Non-classical regression laws for droplet vaporization

Roger Prud'homme*, Stéphane Préau

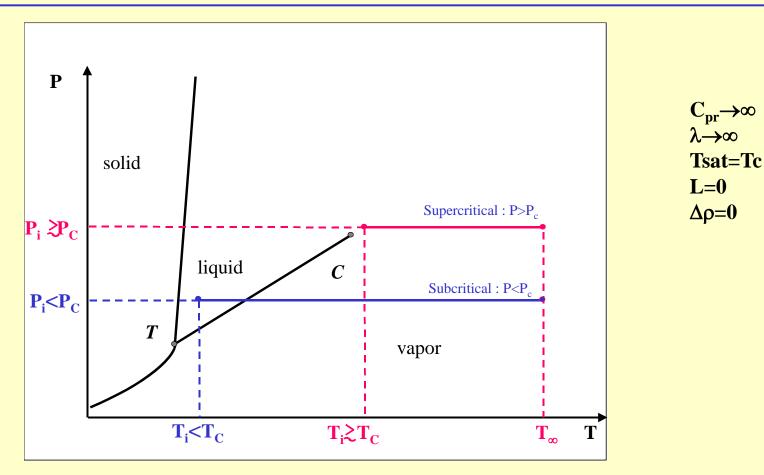
Laboratoire de Modélisation en Mécanique – UPMC/CNRS Case 162 - 4 place Jussieu 75252 Paris cédex 05 *Correspondence author: Fax: (33)1 44 27 52 59 Email: <u>prudhom@ccr.jussieu.fr</u>

4th ICCHMT

INTRODUCTION

Droplet vaporization or combustion is usually studied assuming quasi-steady hypotheses for the vapor and a constant and uniform temperature for the liquid. A "D² law" is then obtained for the diameter evolution.

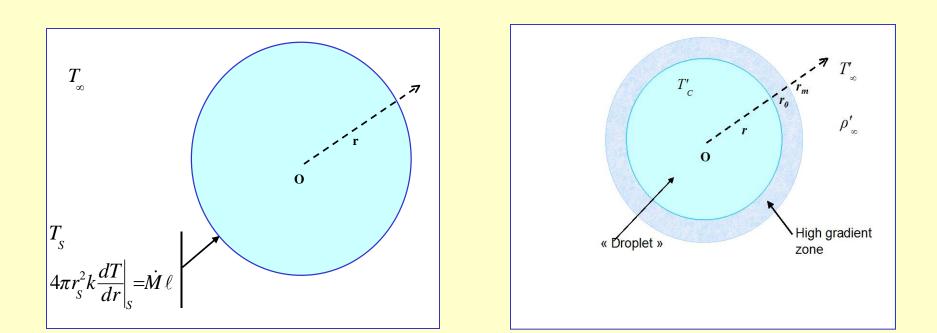
This is not the case for near-critical droplets in the general case, and also for sub-critical droplets in transient heat-up regime. We present here these two situations: near-critical vaporization in a pure fluid, and pure liquid vaporization in a gaseous mixture.



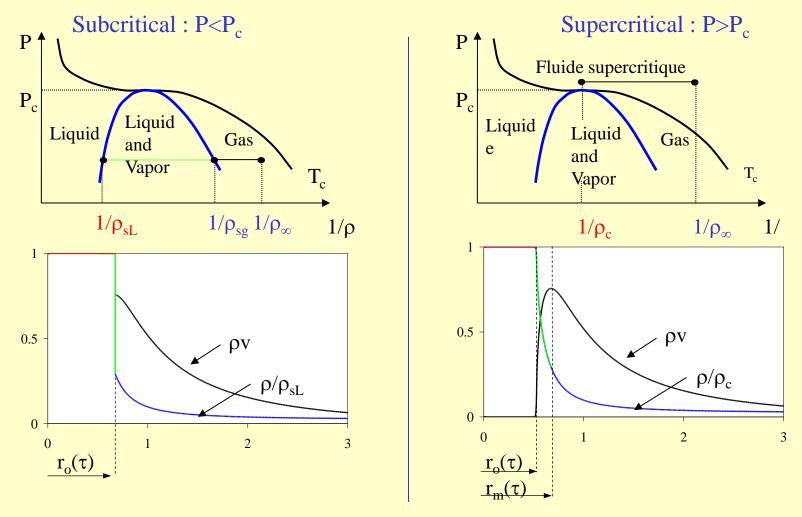
4th ICCHMT

Subcritical : P<P_c

Supercritical : P>P_c



Subcritical and supercritical cases



4th ICCHMT

Subcritical and supercritical cases

★ Configuration: isobaric

Hypotheses :

$$\bigstar \gamma_{\infty} = \frac{t_{diff}(\rho_{\infty})}{t_{vie}} << l$$

Subcritical case

🖈 Gaseous zone

★ Interface⇒ Mass and energy fluxes

Supercritical case

★ Thick interfaceResolutionHypothesis : steady in the considered frame

$$X = \frac{r - r_O(\tau)}{r_m(\tau) - r_O(\tau)}$$

 \Rightarrow Flux for r = r_m(τ)

★ External zone

Resolution of the equations Quasi-steady hypothesis

4th ICCHMT

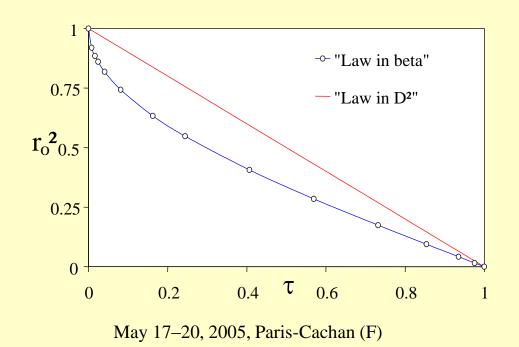
Results

Subcritical case

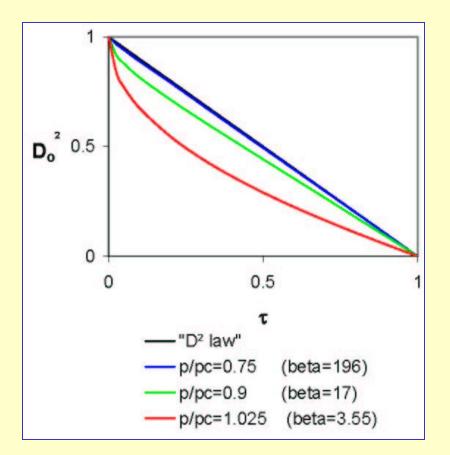
$$\star r_o^2 = l - \tau$$

Supercritical case

$$\begin{array}{c} \star & r_o^\beta - \beta r_o = (1 - \beta)\sqrt{1 - \tau} \\ \star & r_m^2 = 1 - \tau \end{array}$$



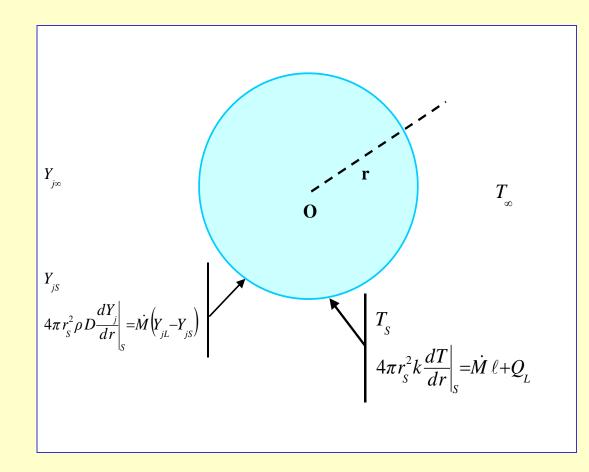
4th ICCHMT



Square of the droplet diameter as a function of the reduced time τ for different pressures (p_c is the critical pressure).

4th ICCHMT

VAPORIZATION WITH HEAT-UP OF A LIQUID DROPLET IN A GASEOUS MIXTURE



4th ICCHMT

$$\begin{cases} \dot{M} = 4\pi r^{2} \dot{m}, & \dot{m} = \rho u \\ \dot{M} = 4\pi r^{2} \dot{m}, & \dot{m} = \rho u \\ \dot{M} \frac{dY_{j}}{dr} - 4\pi \rho Dr \frac{d^{2} \left(rY_{j} \right)}{dr^{2}} = 0 \\ \dot{M} c_{p} \frac{dT}{dr} - 4\pi kr \frac{d^{2} \left(rT \right)}{dr^{2}} = 0 \end{cases}$$

Boundary conditions

- at infinity $r=\infty$: $Y_i=Y_{i\infty}, T=T_{\infty}$
- at the droplet surface r_{s} : $\begin{cases} Y_{js}, \quad 4\pi \rho D r_{s}^{2} \frac{dY_{j}}{dr} \bigg|_{s} = -\dot{M} \left(Y_{jL} Y_{js} \right) \\ T_{s}, \quad 4\pi \frac{k}{c_{p}} r_{s}^{2} \frac{dT}{dr} \bigg|_{s} = \dot{M} \frac{\ell}{c_{p}} \end{cases}$

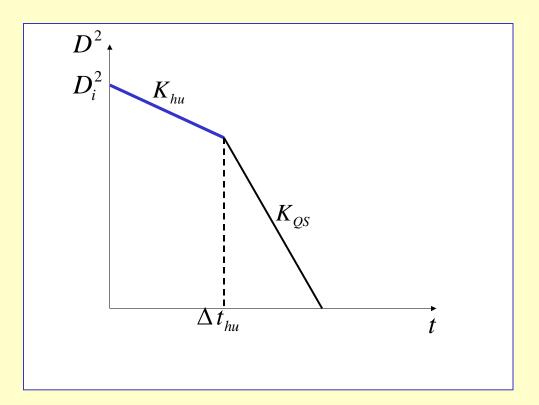
 $\dot{M} = 4\pi \frac{k}{c_p} r_s ln \left(1 + B_T \right)$ $= 4\pi \rho D r_s ln \left(1 + B_M \right)$

$$\begin{cases} \frac{dT_s}{dt} = \frac{12k\ell}{\rho_L c_L c_p D^2} \left(\frac{B_T}{B_T} - I\right) ln \left(l + B_T\right) \\ D\frac{dD}{dt} = \frac{4k}{\rho_L c_p} ln \left(l + B_T\right) \\ L p \end{cases}$$

$$B_{M} = \frac{Y_{FS} - Y_{F\infty}}{1 - Y_{FS}} \qquad B_{T} = c_{p} \left(T_{\infty} - T_{S}\right) / \left(\ell + Q_{L} / \dot{M}\right) \qquad B_{T}' = c_{p} \left(T_{\infty} - T_{S} \right) / \ell$$

4th ICCHMT

Approximation of Chin et Lefebvre (1985)



4th ICCHMT

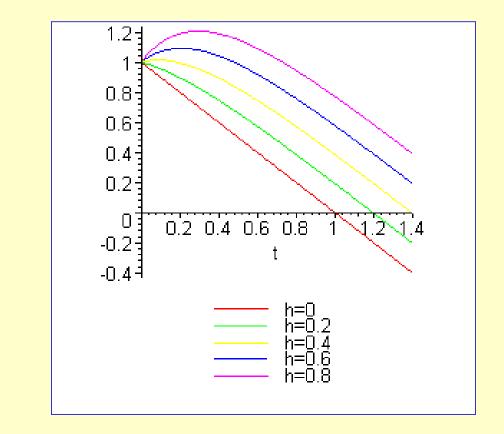
A new approximation

$$D^2 \frac{dT_s}{dt} = F(T_s), \quad \frac{dD^2}{dt} = G(T_s)$$

$$F(T_s) \approx \frac{T_{QS} - T_s}{\tau_T} \left(D_i^2 - \frac{h}{\tau_T} \left(T_s - T_i \right) + \tau_T K_{QS} ln \left(\frac{T_{QS} - T_s}{T_{QS} - T_i} \right) \right)$$

$$D^2 \approx D_i^2 - \frac{h}{\tau_T} \left(T_{QS} - T_i \right) - K_{QS} t + \frac{h}{\tau_T} \left(T_{QS} - T_i \right) e^{-\frac{t}{\tau_T}}$$

4th ICCHMT



 $(D/D_i)^2$ as a function of reduced time $\tau = K_{QS}t/D_i$, for $\tau_T = 0.3$, for a subcritical droplet.

CONCLUSIONS AND PERSPECTIVES

Two cases of droplet regression have been examined:

-A near critical droplet in its pure vapor has been studied in section 1, which gives well a D² law but not for the droplet diameter D₀ as usually defined, but for a particular diameter D_m. On the contrary a non linear law was found for D₀ as a function of time. An approximate law was given, depending on a coefficient β .

-A subcritical vaporizing droplet in a hotter gaseous mixture. A simplifying assumption was that the droplet temperature keeps its uniformity. This corresponds to an infinite conductivity for the liquid. Chin and Lefebvre who consider two successive D² law, one for the heat up regime and the other for the following QS regime. In this section, we proposed an alternative method with simple hypotheses. A continuous profile is obtained.

- The D² law is not valid too in **other cases of heat-up regime**, when the droplet is not assumed to have a uniform temperature. Law & Sirignano studied the case of a *purely conducting droplet* numerically and using series expansions. To simplify the continuous conduction problem, it is possible to consider a *two-layer model or a n-layer model*. For not purely conductive droplets, Abramson & Sirignano proposed to assimilate the heat transfer inside the droplet to a purely conductive problem, and doing that they introduce an *effective conduction coefficient*.

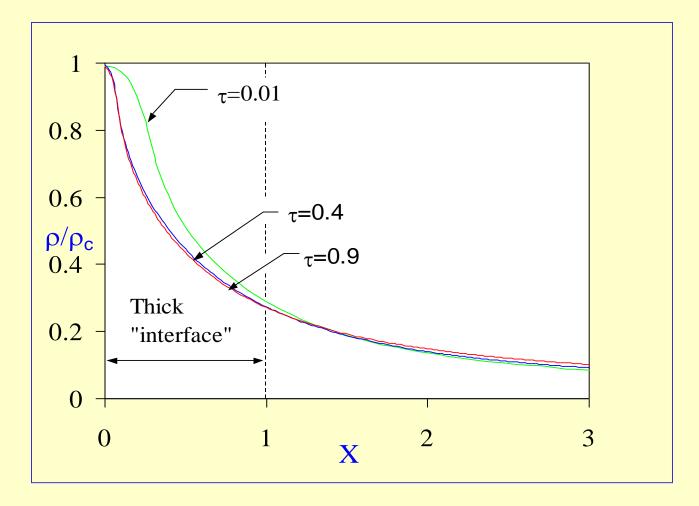
4th ICCHMT

Resolution in the supercritical case

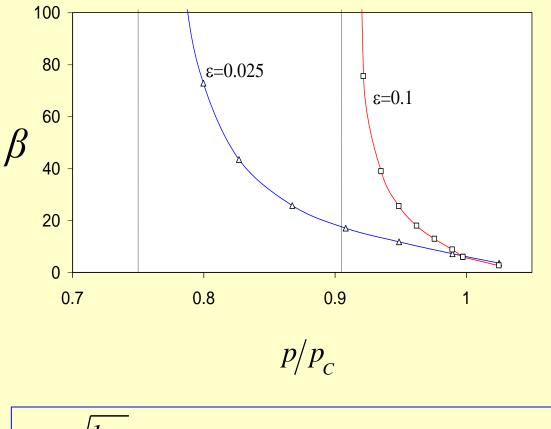
$$\begin{cases} \frac{\gamma_{\infty}}{\varepsilon}\dot{r}_{0}(r_{m}-r_{0})=J(\theta_{0})-J(\theta_{m})\\ r_{m}^{2}=1-\tau, r_{0}(0)=1 \end{cases} \qquad \theta=\frac{T'}{T'_{\infty}}, \ \varepsilon=\frac{\rho'_{\infty}}{\rho'_{in}}, \ J(\theta)=\int_{\theta}^{1}\frac{\lambda}{\int_{\theta_{in}}^{\theta'}C_{p}d\theta''}d\theta', \ \gamma_{\infty}=\frac{t'_{dif_{\infty}}}{t'_{life}}\end{cases}$$

Approximate resolution

4th ICCHMT



4th ICCHMT



 $r_0 \approx \sqrt{l-\tau}$ for small $p(\beta \to \infty)$: the d² law is recovered

4th ICCHMT

INTRODUCTION

The quasi-steady sub-critical case

$$\begin{pmatrix}
\dot{M} = 4\pi r^{2} \dot{m}, & \dot{m} = \rho u \\
\dot{M} \frac{dY_{j}}{dr} - 4\pi \rho Dr \frac{d^{2} \left(rY_{j} \right)}{dr^{2}} = 0 \\
\dot{M} c_{p} \frac{dT}{dr} - 4\pi kr \frac{d^{2} \left(rT \right)}{dr^{2}} = 0
\end{cases}$$

Boundary conditions

May 17-20, 2005

- at infinity
$$r=\infty$$
: $Y_{j}=Y_{j\infty}, T=T_{\infty}$
- at the droplet surface r_{S} : Y_{jS} , $4\pi\rho Dr_{S}^{2}\frac{dY_{j}}{dr}\Big|_{S} = -\dot{M}\left(Y_{jL}-Y_{jS}\right)$

$$T_{s}, \qquad 4\pi \left. \frac{k}{c_{p}} r_{s}^{2} \frac{dT}{dr} \right|_{s} = \dot{M} \frac{\ell}{c_{p}}$$

$$\begin{array}{l} \dot{M} = 4\pi \frac{k}{c_p} r_s ln(1+B_T) & B_T = \frac{c_p(T_{\infty} - T_s)}{\ell} \\ = 4\pi \rho Dr_s ln(1+B_M) & B_M = \frac{Y_{FS} - Y_{F\infty}}{1-Y_{FS}} \end{array}$$

$$r_{S} \frac{dr_{S}}{dt} = \frac{k}{\rho_{L} c_{p}} \ln(1 + B_{T})$$

4th ICCHMT

