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The particle-particle random phase approximation (pp-RPA) is a promising method for studying
charge transfer (CT) excitations. Through a detailed analysis on two-electron deficient systems, we
show that the pp-RPA is always able to recover the long-distance asymptotic �1/R trend for CT exci-
tations as a result of the concerted effect between orbital energies and the pp-RPA kernel. We also
provide quantitative results for systems with relatively short donor-acceptor distances. With conven-
tional hybrid or range-separated functionals, the pp-RPA performs much better than time-dependent
density functional theory (TDDFT), although it still gives underestimated results which are not as good
as TDDFT with system-dependent tuned functionals. For pp-RPA, there remain three great challenges
in dealing with CT excitations. First, the delocalized frontier orbitals in strongly correlated systems
often lead to difficulty with self-consistent field convergence as well as an incorrect picture with about
half an electron transferred. Second, the commonly used density functionals often underestimate the
energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular
orbital (LUMO) for the two-electron deficient species, resulting in systems with delocalized orbitals.
Third, the performance of pp-RPA greatly depends on the energy difference between the LUMO and
a higher virtual orbital. However, the meaning of the orbital energies for higher virtual orbitals is
still not clear. We also discuss the performance of an approximate pp-RPA scheme that uses density
functional tight binding (pp-DFTB) as reference and demonstrate that the aforementioned challenges
can be overcome by adopting suitable range-separated hybrid functionals. The pp-RPA and pp-DFTB
are thus promising general approaches for describing charge transfer excitations. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4977928]

I. INTRODUCTION

Charge transfer (CT) excitations are frequently encoun-
tered in materials and biological sciences.1–4 They play an
important role in electron transfer and energy conversion.
Therefore, it is highly desirable to understand and describe
CT excitations well. However, the accurate theoretical descrip-
tion of CT excitations remains a great challenge. Although
the time-dependent density functional theory (TDDFT)5,6 has
been widely applied in many electronically excited systems
thanks to its good balance of theoretical accuracy and compu-
tational efficiency, under commonly used approximate density
functional kernels, it frequently fails for CT excitations.7,8

In particular, TDDFT tends to greatly underestimate CT

a)Electronic address: weitao.yang@duke.edu

excitation energies as a result of the self-interaction error.7,8

In order to reduce this error, one has to introduce the Hartree-
Fock (HF) exchange in the kernel, and therefore, a common
remedy is the range-separated (RS) hybrid kernels. The cor-
rect asymptotic trend for CT excitations is �1/R (R is the
distance between the donor and the acceptor), and, in prin-
ciple, the full HF exchange in the long range is required to
reproduce this trend. Apart from the qualitative asymptotic
behavior, the quantitative prediction of CT excitation ener-
gies is also challenging. Within the framework of TDDFT,
Stein et al.9 have developed a system-dependent RS func-
tional with a tuned parameter to overcome this challenge.
The tuning procedure is performed to minimize the difference
between the ionization potential (IP) and the orbital energy of
the highest occupied molecular orbital (HOMO), based on the
exact theoretical condition that the IP should equal the HOMO
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energy in the Kohn-Sham (KS) theory. Although this tuning is
system-dependent and, in principle, a small change in the
distance between the donor and the acceptor will lead to a
new system and therefore a new tuning parameter, this tuned
functional is shown to perform extremely well in quantita-
tively predicting CT excitations. The M06-HF functional by
Zhao and Truhlar10 is also capable of accurately predicting CT
energies using a global full HF exchange.

Other methods that are outside the framework of TDDFT
have also been developed to describe CT excitations. Con-
strained variational density functional theory (CV-DFT), espe-
cially a relaxed theory to the fourth order (R-CV(4)-DFT), can
achieve similar results to those using the scheme by Stein et al.
even at the local density approximation (LDA) level.11 Delta
self-consistent field (∆SCF)11,12 and perturbative ∆SCF13 can
also yield good results, even though these methods have a
longer history than the linear-response TDDFT. The con-
strained DFT by Wu and Van Voorhis14,15 and a scheme by
Theophilou et al.16,17 based on a minimization on the HF func-
tional within a constrained space are also able to give good CT
results.

The particle-particle random phase approximation (pp-
RPA) has been a textbook method for treating correlation in
nuclear physics for a long time.18,19 In recent years, it was
introduced by van Aggelen et al. to atomic and molecular
systems for treating electron correlation and was success-
fully combined with DFT as well as the conventional HF
theory.20,21 Recently, the pp-RPA was developed into a tool
for studying atomic and molecular excitations using a two-
electron deficient (N-2) system as the initial reference.22 It
is able to describe double excitations,22,23 Rydberg excita-
tions,22,24 CT excitations,22,23 diradical systems,23,25 and con-
ical intersections,26 all of which are challenging for TDDFT.
The pp-RPA has a similar computational cost to TDDFT.27

Therefore, it could be a promising method that complements
TDDFT.

In previous preliminary investigations on CT excita-
tions,22 we found that the pp-RPA is capable of correctly
describing the asymptotic�1/R trend with a specially designed
initial reference named HF*. Nonetheless, some impor-
tant questions still remain. First, the reason of the cor-
rect asymptotic trend has not been fully discussed. Second,
the qualitative performance has not been tested when the
donor and acceptor are spatially close. Third, our pre-
vious tests only used the specially designed HF* refer-
ence,22 and a more comprehensive functional performance
test is in need. In this paper, we will focus on these three
remaining issues and discuss the potential opportunities and
challenges.

II. THEORY
A. Excitation energy from pp-RPA

The pp-RPA can be derived from multiple independent
approaches, including the adiabatic connection and pairing
matrix fluctuations,20,21 the equations of motion,18,28,29 and
time-dependent density functional theory with a pairing field
(TDDFT-P).30 The final pp-RPA equation is a generalized

eigenvalue problem,
[

A B
B† C

] [
X
Y

]
= ω±2e

[
I 0
0 −I

] [
X
Y

]
, (1)

with

Aab,cd = δacδbd(εa + εb) + 〈ab| |cd〉,

Bab,kl = 〈ab| |kl〉, (2)

Cij,kl = −δikδjl(ε i + ε j) + 〈ij | |kl〉,

where a, b, c, d are virtual orbital indices and i, j, k, l are
occupied orbital indices with the restrictions that a > b, c > d,
i > j, and k > l. The brackets are defined as

〈pq|rs〉 ≡
∫

dr1dr2
φ∗p(r1)φ∗q(r2)φr(r1)φs(r2)

|r1 − r2 |
, (3)

and 〈pq| |rs〉 ≡ 〈pq|rs〉 − 〈pq|sr〉.
The pp-RPA equation (Eq. (1)) describes the two-electron

addition and two-electron removal processes. If we switch to
an N-2 reference and study the two-electron addition pro-
cesses, we will obtain a series of neutral N-electron states,
including the ground state as well as some electronically
excited states.22 The excitation energies can be predicted by
taking the differences of two two-electron addition energies,

EN
0→n = (EN

n − EN−2
0 ) − (EN

0 − EN−2
0 ) = ω+2e

n − ω+2e
0 , (4)

where N and N � 2 denote the number of electrons, and 0 and
n denote the ground and excited states, respectively.

In practice, in order to improve the computational effi-
ciency, we often use the spin-separated or spin-adapted forms
of the pp-RPA equation.29 The spin separation can always be
performed whereas the singlet-triplet spin adaptation is only
possible for restricted closed-shell N-2 reference. Because we
will use both spin-adapted and spin-separated (αβ, αβ) equa-
tions in later analysis process, here we briefly review their
working forms.

The spin-separated (αβ, αβ) equation describes the pro-
cess of adding or removing one α-β electron pair. Its form
is

[
Aspin Bspin

B†spin Cspin

] [
Xspin

Yspin

]
= ωspin

[
I 0
0 −I

] [
Xspin

Yspin

]
, (5)

where spin = (αβ, αβ), and the matrix elements are

[Aαβ,αβ]ab,cd ≡ Aaαbβ ,cαdβ = δacδbd(εa + εb) + 〈ab|cd〉, (6a)

[Bαβ,αβ]ab,ij ≡ Baαbβ ,iα jβ = 〈ab|ij〉, (6b)

[Cαβ,αβ]ij,kl ≡ Ciα jβ ,kα lβ = −δikδjl(ε i + ε j) + 〈ij |kl〉. (6c)

When the initial SCF N-2 calculation is restricted closed-
shell, the spin separated (αβ, αβ) equation can be further
resolved into one equation for singlet pairs and another equa-
tion for triplet pairs. This is the singlet-triplet spin adaptation.
The spin-adapted singlet and triplet equations describe adding
or removing a singlet or a triplet pair of electrons, respectively.
Their forms are

[
Amult Bmult

B†mult Cmult

] [
Xmult

Ymult

]
= ωmult

[
I 0
0 −I

] [
Xmult

Ymult

]
, (7)
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where the multiplicity mult is either singlet (s) or triplet (t).
The elements in the triplet matrix are

[At]ab,cd = δacδbd(εa + εb) + 〈ab| |cd〉, (8a)

[Bt]ab,ij = 〈ab| |ij〉, (8b)

[Ct]ij,kl = −δikδjl(ε i + ε j) + 〈ij | |kl〉, (8c)

with the restriction that a > b, c > d, i > j, and k > l, while
the elements in the singlet matrix are

[As]ab,cd = δacδbd(εa + εb) +
1

√
(1 + δab)(1 + δcd)

× (〈ab|cd〉 + 〈ab|dc〉), (9a)

[Bs]ab,ij =
1√

(1 + δab)(1 + δij)
(〈ab|ij〉 + 〈ab|ji〉), (9b)

[Cs]ij,kl = −δikδjl(ε i + ε j) +
1√

(1 + δij)(1 + δkl)

× (〈ij |kl〉 + 〈ij |lk〉), (9c)

with the restriction that a ≥ b, c ≥ d, i ≥ j, and k ≥ l.

B. Approximate pp-RPA with density functional
tight binding (DFTB)

When a system of considerable dimensions is the target of
pp-RPA calculations, the above formalism may have serious
limitations concerning computational resources. One impor-
tant bottleneck in the regular treatment of pp-RPA happens
during the construction of the pp-RPA matrix elements as the
two-electron integrals involved (Eq. (3)) have to be computed
on the fly. Diminishing the related computational load or com-
pletely avoiding the expensive evaluation of similar integrals
has been a long-pursued goal in quantum chemistry. Different
approaches have been developed in molecular orbital methods
to make the study of extended systems feasible. The Mulliken
approximation for the evaluation of multicenter integrals has
proven to be satisfactory in many scenarios while considerably
reducing the number of two-electron integrals to be handled. In
this approach, the general four-center integrals are expressed
as a linear combination of integrals involving only two atoms.

Alongside the Mulliken approach, other techniques have
been applied in methods like the density functional tight bind-
ing (DFTB),31,32 which have demonstrated their effectiveness
for the description of a wide range of problems in physics,
chemistry, and biology.33–37 Those techniques include the
monopolar truncation of the multipole expansion of the inte-
grals and their parametrization. Furthermore, in cases where
the Mulliken approach fails, the so-called on-site correction
has been shown to be a successful fix.38,39 The particle-particle
DFTB (pp-DFTB) employs such techniques for the evaluation
of the integrals appearing in the pp-RPA equations and uses
ground state DFTB energies and orbitals as reference. Note
that DFTB is even roughly three orders of magnitude faster
than those relatively inexpensive DFT approaches using local
or semilocal exchange-correlation (XC) functionals. There-
fore, pp-DFTB is a highly efficient scheme, not only for the
solution of the pp-RPA equations but also for the calculation
of the reference KS orbitals and energies.

A detailed formulation and benchmark of the pp-DFTB
formalism can be found elsewhere (paper in preparation).

When applying the Mulliken and monopole approximations,
the integrals 〈pq|rs〉 can be reduced to

〈pq|rs〉 =
∑
AB

qpr
A (A|B)qqs

B , (10)

where the sums run over every atom in the system and qpr
A are

the Mulliken transition charges for atom A,

qpr
A =

1
2

∑
µ∈A

∑
ν

(c∗µpcνrSµν + c∗µrcνpSνµ). (11)

In Eq. (11), cµp are the expansion coefficients of the molecular
orbital p in a Slater-type atomic basis, and Sµν are the elements
of the orbital overlap matrix in such basis. (A|B) represents
pairwise integrals with a Coulomb kernel, which are calcu-
lated via an interpolation formula (A|B) = UAB(UA,UB,RAB)
depending on the Hubbard-like parameters UA = (A|A) and the
inter-atomic distance RAB. The parameters UA are computed
for every atom type in advance by numerical integration and
stored in a file that is read during the calculation. Thus, the eval-
uation of every integral is practically instantaneous. If the on-
site correction is applied, additional one-center terms appear,
which are also calculated in advance for every element and
read on the fly. In this manner, the on-site-corrected scheme
does not introduce any significant further computational cost.

The delocalized orbital problem for CT systems, which
will be discussed later, can be overcome with the use of range-
separated hybrid functionals in DFTB40,41 (this method will
be hereafter referred to as LC-DFTB) which has been recently
implemented and benchmarked. This formalism employs a
Baer-Neuhauser-Livshits (BNL)-like XC functional42,43 with
Yukawa range separation44–46 of the Coulomb potential into
short and long range contributions,

1
r
=

e−ωr

r
+

1 − e−ωr

r
. (12)

Here ω is the range separation parameter, which is set to
ω = 0.3 in this work.

LC-DFTB is based on the second-order expansion of the
local part of the XC functional in the density matrix fluctu-
ations ∆P around a reference density matrix. The reference
is chosen to be the superposition of atomic density matrices,
which are obtained from LC-DFT calculations. As basis set
we use compressed atomic orbitals, obtained from pseudo-
atomic DFT calculations with an additional parabolic potential
(r/r0)2 for confinement purposes. The confinement radius, r0,
is chosen for every element to yield an optimal transferabil-
ity. An independent confinement radius is employed for the
compression of the input atomic density. There are thus two
independent confinement radii per element in LC-DFTB. In
a recent benchmark of the method,41 these parameters were
taken from the well established parametrization set mio and
no systematic optimization was conducted. Here, the set of
compression radii were fitted to reproduce the CT excitation
energies of the donor-acceptor systems, Benzene-TCNE and
Toluene-TCNE. We then found a good transferability to the
Stein set of CT complexes.9 In Table I, we summarize the
compression radii employed in this work.
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TABLE I. Compression radii for the confinement of the basis functions
(r0,wave) and the density (r0,dens) for the elements used in this work in units of
the covalent radius a0 of the respective atomic species.

Element H C N O

r0,wave[a0] 2.0 2.7 2.2 2.3
r0,dens[a0] 2.0 4.0 3.0 2.5

By applying the variational principle to the LC-DFTB
total energy, one obtains the following Kohn-Sham equations:∑

ν

Hµνcνi = ε i

∑
ν

Sµνcνi, (13)

with

Hµν = H0
µν +

1
4

∑
αβ

∆PαβSµνSαβ(γfr
µα + γfr

µβ + γfr
να + γfr

νβ)

−
1
8

∑
αβ

∆PαβSµαSνβ(γlr
µβ + γlr

µν + γlr
αβ + γlr

αν) (14)

whose solution for the N � 2 electron system provides the ref-
erence orbital energies ε i and orbital coefficients cνi for the
pp-DFTB equation. In Eq. (14), the zeroth-order Hamiltonian,
H0, is evaluated at the reference density and treated in the two-
center approximation. This quantity along with the overlap
matrix elements Sµν is tabulated as a function of the inter-
atomic distance. γlr and γfr are, respectively, long-range and
full-range two-center integrals, which are computed using ana-
lytical formulas depending on the distance between the two
centers and atomic parameters calculated at the LC-DFT level
of theory. Eq. (13) is solved self-consistently with an iterative
update of the density matrix.

III. COMPUTATIONAL DETAILS

We will first carry out a qualitative analysis based on
model systems. Then we will present qualitative results for the
CT set by Stein et al.9 All pp-RPA calculations were performed
with the QM4D package.47 We performed a comprehensive
study on the effect of different functionals including PBE,48

B3LYP,49,50 CAMB3LYP,51 RCAMB3LYP,52 and HF. All cal-
culations used Cartesian cc-pVDZ basis set.53 The pp-DFTB
method was implemented in a development version of the
DFTB+ code.54

IV. RESULTS AND DISCUSSIONS
A. Two-electron deficient systems

Since the pp-RPA calculation starts with an N-2 system,
a good description of the electronic structure for this N-2
system is very important. This is not a challenge for most non-
CT systems. However, for CT complexes, which contain two
differentiated subsystems — a donor and an acceptor, their
corresponding N-2 systems are more complicated and need
further discussion.

Here we restrict ourselves to systems with singlet or triplet
ground states and limit the bond order between the donor and
the acceptor to be no larger than 1. As is shown in Figure 1,
we divide the CT systems into two major categories. The first
one includes singly bonded systems such as H2, LiH, and
NaCl. At a short donor-acceptor distance, their neutral species
can be either covalent or ionic, whereas at a long distance,
they separate into two radicals, forming a strongly correlated
singlet system. The second category includes non-bonded sys-
tems, such as the famous CT models He2, C2H4· · ·C2F4,
and acene· · · tetracyanoethylene (TCNE). Their subsystems
interact weakly through van der Waals interactions.

For the systems in the first category, although the neutral
system may be strongly correlated, their N-2 picture is rela-
tively simple. They can mostly be thought of as species that
lose the two electrons that form the single bond and left with
two cations. Many of these cations are closed-shell species,
and therefore when the distance between the donor and the
acceptor is large, the cations are much easier to describe with
DFT than the neutral strongly correlated diradical system. We
call them Type I CT systems. For the systems in the second
category, further discussion is needed. In their N-2 picture, the
two electrons can be both removed from the donor subsys-
tem, a case that usually happens when the second ionization
potential of the donor is even smaller than the first ionization
potential of the acceptor. This includes simple atomic cases
such as HeBe and HeMg, as well as much larger molecular
cases such as anthracene· · ·TCNE. We call them Type II CT
systems. It is also possible that one electron is removed from
the donor and the other from the acceptor. We call them Type
III systems, and this type also includes many model CT sys-
tems such as He2 and C2H4· · ·C2F4. In these Type III systems,
the singlet N-2 species become strongly correlated when the
two subsystems are far away from each other.

FIG. 1. Two categories and three types of CT systems.
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It is worth noting that we can also do categorization based
on where the electrons are removed from. Then there are
two categories of electron removal: one with both electrons
removed from the same subsystem and forming a neutral-
dication pair (Type II), and one with electrons removed from
different subsystems and forming two cations, which can be
either strongly correlated (Type III) or not (Type I).

Also note that when the two electrons are removed from
different subsystems, Li2, for example, the disassociation pro-
file for its N-2 system will be very different from that of the
normal neutral systems. As a result of the Coulomb repulsion
between cations, the ground state energy of this reference N-2
system follows a decreasing 1/R trend in the long distance,
indicating the instability of this N-2 system.

B. Orbital energy shift

A direct consequence of the two-electron removal is
the shift of orbital energies. In a neutral system, when the
donor and the acceptor are far apart with barely any orbital
overlap, they can be thought of as isolated systems with-
out any influence on each other. However, this is no longer
true for the N-2 systems. For Type II systems, if we ignore
the higher-order polarization effect, the neutral subsystem
has little impact on the orbital energies or the orbital shapes
of the dication. By contrast, the dication subsystem behaves
like an external +2 point charge to the neutral subsystem.
This point charge simply lowers all the orbital energies of
the neutral subsystem by 2/R, where R is the separation
distance.

Similarly, for Type I and Type III systems, if all orbitals
are localized, then both charged subsystems act like a +1
point charge to each other, systematically lowering the orbital
energies of all the orbitals in the entire system by 1/R.

C. Asymptotic trend

Here we will adopt the single-pole approximation to ana-
lyze the reason why the pp-RPA is capable of describing the
asymptotic �1/R trend for CT excitations.

We first look at the Type I N-2 systems. Their neutral
ground state can be recovered by adding one electron each
to the empty lowest unoccupied molecular orbitals (LUMOs)
of the donor and the acceptor, while one simple CT state can
be reached by adding them both to the LUMO of the accep-
tor. We denote the LUMOs for the donor and the acceptor as
p and q, respectively. Then using the spin-adapted pp-RPA
equation and considering only the diagonal elements con-
cerning the ground state and CT excited states, we obtain
the transition energies to the ground states (both singlet and
triplet),

ω0s = [As]pq,pq = εp + εq + 〈pq|pq〉 + 〈pq|qp〉, (15a)

ω0t = [At]pq,pq = εp + εq + 〈pq|pq〉 − 〈pq|qp〉, (15b)

and the transition energy to the CT state

ω1s = [As]qq,qq = 2εq + 〈qq|qq〉. (16)

Then the CT excitation energies are

E0s→1s = ω1s − ω0s = εq − εp + 〈qq|qq〉 − 〈pq|pq〉 − 〈pq|qp〉,

(17a)

E0t→1s = ω1s − ω0t = εq − εp + 〈qq|qq〉 − 〈pq|pq〉 + 〈pq|qp〉.

(17b)

Both εp and εq display a �1/R trend. The first integral

〈qq|qq〉 =
∫

dr1dr2
|φq(r1)|2 |φq(r2)|2

|r1 − r2 |
(18)

is a regular electron integral within the acceptor subsystem,
and therefore it does not depend on R. The second integral

〈pq|pq〉 =
∫

dr1dr2
|φp(r1)|2 |φq(r2)|2

|r1 − r2 |
(19)

is the Coulomb repulsion between two orbitals that are local-
ized on the donor and the acceptor, respectively and therefore
has a 1/R trend. The third integral

〈pq|qp〉 =
∫

dr1dr2
φ∗p(r1)φq(r1)φ∗q(r2)φp(r2)

|r1 − r2 |
(20)

decreases to zero quickly as a result of the vanishing orbital
overlap between p and q. Taking all these terms into consider-
ation, the net trend for the CT excitation is

−
1
R
− (−

1
R

) + 0 −
1
R
∓ 0 = −

1
R

. (21)

We then look at Type II N-2 systems. Their neutral ground
state can be recovered by adding two electrons back to the
LUMO of the donor subsystem, and the simple CT state can be
achieved by adding one electron to the LUMO of the donor and
another one to the LUMO of the acceptor. We also denote these
two orbitals for donor and acceptor as p and q, respectively.
The single-pole approximation on the spin-adapted pp-RPA
equation shows that the transition energy to the ground state
is

ω0s = [As]pp,pp = 2εp + 〈pp|pp〉, (22)

and the transition energies to the CT singlet and triplet excited
states are

ω1s = [As]pq,pq = εp + εq + 〈pq|pq〉 + 〈pq|qp〉, (23a)

ω1t = [At]pq,pq = εp + εq + 〈pq|pq〉 − 〈pq|qp〉. (23b)

Then the CT excitation energies are

E1s = ω1s − ω0s = εq − εp + 〈pq|pq〉 + 〈pq|qp〉 − 〈pp|pp〉,

(24a)

E1t = ω1t − ω0s = εq − εp + 〈pq|pq〉 − 〈pq|qp〉 − 〈pp|pp〉.

(24b)

Orbital q belongs to the neutral acceptor subsystem and there-
fore εq has a �2/R trend due to the influence of the dication
donor subsystem, whereas the orbital energy εp almost keeps
constant when R increases. Similar to the earlier discussion,
the integral 〈pq|pq〉 has a 1/R trend. 〈pq|qp〉 vanishes quickly
and 〈pp|pp〉 keeps constant. Then the CT excitation energies
of Type II systems have a trend of

−
2
R
− 0 +

1
R
± 0 − 0 = −

1
R

. (25)

For Type III systems, the situation becomes much more
complicated. When removing two electrons, the singlet ground
state becomes a strongly correlated system, just like the
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stretched H2. The single reference canonical molecular orbitals
often delocalize onto two subsystems. This difficult delocal-
ized picture will be discussed later. Now we simply assume a
localized picture, for example, from a broken-symmetry cal-
culation with one β electron localizing on the donor and the
other α electron on the acceptor. We denote these two singly
occupied molecular orbitals on donor and acceptor as p and q,
respectively. Then the ground state can be recovered by adding
one α electron to p and one β electron to q. A simple Sz con-
serving CT state is reached by adding the β electron to q and
the α electron to the local orbital of the acceptor whose energy
is slightly higher than q, which we denote as r. Therefore this
is a CT excitation from p to r orbital. With the spin-separated
αβ, αβ equation, the transition energy to ground state and CT
excited states are

ω0 = [Aαβ,αβ]qp,qp = εq + εp + 〈qp|qp〉, (26a)

ω1 = [Aαβ,αβ]qr,qr = εq + ε r + 〈qr |qr〉, (26b)

and the excitation energy is

E = ω1 − ω0 = ε r − εp + 〈qr |qr〉 − 〈qp|qp〉. (27)

Orbitals q and r are in the same acceptor subsystem, while
p is in the donor subsystems. Therefore, the integral 〈qr |qr〉
keeps constant while 〈qp|qp〉 has a 1/R trend. The �1/R trend
in orbital energies ε r and εp cancels each other and therefore
for this type of CT systems, the CT excitation still has a �1/R
trend.

All in all, if we neglect the possible strong correlation
and orbital delocalization problem in Type III systems, using
a single-pole analysis, we can conclude that the description of
CT excitations by pp-RPA is always asymptotically correct.

It should be noted that in a more realistic multiple-pole
picture, as long as the configurations involved lead to the
same CT type, the asymptotic behavior remains the same.
This is because the configuration interactions among those
CT configurations keep constant at long distances and have no
asymptotic R dependence. Therefore only the �1/R trend from
each single pole picture between the ground state configura-
tion and every CT configuration remains. However, we need to
remind the readers that the current implementation of pp-RPA
is only limited to HOMO excitations. Therefore, those CT
excitation configurations excited from below the HOMO of
the donor are not included in the multiple-pole picture.

It is also worth noting that the discussions above are inde-
pendent of any functional that is employed in the N-2 SCF
procedure. Therefore, the correct �1/R asymptotic behavior
always holds for any functional reference.

D. Strongly correlated system and delocalized orbitals

Now let us come to the orbital delocalization problem for
Type III systems. This problem is by far the greatest challenge
for pp-RPA in describing CT excitations. The delocalized
orbital problem is closely related to the challenging strongly
correlated systems. For example, the simplest molecule of this
type is He2, and after removing two electrons, it resembles the
famous challenging H2 molecule.55 In the KS molecular orbital
picture, in which all molecular orbitals diagonalize the one-
body effective Hamiltonian, both the HOMO and the LUMO
delocalize onto two atomic centers with a spin-restricted cal-
culation. Only in the dissociation limit can they be transformed
into localized orbitals and still be eigenvectors of the Hamilto-
nian. Note that this delocalized picture does not frequently
occur for orbitals below the HOMO or above the LUMO.
For example, Figure 2 shows the delocalized frontier orbitals
and localized non-frontier orbitals for N-2 o-xylene· · ·TCNE.
Even in challenging symmetric cases such as He2, a small
perturbative external field can help localize these non-frontier
orbitals.

In this scenario, because the LUMO is delocalized, all pre-
vious discussions on the asymptotic trend based on localized
molecular orbitals are no longer valid. Although it is still true
that adding two electrons to the delocalized LUMO recovers
the ground state, yet adding one to the LUMO and another one
to a localized higher virtual orbital gives a state that has only
about half electron transferred. Besides the problem with the
number of electrons transferred, for these N-2 systems, it is
often difficult to converge the DFT SCF iterations, which is a
prerequisite for all pp-RPA calculations. Because of these two
obstacles, in our previous work,22 we tried a different reference
named HF*, in which we first perform a SCF calculation for
neutral systems to obtain localized orbitals, and then we manu-
ally remove two electrons by changing the occupation number.
This approach essentially changes the challenging Type III
systems to an easier Type II system, and it gives the correct
�1/R trend for He2 and C2H4· · ·C2F4 CT model systems.22

Furthermore, it is also shown to be equivalent to configura-
tion interaction singles and doubles (CISD) for H2. However,
it currently can only be derived using the equation-of-motion
method and only combines with HF references. Another way
of overcoming these problems is to adopt the high-spin triplet
(Sz = 1) or broken-symmetry singlet as initial references, but
they are temporarily not pursued due to potential spin symme-
try breaking and spin incompleteness. The most desirable way
is to obtain localized molecular orbitals with a spin-restricted
calculation. This might be possible if we can combine the
pp-RPA with constrained DFT,14 thus changing Type III
systems to Type II.

FIG. 2. Localized non-frontier orbitals and delocalized
frontier orbitals obtained from CAMB3LYP for N-2
o-xylene-TCNE.
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The delocalization problem is also especially challeng-
ing for pp-DFTB calculations. In this scheme, the reference
orbitals inherit this problem as DFTB is based on semi-local
DFT functionals. For the Stein set of CT complexes, the
HOMO and LUMO are also delocalized within DFTB. As
a result, both the donor and acceptor subsystems have nearly
+1 charge, thus leading to a complicated Type III system. As
mentioned in Section II B, this issue can be overcome by adopt-
ing reference orbitals calculated with the LC-DFTB method.
LC-DFTB calculations for the N-2 electron CT systems pro-
duce more localized HOMO and LUMO compared to DFTB
results. This leads to a simple Type II CT system, where the
donor is +2 charged and the acceptor is neutral.

E. Challenge from underestimated HOMO-LUMO gaps

Another challenge is rooted in the error of DFT fron-
tier orbital energies. In principle, within the Kohn-Sham or
the generalized Kohn-Sham formulations, the HOMO energy
from the exact functional should equal the ionization poten-
tial, while the LUMO energy equals the electron affinity.56,57

However, for currently used density functionals, this exact
relation is violated. Especially, the LUMO energy is always
greatly underestimated. This quantitative error can bring about
qualitative problems in some CT systems. The Be· · ·He sys-
tem is one example. In principle, the two electrons should be
both removed from the Be atom because the second ionization
potential of Be is smaller than the first ionization potential of
He. Therefore, it should form a Type II N-2 system without any
convergence issue or orbital delocalization problem. However,
in practice, most density functionals cannot converge the SCF
calculation because they predict the LUMO of Be2+, which
should correspond to the second ionization potential of Be, to
be lower in energy than the HOMO of He, which corresponds
to the first ionization potential of He.

Figure 3 shows the orbital energies as a function of the
donor-acceptor distance for the N-2 Be· · ·He system. It can
be seen that the HOMO of the whole system, which is also
the HOMO of He, is affected by the +2 charge on Be and
its energy has a �2/R trend. In principle, its asymptotic limit

FIG. 3. HOMO and LUMO orbital energies as a function of the donor-
acceptor distance for the N-2 Be· · ·He system. HF predicts the energies well
with the correct HOMO-LUMO energy ordering in both short and long dis-
tances. However, B3LYP predicts an unphysical energy crossing at around
7.5 Å and therefore gives non-Aufbau results after the crossing.

should equal the first ionization potential of He. The LUMO
of the whole system is also the LUMO of Be2+ and its energy
does not change with R. This energy should equal the second
ionization potential of Be. The B3LYP functional underesti-
mates the LUMO energy but overestimates HOMO energy of
the whole complex, leading to an incorrect energy crossing
when the distance is about 7.5 Å. Before the crossing, the two
electrons are both removed from Be, while after that it will
in principle predict an unphysical Type III system and make
both orbitals singly occupied. However, the change of occupa-
tion numbers leads to orbital re-optimization and a new set of
orbital and orbital energies, finally making the SCF very diffi-
cult to converge. Even if with some convergence trick, we can
converge the SCF calculation here and obtain Type II systems,
the final solution is non-Aufbau with the HOMO energy higher
than the LUMO energy. This is not quite likely to be physical
for a ground state. In contrast to B3LYP, HF performs much
better in this system with an accurate prediction of HOMO
and LUMO energies both at short and long donor-acceptor
distances. However, it should be noted that this good accuracy
for HF is because the system is small and simple. In more gen-
eral and more complicated systems, it is already known that
HF tends to overestimate HOMO-LUMO gaps.

Therefore, the underestimated HOMO-LUMO gaps by
commonly used density functionals may qualitatively change
an easy Type II CT system into a challenging Type III sys-
tem or into an unphysical Type II system with a non-Aufbau
occupation.

Regarding pp-DFTB, the challenge associated with the
correct description of frontier orbital energies can be addressed
by employing the LC-DFTB formalism as the reference. LC-
DFTB has been shown to deliver fair accuracy for the calcula-
tion of HOMO and LUMO energies, with results comparable
to first-principle approaches using the BNL functional and out-
performing DFT calculations based on local and hybrid func-
tionals.41 For example, the mean unsigned deviation (MUD)
of the negative of the LC-DFTB HOMO energies of a set of
organic molecules from their experimental ionization poten-
tial was reported to be 0.50 eV.41 This is comparable to the
BNL/cc-pVTZ value of 0.30 eV and substantially smaller
than the B3LYP/cc-pVTZ and PBE/cc-pVTZ values of 2.04
and 2.87 eV, respectively. When using the confinement radii
summarized in Table I, the MUD slightly increases with a
value of 0.62 eV, but remains much smaller than the results for
the ab initio semilocal approach. HOMO-LUMO gaps within
LC-DFTB are also satisfactory in general. For the same set
of molecules, we obtained a MUD with respect to LC-DFT
(BNL) of 1.69 eV, considerably lower than for PBE (5.21 eV)
or B3LYP (3.83 eV). For the +2 charged CT complexes under
investigation, HOMO-LUMO gaps are also accurately pre-
dicted within LC-DFTB for both short and long donor-acceptor
distances.

F. Quantitative results and challenges
from non-frontier orbital energies
1. Overall accuracy

We use the CT set by Stein et al.9 for our testing purpose.
All the systems in this set have a strong electron withdrawing
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molecule — TCNE, and an electron donating molecule ranging
from derivatives of benzene to derivatives of anthracene.

We find that for the complexes containing benzene or its
derivative, the N-2 systems suffer severely from delocalized
frontier orbital problems with DFT references and therefore
become Type III systems. The N-2 benzene· · ·TCNE is diffi-
cult even for SCF convergence. For those systems that can be
converged, the degree of delocalization varies with the choice
of the XC functional. In general, the less HF exchange, the
more delocalized the frontier orbitals are. As is discussed ear-
lier, the delocalized orbitals lead to a picture with less than one
electron transferred.

By contrast, the systems including molecules from the
anthracene family do not have the orbital delocalization prob-
lem, probably due to the relatively larger electron donating
capacity of anthracene. Therefore, the two electrons are both
removed from the anthracene or its derivatives. The systems
containing naphthalene is in the middle — some density func-
tionals with large HF exchange, for example, CAMB3LYP
and RCAMB3LYP, predict localized orbitals while those with
small HF exchange, for example, B3LYP, predict delocalized
orbitals.

We perform our pp-RPA calculations with PBE,
B3LYP, CAMB3LYP, RCAMB3LYP, and HF references,
which roughly have an increasing portion of HF exchange
(RCAMB3LYP has a small portion of HF exchange in the
short distance but more than 100% HF exchange correction in
the long range). We also compute the CT excitation energies
using pp-DFTB, except for the two complexes that contain the
Cl element, because the mio set of parameters does not include
the Cl element. We first present the results for Type II naph-
thalene and the anthracene family. Afterwards we will discuss
the results for the challenging benzene family. The available
experimental reference values were obtained either in the gas
phase or in the liquid phase. In order to get a complete set of
references for both gas phase and liquid phase, as is suggested
by Stein et al.,9 we add 0.32 eV to liquid phase results to
obtain approximate gas phase results or subtract 0.32 eV from
gas phase results to obtain approximate liquid phase results.

The pp-RPA and its approximation pp-DFTB results are
listed in Table II and then plotted in Figure 4. It can be seen
that with the increasing portion of HF exchange, there is a sys-
tematic trend for the results obtained with pp-RPA. The SCF
procedure for the N-2 systems frequently fails to converge
when the PBE functional is employed, but when convergence
is reached, the pp-RPA calculations give the lowest excitation
energies. The pp-RPA calculations with B3LYP reference give
larger excitation energies than those with PBE, but still greatly
underestimate the excitation energies compared with both gas
phase and liquid phase references. Compared to liquid phase
results, the pp-RPA-CAMB3LYP only slightly underestimates
the results by 0.14 eV, while pp-RPA with RCAMB3LYP and
HF references overestimate the results by 0.12 eV and 0.15 eV,
respectively. However, if we compare them with the gas phase
reference, which is assumed to be 0.32 eV higher than the
liquid phase reference, then all the pp-RPA variants underes-
timate the results and give larger errors. The best performance
is achieved with the RCAMB3LYP and HF references, for
which the excitation energies are underestimated by 0.20 eV TA
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FIG. 4. CT excitations obtained from pp-RPA with different functional
references.

and 0.19 eV, respectively. As can be seen from Table II and
Figure 4, the overall performance of pp-DFTB with LC-DFTB
is comparable to that of pp-RPA with the RCAMB3LYP and
HF references, that is, those with the greatest percentage of
exact exchange. Similarly, the CT energies are slightly over-
estimated compared to the liquid phase reference whereas
they are in average underestimated with respect to the gas
phase reference. Importantly, the set of parameters employed is
shown to be transferable across the table, which covers differ-
ent donor compounds and ranges of CT energies. pp-DFTB has
the advantage of being very efficient, which is particularly use-
ful when tackling systems with problematic convergence. In
such cases, for which a large number of SCF steps are required,
the calculation takes only few seconds to converge.

We choose the RCAMB3LYP results as one of the best pp-
RPA-DFT results, as well as the pp-DFTB results to compare
with other methods based on TDDFT. The results are plotted in
Figure 5. It can be seen that the TD tuned-BNL gives excellent
results that closely match the gas phase reference. The pp-RPA
and pp-DFTB perform slightly worse and give results between
the gas phase reference and the liquid phase reference. Results
from TDDFT with B3LYP and CAMB3LYP functionals are
even lower.

FIG. 5. CT excitations obtained from pp-RPA-RCAMB3LYP and from
TDDFT methods.

It should also be noted that if we look at the relative values
between different systems, TDDFT with conventional func-
tionals performs badly. The results with TDB3LYP is espe-
cially strange — when the reference value is relatively large,
it predicts a small number and when the reference value is rel-
atively small, it predicts a relatively large number. In Figure 5,
if we compare its trend line with that of the liquid phase refer-
ence, there seems to be a mirror lying at around 1.5 eV. This
interesting phenomenon is surprising to us and worth further
investigation. However, since this paper is mainly about the
pp-RPA, we will temporarily ignore this strange phenomenon
by TDB3LYP and only focus on the results by pp-RPA.

2. Stepwise approximation analysis

In order to understand better the underestimated CT values
by pp-RPA, we designed and performed a detailed analysis
based on the structure of the pp-RPA working equation. The
procedure is sketched in Figure 6.

The most direct approximation (step 1) is to simply look
at the orbital energy contribution from the orbitals involved.
The ground state is recovered by adding two electrons to the
LUMO of the N-2 system, while the lowest CT state is obtained
by adding one to the LUMO and another one to the lowest
virtual orbitals localized on TCNE, which is often LUMO+1 or
LUMO+2. For convenience, we now denote the LUMO as L0,
while the localized virtual orbital on TCNE as Ln. Therefore,
the orbital energy contribution to the CT excitation energy is

(εL0 + εLn ) − (εL0 + εL0 ) = εLn − εL0 . (28)

It is nothing but the difference of two virtual orbital energies.
Then we can move one step further (step 2) and perform the
single-pole approximation, in which we also include the kernel
contribution but exclude the coupling between the two config-
urations. As we analyzed before, the approximate CT energy
is

εLn − εL0 + 〈LnL0 |LnL0〉 + 〈LnL0 |L0Ln〉 − 〈L0L0 |L0L0〉. (29)

The third step is to consider the coupling, but only within the
2 × 2 single-pole approximation space. The coupling element
is

[As]LnL0,L0L0
=

1
√

2
〈LnL0 |L0L0〉. (30)

Note here, the coupling can be zero if the symmetries of L0

and Ln are different. The fourth step is to move to pp-TDA,
which considers all the coupling among those configurations
involving two-electron addition in unoccupied orbitals, and
therefore it potentially becomes a multi-pole picture. Finally,
the last step is the full pp-RPA, which also includes some
contribution from two-electron addition in occupied orbitals.

Figure 7 shows the results for the molecules in ben-
zene ((a) and (b)), naphthalene (c), and anthracene ((d)–(f))
families. From the first step results, we can see that for all
molecules, it always holds that the more HF exchange, the
larger the Ln �L0 gap. This trend is the same as the well studied
HOMO-LUMO gap.

When we move one step further and carry out the single-
pole approximation, the CT energies decrease dramatically.
Nonetheless, for molecules in the anthracene family, this
decrease is almost the same for all functionals, and therefore,
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FIG. 6. A stepwise procedure to understand the contri-
bution to the pp-RPA excitation energies from different
components.

the lines are almost parallel. By contrast, for those molecules
in the benzene family, the amount of decrease varies depending
on the functional. Interestingly, the larger the original Ln �L0

gap, the larger decrease in this second step, finally almost
reversing the order of the results for different functionals. The
cause of this behavior lies in the shape of frontier orbitals.
As we discussed earlier, all systems containing anthracenes
are Type II systems with localized frontier orbitals that are
almost the same for different functionals. However, the sys-
tems containing benzenes are Type III systems, and their fron-
tier orbitals differ from each other due to the varied degree of
orbital delocalization for different functionals. Therefore, the
kernel correction also varies greatly for different functionals.
The results for naphthalene (Figure 7(c)) lie between those of
the benzene family and the anthracene family. The pp-RPA-
B3LYP predicts delocalized frontier orbitals while the pp-RPA
with CAMB3LYP, RCAMB3LYP, and HF references predicts
localized orbitals. Therefore, for naphthalene, the behavior
of pp-RPA-B3LYP in this step is very different from the
rest.

Next, when we go to step 3 and take the coupling effect
into consideration, we can see that in the benzene and naph-
thalene families, the correction is almost zero, indicating the
coupling element is almost zero due to a symmetry mismatch.
The correction for anthracenes is much larger, but still consid-
erably smaller than the kernel correction. This correction in this
step is also very similar for different functional references.

For the fourth and fifth steps, the CT excitation energies
become further larger. However, even if we add up the effects
from the last three steps, they are usually far from canceling
the correction effect of the second step. For the last two steps,
the corrections for different functionals are also similar.

If we look at the five steps together, for anthracene, the
lines for different functionals almost go parallel with each
other, indicating that the differences among different func-
tionals practically originate from the initial orbital energy
difference. Therefore, the orbital energy difference between
Ln and L0 directly affects the final results for Type II systems.
By contrast, for Type III systems such as benzenes, because of
the varying frontier orbital, the kernel also makes a difference.

FIG. 7. Stepwise analysis on the pp-RPA calculation for molecules within benzene, naphthalene, and anthracene families.
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Could the errors in these orbital energies be the source
of the underestimation in CT excitations? Unfortunately,
although the Ln �L0 gap plays the most important role, current
DFT studies cannot give a clear interpretation for the virtual
orbital energies beyond LUMO. Therefore, we still do not have
a way of judging whether the Ln �L0 gap is overestimated
or underestimated. This is another theoretical challenge aris-
ing from N-2 systems. Nonetheless, from the systematically
underestimated data in this study, it is very likely that currently
used density functionals also underestimate the Ln �L0 gaps.
It is possible that even HF might underestimate them as well.
However, it should also be specially noted that even an exact
Ln �L0 gap does not necessarily lead to the most accurate
pp-RPA results, because the pp-RPA kernel is already an
approximation within the TDDFT-P theory.30 At the current
stage, a good excitation result will rely on some error can-
cellation between the approximate orbital energies and the
pp-RPA kernel. This error cancellation may as well be the
reason why the pp-RPA with a reference with a small por-
tion of HF exchange is even better than those with a large HF
exchange for the benzene family.

V. CONCLUSION

In summary, as long as the orbitals are localized, the
pp-RPA can always give the asymptotically correct �1/R trend
for CT excitations because of a concerted contribution from
the orbital energies and the kernel. This asymptotic trend is
independent of any functional references. In practical CT sys-
tems, the pp-RPA performs better than TDDFT with traditional
hybrid or range-separated functionals, but it also underesti-
mates the CT excitation energies. It still cannot compete with
the TD tuned-BNL approach. However, our pp-RPA approach
is universal in that it uses the same functional for all systems.
The pp-DFTB can greatly reduce the computational cost and
yields CT results comparable with the best pp-RPA results.
There remain three major challenges in the description of CT
excitations for pp-RPA. First, the delocalized orbitals in com-
bination with strongly correlated systems often account for the
SCF convergence failure and a picture involving the transfer
of roughly half an electron. Second, the currently used den-
sity functionals often underestimate the LUMO energy of the
dication species, turning the easy Type II systems into dif-
ficult Type III systems with delocalized orbitals. These two
challenges can be overcome with a suitable range-separated
hybrid functional within pp-DFTB. Third, the performance of
pp-RPA greatly depends on the energy difference between the
Ln and L0 orbitals, but the meaning of this energy difference is
still unclear, and therefore it calls for further theoretical inves-
tigations. It is worth noting that these three challenges are also
relevant to TDDFT, which also sometimes suffers from SCF
convergence failure, underestimated HOMO-LUMO gaps,
and dependence of higher virtual orbitals, although not in
the context of charge transfer excitations we discuss here.
Nevertheless, a fix to these three issues will benefit both
pp-RPA and the conventional TDDFT. In summary, although
facing some challenges, the pp-RPA and pp-DFTB are
promising general approaches for describing charge transfer
excitations.
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