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Motion Planning and Control for Hilare Pulling a

Trailer

F. Lamiraux, S. Sekhavat and J.P. Laumond, Member, IEEE

Abstract| This paper deals with motion planning and

control for mobile robots. The various components of an

integrated architecture for the mobile robot Hilare pulling

a trailer are presented. The nonholonomic path planner

is based on an original steering method accounting for the

small-time controllability of the system. Then the path is

transformed into a trajectory by including the dynamical

constraints of the system (bounded velocity and bounded

acceleration). Finally motion control is addressed: thanks

to a geometric transformation introducing a virtual robot,

we show how to reduce the problem to a classical approach of

trajectory tracking for a mobile robot moving only forward.

Experimental results include two types of robot-trailer con-

nection systems.

Keywords| Mobile robot with trailer, motion control,

Nonholonomic path planning.

I. Introduction

T

HIS paper presents all the components required to de-

vise a practical navigation system for a mobile robot

pulling a trailer in a known environment. Experiments in-

volving the mobile robot Hilare are reported. Two di�erent

robot-trailer connection systems are considered: on System

A (Figure 1 left), the trailer is hooked up above the wheel

axis of the robot, whereas on System B (Figure 1 right),

the trailer is hooked up behind the wheel axis.

We assume that the mobile robot moves su�ciently

slowly (:5ms

�1

; :5rad s

�1

) to make all the dynamical ef-

fects negligible (no slippage). We do not consider any re-

striction on the shape of the obstacles. The inputs of our

system are a geometric map of the environment, the type

of robot-trailer connection, and bounds on the linear and

angular velocities and accelerations. The output is the ex-

ecution of a motion in the real world.

For the past eight years, mobile robots with trailers have

been fruitful examples to support advanced researches on

control of nonholonomic systems (e.g., [28], [19], [27]). Such

researches address either open loop control or feedback con-

trol. Most of them ignore the obstacle avoidance problem

and few of them report experiments on a real system. In

[38] or [6] the experiments are carried out only to evaluate

various feedback control laws. There is no path planning.

[30] presents experiments for a robot with a trailer in a spe-

ci�c environment composed of corridors. The robot and the
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trailer are grown in such a way that they can be considered

as a car-like system. [12] presents an experimental system

consisting of a car with one or two trailers. This work ad-

dresses the planning and the execution of maneuvers such

as parallel parking and docking.

In this paper, we present an integrated approach to path

planning and motion execution for a mobile robot with a

trailer. Our approach may face any constrained environ-

ment while taking into account bounds on both velocities

and accelerations of the robot. A short version of this paper

can be found in [46].

The paper is organized according to the three main

components of our integrated system: computation of a

collision-free feasible path

1

, transformation of this path

into a feasible trajectory

2

and trajectory tracking. We will

report prior work related to each step in the corresponding

sections.

Nonholonomic path planning (Section III). Both systems

A and B are small-time controllable

3

. Small-time control-

lability means that the set of con�gurations reachable after

any given time always contains a neighborhood of the start-

ing con�guration. As a consequence any collision-free path

can be approximated by a sequence of collision-free feasi-

ble paths. Then nonholonomic path planning can be ad-

dressed by dealing separately with the physical constraints

due to the obstacles and the kinematic constraints due to

the wheels. This approach was �rst proposed in [26] for a

car-like robot. At this level our contribution is to propose

a new open-loop steering method accounting for the small-

time controllability of the systems. We will show that this

property is crucial for the convergence of the algorithm.

Transformation of a feasible path into a feasible trajectory

(Section IV). Following a path for an articulated system

subjected to bounds on velocities and accelerations re-

quires an appropriate time-parameterization of the path.

This issue has been addressed in the case of manipulators

with acceleration limitations. We propose here a numeri-

cal method based on the algorithm proposed in [49], tak-

ing into account additional constraints implied by velocity

bounds.

Motion control (Section V). The selected solution is based

on a classical trajectory tracking control law for mobile

1

A path is said to be collision-free if it does not collide the obstacles

in the con�guration-space. A path is said to be feasible if it respects

the nonholonomic constraints.

2

A trajectory is said to be feasible if it respects the dynamical con-

straints, i.e. acceleration and speed bounds.

3

See [25] and references therein for a proof.
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Fig. 1. Hilare with its trailer

robots [41]. Our contribution lies in the extension of this

law to a mobile robot with trailer via geometric transforma-

tion allowing the tracking problem to be reduced to forward

motion only. Robustness is analyzed through an iterative

control scheme combining motion planning and trajectory

tracking.

Experiments (Section VI). Last but not least, all these

components have been integrated within a modular archi-

tecture (Section II) to perform experiments in an indoor

environment with a real robot.

II. Hilare and its trailer

Our experimental platform is Hilare-2-bis. It is a two

driving-wheel mobile robot belonging to the family of mo-

bile robot Hilare growing at LAAS since 1976 [16]. In

the following experimentation we use proprioceptive sen-

sors: the odometer (based on optical encoders on dedicated

wheels) gives the position (x

r

; y

r

) and the direction �

r

of

the robot w.r.t. a starting con�guration; an angular en-

coder gives the relative direction ' of the trailer w.r.t. the

direction of the robot. Three cameras on the ceiling give

the initial con�guration of the system w.r.t. an absolute

frame.

We consider two di�erent systems A and B of robot-

trailer connection (Figure 1). The corresponding control

systems are given by:

TRLOCO TRPILO

TRPLANNER

POSTERS
radio

radio
ethernet

ethernet

BUS VME

Cameras

Angular encoder
Driving wheel control

Odometer

Fig. 2. Computer architecture of the experimental systems.
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where the inputs v

r

and !

r

are the linear and angular ve-

locities of the robot. They are subjected to the following

constraints: jv

r

j � v

max

, j!

r

j � !

max

, j _v

r

j � _v

max

and

j _!

r

j � _!

max

. These constraints and the weight of the robot

ensures the absence of lateral slipping of the wheels. l

r

and

l

t

are constants de�ning the geometry of the robot-trailer

connection (Figure 1).

Let us notice that although System A is a particular

case of System B with l

r

= 0, both systems have di�erent

properties from a control point of view and they have to

be studied separately.

The hardware architecture of our experiments (Figure

2) is composed of a Unix workstation and on-board pro-

cessors, communicating via radio Ethernet. The software

architecture is organized in three modules and an interface

to control the execution during experiments [15]. The mod-

ule TRPLANNER on the workstation computes a collision-free

feasible path and sends this path to the module TRPILO on-

board. This latter module �rst computes a time parame-

terization, and then samples the corresponding open-loop

inputs (v

r

(t); !

r

(t)) on a segment of shared memory called

poster. The module TRLOCO reads these data on the poster

and computes in real-time the closed loop control of each

motor. The position of the initial and �nal con�gurations

are measured by an absolute localization system composed

of three cameras mounted on the ceiling of the experimen-

tation site.
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III. Nonholonomic path planner

As described previously, this task is performed by the

module TRPLANNER. The inputs to this module are a geo-

metric map of the environment, initial and �nal con�gura-

tions. The output is a collision-free feasible path between

these con�gurations.

A. Motion Planner Based on a Steering Method

TRPLANNER is based on a two step approach, dealing sep-

arately with the physical constraints (obstacles) and with

the kinematic constraints (rolling without slipping of the

wheels). This approach formerly proposed in [26], �rst

builds a collision-free path without taking into account the

nonholonomic constraints of the system. Then, this path is

approximated by a sequence of collision-free feasible sub-

paths computed by a steering method. Finally, the result-

ing path is smoothed.

This approach is applicable to any small-time control-

lable system. The convergence is guaranteed as soon as the

steering method satis�es the following topological property,

�rst introduced in [44].

Let us denote by C the con�guration space of the system.

Let d

C

be a distance in C. A steering method is a function

that maps any pair of con�gurations (q

0

; q

1

) to a continuous

function q(t) from [0; 1] to C, such that q(t) represents a

feasible path

4

between q

0

and q

1

.

De�nition 1 Let � be a small-time controllable system.

Let Steer : C � C ! C

0

([0; 1]; C) be a steering method for

�. Steer veri�es the topological property if

8" > 0; 9� > 0; d

C

(q

1

; q

2

) < � )

8t 2 [0; 1]; d

C

(q

1

; Steer(q

1

; q

2

)(t)) < "

A steering method verifying the topological property is said

to be TP-admissible.

The property introduced in this de�nition is directly re-

lated to the small-time controllability of the system. It

can be roughly summarized by: the closer to each other

two con�gurations are, the closer to these con�gurations

the path computed by the steering method has to remain.

This property which may seem somehow technical and in

relation with our approximation scheme, is in fact more

general and required in other path planning schemes (see

below). This property is critical for obstacle avoidance.

The four following sections respectively present the geo-

metric planner, steering methods for both systems A and

B, the approximation scheme and comments justifying our

choices with respect to other approaches.

B. Geometric planner

The con�guration space of our systems is R

2

� (S

1

)

2

.

There is no method solving exactly the (holonomic) path

planning problem in a reasonable amount of time for a

system of dimension 4 (see [24]). For this reason we chose to

use the random path planner (RPP) presented in [1]. This

planner is probabilistically complete. That is, if a solution

4

Here the obstacles are ignored.

Fig. 3. A �rst collision-free path that does not take into account the

nonholonomic constraints.

to a problem exists, the probability to �nd a solution tends

toward 1 when the searching time increases toward in�nity.

RPP generates two types of paths: gradient paths to get

closer to the goal and randomwalks to escape local minima.

Figure 3 shows a path computed by this planner.

C. Steering method

1) Background: Even in the absence of obstacles, steering

a nonholonomic system from a con�guration to another one

is not an easy task. According to the state of the art (e.g.,

[28], [19], [27]), steering exactly any nonholonomic system

to a goal is an open problem. Fortunately both systems

considered in this paper belong to special classes: they can

be put into chained forms [52], [50], [53] and thus they are


at [37].

For chained form systems it is possible to devise steering

methods by using either sinusoidal controls [52] or multi-

rate controls [31]. The property of di�erential 
atness of

our systems makes the steering problem equivalent to the

determination of a plane C

2

curve connecting two points

with given tangent and curvature at the extremities. This

latter problem can be solved easily using polynomials for

instance [37].

Nevertheless none of these steering methods accounts for

the small-time controllability of the considered systems.

None of them is TP-admissible (see De�nition III-A). De-

signing adequate steering methods from the existing one

raises technical issues. In [44], we showed how to tune

free parameters of the sinusoidal inputs to make the cor-

responding steering method TP-admissible. This has been

the �rst solution. However, sinusoidal inputs revealed use-

less maneuvers for very simple problems (see Figure 5).

The resulting collision free feasible path contains a lot of

maneuvers, since this path is a concatenation of elementary

paths generated by the steering method.

To palliate this bad behavior, we have devised a new

steering method using the di�erential 
atness of the sys-

tem and based on natural curves like arcs of circles and

straight lines. Each sub-path is composed at most of one

cusp point and is very natural as seen in the experimen-

tal results. We present now this method in its one trailer

version. An extended version for a n-trailer system can

be found in [22]. We consider �rst the case of system A.

The computations relative to System B are more compli-

cated from a numerical point of view and will be exposed

afterward.
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2) Flatness-based TP-admissible steering method{System

A: Let us consider the plane curve 
(s) followed by the mid-

point P of the trailer axle when the system is moving. The

path of the whole system can be reconstructed from 
(s).

Indeed, the direction of the tangent to the curve is equal to

the direction of the trailer, whereas the angle '(s) between

the robot and the trailer is given by tan'(s) = �

�(s)

l

t

,

where �(s) is the curvature of 
(s). The existence of a such

construction constitutes the core of the 
atness notion [37].

Let us consider two con�gurations q

1

= (x

1

; y

1

; �

1

; '

1

)

and q

2

= (x

2

; y

2

; �

2

; '

2

). Let 


q

1

;q

2

(s) be a curve in R

2

� starting at (x

1

; y

1

) with orientation �

1

and curvature �

1

for s = 0,

� arriving at (x

2

; y

2

) with orientation �

2

and curvature �

2

for s = 1, and such that

� tan'

1

= �

�

1

l

t

and tan'

2

= �

�

2

l

t

The family of curves 


q

1

;q

2

(s) constitute a TP-admissible

steering method i�: 8" > 0; 9� > 0;

8

>

>

<

>

>

:

jx

2

� x

1

j < �

jy

2

� y

1

j < �

j�

2

� �

1

j < �

j�

2

� �

1

j < �

) 8s 2 [0; 1];

8

>

>

<

>

>

:

jx(s) � x

1

j < "

jy(s) � y

1

j < "

j�(s) � �

1

j < "

j�(s) � �

1

j < "

where 


q

1

;q

2

(s) = (x(s); y(s)), �(s) and �(s) are respec-

tively the orientation of the tangent vector and the curva-

ture of 


q

1

;q

2

(s) at s.

A lot of families of curves verifying various constraints

have been studied in geometric modelling. Nevertheless,

to our knowledge, none of them �ts our requirement.

Our solution is based on the perturbation of canonical

curves. A canonical curve is associated to a con�guration

q = (x; y; �; '): this is the unique curve 


q

(s) de�ned by

a constant curvature � verifying tan' = �

�

l

t

, and passing

through the point (x; y) with a tangential orientation of �.

The canonical curve associated to a con�guration is thus

an arc of circle (when ' 6= 0) or a straight line segment

(when ' = 0).

Now, two con�gurations q

1

= (x

1

; y

1

; �

1

; �

1

) and q

2

=

(x

2

; y

2

; �

2

; �

2

) being given, we de�ne v the abscissa of the

projection of (x

2

; y

2

) on 


q

1

(s). Then using an increasing

function � over [0; 1] verifying �(0) = 0, �(1) = 1 and

�

0

(0) = �

0

(1) = �

00

(0) = �

00

(1) = 0, and combining the

two canonical curves as follows:




q

1

;q

2

(t) = �(t)


q

1

(vt) + (1� �(t))


q

2

(v(t � 1)) (1)

we obtain a C

2

curve going from q

1

to q

2

. Indeed the two

�rst derivatives of 


q

1

;q

2

(t) at 0 (resp. 1) are the same as

those of 


q

1

(vt) (resp. 


q

2

(v(t � 1))). At this point, the

family of curves 


q

1

;q

2

de�nes a steering method denoted

by Steer

�

flat

(q

1

; q

2

).

The reparameterization of the canonical curves by s = vt

in equation (1) may seem confusing and useless, but this

reparameterization is very important since it ensures that if

q

2

is on the canonical curve of q

1

, the curve 


q

1

;q

2

(t) remains

on this canonical curve. By continuity, perturbing slightly

q

2

around 


q

1

(s) results in curves close to this canonical

curve. This idea is the basis of our construction and enables

q

cusp

q

2

q

1




q

1




q

2

Fig. 4. A TP-admissible 
at steering method.

us to de�ne a cone around 


q

1

(s), reachable without leaving

a given ball centered on q

1

(shaded area in Figure 4), as

proved in details in [22].

However this cone is not a neighborhood of the con�g-

uration q

1

and Steer

�

flat

is not a TP-admissible steering

method. To reach a neighborhood of q

1

without escaping a

given ball centered on q

1

, we need to introduce a cusp point

where the robot changes its direction of motion. Indeed

Steer

�

flat

paths are always free of cusp points. Connecting

the two following con�gurations (0; 0; 0; 0) and (0; "; 0; 0)

by a C

2

curve without cusp point requires the direction

of the tangent vector �(s) along the curve to reach ��=2.

Thus, when " tends toward 0, the path between (0; 0; 0; 0)

and (0; "; 0; 0) does not remain in a decreasing neighbor-

hood of (0; 0; 0; 0). This instance is a counter-example of

De�nition III-A.

The second step of the construction is also based on con-

tinuity. If two con�gurations q

1

and q

2

are close to one an-

other, so are their canonical curves. Then 


q

2

necessarily

intersects the cone reachable from q

1

(see Figure 4. Then

we de�ne a con�guration q

cusp

in the intersection between




q

2

and the previous cone and we decompose the motion

into two parts:

� a forward motion along Steer

�

flat

(q

1

; q

cusp

) and

� a backward motion along 


q

2

.

Note that if q

2

is in the cone, then q

cusp

= q

2

. The second

part of the motion is useless and the con�gurations are

connected without maneuver.

The previous computation leads to a new steering

method (denoted by Steer

flat

). This steering method is

TP-admissible and thus can be used in a collision-free plan-

ning scheme. The geometric construction above gives some

intuition of this property. A detailed proof appears in [22].

Paths generated by this method are shown in Figure 5.

3) Flatness-based TP-admissible steering method{System

B: System B is also di�erentially 
at. The previous method

can thus be applied to this system. However, the di�-

culty lies now in the change of variable (x

r

; y

r

; �

r

; ') $

(x; y; �; �). The 
at output (x; y) is no more a �x point of

the system as for System A. It is given by the following
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Fig. 5. Comparison between two steering methods on System A: si-

nusoidal inputs for the equivalent chained form system (left) and


atness-based steering method (right). Initial and �nal con�gu-

rations are the same in each of the six cases. Note that Steer

flat

generates more \natural" paths requiring fewer cusps and less

space than the sinusoidal inputs.

expression from [36]:

8

<

:

x = x

r

� l

t

cos(�

r

+ ') � L(')

l

t

sin(�

r

+')+l

r

sin(�

r

)

p

l

2

r

+l

2

t

+2l

r

l

t

cos(')

y = y

r

� l

t

sin(�

r

+ ') + L(')

l

t

cos(�

r

+')+l

r

cos(�

r

)

p

l

2

r

+l

2

t

+2l

r

l

t

cos(')

(2)

where L(') =

R

'

0

cos�

p

l

2

r

+l

2

t

+2l

r

l

t

cos�

d� is an elliptic function.

The direction � of the tangent to the curve (x(t); y(t)) and

its curvature are given by the following formulas.

tan � =

l

r

sin �

r

+ l

t

sin(�

r

+ ')

l

r

cos �

r

+ l

t

cos(�

r

+ ')

(3)

� =

� sin'

cos'

p

l

2

r

+ l

2

t

+ 2l

r

l

t

cos(') + L(') sin'

(4)

These expressions and their inverses cannot be computed

explicitly. We have to use numerical approximations.

Thus, we sample functions L('), �(') and

d�

d'

(') in a pre-

computed array at the beginning of the initialization of the

module TRPLANNER. Then, the values of L('), �(') and its

inverse '(�) are computed by cubic interpolation.

Note. The steering method we have developed in this sec-

tion can be used for any two input driftless 
at system of

dimension 4. In particular, chained form systems belong

to this category.

D. Approximation scheme

Let us now describe our approximation scheme. This

scheme is derived from the motion planner for car-like

robots presented in [26]. This reference does not mention

any notion of steering method admissibility. The semi-

nal method uses optimal length feasible paths between two

con�gurations. This strategy results automatically in a

TP-admissible steering method because optimizing a cost

function prevents the system to go far away from the con-

�gurations to connect.

Given a collision-free path not taking into account the

nonholonomic constraints, this path is iteratively split into

pieces the endpoints of which are linked by feasible paths

computed with Steer

flat

, as soon as they are collision-

free. The resulting path is then randomly smoothed in a

third step: two con�gurations are randomly chosen on the

collision-free feasible path. If the local steering method suc-

ceeds in connecting these two con�gurations by a shorter

collision-free path, the sequence of sub-paths previously

connecting them is replaced by the new local path. This

operation is repeated until the global number of sub-paths

stops decreasing.

Let us notice that following a feasible path without stop-

ping requires this path to be C

1

in C. This condition is

ful�lled by Steer

flat

by constraining the third derivative of

�: �

(3)

(0) = �

(3)

(1) = 0.

Figure 6 (top) shows the application of the algorithm on

the geometric path shown in Figure 3. The other examples

show solutions in a highly constrained space.

E. Related work and discussion

A direct approach to motion planning for mobile robots

with trailers is proposed in [2]. Piecewise constant inputs

are used to explore a discretized model of the con�guration

space. The search is performed by Dijkstra's algorithm al-

lowing to take into account optimality criteria such as the

path length or the number of reversals. The algorithm is

proved to be asymptotically complete. Nevertheless, the

paths obtained by this method are not C

1

and the robot

has to stop at each node of the graph. Augmenting the di-

mension of the system could be a way to obtain C

1

paths.

However, the e�ciency of this algorithm dramatically de-

creases with the dimension of the con�guration space.

A method presented in [14] combines the two step ap-

proach above and a so-called variational approach. First,

a collision-free path is generated. Then the nonholonomic

constraints are introduced progressively. At each iteration,

a path is generated from the previous one to satisfy more

severe nonholonomic constraints. The search explores the

neighborhood of the current path according to a dynamic

programming procedure. The method is neither complete

nor asymptotically complete. Completeness would require

back-tracking, an expensive procedure. Nevertheless sim-

ulations have been performed with success for a mobile

robot with three trailers and for two tractor-trailer robots

sharing the same environment.

Another nonholonomic path planner for mobile robots

with trailers has been proposed in [45]. It combines proba-
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Fig. 6. Collision-free admissible paths. The paths on the left are the

paths followed by the reference point of the robot. The pictures

on the right show the corresponding volumes swept by both the

robot and the trailer.

bilistic roadmaps and approximation scheme. The strategy

consists in introducing the nonholonomic constraints one

by one. The steering method uses sinusoidal inputs. The

objective here is to face the complexity when the number of

trailers increases. We have experienced the method for our

practical cases: the quality of the paths was worse (due to

the use of sinusoidal inputs) and the time of computation

was higher.

A heuristic approach to obstacle avoidance for a car

pulling several trailers with o�-axle hitching system ap-

pears in [7].

IV. From Path to Trajectory

Once a collision-free feasible path between two con�gura-

tions has been produced, it has to be parameterized by time

in order to take into account the bounds on the velocities

and accelerations of the robot. This task is performed on

board by the module TRPILO. The input of this module is

a collision-free feasible path f(x

r

(s); y

r

(s); �

r

(s); '(s)); s 2

[s

start

; s

end

]g; v

max

; _v

max

; !

max

and _!

max

. The output

is a feasible trajectory:

((x

r

(s(t)); y

r

(s(t)); �

r

(s(t)); '(s(t))); t 2 [t

start

; t

end

]),

that satis�es the input dynamical constraints. s(t) is the

time parameterization to be computed.

A. Related work and motivation

Integrating constraints on velocities and accelerations

can be done at the planning level. This is the so-called kino-

dynamic motion planning problem [13], [34]. The methods

are based on a discretization of the con�guration space and

require a perfect knowledge of the C-obstacles. We did not

explore this direction because of the computational cost

of a search in the phase space of our system which is 6-

dimensional.

Transforming a path into a trajectory is a classical prob-

lem in robotics. The minimal time parameterization of a

given path has been mainly addressed for manipulators.

Di�erent methods have been proposed in this context [48],

[4], [49] (see [35] for an overview). Application to mobile

robots appears in [47]: the computation of a time-optimal

motion along a path is used to evaluate the cost of this

path. The objective is to compute optimal trajectories for

a mobile robot moving on a terrain.

The problem is well understood: formal solutions exist.

However the parameterization functions are most of the

time described as solutions of di�erential equations. Their

e�ective computation thus requires numerical integration

and has to be dealt with carefully, mainly because of the

two following points:

� The functions �

r

(s) and '(s) and their derivatives re-

turned by the path planner of Section III present huge

variations. For this reason, the exact integration of the

time-optimal curves would require elaborate methods with

adaptative time-step like Runge-Kutta for instance.

� The code and execution of this step is on-board where

memory is a very critical component.

Moreover, the optimality of the time parameterization is

not our �rst concern in this work. For this reason, we have

chosen to adapt an existing method described in [49]. In

the algorithm we propose, the trade-o� between optimality

and memory space is parameterized. Our contribution here

is more practical than formal.

Our main idea here is to describe the time-

parameterization s(t) by piece-wise constant acceleration

curves. The size of the constant acceleration intervals is

automatically adapted. Our method results in less mem-

ory consuming data structures since we do not try to follow

exactly the time optimal solution. Instead, we keep a con-

stant acceleration as long as this acceleration remains in

a suitable interval. One of our constant acceleration time

interval usually includes several steps of a Runge-Kutta

method.

In addition to the acceleration constraints, our method

deals with bounds on the velocities of the robot. This point

has not been taken into account in prior work about time

optimal parameterization (it is mentioned in [47]).

B. Constraints in the phase plane (s; _s)

In this section, we recall some key notions used in [4],

[48], [49] and introduce some notation. Without loss of gen-

erality we consider now the case of a forward motion. By

setting d

v

(s) =

q

dx

r

ds

(s)

2

+

dy

r

ds

(s)

2

and d

!

(s) =

d�

r

ds

(s),
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the velocities and acceleration have the following expres-

sions:

v = d

v

(s) _s (5)

! = d

!

(s) _s (6)

_v = d

v

(s)�s + �

v

(s) _s

2

(7)

_! = d

!

(s)�s + �

!

(s) _s

2

(8)

where

�

v

(s) =

d

ds

d

v

(s) and �

!

(s) =

d

ds

d

!

(s):

Velocity Constraints. The velocity constraints 0 � v �

v

max

and j _!j � !

max

are represented by a forbidden area

in the phase plane (s; _s).

_s � Inff

v

max

d

v

(s)

;

!

max

jd

!

(s)j

g

We call velocity saturation curve the curve obtained when

the previous inequality is an equality.

Acceleration constraints. From (7) and (8), (s; _s) being

given in the phase plane, the acceleration constraints j _vj �

_v

max

and j _!j � _!

max

impose �s to belong to the intersec-

tion of two intervals. We denote by [�(s; _s); �(s; _s)] this

intersection when it is not empty. An equivalent condition

for this interval not to be empty is (after computations):

_s

2

�

_!

max

jd

v

(s)j + _v

max

jd

!

(s)j

j�j

(9)

with

� = d

v

(s)�

!

(s) � d

!

(s)�

v

(s)

The curve corresponding to equality in (9) is called the

maximal velocity curve. It is denoted by g(s). The sig-

ni�cation of this curve can be interpreted as follows. At

any point on the path, if the velocity is too high, both ac-

celeration constraints cannot be satis�ed simultaneously.

An example of this fact is the case of a car following a

road composed of a straight line and a turn of increasing

curvature. This situation corresponds to a coe�cient �

!

starting from 0 and increasing along the turn. If the speed

of the car is too high, even by braking as much as possible,

the angular acceleration cannot be made smaller than its

maximal allowed value. This example illustrates the fact

that �nding a correct parameterization of a path is a global

problem that requires knowledge of the path in the future.

C. Our algorithm

Before explaining our algorithm, we need to de�ne the

notion of characteristic point introduced in [48]. We de�ne

then what we call acceleration and deceleration curves.

Characteristic points. From the previous de�nition, the in-

terval [�(s; _s); �(s; _s)] is empty i� _s > g(s). Moreover,

�(s; g(s)) = �(s; g(s)) if d

!

(s) 6= 0. In our case, d

v

never

vanishes, it is a property of our local planner.

We de�ne

� (s) =

d _s

ds

�

dg

ds

the di�erence between the slope of the phase plane trajec-

tory and the slope of the maximal velocity curve.

We say that (s; _s) is an out-point if � (s) > 0 and an

in-point if � (s) < 0. With these notations, character-

istic points are de�ned as points (s; _s) where � (s

�

) > 0

and � (s

+

) < 0. At these points and only at these points,

a phase plane trajectory can meet the maximum velocity

curve without violating the acceleration constraints.

Acceleration and deceleration curves. From now on we

call _s and �s pseudo-velocity and pseudo-acceleration. Let

� < 1=4 be a positive real number. The key idea of an ac-

celeration (resp. deceleration) curve is to de�ne contiguous

intervals of the s-axis where the pseudo-acceleration can be

kept constant and in the upper (resp. lower) 2�-portion of

the interval [�(s; _s); �(s; _s)]. The size of the intervals is thus

automatically adapted to the variation of the coe�cients.

This strategy enables us to gain memory space, losing op-

timality. Coe�cient � tunes the trade-o� between memory

space and optimality.

The �s

0

-constant pseudo-acceleration curve passing by

(s

0

; _s

0

) is represented in the phase plane by a parabola:

_s = �

(s

0

; _s

0

; �s

0

)

(s) =

q

_s

0

2

+ 2 �s

0

(s � s

0

)

The acceleration curve starting from a point in the phase

plane (s

0

; _s

0

) is de�ned by the following algorithm. Let

�s

i

= (1� �)�(s

i

; _s

i

) + ��(s

i

; _s

i

). We de�ne

s

i+1

= Inffs > s

i

; �s

i

62 [(1� 2�)�(s;�

(s

i

; _s

i

; �s

i

)

(s))

+ 2��(s;�

(s

i

; _s

i

; �s

i

)

(s)); �(s;�

(s

i

; _s

i

; �s

i

)

(s))]g

_s

i+1

= �

(s

i

; _s

i

; �s

i

)

(s

i+1

)

The acceleration curve starting from (s

0

; _s

0

) is then de-

�ned by _s = �

(s

i

; _s

i

;�s

i

)

(s) over each interval [s

i

; s

i+1

]. No-

tice that when � tends toward zero these curves tends to

maximal velocity curves.

Deceleration curves are identically de�ned, replacing �

by �.

(1� 2�)� + 2��

��

(u

i

; _u

i

)

(u; _u)

(1� �)� + ��

(u

i+1

; _u

i+1

)

�u

i+1

�u

i

Fig. 7. Acceleration curve: �s

i

must remain in the upper interval

between s

i

and s

i+1

.



LAMIRAUX ET AL: MOTION PLANNING AND CONTROL FOR HILARE PULLING A TRAILER 647

Algorithm. Starting from (s

start

; 0), we build an accelera-

tion curve until an out-point is reached. Then we build a

deceleration curve backward from the next characteristic

point. If the deceleration curve intersects the acceleration

curve, we start again from the characteristic point. If the

deceleration curve reaches the area above the last accel-

eration curve, it is stopped and the acceleration curve is

extended. Finally the last deceleration is built backward

from (s

end

; 0) until it intersects the already built curve. For

more details we refer to [20].

Figure 8 shows an example of phase curve taking into

account only the acceleration constraints.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4 5 6 7 8

acceleration phase curve
maximal velocity curve

velocity saturation curve

Fig. 8. Phase curve (in the plane (s; _s)) taking into account the

acceleration constraints.

The velocity constraints. From now on, we call the formerly

built phase plane curve the acceleration phase curve. From

this curve we are going to build another one which takes

into account the velocity constraints of the robot.

The method consists in following the acceleration phase

curve until a velocity constraint is violated. Then the ve-

locity saturation curve is followed as long as its slope cor-

responds to a suitable acceleration, and the acceleration

phase curve remains above the velocity saturation curve.

Three events can then occur:

1. The slope of the velocity saturation curve becomes too

big: an acceleration curve is built until it reaches the ve-

locity saturation again or until it reaches the acceleration

phase curve.

2. The slope of the velocity saturation curve becomes too

small: from the next point on this curve such that the slope

is again suitable, a deceleration curve is built backward.

3. The velocity saturation curve intersects the acceleration

phase curve: it is followed until it intersects again the ve-

locity saturation curve.

Figure 9 shows the �nal phase curve taking into account

all the constraints.

V. Motion control

A. Motivation and related work

Motion control for nonholonomic systems have given rise

to a lot of work. Brockett's condition [5] made stabilization

0

0.2

0.4

0.6

0.8

1
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1.4

1.6

1.8

2

0 1 2 3 4 5 6 7 8

solution curve
maximal velocity curve

velocity saturation curve

Fig. 9. Final phase curve in the plane (s; _s): in this example, only

step 3 was encountered.

about a given con�guration a challenging task for such sys-

tems, proving that it could not be performed by a simple

continuous state feedback. Alternative solutions as time-

varying feedback [32], [9], [33], [40], [43], [42], [51] or dis-

continuous feedback [8] have been then proposed. On the

other hand, tracking a trajectory for a nonholonomic sys-

tem does not meet Brockett's condition and thus is an eas-

ier task. A lot of work have also addressed this problem

[11], [17], [18], [38], [41] for the particular case of mobile

robots. See [10] for a recent survey in mobile robot motion

control.

All these control laws work under the same assumption:

the evolution of the system is exactly known and no pertur-

bation makes the system deviate from its trajectory. Few

papers dealing with mobile robots control take into account

perturbations in the kinematic equations. [3] however pro-

posed a method to stabilize a car about a con�guration,

robust to control vector �elds perturbations, and based on

iterative trajectory tracking. [29] proposed another itera-

tive method robust to control error for chained form sys-

tems.

The presence of obstacles makes the task of reaching a

con�guration even more di�cult. The approach we have

implemented combines iteratively open loop controls to-

gether with closed loop controls. Such a strategy is ana-

lyzed by assuming that the execution of a given trajectory

is subjected to perturbations. The model we chose for these

perturbations is simple and general. The approach presents

some common points with [3] and [29]. The main di�erence

lies in the error model used.

B. Trajectory tracking

Mobile robot without trailer. The low velocity (50 cm/s) of

Hilare's motions, the good quality of its locomotion system

and the good quality of the planned trajectories make the

trajectory tracking task non critical. We devised a simple

control law enabling us to reuse the controller of our robot

without trailer [23] (this is its only advantage with respect

to the various existing approaches). This controller directly

derived from [41]. Let (x; y; �) be the coordinates of the
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reference robot in the frame of the real robot. Let (v

0

r

; !

0

r

)

be the inputs of the reference trajectory. The control law

has the following expression:

�

v

r

= v

0

r

cos � + k

1

x

!

r

= !

0

r

+ k

3

� + k

2

sin �

�

y

(10)

�

r`

t

(~x

r

; ~y

r

)
(x

r

; y

r

)

~

�

r

�'

'

Fig. 10. Virtual robot

In the following paragraph, we show how to extend this

control law to a robot with trailer.

System A. The idea of our controller is the following. When

the robot goes forward, the trailer is not taken into account

and we stabilize the robot according to the simple control

law above. When the robot goes backward, we de�ne a

virtual robot, symmetrical to the real robot with respect to

the wheel axle of the trailer (Figure 10). The con�guration

of the virtual robot with respect to the real one is given

by:

8

<

:

~x

r

= x

r

� 2` cos �

t

~y

r

= y

r

� 2` sin �

t

~

�

r

= �

t

� ' + �

If (~v; ~!) are the linear and angular velocities of the virtual

robot, we get : ~v = �v; ~! =

2v

`

sin(') � !. Thus the

virtual robot goes forward and virtually pulls the trailer.

We apply therefore the control law (10) to the virtual robot

( ~x

r

; ~y

r

;

~

�

r

).

System B.When the trailer is hitched behind the robot, the

former construction is even more simple: we can replace

the virtual robot by the trailer (a similar idea appears in

[39]). In this case indeed, the velocities of the robot (v

r

; !

r

)

and of the trailer (v

t

; !

t

) are connected by a one-to-one

mapping. The con�guration of the virtual robot is then

given by the following system:

8

<

:

~x

r

= x

r

� l

r

cos �

r

� l

t

cos(�

r

+ ')

~y

r

= y

r

� l

r

sin �

r

� l

t

sin(�

r

+ ')

~

�

r

= �

r

+ '+ �

Stability of the trailer. Do the previous approaches make

the motion of the trailer truly stable ? To answer the ques-

tion we consider here a forward motion for System A. The

analysis of backward motions is equivalent by considering

the virtual robot transformation. Moreover the following

analysis may be applied as well to System B by considering

the motion of the hitching point.

Let us denote by (x

0

r

; y

0

r

; �

0

r

; '

0

; v

0

r

; !

0

r

) a reference tra-

jectory and by (x

r

; y

r

; �

r

; '; v

r

; !

r

) the real motion of the

system. We assume that the robot follows exactly its refer-

ence trajectory: (x

r

; y

r

; �

r

; v

r

; !

r

) = (x

0

r

; y

0

r

; �

0

r

; v

0

r

; !

0

r

) and

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��������

������
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reference

trailer

'

0

�'

0
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'

0

'

' stability domain

robot

Fig. 11. Stability domain for '̂

we focus our attention on the trailer deviation '̂ = '�'

0

.

The evolution of this deviation is easily deduced from the

equation of System A (l

r

= 0):

_

'̂ = �

v

r

l

t

(sin'� sin'

0

)

= �

2v

r

`

t

cos(

'+ '

0

2

) sin(

'̂

2

)

j'̂j thus decreases i�

�

�

2

< '

0

+

'̂

2

<

�

2

[2�] (11)

Our system is moreover constrained by the inequalities

��=2 < ';'

0

< �=2 (12)

so that �� < '̂ < � and (11) is equivalent to

8

<

:

0 < '

0

<

�

2

and �� < '̂ < � � 2'

0

or

�

�

2

< '

0

< 0 and �� � 2'

0

< '̂ < �

(13)

Figure 11 shows the domain on which j'̂j is decreasing for

a given value of '

0

. This domain is always a neighborhood

of 0. Moreover, the previous computations permit easily

to show that 0 is an asymptotically stable value for the

variable '̂.

Thus if the real or virtual robot follows its reference for-

ward trajectory, the trailer is stable and will converge to-

ward its own reference trajectory.

C. Iterative scheme and robustness

Once the robot stops after tracking a planned trajectory,

the gap to the real goal is computed. If this gap is greater

than some threshold, then a new trajectory is planned and

tracked. As we will see below this simple iterative scheme

gives very good results. Usually, no more than one maneu-

ver is needed to improve the �nal position of the system.

Before presenting the experimental results, let us analyze

the robustness of this control scheme from a formal point

of view.

For this, we need to have a model of the perturbations

arising when the robot moves. In our experiment we ob-

served random perturbations due for instance to some play

in the hitching system. These perturbations are very dif-

�cult to model. For this reason, we make only two simple
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hypotheses:

d

C

(q(s); q

0

(s)) � �s

d

C

(q(s); q

0

(s)) � �

where s is the curvilinear abscissa along the planned path,

q and q

0

are respectively the real and reference con�gura-

tions, d

C

is a distance over the con�guration space of the

system and �, � are positive constants. The �rst inequality

means that the distance between the real and the reference

con�gurations is proportional to the length of the motion

already executed along the planned path. The second in-

equality is ensured by the trajectory tracking control law

that prevents the system to go too far away from its refer-

ence trajectory. Let us point out that these hypotheses are

very realistic and �t a lot of perturbation models.

We need now to know the length of the paths gener-

ated at each iteration. We have seen that the steering

method we use to compute these paths is TP-admissible.

This means that if the goal is su�ciently close to the start-

ing con�guration, the computed trajectory remains in a

neighborhood of the starting con�guration

5

. In [21] we

compute an estimate in terms of distance: if q

1

and q

2

are

two su�ciently close con�gurations, the length `(q

1

; q

2

) of

Steer

flat

(q

1

; q

2

) veri�es

`(q

1

; q

2

) < �d

C

(q

1

; q

2

)

1

4

where � is a positive constant.

Thus, if (q

i

)

i=1;2;:::

is the sequence of con�gurations

reached after i motions, we have the following inequalities:

d

C

(q

1

; q

goal

) � �

d

C

(q

i+1

; q

goal

) � �`(x

i

; x

goal

)

� ��d

C

(q

i

; q

goal

)

1

4

These inequalities ensure that d

C

(q

i

; q

goal

) is upper

bounded by a sequence (d

i

)

i=1;2;:::

of positive numbers de-

�ned by

d

1

= �

d

i+1

= ��d

1

4

i

and converging toward (��)

4

3

.

Thus, our iterative method does not converge exactly

toward the goal, but ensures the existence of a stable do-

main of convergence around the goal. This result essen-

tially comes from the very general model of perturbations

we have chosen.

The experimental results of the following section show

however, that the converging domain of our control scheme

is very small.

VI. Experiments

We present three experiments for each system. The geo-

metric map of the environment covers 170 m

2

. The bitmap

5

This property is related to the small-time controllability of our

system.

representation of the environment is a grid of 150000 pix-

els. The geometric parameters of System A are l

r

= 0 cm

and l

t

= 120 cm. Those of System B are l

r

= 65 cm and

l

t

= 90 cm. For both systems, the bounds on the velocities

and accelerations are v

max

= :5 ms

�1

, !

max

= :5 rads

�1

,

_v

max

= :5 ms

�2

and _!

max

= 1:8 rads

�2

.

For each experiment, we proceed as follows. We localize

the initial position of the robot using the cameras on the

ceiling. Then we specify a goal con�guration via the in-

terface. After computations, the motion is executed. The

position of the robot is updated by the dead-reckoning sys-

tem combining the odometer of Hilare-2-bis and the angu-

lar encoder of the trailer. If the reached con�guration is

too far from the goal, we reexecute the same process. Fig-

ures 12 and 13 display the paths computed and give the

precision reached after the �rst and second motions, with

respect to the dead-reckoning localization. The times of

computation correspond to the �rst path planning task on

a Sun Sparc Ultra. The time parameterization is very fast

(< 1 sec). Let us point out that the second planning task is

almost instantaneous because both con�gurations are very

close to one another and only one call to the local plan-

ner is generally enough. The exact position of the robot

cannot be measured exactly after each motion because the

robot is not always under one of the cameras. However, the

experimental results reported in Figure 12 and 13 are rep-

resentative of the e�ciency of the motion control task since

the feedback law uses dead-reckoning data. Moreover, for

paths such as those we executed in these experiments, the

drift of the dead-reckoning system is less than 5 cm which

represents a very good precision. We give the accuracy of

the reached con�guration only at the end of the motion

because we experienced that the error during the motion

increases at the beginning of the motion and then remains

stable. Thus, values at the end are a good estimate of the

precision during the whole motion.

Figure 12 and 13 gather the results for System A and Sys-

tem B respectively

6

. Times correspond to the total time

of the planning phase and the transformation of the paths

into the trajectories to be executed. The good accuracy is

mainly due to both the performance of the locomotion sys-

tem of Hilare and the \smoothness" quality of the planned

trajectory.

VII. Conclusion

We have presented in this paper an integrated approach

to path planning and motion execution for a mobile robot

with a trailer in a constrained environment. The criti-

cal point of this work, the path planning step, has been

solved without any approximation on the robot geometry

and kinematics. Our nonholonomic motion planner inher-

its the probabilistic completeness from the geometric plan-

ner RPP. This means that we may face any constrained

environment. As an example, Figure 6 shows maneuver

executed by our experimental system in a narrow corridor.

6

See also a movie of an experiment at

http://www.laas.fr/�jpl/movies/trailer.mov
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q

init

q

goal

�q

1

�q

2

I x = 9:42 x = 2:04 �x = 0 18 sec

y = �2:90 y = �2:5 �y = �0:02 0 cusp

� = 91:39 � = 90 �� = 0:18

' = �10:19 ' = 0 �' = 0

II x = 2:10 x = 4:26 �x = 0 �x = 0:01 1 min 53 sec

y = �2:43 y = �0:50 �y = 0:14 �y = �0:02 3 cusps

� = 89:7 � = 180 �� = 4:13 �� = 1:96

' = 0 ' = 0 �' = �4:93 �' = �0:71

III x = 4:27 y = 10:30 �x = 0:13 �x = �0:02 23 sec

y = �0:51 y = �7:32 �y = 0:01 �y = �0:01 1 cusp

� = 179:63 � = 90 �� = 4:45 �� = 0:96

' = 0:35 ' = 0 �' = �4:93 �' = �0:35

Fig. 12. Three experiments I, II and III from left to right, for system A. The initial con�guration is in black, the �nal con�guration is in

grey. Notice that in Experiment I, the system backs up over a quite long distance (10 meters).

q

init

q

goal

�q

1

�q

2

I x = 2:20 x = 10:10 �x = �0:05 �x = 0 1 min 10 sec

y = �2:24 y = �6:90 �y = 0:02 �y = �0:01 1 cusp

� = 90 � = 90 �� = �1:10 �� = �1:90

' = 0 ' = 0 �' = 1:41 �' = 1:05

II x = 5:31 x = 10:08 �x = 0:02 40 sec

y = �2:61 y = �7:70 �y = 0:03 1 cusp

� = 89:44 � = �90 �� = 0:81

' = 19:01 ' = 27:65 �' = �0:19

III x = 9:99 x = 5:34 �x = 0 �x = 0 1 min 12 sec

y = �2:00 y = �2:66 �y = �0:06 �y = �0:01 1 cusp

� = 90:20 � = 90 �� = 0:54 �� = �0:75

' = 1:41 ' = 18:43 �' = 1:28 �' = 0:58

Fig. 13. Three experiments I, II and III from left to right, for system B. The initial con�guration is in black, the �nal con�guration is in

grey. The zoom shows the �nal maneuver of the experiment III.
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Moreover, the paths computed by our planner are very

reasonable in terms of number of maneuvers and time of

computation. This latter property is important from an

experimental point of view and is mainly a consequence

of the steering method we have proposed. Eventually, our

approach has been proved very realistic in environments of

the size of our experimentation room.
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