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A novel analytical investigation of circumferential (i.e. torsional) wave propagation in long anisotropic cylindrical rod (waveguide), surrounded by a viscoelastic fluid is proposed. The material is transversely isotropic, with its symmetry axis coincident with the axial axis of the cylindrical rod. In particular, a new form of the complex dispersion equation is presented. The aim of this paper is to study the correlation between the rheological properties of the fluid and the wave characteristics (phase and attenuation). The effect of the frequency and the waveguide radius on the wave characteristics are highlighted. The obtained results show that the measurements should be performed at high frequency using small rod radius. Accordingly, the results can be serve as benchmark solutions in design of torsional wave fluid sensors.

Introduction

The concept of circumferential wave dipstick is attractive in industry for fluid characterizations. The idea is that the wave propagation in a solid elastic rod can sense the fluid rheological properties. The circumferential wave which propagates along the waveguide interacts with fluid boundary, it follows that the circumferential wave properties (velocity and attenuation) are highly affected [START_REF] Kim | The effect of an adjacent viscous fluid on the transmission of torsional stress waves in a submerged waveguide[END_REF].

The circumferential elastic waves in dry cylinders has been studied by many authors [START_REF] Kaul | Torsional waves in an axially homogeneous bimetallic cylinder[END_REF][START_REF] Carcione | Torsional oscillations of anisotropic hollow circular cylinders[END_REF][START_REF] Kudlicka | Dispersion of torsional waves in thick-walled transversely isotropic circular cylinder of infinite length[END_REF]. They have investigated the material properties effects on the phase velocity of the circumferential modes. Huiling et al. have developed a theoretical model of guided circumferential waves propagating in double-walled carbon nanotubes [START_REF] Huiling | Guided circumferential waves in double-walled carbon nanotubes[END_REF]. They studied the dispersion curves of the guided circumferential wave propagation. Xu et al. have modeled the torsional wave propagation along a micro-tube with elastic membrane attached to its inner surface. They have presented numerically the dispersion diagram of the lowest-order wave with the membrane surface effect [START_REF] Xu | Torsional wave in a circular microtube with clogging attached to the inner surface[END_REF]. The interaction between the circumferential waves and viscous fluid has been considered by [START_REF] Kim | Interaction between the torsional vibration of a circular rod and an adjacent viscous fluid[END_REF][START_REF] Kim | Effect of a viscous fluid at the end face on the torsional vibration of a rod[END_REF][START_REF] Abassi | Torsional vibrations of fluid-filled multilayered transversely isotropic finite circular cylinder[END_REF][START_REF] Mnassri | Vibrational frequency analysis of finite elastic tube filled with compressible viscous fluid[END_REF][START_REF] Kim | Instrument for simultaneous measurement of density and viscosity[END_REF]. Nevertheless, the interaction modeling between the circumferential wave and a viscoelastic fluid is still lacking. Indeed, in the field of chemistry [START_REF] Lakes | Viscoelastic measurement techniques[END_REF], medical diagnostics [START_REF] Brust | Rheology of human blood plasma: viscoelastic versus Newtonian behavior[END_REF], or industrial monitoring [START_REF] Cegla | Material property measurement using the quasi-Scholte mode: a waveguide sensor[END_REF], it is necessary to characterize the fluid viscoelasticity. One interesting application is the monitoring of polymerization [START_REF] Harrold | Acoustic waveguide monitoring of the cure and structural integrity of composite materials[END_REF]. During the process, the material changes from viscous fluid to elastic solids. This modification affects the propagation of the circumferential waves in a immersed circular rod.

Circumferential waves in elastic waveguide have been widely exploited to measure the fluid viscosity [START_REF] Kim | The effect of an adjacent viscous fluid on the transmission of torsional stress waves in a submerged waveguide[END_REF][START_REF] Kim | Instrument for simultaneous measurement of density and viscosity[END_REF][START_REF] Roth | A new method for continuous viscosity measurement. General theory of the ultra-viscoson[END_REF][START_REF] Lynnworth | New designs for magnetostrictive probes using extensional, torsional and flexural waves[END_REF]. However, in these papers the character viscoelastic of fluid has not been taken into account. A novel approach based on the exact theory, to be able to accurately predict the circumferential wave behavior in elastic waveguide loaded on its surface with a viscoelastic fluid, remains a daunting task and is the purpose of the present paper. The effects of frequency and waveguide radius on the phase velocity and attenuation of circumferential waves are investigated. The obtained curves show that the attenuation is much more sensitive than phase velocity to https://doi.org/10.1007/s42452-019-0824-6 * A. El Baroudi, adil.elbaroudi@ensam.eu | 1 Arts et Métiers ParisTech, 2 Boulevard du Ronceray, 49035 Angers, France.

Vol:.(1234567890) glycerol concentration. Otherwise, the sensitivity is more significant for small waveguide radius and high frequencies. These results can provide interesting information to design sensors: we can use circumferential wave propagation at high frequency (100 kHz) in anisotropic waveguide with small radius (1 mm).

Physical model description

To describe the waveguide structure that guides circumferential waves, we consider a two-layer system consisting of a viscoelastic fluid and an anisotropic cylindrical rod as shown in Fig. 1. The length of the waveguide is much greater than the radius a of the cross-section so that the interaction of the right-end face with the viscoelastic fluid is negligible [START_REF] Kim | Instrument for simultaneous measurement of density and viscosity[END_REF]. Therefore, the current work focuses on the circumferential modes. The circumferential waves exhibit a multimode character, the fundamental mode plays an important role in many application such as NDT and sensors. Accordingly, in this work, the attention is focused on the properties of the fundamental mode of circumferential waves. For this set of modes, the non-zero components of displacement and velocity are u and v . Moreover, due to the axisymmetry of the studied modes, the velocity field, (r, , z) = 0, v , 0 , and displacement field, (r, , z) = 0, u , 0 , are independent of the vari- able and can be displayed in the (r, z) plane. Note that in previous works the circumferential vibration in an isotropic elastic cylinder was used to determine fluid viscosity. In the present work a novel theoretical approach is developed taking into account both the fluid viscoelasticity and anisotropy of the waveguide.

Mathematical formulation of waveguide

Based on the elastodynamic theory, the equation describing the motion of torsional vibrations of the waveguide in the absence of body forces is governed by where s is density, u is displacement components along circumferential directions, and z , r , are the stress components and can be written using generalized Hooke's law as where C 44 and C 66 are the elastic coefficients. Substitut- ing Eq. ( 2) in Eq. ( 1), yields the following partial differential equation Note that in the case of an isotropic waveguide, C 44 = C 66 = , the Lamé constant.

Mathematical formulation of viscoelastic fluid

In this study, we consider that the fluid velocity is small compared to the dimensions of the model, it then follows that all nonlinear convective inertia effects in the Navier-Stokes equation (NSE) can be neglected, therefore the linearized NSE takes the form where v is the velocity vector, t is the time, f is the density and is the shear stress tensor. In this paper Maxwell model is adopted to describe the fluid viscoelasticity. Therefore, the differential equation for the relation between force and deformation can be written as [START_REF] Joseph | Fluid dynamics of viscoelastic liquids[END_REF] where is the relaxation time, is the dynamic viscosity and is the strain rate tensor. Applying the divergence operator to both sides of Eq. ( 5) and taking into account Eq. ( 4), we get the following viscoelastic fluid equation expressed in terms of the circumferential component of the velocity field The Eq. ( 6) is known as the telegraph equation.
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General solution of wave equations

For a circumferential harmonic wave propagation in the z-direction, the solution of Eqs. ( 3) and ( 6) (waveguide displacement u and viscoelastic fluid velocity v ) are sought in the form

where k = k 0 + j is the complex wave number. Note that the real part of the wave number k 0 determines the cir- cumferential wave phase velocity, and the imaginary part represents the circumferential wave attenuation in the propagation direction. After substitution of Eq. ( 7) into Eqs.

(3) and ( 6), the radial dependence can be expressed as where A, B and C are arbitrary amplitudes, I 1 and K 1 are modified Bessel functions of the first and second kind, and 2) and ( 5) the shear stress components that will be used in boundary conditions are given by where the radial dependence is defind as

Complex dispersion equation

In this paragraph boundary conditions must be used to determine the constants A, B and C. Assuming wall outer fluid surface, one can write : (i) continuity of velocity and shear stress at the interface between viscoelastic fluid and waveguide
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v + j u r=a = 0 (ii) wall outer surface of viscoelastic fluid is assumed By substituting Eqs. ( 7) and ( 8) into these boundary conditions provides three homogeneous and linear equations for the constants A, B and C. This system of equations has a nontrivial solution if the determinant of the coefficients equals zero. This leads to the following complex dispersion equation Equation ( 12) represents the complex dispersion equation of circumferential waves propagating in waveguide loaded with a viscoelastic fluid. For given dimensions, elastic waveguide constants and fluid properties, Eq. ( 12) constitutes an implicit transcendental function of k. The complex roots k may be computed using Mathematica software for a first mode vibration. After finding the real part k 0 and the imaginary part of the wavenumber, the circumferential wave phase velocity c p = ∕k 0 can be cal- culated. As a remark, for a semi-infinite viscoelastic fluid, the complex dispersion equation ( 12) becomes In the case of a viscous Newtonian fluid, the complex dispersion equation [START_REF] Brust | Rheology of human blood plasma: viscoelastic versus Newtonian behavior[END_REF] takes the following form which was previously obtained by Kim and Bau [START_REF] Kim | Instrument for simultaneous measurement of density and viscosity[END_REF] for an isotropic waveguide.

Results and discussion

The same material properties used in [START_REF] Pelton | Viscoelastic flows in simple liquids generated by vibrating nanostructures[END_REF][START_REF] Galstyan | A note on the breathing mode of an elastic sphere in Newtonian and complex fluids[END_REF] and given in Table 1 for viscoelastic fluid were taken to construct this numerical example. The waveguide parameters were derived from [START_REF] Zeng | Anisotropy of elastic properties in various aluminium-lithium sheet alloys[END_REF] are given in Table 2. In this work, numerical calculations are performed in the frequency range from 1 to 50 (kHz) and for five values of glycerol concentrations 0, 71, 85, 95 and 100% . Table 3 highlighted the influence of glycerol concentration in water on the phase velocity and attenuation of the wave calculated using the dispersion equation [START_REF] Lakes | Viscoelastic measurement techniques[END_REF]. It can be seen from Table 3 that for each frequency, the phase velocity decreases with the glycerol concentration while the attenuation increases. As a (10) r r=a = 0
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remark, for a zero glycerol concentration (pure water), the phase velocity is very close to the shear wave velocity in the waveguide c s (see Table 2). When the glycerol concen- tration increases the phase velocity slowly decreases, and the attenuation significantly increases.

The effect of the frequency on the phase velocity and attenuation is depicted on Fig. 2. It is seen from Fig. 2 that the phase velocity increases with frequency and tends towards waveguide shear velocity c s . It is also shown that the attenuation increases with the frequency. Otherwise, for a given frequency, the phase velocity decreases with the glycerol concentration while the attenuation augments. Finally, we can see that the attenuation is much more sensitive than phase velocity to glycerol concentration. The results highlighted in Fig. 2 can be justified by the influence of frequency on the penetration depth of the circumferential wave in the viscoelastic fluid. When the frequency augments the penetration decreases and the influence of the glycerol concentration on the phase velocity decreases. For high frequency this influence is negligible and the phase velocity is approximatively equal to the waveguide shear velocity c s . Otherwise, the decreasing of the penetration depth linked to the frequency generates an increasing of the attenuation. Consequently, this attenuation is much more sensitive to glycerol concentration for high frequencies.

Waveguide radius is an another essential parameter in design of circumferential wave sensors. The influence of the rod radius on the phase velocity and attenuation is shown on Figs. [START_REF] Carcione | Torsional oscillations of anisotropic hollow circular cylinders[END_REF] that the phase velocity increases with the rod radius and reach shear wave velocity in the waveguide c s (Fig. 3). Oth- erwise, the attenuation decreases in a monotonous way (Fig. 4). For each radius value, phase velocity decreases with glycerol concentration while attenuation increases. This effect is more significant for low radius values. The effect of the glycerol mass fraction on the phase velocity and attenuation is shown on Figs. 5 and6. The calculations are performed for frequency range from 1 to 100 kHz and two rod radius 1 and 6 mm. Each curve shows two regions :

and It can be seen from these figures

• For glycerol concentration less than about 40% , the phase velocity (Fig. 5) is approximatively equal to the shear wave velocity c s in the waveguide (Table 2). Oth- erwise, the attenuation (Fig. 6) is negligible. The influence of the frequency value is very low. • For the glycerol mass fraction exceeding 40% , the phase velocity decreases with mass fraction while the attenuation augments. These behaviors are more significant for small rod radius ( a = 1 mm ) and high frequency. We can see that the attenuation is much more sensitive than phase velocity to glycerol concentration. 

Conclusions

In this paper a novel analytical approach was used for the study of an anisotropic cylindrical rod (waveguide) surrounded by a viscoelastic fluid (water-glycerol mixture). A new complex dispersion equation was developed. Therefore, the graphs highlighted the influence of the frequency and waveguide radius on the phase velocity and attenuation for different values of glycerol concentrations. The glycerol concentration effect was also depicted for two waveguide radius (1 mm and 6 mm) and frequency ranging from 1 to 100 kHz. The obtained curves show that the attenuation is much more sensitive than phase velocity to glycerol concentration. Otherwise, The sensitivity is more significant for small waveguide radius and high frequency. Consequently, the characterization of a viscoelastic fluid can be performed using torsional wave propagation at high frequency in anisotropic waveguide with small radius.
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Fig. 1

 1 Fig. 1 The model geometry of anisotropic cylindrical rod waveguide. s , C 44 and C 66 correspond to the density and elastic constants of the cylindrical rod. The surface of the anisotropic cylinder is loaded by a viscoelastic fluid. The boundary between the anisotropic cylinder and viscoelastic fluid is at r = a . For viscoelastic fluid, , and f are, respectively, relaxation time, dynamic viscosity and density

s

  and f are the radial wavenumbers where d = √ 2 ∕( f ) defines the fluid penetration depth [19], c s = √ C 44 ∕ s is the shear wave velocity in the waveguide. Thus, using Eqs. (

Fig. 3 Fig. 4

 34 Fig. 3 Phase velocity versus cylindrical rod radius

Fig. 5 Fig. 6

 56 Fig. 5 Phase velocity versus glycerol mass fraction

Table 1

 1 Material parameters used for water-glycerol mixtures is the concentration of glycerol in water

	(%)	(Pa s)	f kg/m 3	(ps)		
	0	0.000894	1000		0.647		
	36	0.0027	1090		1.87		
	56	0.00527	1140		3.51		
	71	0.02	1190		12.7		
	80	0.0447	1210		27.1		
	85	0.0923	1220		54.2		
	95	0.452	1250		243		
	100	0.988	1260		500		
	Table 2 Material parameters used for anisotropic cylindrical rod		
	(waveguide)						
		s kg/m 3 C 44 (Pa)	C 66 (Pa)	c s (m/s)		
	Anisotropic rod 2800	2.850 × 10 10 2.345 × 10 10 3190.39		
	Table 3 Phase velocity c p and attenuation with a = 3 (mm)	(%)	f = 1 (kHz)	f = 10 (kHz)		f = 50 (kHz)
				c p (m/s)	(Np/m)	c p (m/s)	(Np/m)	c p (m/s)	(Np/m)
			0	3183.99	0.004	3188.36	0.013	3189.48	0.028
			71	3157.66	0.021	3179.97	0.065	3185.72	0.145
			85	3120.01	0.047	3167.81	0.143	3180.25	0.316
			95	3036.50	0.111	3140.23	0.326	3167.77	0.715
			100	2966.22	0.172	3116.47	0.492	3156.93	1.069

Fig. 2 Phase velocity and attenuation versus frequency for a = 3 (mm) Vo.:(0123456789)
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