construction and

Analysis of Systems (TACAS’99), LNCS 1579, pages 119–133. Springer-
Verlag, 1999.

[9] Gerard J. Holzmann. The Spin Model Checker : Primer and Reference

Manual. Addison-Wesley, 2004.
[10] Ajay D. Kshemkalyani and Mukesh Singhal. Distributed Computing:

Principles, Algorithms, and Systems. Cambridge University Press,
March 2011.

[11] Leslie Lamport. Time, clocks and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558–565, July 1978.

[12] Leslie Lamport. Specifying Systems. Addison Wesley, 2002.
[13] Leslie Lamport. The pluscal algorithm language. In Martin Leucker

and Carroll Morgan, editors, Theoretical Aspects of Computing - ICTAC

2009, 6th International Colloquium, volume 5684 of Lecture Notes in

Computer Science, pages 36–60. Springer, 2009.
[14] Xiaoming Liu, Christoph Kreitz, Robbert van Renesse, Jason J. Hickey,

Mark Hayden, Kenneth Birman, and Robert Constable. Building reliable,
high-performance communication systems from components. In David
Kotz and John Wilkes, editors, 17th ACM Symposium on Operating

Systems Principles (SOSP’99), volume 33(5) of Operating Systems

Review, pages 80–92. ACM Press, December 1999.
[15] Robbert van Renesse, Kenneth P. Birman, Mark Hayden, Alexey Vays-

burd, and David Karr. Building adaptative systems using Ensemble.
Software – Practice and Experience, 28(9):963–979, August 1998.

[16] Robbert van Renesse, Kenneth P. Birman, and Silvano Maffeis. Horus:
A flexible group communications system. Communications of the ACM,
39(4):76–83, April 1996.

[17] Gerard Tel. Introduction to Distributed Algorithms. Cambridge Univer-
sity Press, second edition, 2000.

