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Qriginal Research Paper
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q\0$ Temperatures: Application to Biomass Gasification

Sébastien Pecate'*, Mathieu Morin!, Sid Ahmed Kessas',
Mehrdji Hemati', Yilmaz Kara? and Sylvie Valin®

! Laboratoire de Génie Chim ique, Université de Toulouse, France
? ENGIE Lab - Centre de Recherche et d'Innovation Gaz et Energies Nouvelles (CRIGEN), France
* CEA (LITEN), France

Abstract

Experimental data on the hydrodynamic behavior of dense and circulating fluidized beds at high temperatures are
scarce in the literature. This work deals with the hydrodynamic study of a Fast Internally Circulating Fluidized
Bed (FICFB) used for biomass gasification. The first part of this study investigates the influence of the bed
temperature (between 20 and 950 °C) and the nature of fluidizing gas (air or steam) on the hydrodynamic
parameters of a dense fluidized bed of olivine particles (i.e. minimum fluidization velocity and voidage as well as
average voidage). Three olivine batches are used with a mean Sauter diameter of 282, 464 and 689 pum,
respectively. Experimental results are compared with different empirical correlations from the literature to
evaluate their validity under elevated temperature conditions. Besides, two dimensionless correlations calculating
the minimum fluidization velocity and average bed voidage are proposed. The second part of this study focuses
on the hydrodynamic behavior of an FICFB operating between 20 and 850 °C. The effect of different process
parameters (i.e. bed material nature, air velocity, solids inventory, bed temperature) on the solids circulation flow
rate is investigated. It was found that the transport velocity Uy, is not affected by the bed temperature and the bed
material inventory. It mainly depends on the terminal settling velocity U, of bed material particles. Besides, key
parameters controlling solids flow rate are the combustor gas velocity and the solids inventory. An increase in
these parameters leads to a higher circulation flow rate.

Keywords: circulating fluidized bed, transport velocity, hydrodynamic, olivine, biomass gasification

1. Introduction

High-temperature biomass gasification is a promising
alternative to fossil fuel for power generation and the
production of fuel via methanation or the Fisher-Tropsch
process. The reactive system of biomass conversion is an
endothermic process. To maintain a fixed temperature in
the reactor, a contribution of energy is required. Two
types of technology exist for biomass gasification depend-
ing on the method of heat transmission (Gémez-Barea and
Leckner, 2010; Ruiz et al., 2013). On the one hand, the
heat can be provided by “in-situ” combustion. This pro-
cess includes the fixed bed gasifiers (up-draft and down-
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draft) and the “bubbling fluidized bed” gasifiers. In these
types of reactors, the biomass undergoes drying, pyroly-
sis, partial combustion of volatile matters and char and
finally gasification of char. On the other hand, the heat
can be supplied by the “ex-situ” combustion of char. One
of the most promising technologies using “ex-situ” com-
bustion is the Fast Internally Circulating Fluidized Bed
(FICFB) (Hofbauer et al., 2002). The facility used in this
study is of FICFB type. Its principle relies on the circula-
tion of a medium (sand, olivine or catalyst particles) act-
ing as a heat carrier between an endothermic reactor and
an exothermic reactor. In the first one (called gasifier),
which operates at around 750 °C—850 °C, biomass is con-
tinuously fed into a dense fluidized bed containing the
heat transfer medium (olivine particles) fluidized by su-
perheated steam. The biomass thermochemical conver-
sion leads to the production of synthesis gas and a solid
carbonaceous residue called char. Bed material (olivine
and unconverted char) is continuously discharged through
a dump to a transported fluidized bed reactor called
“Combustor” that is fed by preheated combustion air. In
this reactor, which operates at around 850 °C-950 °C,

Copyright © 2019 The Authors. Published by Hosokawa Powder Technology Foundation. This is an open access
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\gb?f‘]@)s‘fﬁ?n of part of the char coming from the gasifier
Qoindf}ces olivine particle heating. At the outlet of the com-
bustor, olivine particles are separated from flue gas by a
cyclone and are returned to the gasifier through a stand-
pipe. Thus, the heat needed for endothermic steam-
gasification is provided by the ex-situ combustion of
residual char. The FICFB biomass gasification efficiency
is strongly dependent on a thermal equilibrium between
gasification zone and combustion zone. This equilibrium
is controlled by the temperature difference and circulat-
ing solids flow rate between the two reaction zones. How-
ever, this last parameter also depends on the process
operating conditions (i.e. bed inventory, gas velocity, bed
temperature), and cannot be imposed. Thus, it appears es-
sential to identify the process key parameters which en-
able control of the circulating medium flow rate.

Besides, it is well known that the hydrodynamic behayv-
ior of an FICFB affects heat and mass transfer and there-
fore the overall reaction rate. In the literature, current
knowledge on the hydrodynamic behavior of dense and
circulating fluidized beds was essentially acquired at
ambient operating conditions and a lack of information is
noticed on the effect of temperature.

1.1 Brief review on bubbling fluidized bed
hydrodynamic study

Shabanian and Chaouki (2017) recently reviewed the
effects of temperature, pressure and interparticle forces
on the fluidization characteristics of gas-solid dense fluid-
ized beds for a wide spectrum of particles belonging to
group A, B and D of the Geldart classification (Geldart,
1973).

For Geldart class-B particles with no interparticle forces
and at atmospheric pressure, the minimum fluidization
velocity decreases as the temperature increases (Mii et
al., 1973; Pattipati and Wen, 1981; Botterill et al.,, 1982a;
Botterill et al., 1982b; Svoboda et al., 1983; Hartman and
Svoboda, 1986; Grace and Sun, 1991; Llop et al., 1995;
Formisani et al., 1998). The authors explain this trend by
the fact that the increasing viscosity, with a rise in bed
temperature, is the controlling factor for class-B particles.
Some authors also investigated the effect of mean particle
diameter on minimum fluidization velocity (Geldart,
1972; Stubington et al., 1984; Fatah, 1991; Tannous, 1993;
Gauthier et al., 1999). The authors agreed to say that min-
imum fluidization velocity increases with mean particle
size. Besides, many authors proposed correlations to esti-
mate the minimum fluidization velocity (Wen and Yu,
1966; Bourgeois and Grenier, 1968; Richardson, 1971,
Saxena and Vogel, 1977; Babu et al., 1978; McKay and
McLain, 1980; Svoboda et al., 1983; Chitester et al., 1984,
Thonglimp et al.,, 1984; Nakamura et al., 1985; Lucas et
al., 1986, Chyang and Huang, 1988; Murachman, 1990;
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Fatah, 1991 and Tannous et al., 1994). They are listed in
Table 1. The correlations proposed were often derived
from the Ergun equation (Ergun, 1952) for pressure drop
through a packed bed calculation (Equation 1}:

AP 150-(1-¢)° wU  1.75-(1-&) pU?
Tei & (pd,)? &3 od,
where AP is the pressure drop (Pa), U is the fluid superfi-
cial velocity (m-s™), ¢ is the bed average voidage (-), L is
the bed height (m), uy is the fluid viscosity (Pa-s), ¢ is the
shape factor (-), d,, is the mean particle diameter (m) and
pris the fluid density (kg-m™).

Considering minimum fluidization as the transitional
state between fixed bed and fluidized bed, the pressure
drop through the fixed bed, defined in Equation 1, is equal
to the bed weight per unit area. By using dimensionless
Reynolds and Archimedes numbers, the Ergun equation
at minimum fluidization leads to Equation 2:

L R W

M

Ar emr +——— Re>; 2
o oo @
with:
pliliceit S (D
Re e L0t B g oo 8 prz(p" ) g
Hy Hi

where Ar is the Archimedes number (=), Re,,¢ is the Reyn-
olds number at minimum fluidization (-), &, is the mini-
mum fluidization voidage (=), U,r is the minimum
fluidization velocity (m-s™), g is the acceleration due to
gravity (m-s?) and pp is the particle apparent density
(kg-m™>). Equation 2 may be rearranged to Equation 4,
where K; and K, are constant numbers depending on the
minimum fluidization voidage and shape factor.

A)':Kl-Remf+K2-R€]%f (4)

By solving Equation 4, Re,r can be expressed as a
function of Ar (Equation 5).

Remf = (Cl2 +C2 i Ar)D.S . C] (S)
where:
C = and Csima—
177 K, 2 X, ©)

Several authors attempted to estimate C; and C,
through experimental data at various operating conditions
(Table 1). However, studies performed at high tempera-
tures are scarce in the literature. Most of the correlations
were established at ambient temperature, as reported in
Table 1. However, it is known that the bed temperature
greatly influences viscosity and density of gas, thus mak-
ing the use of these correlations a source of errors.

Regarding minimum fluidization voidage, it was found
to slightly increase with bed temperature (Botterill et al.,
1982a; Botterill et al., 1982¢; Llop et al., 1995; Formisani
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o‘ﬁbﬁ’}"i‘@h' Besides, the effect of mean particle size on this
pm‘ﬁ‘mcter is a source of controversy. Through experiments
carried out with various bed materials belonging to group A
and B of the Geldart classification (coal, sand, glass, coke,
ceramic, carborundum, anthracite, cracking catalyst...),
different trends were observed (Lewis et al., 1949; Matheson
et al,, 1949; Agarwal and Storrow, 1951; Van Heerden et
al., 1951; Rowe, 1965; Geldart, 1972). When mean particle
size increases, minimum fluidization voidage is found: to
decrease according to Matheson et al. (1949), Agarwal
and Storrow (1951), Rowe (1965), and Geldart (1972), to
increase in the work of Van Heerden et al. (1951), and to
remain unchanged for Lewis et al. (1949).

Finally, studies about average bed voidage showed that
there is no influence of bed temperature for Geldart
class-B particles (Botterill et al., 1982a; Botterill et al.,
1982c). According to the authors, this parameter only de-
pends on excess gas velocity (U-Uyy). The effect of mean
particle size on average bed voidage was also investigated
with various bed materials (ballotini crystal, cracking
catalyst and sand particles) (Lewis et al., 1949; Rowe,
1965; Geldart, 1972). The authors found that the average
bed voidage decreases as the mean particle size increases.
Besides, several correlations were proposed in order to es-
timate the average bed voidage (Lewis et al., 1949; Matsen
et al., 1969; Thonglimp et al., 1984; Chyang and Huang,
1988; Hilal and Gunn, 2002). These correlations are given
in Table 2, and were established from experimental data
obtained in gas-solid and liquid-solid reactors, or from
the two-phase theory assuming that excess gas regarding
minimum fluidization crosses the bed as bubbles.

1.2 Brief review on circulating fluidized bed
hydrodynamic study

Circulating fluidized bed technologies have been used
since 1940 for the Fuel Catalytic Cracking process (FCC)
(Lim et al,, 1995; Grace et al,, 1997). In spite of this, the
phenomena involved were not investigated until the 1970s
(Yerushalmi et al., 1976). Lim et al. (1995) and Berruti et
al. (1995) reported that circulating fluidized bed reactors
offer several common advantages compared to conven-
tional low-velocity bubbling and turbulent fluidized bed
reactors. These advantages are: favorable gas-solids con-
tact efficiency due to high slip between gas and solids, a
more uniform distribution of solids due to reduced gas
bypassing, reduced axial gas and solids back-mixing,
higher gas throughput, independent gas and solids reten-
tion time control, improved turndown and possible sepa-
rate gaseous reactant zones.

A large number of works in the literature are devoted
to the identification of the fluidization regimes in risers.
Yerushalmi et al. (1976) focused on the identification of
transition velocities between bubbling, plugging and tur-
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bulent regimes at ambient temperature for class-A parti-
cles of the Geldart classification. The authors highlighted
two characteristic velocities, [/, and U, which correspond
to transition and complete turbulent fluidization veloci-
ties, respectively. For a gas velocity lower than U, bed
pressure drop standard deviation increases to a peak as a
result of a bubble coalescence phenomenon. Between U
and U, internal solids circulation yields to bubbles
breakup and decreases pressure drop standard deviation.
Beyond U, the pressure drop standard deviation stabi-
lizes and solid particles begin to be carried in the gaseous
flow. These two velocities (i.e. U, and U,) are easily mea-
surable for class-A particles but are not well-defined for
other class particles. Chehbouni et al. (1994) denied the
existence of turbulent velocity U for Geldart class-B par-
ticles. They concluded that the onset of turbulent fluidiza-
tion is at U,, and velocity Uy is an artefact due to the use
of differential pressure transducers.

There is more than one technique for measuring the
transport velocities of particles. Those recorded in the lit-
erature include determination of the flooding point
(Yerushalmi and Cankurt, 1979), determination of the
pressure drop at the bottom of the column as a function of
the solids circulation flux at different gas velocities
(Yerushalmi and Cankurt, 1979), determination of the
maximum solids circulation flux at different gas velocities
(Schnitzlein and Weinstein, 1988), and determination of
the emptying times of a fast fluidization column (Han et
al., 1985). According to Adanez et al. (1993), the last tech-
nique is the most attractive because the measurement is
simple and quick to conduct.

By measuring the solids flow rate versus the gas veloc-
ity, Yerushalmi and Cankurt (1979) also reported the ex-
istence of a characteristic particle transport velocity U/,
which corresponds to the onset of a fully transported bed
flow.

Several authors attempted to estimate the influence of
column diameter as well as solids properties and hold-up
on the transition velocities U, U, and U, at ambient tem-
perature (Fan et al., 1983; Han et al., 1985; Mori et al,
1986; Lee and Kim, 1990; Perales et al., 1991b; Bi and
Fan, 1992; Adanez et al., 1993; Tannous, 1993; Chehbouni
et al.,, 1995). Most authors concluded that turbulent transi-
tion velocities increase with column diameter, for the
same solids static height (Rhodes and Geldart, 1986;
Grace and Sun, 1991; Chehbouni et al., 1995). This phe-
nomenon is attributed to the effect of column diameter on
bubble size. For a given gas velocity, an increase in col-
umn diameter leads to the formation of smaller bubbles
which reduces internal solids circulation in the bed and
delays the onset of the turbulent regime. Transport veloc-
ity U, also increases with column diameter. The solids
static height was found to have a very low influence on
turbulent transition and transport velocities (Werther,
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1699, 8hlija and Fan, 1985; Chehbouni et al., 1995). More-

§) 3 § y ¥ v
?\Q mxt‘?, an increase in particle size and density leads to

higher transition characteristic velocities U, and U, and
transport velocity U, (Cai et al., 1990; Chehbouni et al.,
1995). Lee and Kim (1990) showed that the transition tur-
bulent fluidization velocity U, is almost equal to the ter-
minal settling velocity of single particles U, for class-B
particles. Furthermore, very recent studies have proved
that the particle size distribution (PSD) has an influence
on the transition velocity U,, which was found to be
higher for materials with a wider PSD (Chehbouni et al.,
1995; Rim and Lee, 2016). Experimental data showing the
influence of bed temperature on transition velocities are
scarce in the literature. According to Bi and Grace (1996),
a rise in temperature might cause a shift towards lower
transition velocities. Besides, some correlations were pro-
posed in the literature in order to estimate the transport
velocity U, (Mori et al., 1986; Lee and Kim, 1990; Perales
et al, 1991a; Perales et al,, 1991b; Bi and Fan, 1992;
Adanez et al., 1993; Tannous, 1993; Chehbouni et al.,
1995; Ryu et al., 2003; Goo et al,, 2010). These correla-
tions are reported in Table 3, and were established at am-
bient temperature, for air as the fluidizing agent and for
class-B particles.

By varying the gas velocity for a fixed circulating sol-
ids flow rate, Yates (1996) and Shamlou (2013) defined a
characteristic velocity called choking velocity Uy,. It cor-
responds to the transition between dense phase flow and
dilute phase flow. These authors showed that U, increases
with particle size and circulating solids flow rate.

Basu and Cheng (2000) investigated the influence of

N
=
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operating parameters on the performance of a CFB
equipped with a loop seal. This work was performed at
ambient temperature with sand particles (dp =250 pum).
The authors showed that a rise in both the total weight of
solid particles in the process (inventory) and the loop seal
air velocity leads to an increase in the circulating solids
flow rate. Besides, studies carried out by Bull (2008) and
Detournay (2011) focused on the hydrodynamic of a cir-
culating fluidized bed biomass gasifier at ambient tem-
perature using olivine (dp =250 pm) and sand particles
(dp = 316 pm) as media. Results showed that gas velocity in
the riser (combustor) and total inventory are the main pa-
rameters which influence the circulating solids flow rate.

The present work is divided into two parts. The first
part aims to determine the influence of operating condi-
tions such as bed temperature (ranging from 20 to 950 °C),
mean particle size (between 282 and 689 pm) and fluidiz-
ing gas nature (air or steam) on the hydrodynamic param-
eters of a dense fluidized bed of olivine particles (i.e.
minimum fluidization velocity and voidage as well as av-
erage voidage). The purpose of the second part is to iden-
tify the key parameters controlling the circulating solids
flow rate, as well as their effect on solids circulation.

2. Materials

2.1 Description of the experimental rig

All the experiments were conducted in the FICFB pre-
sented below (Fig. 1). The process contains two reactors

b) a) c)
Gasifier Combustor
Height =2.5m Cyclone Height=7Tm
) Diameter = 0.214 m Combustor i Diameter = 0.104 m
Height (cm) " Height (cm)
Solidflow B
(] i v
T8 —1— T P7 640 —T™
—— 250 P7 = T6 Cyclone @: dSE_n'dpipe 7 —+— -=—P6 540
Gasifier R
T6 P5 440
—— 185 P6 = T5 Combustor
Gasifier [s TS =—~p4 340 —
— L= /
—t 124 PS5 —e= T4 | Hopper T4 = P3 240 ——
b~ ~
P ™ — 140 T
g M __ T3 —
% B 33 P} —= EL
L & s —1 | T2 |Vibrating T2 —— —=—P2 40 ——
113 Pl T] [|extractor —=—FPI %8 =
-3 Pdist —e=- ~ ). e ) T = pdist 3 -
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Circulating fluidized bed biomass gasifier (a: pilot plant; b and ¢: pressure and temperature tap positions

in the gasification section and in the combustion section, respectively).
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Fig.2 Distribution of combustion air in the combustor.

whose connections enable an interchange of solids. The
gasifier (internal diameter = 214 mm) is a dense fluidized
bed of bed material particles. For this hydrodynamic
study, it is fluidized either by super-heated steam or by
air. The bed material is continuously discharged from the
gasifier to the combustor through a dump. The combustor
(internal diameter = 104 mm) is a transported fluidized
bed, fed by preheated air separated into two streams
(Fig. 2). The first one, named “primary air”, ensures a
dense fluidized bed at the bottom of the combustor. The
second stream, called “secondary air”, is used for particle
transport. It is fed by an injection cane at an adjustable
height. At the top of the combustor, a cyclone is used to
separate transported particles from air. Then, solids are
recycled back to the gasifier through the standpipe,
equipped with an L-valve placed on the base and fluidized
by steam or air.

Gasifier and combustor are surrounded by electric fur-
naces with 15 and 5.7 kW electric output, respectively.
Gasifier and combustor temperatures can be controlled
independently by two PID controllers. Nevertheless, car-
rying out tests at temperatures higher than 500 °C also
requires the use of natural gas feeding in the combustor,
precisely at 40 cm above the distributor,

The pilot plant is equipped with 23 pressure sensors
and 20 temperature sensors (Fig. 1). The circulating sol-
ids mass flow rate is measured with a microwave probe
(supplier: SWR Engineering, model: SolidFlow 2.0), pre-
viously calibrated, located in the standpipe, 50 cm below
the base of the combustor cyclone (Fig. 1).

At the outlet of each reactor, a burner associated with a
post-combustion chamber heated to 850 °C allows the
burning of all combustible gas. Then, gas streams are
mixed together in a cylindrical chamber and cooled down
in a 5-m multitubular exchanger. A cyclone and a bag fil-
ter ensure the filtration of fine particles before rejecting
gas into the atmosphere.
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2.2 Bed material pretreatment and characterization

Most of the experiments presented in this study were
carried out with olivine particles provided by the Austrian
manufacturer Magnolithe GmbH as bed material. Never-
theless, some tests were also performed with sand parti-
cles. As shown in Table 4, olivine particles are essentially
made of magnesium oxide, silicon oxide and iron oxide.
The latter reaches 10.5 wt% in our case. Regarding sand
particles, they are mainly made of silicon oxide. Before
their use as bed material in the gasifier, the particles pre-
viously underwent:

* A fine elutriation step. In this step, the undesired fine
particles are removed by elutriation, at ambient tem-
perature during 20 hours;

* a calcination step, at 850 °C during 4 hours,

During these stages, carried out in the gasifier, the gas
velocity was maintained at 8 times the minimum fluidiza-
tion velocity (U= 8-Uy) at the considered temperature.
After this treatment, the particle size distribution, particle
density, skeletal density, aerated bulk density, packed
bulk density, angle of repose, internal voidage, specific
surface area and shape factor were measured using Laser
Diffraction Particle Sizing MS2000, Mercury Porosime-
try, Hosokawa analyzer, Helium Pycnometry, BET ana-
lyzer and G3 Morphology, respectively. Based on the
values of the mean Sauter diameter and particle density
reported in Table 4 for both sand and olivine, it can be
concluded that the particles used in this work belong to
the Geldart class B. Besides, the particles have a low
compressibility factor y (lower than 15 %), meaning that
they have an excellent flow. Otherwise, the particles em-
ployed are minimally porous, with internal voidage of
9 % and 7 % for sand and olivine particles, respectively.

In this work, Sauter diameter (d3,,) is considered as the
mean particle size.

3. Bubbling fluidized bed hydrodynamic study

This part of the study focusses on the effect of bed tem-
perature, particle size distribution and fluidization gas na-
ture (air or steam) on minimum fluidization velocity (U,,¢)
and bed voidage (g,,¢), as well as on average voidage (g) of
the olivine particle dense fluidized bed. Experiments are
performed in the gasifier, isolated from the combustor and
the circulation loop. For each test, the total olivine parti-
cle inventory in the gasifier is 40 kg. In addition, some
tests are carried out in the combustor, isolated from the
gasifier and the circulation loop, in order to confirm the
conclusions drawn in the gasifier for a reactor with a dif-
ferent diameter. For each test performed in the combustor,
the total olivine inventory is 7 kg.
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W Type of particle

Sand Olivine batch Olivine batch Olivine batch
[200-300 pm]  [300-400 pm]  [400-600 pm]
Chemical formula Si0, (Fe,, Mg, ,),Si0,4

Composition

Si0,: 98.34 %
Fe,04: 0.022 %
ALO;: 1.206 %
TiO: 0.03 %
Ca0: 0.014 %
K,0: 0.745 %

Skeletal density p, (kg:m™) 2,650
Internal voidage y (%) 9
Particle density pp (kg-m™) 2,400
Aerated bulk density pgs (kg-m™) 1,519
Packed bulk density ppp (kg-m™) 1,643
Mean aerated bulk bed voidage eg, (-) 0.49
Mean packed bulk bed voidage epp () 0.45
Angle of repose (°) 33.2

Compressibility factor: y = 100 (pgp-pa)pspr (Y0) 8

Shape factor (—) 0.85
dyo (nm) 190
dsp (pm) 305
dg (nm) 488
dypp (um) 285
dyp (pm) 324
C, = (dyo-d\p)dso () 0.98

Specific surface area (m?:g ') il

MgO: 47.5-50.0 %
Si0;,: 39.0-42.0 %
CaO: max. 0.4 %

Fe;05: 8.0-10.5 %

3,265

7

2,965

1,344 1,368 1,445
1,500 1,513 1,643
0.53

0.48

29.6 == —

10 10 12
0.85 s e
188 337 508
300 483 709
475 689 1,015
282 464 689
318 501 741
0.96 0.73 0.72
0.73 = —

3.1 Determination methods

For each experiment, the bed was first vigorously fluid-
ized and the pressures along the reactor were measured.
Then, the gas velocity was decreased and the pressures
were measured again. From the experimental results, the
minimum fluidization velocity was estimated through
(Botterill et al.,, 1982a; Murachman, 1990; Fatah, 1991,
Tannous, 1993):

.
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the plot of the average total bed pressure against the
superficial gas velocity (Fig. 3a). As long as the bed
is in a fixed state, the total pressure increases with
the gas velocity. When the minimum fluidization
point is exceeded, the total pressure remains constant
as the gas velocity increases. Thus, the intersection
of the sloping fixed bed and horizontal fluidized bed
pressure lines on the pressure drop versus gas veloc-
ity plot was considered as the minimum fluidization
velocity;

the plot of the partial pressure drop, measured be-

tween two pressure sensors, against the superficial
gas velocity (Fig. 3b). For an increase in the gas ve-
locity, the partial pressure drop first increases as
long as the bed is fixed. Then, it slightly decreases as
soon as the bed is fluidized. This decrease is related
to the rise in the bubble volume fraction in the area
considered. Thus, the minimum fluidization velocity
can be defined as the peak on the partial pressure
drop versus gas velocity plot;

the plot of the total pressure standard deviation
against the superficial gas velocity (Fig. 3¢). In this
study, the standard deviation of a given parameter is
defined as below:

r 0.5

1 i 2

- > (Z,-Z

{ Ne-1 g( ’ _) ]
Z

where o is the standard deviation of the parameter Z,

N, is the number of data, Z; is the value of Z at a
given time, and Z is the mean value of Z. For fixed
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beds, the pressure standard deviation is zero. It only
starts increasing with gas velocity when the bed is
fluidized. Thus, the minimum fluidization velocity is
considered as the intersection of the growing part of
the curve and the gas velocities’ axis.

These methods lead to similar results, with a relative
error always under 10 %.

From the experimental results, the bed average voidage
and minimum fluidization voidage can also be calculated.
The bed average voidage is obtained by measuring and
plotting the axial pressure profiles at several gas velocities
(Fig. 4a). For gas velocities lower than the minimum flu-

where &, my, 4., H and pp are the bed average voidage, the
solids inventory (kg), the cross-section of the gasifier (m?),
the dense fluidized bed height (m) and the particle density
(kg-m™), respectively.

Regarding the minimum fluidization voidage, it is cal-
culated using the bed height at minimum fluidization ve-
locity (i.e. the aerated fixed bed height) and Equation 8. It
is also determined from the method recommended by
Botterill et al. (1982¢) and Lucas et al. (1986). This method
consists in plotting the bed average voidage, calculated
through Equation 9, against the superficial gas velocity,
and calculating the minimum fluidization voidage by ex-
trapolating the results for U= U;;. A typical example is
illustrated in Fig. 4b. The blackened part of the curve, for
gas velocities under the minimum fluidization velocity,
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3.2 Effect of operating parameters on minimum
fluidization velocity (Uyy)

Fig. 5a shows the effect of bed temperature on the min-
imum fluidization velocity of three olivine batches. For
the same mean particle size, the minimum fluidization ve-
locity decreases as temperature increases. Besides, mini-
mum fluidization velocity increases with mean particle
size for a fixed bed temperature. These trends are consis-
tent with the results reported in the literature (Mii et al.,
1973; Pattipati and Wen, 1981; Botterill et al., 1982a;
Botterill et al., 1982b; Svoboda et al., 1983; Hartman and
Svoboda, 1986; Grace and Sun, 1991; Llop et al., 1995;
Formisani et al., 1998; Gauthier et al., 1999). In addition,
the Re,; range is between 0.07 and 14 in our operating
conditions. However, the first term in Equation 1 on the
right-hand side, representing the pressure loss through
viscous effects, is the dominant term in the laminar flow

o
—
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] < 300-400 pm
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30 S
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20 {b P
R 7 ? f fii
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40
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Fig. 5 Bed temperature effect on U, for different olivine

batches (a) and for two fluidizing gases (b).
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This equation shows that for fine particles, the viscous
drag force (related to gas viscosity) has a major effect on
the minimum fluidization velocity. Thus, an increase in
gas viscosity with bed temperature leads to a rise in the
viscous drag force which decreases the minimum fluid-
ization velocity. Similarly, Equation 10 also shows that an
increase in particle size yields a higher minimum fluid-
ization velocity.

The nature of fluidizing gas (air or steam) also has an
effect on the minimum fluidization velocity. Fig. Sb
shows that the minimum fluidization velocity obtained
with steam is higher than that obtained with air. These re-
sults are mainly explained by the low value of steam vis-
cosity compared to air. The low value of steam density is
also responsible for these trends. Values of density and
viscosity for the two fluids are reported in Table 5.

Experimental results determined from about 40 tests
carried out in the gasifier and in the combustor were com-
pared to values predicted by L5 correlations of literature,
given in Table 1. This comparison was based on the fol-
lowing statistical criteria, already defined in the work of
Tannous et al. (1994):

» Relative error Ry:

1 Ne =z s e
R,leO-——-Z exp predic 1
Nu 1 Zcxp ( )
» Absolute relative error R;:
1 X | Lo —& dict |
R2=100_Z exp predic (12)
N. 5 z

e exp

where Z,, is the experimental value, Z 4, is the pre-
dicted value and A, is the number of experimental results
compared to predictions. Values of R, and R, are given in
Table 6. It was found that the relationships proposed by
Bourgeois and Grenier (1968), Richardson (1971),
Thonglimp et al. (1984) and Nakamura et al. (1985) repre-
sent our results with an absolute relative error similar to
the experimental uncertainty (lower than 10 %). The best
one is the correlation of Bourgeois and Grenier (1968)

Table 5 Values of density and viscosity for steam and air at
600 and 700 °C.

Steam/Air 600°C 700 °C

Density 0.25 0.40 0.22 0.36
(kg-m™)

Viscosity 3.41x107° 4.04x107° 3.85x10° 4.31x10°°
(Pas)
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\;[é%ﬁc @(-ocf’rediction of minimum fluidization velocity: compar-

o ) ison between experimental findings and literature
correlations.

Authors R, R,
Tannous et al. (1994) -13% 14 %
Wen and Yu (1966) 17 % 17 %
Bourgeois and Grenier (1968) 3% 8 %
Richardson (1971) 3% 9%
Saxena and Vogel (1977) —51% 51 %
Babu et al. (1978) 71 % 72 %
McKay and McLain (1980) -23% 25 %
Svoboda et al. (1983) —-134 % 134 %
Chitester et al. (1984) -17 % 18 %
Thonglimp et al. (1984) 8% 10 %
Nakamura et al. (1985) 6% 9%
Lucas et al. (1986) 17 % 17 %
Chyang and Huang (1988) 31% 31%
Murachman (1990) ~14 % 17 %
Fatah (1991) -6 % 36 %

with a relative error equal to -3 %.

A new correlation is proposed (Equation 13) in order to
estimate the minimum fluidization velocity of olivine par-
ticles as a function of bed temperature, particle size and
fluidizing gas nature. This correlation was established be-
tween 20 and 950 °C, with olivine particles of mean Sau-
ter diameter between 282 and 689 um and for air and
steam as fluidizing gas. It is intended to be used for the
design of FICFB biomass gasifiers operating with olivine
as the heat transfer medium.

Reye = (20.322+0.031- 4r)°5 —20.32 (13)

This correlation enables prediction of experimental U,
with a relative error R, equal to —2 % and an absolute rel-
ative error of 8 % (Fig. 6).

3.3 Effect of operating parameters on bed voidage

Fig. 7 shows that bed voidage at minimum fluidization
conditions (g, is independent of bed temperature and
mean particle size. The estimated bed voidage is about
0.55, which is slightly higher than the mean voidage of an
aerated fixed bed ep,. Tests carried out in the combustor
between 700 and 950 °C lead to the same conclusions.
These results are likely explained by the fact that for
class-B particles, the absence of interparticle force leads
to an almost instantaneous transition between fixed bed
and fluidized bed states (no deaeration phenomenon).

0:4 M Re_.=(20.32* + 0.031-4r)"* - 20.32
0.35 ®

034 9
0.25

o
o
5

0.15 | -15%
0.1 e

0.05 A

Calculated U_ (m's™)

0 0.1 0.2 03
Experimental U (m's™)

0.4

Fig. 6 Prediction of minimum fluidization velocity: compari-
son between experimental findings and proposed cor-
relation.
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Fig. 7 Effect of bed temperature on minimum fluidization
voidage for different olivine batches.

Thus, for this class of particles, minimum fluidization
voidage is almost equal to the fixed bed voidage.

Fig. 8a, Fig. 8b and Fig. 8¢ show the average bed
voidage evolution vs excess gas velocity (U-Up), at dif-
ferent bed temperatures (between 20 °C and 850 °C), for
3 olivine batches. The average bed voidage increases with
excess gas velocity, regardless of particle size and bed
temperature, Besides, for the same excess gas velocity,
bed voidage is slightly affected by bed temperature and
particle size. Tests carried out in the combustor between
700 and 950 °C confirm these results (Fig. 8d). These
trends are consistent with the experimental findings re-
ported in the literature (Botterill et al., 1982a; Botterill et
al.,, 1982c). They may be related to the fact that bed ex-
pansion is mainly caused by the presence of bubbles in
the bed. Bed voidage can be estimated from Equation 14
(Kunii and Levenspiel, 1991), which strongly depends on
bubble properties:

£=0p+(1-Jp) ey (14)

In Equation 14, the bubble volume fraction in the bed
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in the gasifier (a, b, ¢) and the combustor (d).

dp mainly depends on excess gas velocity U-U,,, as de-
scribed in Appendix A. Thus, average bed voidage de-
pends only on excess gas velocity, as observed in our
experiments.

Experimental & values determined from about forty
tests in both gasifier and combustor were compared to
values predicted from literature correlations, reported in
Table 2. These correlations are usually used for fluidized
bed reactor design, modeling and simulation. Relative er-
ror R, and absolute relative error R, were calculated and
are presented in Table 7. For our operating conditions and
olivine particles, the relationships proposed by Lewis et
al. (1949), Matsen et al. (1969), and Thonglimp et al.
(1984) are the most adapted. The best one is the correla-
tion of Matsen et al. (1969) with a relative error of —10 %
and an absolute relative error of 10 % (Fig. 9).

A new correlation (Equation 15) that takes into account
fluidized bed temperature, mean particle size and fluidiz-
ing gas nature is proposed in order to estimate the average
bed voidage of a bubbling fluidized bed of olivine parti-
cles. This correlation was established between 20 and
950 °C, with olivine particles of mean Sauter diameter
between 282 and 689 pm and for air and steam as fluidiz-
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Effect of excess gas velocity on the average fluidized bed voidage, for different bed temperatures and olivine batches

Table 7 Prediction of average bed voidage: comparison between
experimental findings and literature correlations.

Authors R, R,

Thonglimp et al. (1984) 10 % 13%
Chyang and Huang (1988) 30% 30%
Lewis et al. (1949) -11 % 11 %
Matsen et al. (1969) -10 % 10 %
Hilal and Gunn (2002) 20 % 20 %

ing gas. It is intended to be used for the design of FICFB
biomass gasifiers which operate with olivine as the heat
transfer medium.

0.026
_1:1‘0394.(M) . 40006
Emf

(15)

mf

This correlation enables the prediction of experimental
¢ with a relative error and an absolute relative error both
equal to 1% (Fig. 10). It is interesting to notice that de-
spite the low coefficient applied to the Archimedes num-
ber, its contribution cannot be ignored. Indeed, for some
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Fig. 10 Prediction of average bed voidage: Comparison be-

tween experimental findings and proposed correla-
tion.

experiments (7=30°C and d, = [400-600 um]), the Ar-
chimedes number is almost equal to 25,000. In these
cases, the Archimedes number contribution is about 6 %.

4. Circulating fluidized bed hydrodynamic
study

The biomass gasification efficiency in an FICFB mainly
depends on heat transfer medium circulation flow rate.
Thus, it appears essential to identify the key parameters
influencing the circulation flow rate.

Process parameters are: gas velocity in the gasifier Uy,
gas velocity in the standpipe Us, particle inventory m,,
bed temperature 7, secondary air injection position Hy
and air average velocity in the combustor U, ;. The last
parameter depends on primary and secondary air flow
rates in the combustor. However, in order to ensure a
good fluidization in the dense fluidized bed of the com-
bustor, the primary air flow rate is set so that U; =4 U, (7).
Based on previous work (Detournay, 2011), the value of
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Table 8 Operating conditions of circulation experiments.

Reference Range
niy (kg) 35 35-60
U (UUp) 4 1-8
Ueoms (UIUY) 24 0.5-3
Hy; (cm) 15 15
Us (UlUyg) 8 1-9
7(°C) 500 20-850

Table 9 Effect of bed temperature on terminal settling veloc-
ity of single olivine and sand particles.

Temperature (°C) 20 300 500 800 850

U (m-sH-Olivine 205 210 203 190 188

U, (m-s™)-Sand K92 - 13T oy LBl (BT, 165

the secondary air injection position (injection cane height
Hy) is set at 15 cm. Thus, only the secondary air flow
rate, called “transport air”, is varied in our experiments.
For each experiment, temperatures in both gasifier and
combustor were set at almost identical values.

Most of the experiments were performed with the oliv-
ine batch [200-300 pm] as bed material, between 20 and
850 °C. However, some tests were also carried out with
sand particles at ambient temperature, in order to investi-
gate the effect of the bed material nature. The properties
of these materials are reported in Table 4.

Table 8 indicates the variation range of the process pa-
rameters in this study. In this table, U, is the terminal set-
tling velocity of the particles used. It is given by:

]
g |4 (pr-pg-g %
‘ 3-Ca Py

(16)

where Cy is the drag coefficient. The latter depends on the
solids shape factor ¢, and is estimated by (Haider and
Levenspiel, 1989):

C, = 24 '[l 1+8.17- 40655 . Re(0096440.5565 )

Re,

| T3.69-e50748¢  Re, }

Re, +5.378 ¢621229 (7

where Re, is the Reynolds number at U = U,

Besides, in Table 9, the values of Uj calculated for sev-
eral temperatures between 20 and 850 °C are reported for
both sand and olivine particles. It can be noticed that oliv-
ine and sand particles have close values of U, in particular
at ambient temperature. Besides, U, velocity only de-
creases by 8 and 13 % between 20 and 850 °C, for olivine
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3 \Q,QO Ry previous study (Detournay, 2011) carried out at am-
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bient temperature on the same pilot as the one used in this
work showed that:

* Gas flow rate in both gasifier and standpipe do not
have any effect on the solids circulation flow rate for
gas velocities higher than 1.5 times the minimum
fluidization velocity;

* key parameters are Ug,,y,, and solids inventory m,,.

Experiments carried out in this study for temperatures

up to 850 °C confirm these trends.

4.1 Determination of transport velocity:
Presentation of a typical example

Fig. 11 presents a typical example regarding the effect
of gas velocity on solids circulation flow rate, using sand
as bed material. Three regimes can be observed:

+ TFor gas velocities lower than U, (1.9 m-s'): a very
low solids circulation flow rate is measured (about
10-20 kg-h™"). For these velocities, the combustor is
a deep «dense fluidized bed», whose height can ex-
ceed 1 m. Thus, elutriation of the fine particles ini-
tially present in the solids batch explains the residual
values of circulation flow rate;

« for gas velocities between 1.9 and 3.3 m-s™': a transi-
tional regime is observed. Circulation mass flow rate
is found to increase from 30 to 200 kg-h™'. This is
likely attributed to the fact that the kinetic energy
contained in the bubbles during their eruption at the
bed surface is enough to transport particles brought
into its wake to the combustor outlet;

« for gas velocities higher than 3.3 m-s™! (= 1.6- U): the
solids mass flow rate sharply increases before reach-
ing a plateau. According to the definition proposed
by Yerushalmi and Cankurt (1979), this velocity is
the transport velocity U, at which the solids tra-

©20°C (Sand)
500 -
P
p—
I
& 3004 ®
E
7 200 f
o
g @
= 100 e®
2 ®
0"‘.".?-.' T T T T 1
0 1 2U, 30U, 4 5 6 7
Ucumh (m's-l)

Fig. 11 Effect of combustor gas velocity on circulating solids
mass flow rate (sand, m,=35kg, Usz=4 Uy

Uy=4 U, Hyp=15cm).
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verses the column in a stable transported flow. Be-
sides, according to Chehbouni et al. (1994), the
transport velocity U, marks the onset of the circu-
lating fluidization. To be more precise, beyond
4.0m-s”', the circulation flow rate levels off on a
stable plateau because the dense fluidized bed height
at the bottom of the combustor reached its limit value
(i.e. the secondary air injection cane height). Thus
the difference between gasifier and combustor inven-
tories, acting as the driving force on the solids circu-
lation, cannot increase anymore. These inventories
are calculated from total pressure drop measurement
in gasifier and combustor.

In order to ascertain the appropriateness of the U,
value measured in this study and presented above, the
emptying time technique was employed (Han et al., 1985).
This technique is based on measurements of the time re-
quired for all solids to leave the bed at different settings
of the superficial gas velocity. No fresh solids are fed to
the column and the dump is closed. As the gas velocity is
increased, a point is reached where acceleration of the
solids increases. In the absence of solids recycling, the
bed empties in a short time. All experiments were per-
formed at ambient temperature with samples of 7 kg of
sand particles. For a fixed gas velocity, the emptying time
is defined as the time necessary to reduce the total pres-
sure in the combustor from its initial value to a residual
value. The transport velocity, U, is taken to be the inter-
section of the lines of low and high accelerations
(Fig. 12). The value of U, measured by this method is
34 m-s!, which is consistent with the value obtained
from Fig. 11 (i.e. 3.3 m-s™).

In order to investigate the effect of the bed material na-
ture on solids circulation, the results previously obtained
with sand particles were compared with new ones ob-
tained using olivine particles, for a bed material inventory
of 35 kg (Fig. 13). It was found that the solids mass flow
rate evolution vs gas velocity is not significantly affected

100 -
A\
@ \
o 80 A
£ *
3 \
] 60 \‘
- \
8 40 1 \
[} \
8 [
s = RO DIIIIR i ik T T TP v
il [\ 099
m \
0 . : ,
0 2 U, 4 6 8
Ucumh (m-s‘l)

Fig. 12 Effect of combustor gas velocity on the disappearance
time of solids (sand, m, = 7 kg, T =20 °C).
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ity is directly proportional to the terminal settling veloc-
ity with a ratio between U, and U, equal to 1.7. This value
is close to the one presented above. Besides, Fig. 14a
shows that for an increase in combustor gas velocity
Ueomb, the gasifier inventory increases almost linearly be-
fore reaching a plateau.

Regarding combustor inventory, it decreases as gas ve-
locity rises, and also reaches a plateau. Thus, results show
that the difference between gasifier and combustor inven-
tories presented in Fig. 14b increases with combustor gas
velocity before levelling off. This trend is similar to the
one of solids mass flow rate vs. gas velocity.

This is consistent since the difference between gasifier
and combustor inventories is directly related to the differ-
ence in pressures between these two reactors. However,
the latter acts as the driving force on solids circulation.
Thus a rise in combustor gas velocity produces an in-
crease in pressure difference between gasifier and com-
bustor, leading to higher solids circulation flow rates.
These trends are consistent with the ones presented above
for sand particles.

4.2 Effect of bed material inventory and
temperature

Fig. 15 presents the effect of the bed material inven-
tory, between 20 and 60 kg, on the solids circulation flow
rate for a given combustor air velocity (U, = 3.6 m-s™),
with sand particles as the bed material. Results show that
a rise in bed material inventory leads to higher solids
mass flow rates. Besides, Fig. 16 presents the effect of
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by the bed material nature when solids batches have simi- ' ® Siivine
lar U, values. Results show that the same transport veloc- £ 50l ® [ )
ity U, and circulation mass flow rate on the plateau were
found with olivine particles regarding the values obtained 15 . G i Ll 2 . : |
with sand. Oit Bolonne@ BT o ntiS (l6  iT
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According to Perales et al. (1991a), the transport veloc- Uy, (m57)

Fig. 14 Effect of gas velocity in the combustor on gasifier and
combustor inventories (olivine, Ug=4-U,, Uj=4 U,
m, =35 kg, Hy = 15 cm).
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800 -
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=]

0 20 40 60 80
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Fig. 15 Effect of bed material inventory on circulating solids
mass flow rate (sand, 7=20°C, Uz=4 U,y
Ui=4 Uy, Upy=3.3m s, Hy= 15 cm).

bed temperature, between 20 and 850 °C, on olivine cir-
culation flow rate vs. combustor gas velocity, for 35- and
60-kg bed inventories. It can be noticed that for each bed
temperature and bed material inventory, the curves follow
the same trends. Besides, results show that:

* For gas velocities lower than U, the solids mass flow
rate is not affected by the bed temperature or inven-
tory;

* the solids circulation onset, at U/ = U, was found to
be reached for a gas velocity between 1.6 and 1.7- U,
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A AMAra, A
and Fan, 1992; Tannous, 1993), reported in Table 3, 04— B.. T . . ; .
allow estimating U, velocity at ambient temperature, ¢ ; 2U .’U? (m-s")4 . 6
with relative errors between —6 and 2 %. However, semp gt
for bed temperatures higher than ambient tempera- Fig. 17 Effect of bed temperature on normalized solids flow

ture, only the correlation proposed by Perales et al.
(1991a) properly estimates U, values;

* beyond U, the solids mass flow rate increases as gas
velocity rises until it reaches a plateau. The velocity
at which this plateau is reached was found to in-
crease with bed material inventory. For instance, it
increases from 2.2- U to 2.7- U, as the bed inventory
rises from 35 to 60 kg. However, it is not affected by
bed temperature. Besides, results show that the sol-
ids mass flow rate on this plateau only depends on
the bed material inventory. The slight differences be-
tween each curve are likely explained by the uncer-
tainty of the microwave probe (SolidFlow 2.0) as
well as by experimental errors.

Besides, Fig. 17a and Fig. 17b illustrate the normalized
solids mass flow rate (Fp/Fpn.) vs. the normalized gas
velocity (U omy/Up), between 20 and 850 °C, for bed inven-
tories of 35 and 60 kg, respectively. Results confirm that
U, velocity is not affected by bed temperature or bed in-
ventory.

4.3 Comments on the effect of combustor gas
velocity on solids mass flow rate and total
pressure drop fluctuations

An experiment was carried out at 500 °C for an olivine
inventory of 35 kg. Fig. 18 shows the influence of com-
bustor air velocity Uy, on the normalized circulating
solids mass flow rate F'p/Fpumay. total pressure in the com-

2806

rate vs. normalized gas velocity for 35 (a) and 60
(b) bed material inventories (olivine, Uz=4 U,g
U] =4- Umfs H][ =15 C]Tl).

bustor ..., pressure profiles along the combustor and
distribution of solids inventory in both gasifier and com-
bustor. Total pressure is considered as the pressure differ-
ence between two pressure taps, Py (3 cm above the
distributor) and P5 (2.5 m above the distributor). From the
temporal fluctuations of solids flow rate and total pressure
in the combustor, a standard deviation was determined for
several velocities U,qyy. Results show that the hydrody-
namic regimes defined above, as well as the transport ve-
locity, can be estimated from the plot of these standard
deviations against gas velocity. For instance, it was found
from results at 500 °C that:

* For velocities up to 2.4 m-s™' (zone 1 in Fig. 18), sol-
ids inventories in both gasifier and combustor remain
almost constant, which is in agreement with the con-
stant total pressure of the combustor. Moreover, a
very low solids circulation flow rate is measured. As
mentioned above, the combustor is a deep «dense
fluidized bed» with a height reaching 1.5 m
(Fig. 18¢). In this zone, the solids concentration in
the free-board area is very small. Thus elutriation of
fine particles initially present in the solids batch ex-
plains the residual values of the circulation flow rate.
Besides, an increase in gas velocity leads to a peak
in the combustor pressure standard deviation
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Fig. 18

Effect of combustor gas velocity on the solids mass flow rate, the combustor total pressure (a), its standard devia-

tion (b), the axial pressure profiles (¢) as well as on solids inventory in both gasifier and combustor (d) (olivine,

my, =35 kg, T'= 500 °C).

(Fig. 18b). According to many authors (Yerushalmi
and Cankurt, 1979; Han et al., 1985; Mori et al,,
1986; Chehbouni et al., 1994), this peak is explained
by the slugging phenomenon due to an increase in
bubble formation and coalescence. These authors de-
fined this velocity as the onset of turbulent fluidiza-
tion, U,. It can be noticed that this velocity is slightly
higher than the terminal settling velocity U; (2.03 m-s '
at 500 °C);

for velocities between 2.4 and 3.2 m-s™' (zone 2), an
increase in the circulation mass flow rate from 50 to
120 kg-h ™' and an abrupt rise of its standard devia-
tion are observed. As explained above, this is likely
attributed to the fact that the kinetic energy con-
tained in the bubbles during their eruption at the bed
surface is enough to transport particles brought into
its wake to the combustor outlet. This phenomenon,
as shown in Fig. 18d, leads to an increase in the in-
ventory difference between both reactors (i.e. the
pressure difference on both sides of the dump). Con-
sequently, a decrease in the total pressure of the
combustor was observed (Fig. 18a). The total pres-
sure standard deviation was also found to decrease
(Fig. 18h). Some authors (Yerushalmi and Cankurt,
1979; Han et al., 1985; Satija and Fan, 1985; Mori et

al., 1986, Perales et al.,, 1991a; Tannous, 1993) ex-
plain this trend by the breakup of bubbles and slugs
due to internal solids circulation, and by the decrease
in bubble formation and coalescence;

for velocities beyond 3.2m-s™' (zone 3), the solids
mass flow rate increases before reaching a plateau.
Simultaneously, its standard deviation decreases to a
stable stage. According to Chehbouni et al. (1994),
these trends indicate that the velocity at which this
third zone starts is the transport velocity, U, which
marks the onset of the circulating fluidization. Wor-
thy of note is that the value of U, found from the
evolution of solids mass flow rate standard deviation
vs. gas velocity is close to the one determined above
(3.3 m-s™"). For velocities higher than 4.0 m-s ™', the
stabilization of the solids mass flow rate, combustor
total pressure and inventory difference between both
reactors is in agreement with the results of
Yerushalmi and Cankurt (1979). These authors found
that beyond the transport velocity Uy, solid traverses
the column in a stable transported flow.

However, supplementary studies have to be performed
in order to ascertain the good reproducibility of circula-
tion flow rate and total pressure standard deviation.
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S
?0\5}3@0\*&]“5‘0“ Fp: circulating solids mass flow rate (kg-h™)

B FPmax: imal circulating solids mass flow rate (kg-h™'
\(\0$ From experimental data obtained between 20 and g S U tgelr)

950 °C, correlations were proposed in order to estimate
olivine minimum fluidization velocity and bed voidage.
These relationships can be useful for industrial gasifier
design. Moreover, hydrodynamic experiments were car-
ried out in a circulating fluidized bed between 20 and
850 °C. Results showed that, under our operating condi-
tions:

* The trend of solids mass flow rate vs. gas velocity is
of S-shape type;

+ the transport velocity U, is not significantly affected
by bed temperature and bed material inventory. It
only seems to be proportional to terminal settling
velocity U,. The correlation proposed by Perales et
al, (1991a) enables a good estimate of this character-
istic velocity;

« beyond U,, the circulation mass flow rate mainly de-
pends on bed material inventory and gas velocity.
For the same bed inventory and gas velocity, it is in-
dependent of bed temperature;

* beyond a certain gas velocity, the circulation mass
flow rate levels off. The mass flow rate on this pla-
teau is not affected by bed temperature but is
strongly dependent on bed material inventory.

Besides, results showed that key parameters for the sol-

ids flow rate control are combustor gas velocity and solids
inventory. An increase in these parameters leads to higher
circulation flow rates. However, the bed temperature and
bed material nature showed no influence, neither on the
transport velocity nor on the solids flow rate.

Nomenclature

A: reactor section (m?)
Ar: Archimedes number (-)
C), Cy: constant numbers relating to 4r and Re,¢ ()

C,y: constant number, C;; = 0.64:4.%* (m°#)

1.30

(15 constant number, C,, = = (m™2.5%%
g% N or

Cy: drag coefficient (=)

C,: diameter variation coefficient (=)

a: bubble mean diameter (m)

dyp: initial bubble diameter, at the outlet of the gas distributor (m)
dgm: maximal bubble diameter (m)

d,: Sauter mean particle diameter (m)

D¢ reactor diameter (m)
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2: acceleration due to gravity (m-s™)
H: bed height (m)
Hyy: secondary air injection cane height (m)
H,¢: bed height at minimum fluidization conditions (m)
K, K, constant numbers relating to A» and Re¢ (-)
L: packed bed height in Ergun equation (m)
my: total weight of particles, inventory (kg)
myc: total weight of particles in the combustor (kg)
m,g: total weight of particles in the gasifier (kg)
Mv: density number, My = T Al ()]

Pe
N, number of data (-)
N, orifice number in the gas distributor (-}
P..my: total pressure drop in the combustor (mbar)

Py pressure drop measured 3 cm above the distributor, in the
combustor (mbar)

R,: relative error (%)

R,: absolute relative error (%)

Re,,+ Reynolds number at the minimum fluidization point (-)
Re,: Reynolds number at the gas velocity U, (-)

7i temperature (°C)

U: superficial gas velocity (m*s™)

U,: bubble rise velocity in the bed (m-s™)

U,: turbulent regime characteristic velocity (m-s™)
U,,: chocking velocity (m-s™)

ULoms: total air velocity in the combustor (m-s™)

Usg: gas velocity in the gasifier (m-s™)

{/;: primary air velocity in the combustor (m-s™)

Uy secondary air velocity in the combustor (m-s™)
U+ minimum fluidization velocity (m-s™)

U superficial gas velocity in the standpipe (m-s™')
U,: terminal settling velocity of single particle (m-s™)
U,: transport velocity (m-s™")

z: given height in the dense fluidized bed (m)

7:mean value of a given parameter (unit of the parameter)
7 value of a given parameter (unit of the parameter)
Greek symbols

y : compressibility factor (-)

dg: bubble volume fraction in the bed (-)
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e: average fluidized bed voidage ()
epa: mean aerated bulk bed voidage (-)
epp: mean packed bulk bed voidage (-)
& minimum fluidization voidage (=)
u: fluid viscosity (kg-m™'-s™)

Py bed density (kg-m™)

pea: aerated bulk density (kg-m™)
per: packed bulk density (kg-m™)

p: fluid density (kg-m™)

Pnr. bed density at the minimum fluidization condition (kg m=)
p,: particle density (kg'm™)

p.: skeletal density (kg-m™)

oz: normalized standard deviation (-)
@: shape (sphericity) factor (=)

x: particle internal voidage (-)
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from the following equations (Davidson and Harrison,
1963; Mori and Wen, 1975):

-

S b, Al

B U, (AD)

1

Ub=(U¥Umf)+0.7ll-(g-d_B)A (A2)
H

= = (g — o) -exp| 032 (A3)
t

g =0.64-[4,- (U ~Up)]* =C1-(U-Up)**  (AD

g0 futu iyt 04
dpy =F[N—mf] =C3-(U—Upy) (AS5)
where Cj; and Cj, are numbers depending on reactor and
gas distributor geometry. Combining Equations A3 to AS
gives the bubble mean diameter, dependent only on the
excess gas velocitly, as:

H
dy =(U-Up))™* | Cly = (€ - ) - exp| —0.3- DL (A6)
c

Then, a combination of Equations Al, A2 and A6
shows that average bed voidage depends only on excess
gas velocity.
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