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NON-CLASSICAL REGRESSION LAWS FOR DROPLET VAPORIZATION

Droplet vaporization or combustion is usually studied assuming quasi-steady hypotheses for the vapor and a constant and uniform temperature for the liquid. A "D 2 law" is then obtained for the diameter evolution. This is not the case for near-critical droplets in the general case, and also for sub-critical droplets in transient heat-up regime. We present here these two situations: near-critical vaporization in a pure fluid, and pure liquid vaporization in a gaseous mixture.

relative to the heat exchanges 0: relative to supercritical "droplet" diameter  : at infinite

INTRODUCTION

Droplet evaporation and combustion are basic phenomena for liquid propellant rocket engines. The combustion process depends on the chemical composition of the injected propellants, on the injector design, and on the injection conditions. The initial diameter distribution of droplets is an important parameter of the problem. Interactions between droplets play a role [1], [2], [3], [4] and may not be neglected for dense clouds. Droplets are often considered as spherical. But this hypothesis becomes no more valid, in particular for a small gas-liquid surface tension in the presence of a non zero relative velocity. The droplet life time, and also the droplet diameter regression law, are important to know for the modeling of combustion processes and then for performance calculations of combustion devices. Liquid droplets are generally injected in a gaseous environment with different temperature, pressure and velocity. A relaxation time is then necessary for a droplet to reach the stabilized values. At the end of this relaxation period, the velocities of gas and liquid are equal, and droplet temperature reaches a uniform temperature equal to the temperature of saturated vapor at the liquid surface. Sometimes, the droplet life time short for reaching these equilibrium conditions. It is then possible to be always in a transient situation for temperature or/and for velocity. In the opposite case, equilibrium temperature and velocity are reached during the droplet life time.

VAPORIZATION OF A "DROPLET" UNDER SUPERCRITICAL PRESSURE

At supercritical pressures, in the pure body case, there is not distinct liquid and vapor phases: the whole domain is monophasic. The density relaxation of a dense fluid pocket in a hotter and isobaric atmosphere is nevertheless similar to the vaporization process of a subcritical liquid droplet provided that the thermal diffusivity of the fluid pocket is much lower than the surrounding atmosphere. An area where density and diffusion time gradients are important insulates the dense pocket from the surrounding atmosphere [5], [6]. The dense pocket is thus named supercritical "droplet" and the strong density gradient is compared to a thick "interface".

For a critical fluid pocket (critical density, critical temperature) introduced in an (hotter) atmosphere at the critical pressure, the diffusivity condition previously mentioned is valid for all atmosphere temperatures because of the critical vanishing of the diffusivity in the critical pocket. At clearly supercritical pressures, this diffusivity condition is more restrictive and needs, in ideal fluid condition, 

  τ 1 β 1 D β D o β o     (1)
The parameter  is of order one at slightly sub or supercritical pressures : the 

Remarks :

-It would be interesting to define an effective surface tension in supercritical conditions. Indeed, phenomena analogous to those observed in miscible fluids leading to effective superficial tension, also appears in pure fluids when high temperature gradients occur [START_REF] Préau | Etude théorique et numérique de l' «évaporation » d'une « goutte » de densité critique le long d'une isobare légèrement supercritique[END_REF], [START_REF] Gatignol | Mechanical and thermodynamical modeling of fluid interfaces-Series on Advances in Mathematics for Applied Sciences[END_REF], [START_REF] Defay | Surface tension of interfaces outside equilibrium[END_REF]. This is illustrated in the case of a cold drop falling into the hotter same fluid [START_REF] Kojima | The formation and expansion of a toroidal drop moving in a viscous fluid[END_REF].

-A slightly different problem is in particular involved in the injection zone of cryogenic engines. One has to consider the isobaric vaporization at supercritical pressure of a cold «droplet » in a hot ambience. The droplet is initially at subcritical temperature. Out of the near-critical zone there is no singularity of the heat conductivity, and therefore it appears a heat-up period, as in the following section but with a real gas state equation.

EVAPORATION WITH HEAT-UP OF A LIQUID DROPLET IN A GASEOUS MIXTURE

In the classical quasi-steady theory [START_REF] Godsave | Studies of the combustion of drops in a fuel spray. The burning of single drops of fuel[END_REF], [START_REF] Spalding | Studies of the combustion of drops in a fuel spray. The burning of single drops of fuel[END_REF] there is no heat-up of the droplet, and the heat coming from the gas is entirely used to the liquid surface (QS regime). In the present theory, there is heat exchange between gas and liquid bulk of the droplet (heat-up regime). We consider a spherical drop of pure liquid, vaporizing in an ideal gaseous mixture. A quasisteady hypothesis is supposed for the gaseous phase but not for the liquid droplet which is supposed to have a uniform temperature varying with time. The equations of the quasi-steady gas flow are 
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On the other hand, solution of the conduction equation is modified because of the change of the condition at the droplet surface. One introduces the heat flux L Q which characterizes the heat brought to the drop in addition to that necessary for evaporation. The mass flow rate becomes
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To continue the resolution, it is also necessary to have an expression for L Q . For that we need to study heat exchanges inside the droplet. For example, if they are infinitely fast, droplet temperature remains uniform at any moment but varies with time; thus we have In the case of infinitely fast heat exchanges in the liquid phase, we need to solve the following system: 
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So B T is a function of B M , which depends on gaseous fuel mass fraction at the droplet surface (if the Lewis number Le is equal to unity, we have

M T B B 
). This mass fraction is connected to temperature T S by the equilibrium relation 
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. This relation, applied here to unit mass, by replacing the pressure by the partial pressure becomes
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As temperature and concentrations are not constant in the droplet surrounding, the averaged properties c p , k are evaluated at the reference temperature and composition
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is generally chosen. Thus the coefficients appearing in (2) are functions of D and T S only. They form a non linear system of two differential equations. Solution of this system gives both functions [START_REF] Chin | The role of the heat-up period in fuel drop evaporation[END_REF], [START_REF] Lefebvre | Atomization and sprays[END_REF] to solve system (2). Two D 2 laws can be considered, one for the heat-up period hu t  , the other for the steady-state phase QS t  . The used relations result in particular from approximations of time derivatives. We present here a new method. Equations of system (2) can be written in the form
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. We make the two following assumptions: 1) We suppose that the droplet temperature is of the form: 
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for all the regimes. Then, we obtain the result: (3)
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, and we have
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as a function of time are given in figure 2 for particular values of the coefficients.

CONCLUSIONS

Two cases of droplet regression have been examined:

-A near critical droplet in its pure vapor has been studied in section 1, which gives well a D 2 law but not for the droplet diameter D 0 as usually defined, but for a particular diameter D m . On the contrary a non linear law was found for D 0 as a function of time. An approximate law was given, depending on a coefficient  .

-A subcritical vaporizing droplet in a hotter gaseous mixture. A simplifying assumption was that the droplet temperature keeps its uniformity. This corresponds to an infinite conductivity for the liquid. We have summarized the theory of Chin and Lefebvre who consider two successive D 2 law, one for the heat up regime and the other for the following QS regime. In this section, we proposed an alternative method with simple hypotheses. A continuous profile is obtained.

-The D 2 law is not valid too in other cases of heat-up regime, when the droplet is not assumed to have a uniform temperature, without or with an external flow, as it was supposed in section 2. Law & Sirignano [START_REF] Law | Unsteady droplet combustion with droplet heating-II: conduction limit[END_REF] studied the case of a purely conducting droplet numerically and using series expansions. To simplify the continuous conduction problem, it is possible to consider a two-layer model or a n-layer model [START_REF] Prud'homme | Instabilités liées au phénomène d'évaporation : Réponse dynamique d'une goutte à un champ acoustique[END_REF]. For not purely conductive droplets, Abramson & Sirignano [START_REF] Abramson | Droplet vaporization model for spray combustion calculations[END_REF] proposed to assimilate the heat transfer inside the droplet to a purely conductive problem, and doing that they introduce an effective conduction coefficient. 



  the dense fluid pocket. The "interface" being thick, two choices can be made for the definition of the reference border of the supercritical "droplet": the first one consists in choosing an isochore m  located at the end of the strong density gradient area that follows the fluid pocket. It can be shown that this area located at the end of the strong density gradient is the place where the unit mass flow rate is maximum. The second one consists in choosing a reference isochore 0 at the beginning of the strong density gradient area.. Let us name m D the diameter of the domain bordered by the isochore m  the nondimensional time, ratio between the time and the life time of the « droplet ». The diameter 0 D satisfies (see figure 1):

2D law is not satisfied for 0 D.

 0 at such pressures according to the previous relation. As the pressure is becoming clearly subcritical,  is becoming greater. Given that the diameter D o is made nondimensional with the initial diameter of the "droplet", great values of  , the previous equation becomes at first order : The D² law is thus recovered in clearly subcritical conditions.

  of the diffusion equation writes

Lb

  is function of T only, and for an ideal gas mixture, this lead to and c are constant coefficients. Then, we can relate FS Y to the surface molar fraction X FS and the surface mass fraction Y FS appears as a function of surface temperature T S and total pressure p , which is assumed uniform and constant: The latent heat itself is function of temperature and concentration at the surface. Indeed, from the relation of Clapeyron, one has per mole of pure substance:

  in initial conditions and in stabilized regime. 2) In the stabilized regime, the droplet square radius is a linear function of time, then:  
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  Figure 1. Square of the droplet diameter as a function of the reduced time  for different pressures. Pc is the critical pressure.

Figure 2 .

 2 Figure 2.   2 i D D as a function of reduced time

  where

				c is
				L
	the specific heat of the liquid. Temperature of
	the droplet surface is no more fixed, contrarily to
	the classical theory. It varies during the heating
	period. There is always evaporation at
	equilibrium at the surface, but the temperature
	being variable, the partial pressure of species F
	varies with time and thus the concentration	Y
				FS
	adapts itself to temperature variations.
	In non-stabilized regimes, characteristic time for
	liquid heating tends to be higher than the time
	for boundary-layer heating. Heating time	t  ,
				hu
	and droplet lifetime	t  are of the same order of
				ex
	magnitude for kerosene droplets, but for LOX
	droplets	t t   	.
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