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ABSTRACT: We present a new device called double lateral heterojunction (DLH) as ammonia sensor in humid atmosphere. It 

combines polyaniline derivatives in their poor conducting state with a highly conductive molecular material, lutetium bisphthalocy-

anine, LuPc2. The polyaniline and poly(2,5-dimethoxyaniline) are electrodeposited on ITO interdigitated electrodes, leading to an 

original device that can be obtained only by electrochemistry and not by other solution processing techniques. Both polymers lead to 

highly conducting materials that require a neutralization step before their covering by LuPc2. While the device based on polyaniline 

shows an ohmic behavior, the non-linear I-V characteristics of poly(2,5-dimethoxyaniline) – based DLH proves the existence of 

energy barriers at the interfaces, as demonstrated by impedance spectroscopy. It exhibits a particularly interesting sensitivity to am-

monia, at room temperature and in a broad relative humidity range. Thanks to its higher energy barriers, the poly(2,5-dimethoxyani-

line)/LuPc2 DLH is the most sensitive device with a limit of detection of 320 ppb. This work paves the way for the use of substituted 

polyanilines in conductometric sensors not only in the field of air quality monitoring but also in the field of health diagnosis by 

measurement in human breath. 

Conductometric gas sensors are mostly resistors using inor-

ganic materials, such as metallic oxides. However, molecular 

material – based resistors also reveal to be highly sensitive de-

vices, with the advantage to operate at room temperature. Be-

side organic resistors, field-effect transistors (OFET) and p-n 

junctions were used as conductometric transducers. These de-

vices were developed after their inorganic counterparts. In most 

of the cases, complex apparatus are necessary, which involve 

high vacuum and/or high temperature processes. On the con-

trary, solution processing techniques are particularly suitable 

for large areas and low cost processes.1,2 Metal oxide – based 

heterojunctions were considerably studied as gas sensors.3 Het-

erojunctions between inorganic and organic materials were also 

used as gas sensors, e.g. towards liquefied petroleum gas, with 

n-CdS/PANI.4 Discoid SnO2 with reduced graphene oxide was 

also used to detect NO2.
5 Conducting polymers, polyaniline 

(PANI), polypyrrole and polythiophene, were associated with 

nanostructured metal oxides to detect a series of VOCs, leading 

generally to better performances than with the isolated compo-

nents in resistors.6-9 We can also cite phthalocyanines combined 

with ZnS.10 Organic Schottky diodes were widely reported as 

gas sensors,11 unlike heterojunctions combining two molecular 

materials. We can mention phthalocyanine-based p-n hetero-

junctions,12 which behave electrically as classical p-n diodes, 

and a particular conductometric transducer, called MSDI, for 

Molecular Semiconductor – Doped Insulator heterojunc-

tion.13,14  

Besides, beyond its synthetic interest,15 electrochemistry be-

came highly popular to modify electrode surfaces.16 In the case 

of conducting polymers, electrochemistry ensures the synthesis 

and the preparation of materials in a unique step, as exemplified 

by phthalocyanine-polypyrrole hybrid materials used as sensing 

material for the detection of NH3.
17 In the case of polyanilines, 

the control of their conducting state, related to their doping 

state, determines their electrical and optical properties.18 The 

electronic and physico-chemical properties of conducting poly-

mers are highly dependent on the nature of substituents. Thus, 

polyanilines were synthesized from aniline bearing electron-

withdrawing and electron-donating substituents such as fluorine 

atoms19 and alkoxy groups.20  

In this paper, we report on a new device called double lateral 

heterojunction (DLH) that implies a double interface between 

two molecular materials: a poor conductive polymer around the 

electrodes and a molecular semiconductor, the lutetium 

bisphthalocyanine, LuPc2, as a top layer (Figure 1). Actually, 

we reported recently a first example of DLH, using the poly-

(tetrafluoroaniline), PTFANI, starting from tetrafluoroaniline. 
21 The main drawback with PTFANI was the difficulty to obtain 

homogeneous films, due to its insulating nature. Among phthal-

ocyanines, LuPc2, because of its radical nature, exhibits a 
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unique high intrinsic conductivity and a particularly high sensi-

tivity to redox active species.13 We develop two DLH differing 

in the polymer electroplated on ITO interdigitated electrodes 

(IDE): the poly(2,5-dimethoxyaniline) (PDMA) and the non-

substituted polyaniline (PANI). Thanks to the electrochemical 

method, the polymer is deposed selectively onto the electrodes 

and not on all the substrate area. After vacuum evaporation of 

LuPc2, the devices consist in DLH (Fig. 1). They were charac-

terized thanks to electrical measurements like impedance spec-

troscopy and current-voltage characteristics, I(V). Finally, we 

compared the sensing properties of PANI-DLH and PDMA-

DLH through ammonia sensing experiments in humid atmos-

phere. 

 

Figure 1. Schematic view of the double lateral heterojunction 
(DLH); the arrow indicates the main channel for charge carri-
ers. 

Experimental section 

Chemicals  

2,5-Dimethoxyaniline (DMA), 70% perchloric acid and po-

tassium hydroxide were purchased from Sigma Aldrich and ab-

solute ethanol (analaR normapur) was purchased from Carlo 

Erba. Aniline (Aldrich) was distilled at a boiling temperature of 

120 °C under the reduced pressure before use. Ammonia gas, at 

985 ppm and 98 ppm (mol/mol) in synthetic air, and synthetic 

air were used from standard gas cylinders, purchased from Air 

Liquide, France. Lutetium bisphthalocyanine (LuPc2) was syn-

thesized according to a previously reported method.22  

Electrochemical methods  

All electrochemical experiments were performed with a 

PGSTAT302N (Metrohm) potentiostat and the collected data 

analyzed using Nova® 2.1 software. Cyclic voltammetry (CV) 

and chronoamperometry (ChA) were carried out by means of a 

three-electrode setup consisting of an ITO plate or ITO inter-

digitated electrodes (IDE, deposited onto a 1 x 1 cm² floated 

glass substrate and separated by 75 m with 50 nm thickness) 

as working electrode, a platinum wire as counter electrode and 

a saturated calomel electrode (SCE) as reference electrode. Po-

tentials were reported versus SCE. PANI films were deposited 

on ITO plates by ChA at 1 V in a solution of 0.15 M aniline in 

2 M HClO4 (consumed charge of 415 mC.cm-2), then rinsed 

with 0.2 M HClO4, absolute EtOH and dried under vacuum at 

room temperature. They were also deposited on IDE by ChA at 

0.9 V (consumed charge of 115 mC.cm-2) under similar condi-

tions. PDMA films were deposited on ITO plates by CV from -

0.3 V to 1 V at a scan rate of 40 mV.s-1, in a 50 mM DMA 

solution in 2 M HClO4. The CV was stopped at 0 V after con-

suming 1 C.cm-2, then the polymer films were rinsed with 0.2 

M HClO4, absolute EtOH and dried under vacuum at room tem-

perature. They were also deposited on IDE in the same condi-

tions but with a consumed charge of 250 mC.cm-2. To obtain 

their neutral forms the films were rinsed with 1 mM KOH, wa-

ter and dried under vacuum at room temperature.  

SEM images and XPS analysis  

SEM images were performed with a scanning electronic mi-

croscope JEOL JSM6400F with 2 kV of acceleration voltage. 

XPS analysis of the polymer films was performed on a SIA100 

spectrometer (Cameca Riber apparatus) using non-monochro-

mated Al Kα X-ray source (1486.6 eV photons). All spectra 

were calibrated using the normalized In(3d5/2) XPS signal from 

In2O3 at 444.9 eV23 and all deconvolutions were performed us-

ing contributions with a nearly constant width at half maximum 

(± 0.2 eV).  

Electrical and chemosensing measurements  

The top layer was coated over the neutralized polymer sub-

layer prepared on IDE, by sublimation of LuPc2 in an UNIVEX 

250 thermal evaporator (Oerlikon, Germany), under secondary 

vacuum (ca. 10-6 mbar), by heating in a temperature range of 

400-500 °C, at a rate of 1 Å.s-1. Impedance data were obtained 

using a Solartron SI 1260 impedance analyzer. The frequency 

range was 10 Hz to 10 MHz with a fixed ac oscillation ampli-

tude of 300 mV and a bias ranging from 0 V to 10 V. A com-

mercial software Zview from Ametek was used for impedance 

data fitting and parameter extraction. The apparatus used for 

NH3 exposure, at different relative humidity (RH) values, was 

described previously.24 The total flow was in the range 0.5-0.55 

NL.min-1 depending on ammonia concentration and the volume 

of the test chamber was 12 cm3. Gas sensing experiments were 

carried out in a dynamic way, by alternating 4 min-long rest 

periods and 1 min-long exposure periods. 

Results and Discussion 

Film formation 

The electrodeposition of PDMA on ITO electrodes was car-

ried out by cyclic voltammetry in an acidic solution containing 

the monomer (Figure 2).  

 

Figure 2. Cyclic voltammogram of 50 mM DMA in 2 M HClO4 on 
an ITO electrode, at 0.04 V.s-1. Consumed charge in inset. 
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DMA was irreversibly oxidized at 0.62 V. Repetitive scan-

ning leaded to a new redox system, at around 0.37 and 0.2 V, 

attributed to the polymer formation.25,26 Its intensity and the 

corresponding charge consumed (inset in Figure 2) grew rapidly 

with the number of scans. This was characteristic of a polymer 

having a good conductivity like PANI.20 Previous EQCM re-

sults revealed a partially protonated emeraldine form with a 

doping ratio of 1 ClO4
- / 2 DMA units.20  

SEM images and XPS analysis 

PDMA films electrodeposited on ITO plates had a broccoli 

shape structure (Figure 3).27 This porous structure can be ex-

plained by the high conductivity of PDMA in its emeraldine salt 

form that enabled a fast growth on itself, as previously reported 

for PANI, which lead to fibers of a few hundred nanometers in 

length.21  

 

Figure 3. SEM images of PDMA on ITO plates with a zoom (x8) 
in inset. 

The atomic ratio has been calculated from XPS spectra, using 

peak areas of C(1s), N(1s), O(1s) and Cl(2p) (N(1s) used as a 

reference, Figure S1). The C/N ratio of 8.4 was closed to the 

expected value of 8. The Cl/N ratio (0.7) demonstrates the pres-

ence of ClO4
- counterions that indicates an important acid-base 

doping (protonation of amine/imine bridges). Furthermore, af-

ter subtracting the oxygen contribution from the two methoxy 

groups, the obtained O/Cl ratio (4) matched with ClO4
- anions. 

The O(1s), Cl(2p) and C1s spectra are analyzed in Figure S2, 

S3 and S4, respectively. The deconvolution of N(1s) spectrum 

showed three components at 399.4, 401 and 403.5 eV, that can 

be attributed to the neutral amine, the protonated imine and the 

protonated amine, respectively (Figure 4a).28-32 It is worth not-

ing that, in our case, the neutral imine peak, expected at 398 

eV,33,34 was absent because all imine bridges were protonated. 

The acid-base doping was calculated by addition of the contri-

butions of the protonated molecules at 401 and 403.5 eV. 

Charged species rates of 52% for PANI and 54% for PDMA 

were obtained. This was lower than the chlorine ratio obtained 

from XPS semi-quantitative analysis (0.7) because the Cl/N ra-

tio also provided for traces of electrolyte not fully eliminated by 

the rinsing step with absolute EtOH. Otherwise, we demon-

strated that PDMA and PANI had a -N= / -NH- ratio near to 1 

in accordance with their emeraldine salt form. 

 

Figure 4. N(1s) XPS high resolution spectra of a) PDMA, b) PANI 
films electrodeposited on ITO plates. 

Electrical properties 

Inspired by the behavior of MSDI that include a low conduc-

tive sublayer, we decided to build heterojunctions, with PANI 

and PDMA in their low conductive form. Therefore, 1 µm thick 

polymer films of PDMA and PANI were electrodeposited on 

IDE, then neutralized by KOH, leading to their poor conductive 

state (emeraldine base form). A LuPc2 upper layer was then 

added by vacuum sublimation to obtain DLH (Figure 1). The 

normalized I(V) characteristics of PDMA/LuPc2 DLH, defined 

as the ratio of the current with its maximum value at 10 V, 

showed a non-linear behavior compared to the ohmic character-

istic of a LuPc2 resistor (Figure 5).  

 

Figure 5. Normalized I(V) characteristics in ambient atmos-
phere of a LuPc2 resistor and a PDMA – DLH with the threshold 
voltage, Uth. 

This new lateral configuration forces the charges to cross 

twice the ITO/polymer and polymer/LuPc2 interfaces, and cre-

ates energy barriers. The threshold voltage, Uth, provides an 

evaluation of the non-linear character of the PDMA – DLH. It 

is determined by extrapolation to zero of the tangent to the curve 
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at high bias (Figure 5). The obtained value of 3.4 V was higher 

than that of the poly(2,3,5,6-tetrafluoroaniline) (PTFANI)-

based device (threshold voltage of 2 V calculated from ref. 21). 

Despite the lower current in the PANI/LuPc2 heterojunction (2 

µA at 10 V, Figure S5) than in the LuPc2 resistor (20 µA at 10 

V), this device kept an ohmic I(V) characteristic, suggesting 

that all the interfaces formed ohmic contacts.  

We explored the transport properties thanks to impedance 

spectroscopy, a conventional technique in electrochemistry, 

with recently growing applications in organic electronics.35,36 

Thereafter, we will discuss the complex plane representation, 

called the Nyquist plot, of the impedance Z defined as: Z = 

Re(Z) + jIm(Z), where Re(Z) and Im(Z) are the real and imagi-

nary parts of Z, respectively. As shown in Figure 6, Nyquist 

plots of PDMA – DLH exhibited two intermixed non-ideal sem-

icircles, which have different behaviors depending on the bias. 

The first one, at high frequency (HF), was practically independ-

ent of the bias, whereas the second one, at low frequency (LF), 

collapsed as the bias increased. It is worth noting that the LuPc2 

resistor exhibits only one semicircle unaffected by the bias. This 

means that the electrical properties of the resistor remain con-

stant,37 suggesting that the charge transport is dominated by the 

bulk material, and not by interfacial traps.38 In the PDMA – 

DLH, when focusing on the diameter of the LF semicircle, the 

major part of the collapse occurred when the bias was lower 

than 3 V. This bias corresponds to the abovementioned thresh-

old voltage of 3.4 V, deduced from the I(V) curves (Figure 5). 

Our working assumption, supported by previous studies,37,39 

was that, at low bias, the LF semicircle represents the interfacial 

behavior, whereas the HF semicircle represents properties from 

the bulk materials. For the present heterojunctions, with two 

non-ideal semicircles, the data were modeled by an equivalent 

circuit consisting of two Ri-CPEi elements in series (Figure 6). 

A constant-phase element (CPEi) can be regarded as an imper-

fect capacitor40 of which the impedance ZCPEi is defined as fol-

lows (equation 1): 

𝑍𝐶𝑃𝐸𝑖 =
1

𝑄𝑖∗(𝑗𝜔)𝛼𝑖
  (1) 

with ω = 2πf, where f is the frequency, Qi the non-ideal ca-

pacitance, and αi a value between 0 and 1 that reflects the non-

ideality of the capacitive element.36  

 

Figure 6. Nyquist plot as a function of the bias (0.33 V to 10 V) 
of a PDMA – DLH, with the equivalent circuit for data modelling 
in inset. 

When αi = 1, a CPE corresponds to an ideal capacitor. As ex-

pected from the Nyquist plots, all the parameters (R1, Q1 and α1) 

of the R1-CPE1 element remain nearly constant with the bias 

(Figure 7). This confirms that part of the properties of the bulk 

materials are modeled by this element. The collapse of the sec-

ond semicircle observed in the Nyquist plot (Figure 6) results 

from the decrease of R2 

 

Figure 7. Variations of the extracted circuit parameters as a 
function of the bias for PDMA – DLH. 

with the bias. This resistance is the key parameter to explain 

the energy barrier abovementioned and the non-linear behavior 

observed in the I(V) characteristics. 

Indeed, the strong non-linear behavior (Figure 5) observed 

with PDMA sublayers results from the high value of R2 at low 

bias (Figure 7). To be more specific, R2 decreased from 18.3 

MΩ to 0.6 MΩ and R1 remained stable at 1.1 MΩ. The large 

part of the R2 drop occurred for bias below 3 V, which corre-

sponds to the threshold voltage of 3.4 V (Figure 5). To confirm 

that the interfacial phenomena were mainly represented by the 

R2-CPE2 element associated with the LF semicircle, we calcu-

lated the effective capacitance Ceffi, (equation 2), of the Ri-CPEi 

element (Figure 7) referring to a reported method.41  

𝐶𝑒𝑓𝑓 𝑖 = 𝑅
𝑖

1

𝛼𝑖
−1

∗ 𝑄
𝑖

1

𝛼𝑖  (2) 
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Actually, the parameter Qi has no physical sense because its 

unit depends on αi. It is worth noting that a R-C element at-

tributed to an interfacial behavior should have a larger capaci-

tance than the bulk capacitance, because an interfacial layer 

should have a smaller thickness compared to that of the de-

vice.39 It appeared that Ceff1 had a constant value of 8 pF 

whereas Ceff2 declined from 1.4 nF at 0 V to 120 pF at 10 V, 

which is hundreds time higher than Ceff1. Furthermore, the 

PANI – DLH that exhibited an ohmic characteristic (Figure S5) 

displays a Nyquist plot with essentially one semicircle, as the 

second one was scarcely visible, reflecting the absence of inter-

facial energy barrier (Figure S6). Indeed, R2 decreased from 970 

kΩ at 0 V to 474 kΩ whereas R1 remained almost stable at 1 

MΩ (Figure S7). So R2 was lower than R1 whatever the bias. It 

means that interfacial barriers play a minor role in the electrical 

transport in the device, which is corroborated by its ohmic be-

havior. All these observations confirmed our starting hypothesis 

that the R2-CPE2 block, associated to the LF semicircle, mod-

eled the role of the interfaces. 

Gas sensing 

Under exposure to NH3 (Figure 8), the PDMA – DLH showed 

a current drop, which demonstrated that the transport properties 

are governed by positive charge carriers. The current decrease 

depended on the NH3 concentration whatever the RH. The ΔI 

response, corresponding to the difference between the current 

at the end of the exposure phase If (1 min) and that of the recov-

ery phase I0 (4 min) was not linear in this NH3 concentration 

range. Indeed, at 50% RH, ΔI went from -14 nA at 90 ppm NH3 

to -5.5 nA at 10 ppm. This suggested that the sensor worked in 

overloaded regime. All along this experiment, the I0 value de-

creased with the RH value, but at each RH value I0 was very 

stable during the exposure-recovery cycles. The device exhib-

ited the same behavior when exposed to different RH values 

without NH3 (Figure S8). We also studied the devices at lower 

NH3 concentrations, between 1 and 9 ppm, at 50% RH (Figure 

9).  

 

Figure 8. Current response of PDMA – DLH exposed to NH3, in 
humid air, from 70% RH to 10% RH, during exposure/recovery 
cycles (1 min / 4 min). 

The sensor continued to show a large current decrease, de-

pending on the NH3 concentration, with a stable current base-

line. The I value at 1 ppm was 1 nA, with a good signal-to-

noise ratio, suggesting that the limit of detection (LOD) was not 

reached yet. The relative response, RR, defined in equation 3 

from the mean value over four exposure / recovery cycles at 

each NH3 concentration, reached 29% at 90 ppm NH3, against 

7%, for the PANI – based device. 

𝑅𝑅 (%) =  
|𝐼𝑓−𝐼0|

𝐼0
∗ 100  (3) 

 

Figure 9. Current response of a PDMA – DLH exposed to NH3 (9, 
6, 4, 3, 2 and 1 ppm), in air at 50 % RH, during exposure / re-
covery cycles (1 min / 4 min). 

The sensitivity, S, defined as the local slope of the curve RR 

= f([NH3]) (Figure 10), was better at low concentrations than at 

high concentrations. In the overloaded regime (40 – 90 ppm), S 

was 0.12 %.ppm-1, but at concentrations lower than 10 ppm, S 

rose up to 1.85 ± 0.17 %.ppm-1. This increase of the sensitivity 

at low concentration suggested a Langmuir-like behavior. The 

data were fitted by the Langmuir adsorption isotherm (R2 = 

0.992).42 In principle, the device could have an even greater 

sensitivity at low concentrations. Indeed, below 1 ppm, the 

modeling equation is reduced to a linear function whose slope 

(2.23 %.ppm-1) represents the maximum theoretical sensitivity 

of the device. The LOD was calculated from I0 and the noise, 

N, both graphically determined at 1 ppm on the curve I(t) (Fig-

ure 9) (equation 4): 

𝐿𝑂𝐷 =
3𝑁

𝑆∗𝐼0
  (4) 

With N being 0.1 nA and I0 51.7 ± 0.2 nA, a LOD of 314 ± 

29 ppb was calculated. It is important to remember that, in Eu-

rope, the daily exposure limit in NH3 is 20 ppm.43 These values 

demonstrate that this device is suitable for the detection of NH3 

at low concentrations. 

We repeated the same experiments with the PANI – DLH 

(Figure 10). Compared to the PDMA – DLH, it exhibited a 

smaller RR value of 7.2 % at 90 ppm because of its poor ΔI 

response and its high I0 value. Despite the instability of I0 that 

explained the break in the RR curve between 10 and 20 ppm, 

we determined a sensitivity of 0.14 %.ppm-1 at low NH3 range 

(< 9 ppm). The great sensing properties of the PDMA – DLH 

come from the energy barriers of the different interfaces, em-

phasized by the previous electrical measurements. By polariz-

ing the sensor with a bias lower than the threshold voltage (bias 

of 1 V against Uth of 3.4 V), the current is limited by the charge 
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transfer at the interface. It provides an improvement of the sen-

sitivity of the PDMA – DLH compared to that of devices with 

an ohmic behavior, as previously demonstrated for MSDI.24  

 

 

Figure 10. Relative response of PDMA – DLH and PANI – DLH as 
a function of the NH3 concentration in the 1-90 ppm range, in 
air at 50 % RH. The data of the linear fits for both devices 
(green table) and of the Langmuir modelling for the PDMA-
DLH (blue table) are given in insets. 

 

The sensitivity of the PDMA – DLH is comparable to this of 

n-type MSDI44 and better than that of a previously reported p-

type conductometric device, the PTFANI – based DLH (Table 

1).21 Other NH3 sensors operating at room temperature exhib-

ited a sensitivity in the same range, such as resistors made from 

reduced graphene oxide (rGO) associated to Co3O4 nanofibers45 

or to PANI,46 with a sensitivity of 1 %.ppm-1. However, the lat-

ter was studied in dry air whereas the first one was studied only 

at 40% RH. Besides, inorganic-based sensors can exhibit a 

higher sensitivity, but they operate at high temperatures, e.g. at 

450 °C for a MoO3-WO3 resistor.47 

Conclusion 

In this work, we built double lateral heterojunctions consisted 

in a low conductive sublayer, made with electroplated polymer 

in the emeraldine base form and a highly conductive LuPc2 top 

layer. This device exhibited a non-linear behavior at low bias, 

which was consistent with the existence of interfacial energy 

barriers, as confirmed by the Nyquist plots. The behavior of 

PDMA is unique among the studied polyanilines, since it is both 

easily electro-polymerized and easily de-doped. The sensitivity 

of PDMA-DLH to NH3 in humid atmosphere is higher than that 

of the PANI-DLH in all the NH3 concentration range (1-90 

ppm). This sensor operated in the full humidity range (10 % - 

70 % RH) with a good baseline stability. Its calibration curve 

demonstrated a Langmuir adsorption behavior. The linear re-

gime at low NH3 concentration (< 10 ppm) permitted to deduce 

a sensitivity of 1.85 %.ppm-1. Finally, we determined the LOD 

on this new device, at 320 ppb. It appears that the sensitivity to 

ammonia decreases when the relative humidity tends to dry at-

mosphere, but the LOD remains in the sub-ppm range, even at 

10 % RH. It is worth noting that a RH value of 10% is rarely 

encountered in applications of ammonia sensors. We demon-

strated a new application of conducting polymers, in their poor 

conducting state, as a component of lateral heterojunctions. The 

PDMA – based sensors were more sensitive to NH3 than the 

phthalocyanine-based heterojunctions that inspired this work. 

 

 

Table 1. Sensitivities (S) of the present devices compared to 

those of a series of heterojunctions (MSDI and DLH) and 

resistors. 

Device (type of 

charge carriers) 

S 

(% ppm-1) 

[NH3] 

(ppm) 

LOD 

(ppm) 

Ref. 

Cu(F16Pc)/LuPc2 

MSDI (n) 

1.5 25  44 

LuPc2 resistor (p) 0.02 25  44 

PTFANI – DLH (p) 1.05 1-9 0.45 21 

PANI –  DLH (p) 0.14 1-9 > 1 this 

work 

PDMA – DLH (p) 1.85 1-9 0.32 this 

work 

rGO-PANI  

resistor (p) 

1.0 b 20  46 

rGO-Co3O4  

resistor (p) 

1.0 c 50  45 

MoO3-WO3  

resistor (p) 

100 d 5  47 

a) The sensitivity drops after few days in ambient air, b) in dry air, c) at 40% RH 

and d) at 450 °C 

ASSOCIATED CONTENT  

O(1s), Cl(2p) and C(1s) XPS spectra of PDMA film; I(V) char-

acteristics of PANI/LuPc2, PDMA/LuPc2 heterojunction and 

LuPc2 resistor; Nyquist plot as a function of the bias of 

PANI/LuPc2 ; variation of the circuit parameters as a function 

of the bias for PANI/LuPc2 and response of PDMA/LuPc2 to 

RH. This material is available free of charge via the Internet at 

http://pubs.acs.org. 
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