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ABSTRACT 
Droplet vaporization or combustion is usually 

studied assuming quasi-steady hypotheses for the 

vapor and a constant and uniform temperature 

for the liquid. A “D
2
 law” is then obtained for 

the diameter evolution.  

This is not the case for near-critical droplets in 

the general case, and also for sub-critical 

droplets in transient heat-up regime. We present 

here these two situations: near-critical 

vaporization in a pure fluid, and pure liquid 

vaporization in a gaseous mixture. 

 

NOMENCLATURE 
A:  diluent 

M
B ,  BT  Spalding parameters for mass, 

for heat transfer respectively 

cL, cp:  specific heat per unit mass of the 

liquid, of the gas at p=cte  

D:  droplet diameter : D=2 rS   

D   diffusion coefficient 

m
D :  diameter of the sphere of 

maximum unit mass flow rate  

F:  liquid or gaseous fuel  

k:  thermal conductivity 

Le:  Lewis number 
p

cDρk  

 :  latent heat of evaporation per 

unit mass 

M:  mass of the droplet 

m :  unit mass flow rate 

M :  droplet evaporation rate  

p:  pressure  

psat:  saturated vapor pressure  

QL:  heat rate brought to the drop 

minus the latent heat of 

evaporation. 

r:  radius 

rS:  droplet radius 

T :  temperature 

t:  time 

v:  radial velocity 

x, y:  abscissa, ordinate 

jj
Y,X   mole fraction, mass fraction 

respectively 

 :  coefficient of the supercritical 

droplet  regression law 

 :  chemical potential  

 :  density  

 :  surface tension 

 :  non-dimensional time 

T
τ :   heat transfer time in the droplet  

v
τ :  life time of the droplet  

Subscripts and superscripts 

C:  critical point 

i:  initial 

i, j:  chemical species 

L, l:  in the liquid phase 

m:  position where the unit mass 

flow rate is maximum 

QS:  quasi-Steady 

 S:  at the droplet surface  

Sat:  saturated vapor 

T:  relative to the heat exchanges  

0:  relative to supercritical “droplet” 

diameter  
 :  at infinite 
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INTRODUCTION  
Droplet evaporation and combustion are basic 

phenomena for liquid propellant rocket engines. 

The combustion process depends on the 

chemical composition of the injected propellants, 

on the injector design, and on the injection 

conditions. The initial diameter distribution of 

droplets is an important parameter of the 

problem. Interactions between droplets play a 

role [1], [2], [3], [4] and may not be neglected 

for dense clouds. Droplets are often considered 

as spherical. But this hypothesis becomes no 

more valid, in particular for a small gas-liquid 

surface tension in the presence of a non zero 

relative velocity.  

The droplet life time, and also the droplet 

diameter regression law, are important to know 

for the modeling  of combustion processes and 

then for performance calculations of combustion 

devices. 

Liquid droplets are generally injected in a 

gaseous environment with different temperature, 

pressure and velocity. A relaxation time is then 

necessary for a droplet to reach the stabilized 

values. At the end of this relaxation period, the 

velocities of gas and liquid are equal, and droplet 

temperature reaches a uniform temperature equal 

to the temperature of saturated vapor at the 

liquid surface.  

Sometimes, the droplet life time short for 

reaching these equilibrium conditions. It is then 

possible to be always in a transient situation for 

temperature or/and for velocity. In the opposite 

case, equilibrium temperature and velocity are 

reached during the droplet life time.  
 

VAPORIZATION OF A “DROPLET” UNDER 

SUPERCRITICAL PRESSURE 

At supercritical pressures, in the pure body 

case, there is not distinct liquid and vapor 

phases: the whole domain is monophasic. The 

density relaxation of  a dense fluid pocket in a 

hotter and isobaric atmosphere is nevertheless 

similar to the vaporization process of a 

subcritical liquid droplet provided that the 

thermal diffusivity of the fluid pocket is much 

lower than the surrounding atmosphere. An area 

where density and diffusion time gradients are 

important insulates the dense pocket from the 

surrounding atmosphere [5], [6]. The dense 

pocket is thus named supercritical “droplet” and 

the strong density gradient  is compared to a 

thick “interface”. 

 For a critical fluid pocket (critical 

density, critical temperature) introduced in an 

(hotter) atmosphere at the critical pressure, the 

diffusivity condition previously mentioned is 

valid for all atmosphere temperatures because of 

the critical vanishing of the diffusivity in the 

critical pocket. At clearly supercritical pressures, 

this diffusivity condition is more restrictive and 

needs, in ideal fluid condition,  
i

TT 


, with 

T, the atmosphere temperature and 
i

T  the 

initial temperature of the dense fluid pocket. The 

“interface” being thick, two choices can be made 

for the definition of the reference border of the 

supercritical “droplet”: the first one consists in 

choosing an isochore 
m

  located at the end of 

the strong density gradient area that follows the 

fluid pocket. It can be shown that this area 

located at the end of the strong density gradient 

is the place where the unit mass flow rate is 

maximum. The second one consists in choosing 

a reference isochore 
0

  at the beginning of the 

strong density gradient area..  

Let us name 
m

D  the diameter of the domain 

bordered by the isochore 
m

  and 
0

D  the diameter 

of the domain bordered by the isochore 
0

 . It 

was shown [6], [7] that the diameter 
m

D  satisfies 

the “D²” law : τ1D2

m
 , with,  the non-

dimensional time, ratio between the time and the 

life time of the « droplet ». The diameter 
0

D  

satisfies (see figure 1): 

  τ1β1DβD
o

β

o
   (1) 

The parameter  is of order one at slightly sub or 

supercritical pressures : the 2D  law is not 

satisfied for 
0

D  at such pressures according to 

the previous relation. As the pressure is 

becoming clearly subcritical,  is becoming 

greater. Given that the diameter Do is made non-

dimensional with the initial diameter of the 

“droplet”, 1)(D
0
τ  and, for great values of  , 

the previous equation becomes at first order : 
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τ1D2

o
 . The D² law is thus recovered in 

clearly subcritical conditions.   

 

Remarks :  

- It would be interesting to define an effective 

surface tension in supercritical conditions. 

Indeed, phenomena analogous to those observed 

in miscible fluids leading to effective superficial 

tension, also appears in pure fluids when high 

temperature gradients occur [7], [8], [9]. This is 

illustrated in the case of a cold drop falling into 

the hotter same fluid [11].  

- A slightly different problem is in particular 

involved in the injection zone of cryogenic 

engines. One has to consider the isobaric 

vaporization at supercritical pressure of a cold 

«droplet » in a hot ambience. The droplet is 

initially at subcritical temperature. Out of the 

near-critical zone there is no singularity of the 

heat conductivity, and  therefore it appears a 

heat-up period, as in the following section but 

with a real gas state equation.  
 

EVAPORATION WITH HEAT-UP OF A 

LIQUID DROPLET IN A GASEOUS MIXTURE 

In the classical quasi-steady  theory [12],[13] 

there is no heat-up of the droplet, and the heat 

coming from the gas is entirely used to evaporate 

the liquid surface (QS regime). In the present 

theory, there is heat exchange between gas and 

liquid bulk of the droplet (heat-up regime). We 

consider a spherical drop of pure liquid, 

vaporizing in an ideal gaseous mixture. A quasi-

steady hypothesis is supposed for the gaseous 

phase but not for the liquid droplet which is 

supposed to have a uniform temperature varying 

with time. The equations of the quasi-steady gas 

flow are uρm,mrπ4M 2   , 

 
04

2

2


rd

Yrd
rD

rd

Yd
M

jj  , 

 
04

2

2


rd

Trd
rk

rd

Td
cM

p
 , with the boundary 

conditions: at infinity ( r ) : 


 TT,YY
jj

, 

and at the droplet surface ( 2Dr
S
 ) : 

 
jSjL

S

j2

SSjS
YYM

dr

Yd
rDρπ4,T,Y    , 

pS

2

S
p

c
M

dr
Td

r
c
kπ4  .            

Then, solution of the diffusion equation writes 

 MS BrDM  1ln4   , with 

   
FSFFSM

Y1YYB 


.                                                     

On the other hand, solution of the conduction 

equation is modified because of the change of 

the condition at the droplet surface. One 

introduces the heat flux LQ  which characterizes 

the heat brought to the drop in addition to that 

necessary for evaporation.  The mass flow rate 

becomes    
TSp

B1lnrckπ4M  , with 

   MQTTcB
LSpT




. To continue the 

resolution, it is also necessary to have an 

expression for 
LQ . For that we need to study 

heat exchanges inside the droplet. For example, 

if they are infinitely fast, droplet temperature 

remains uniform at any moment but varies with 

time; thus we have 
L

S

L Q
td

Td
cM  , where 

L
c  is 

the specific heat of the liquid. Temperature of 

the droplet surface is no more fixed, contrarily to 

the classical theory. It varies during the heating 

period. There is always evaporation at 

equilibrium at the surface, but the temperature 

being variable, the partial pressure of species F 

varies with time and thus the concentration FSY  

adapts itself to temperature variations. 

In non-stabilized regimes, characteristic time for 

liquid heating tends to be higher than the time 

for boundary-layer heating. Heating time hut , 

and droplet lifetime ext are of the same order of 

magnitude  for kerosene droplets, but  for LOX 

droplets exhu tt  .  

In the case of infinitely fast heat exchanges in 

the liquid phase, we need to solve the following 

system:  
T

T

T
2

pLL

S B1ln1
B

B'

Dccρ

k12
dt

dT











 , 

 
T

pL

B1ln
cρ
k4

dt
dDD     (2) 
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where TB  was defined foregoing and where 

  
SpT

TTcB' 


.      

Note that in QS regime, 
TT

B'B  . The Spalding 

parameter TB'  depends on the droplet 

temperature ST . The Spalding parameter for heat 

exchange TB  is connected to the Spalding 

parameter for mass exchange MB  by the 

equation    
MT

p

B1lnDρ2πB1lnD
c
k2πM  D . 

So BT  is a function of BM , which depends on 

gaseous fuel mass fraction at the droplet surface 

(if the Lewis number Le is equal to unity, we 

have 
MT BB  ). This mass fraction is connected 

to temperature TS  by the equilibrium relation  

FL   . When 
L  is function of T only, and 

for an ideal gas mixture, this lead to 

 SsatFS TpXp  . The equilibrium law writes   

for instance [14]     cTbaexpTp
SSsat
 , where a, 

b and c are constant coefficients. 

Then, we can relate 
FSY  to the surface molar 

fraction XFS and the surface mass fraction YFS 

appears as a function of surface temperature TS 

and total pressure p , which is assumed uniform 

and constant:  pTfY SFS , . Thus BT and TB'  are 

functions of TS only.  

The latent heat itself is function of temperature 

and concentration at the surface. Indeed, from 

the relation of Clapeyron, one has per mole of 

pure substance:   
sat

dTdppTRL 2  . This 

relation, applied here to unit mass, by replacing 

the pressure by the partial pressure becomes 

 
 2

2

cT

TRb

MM

MYMM

S

S

FA

FFSFA




 . As 

temperature and concentrations are not constant 

in the droplet surrounding, the averaged 

properties cp, k are evaluated at the reference 

temperature and composition 

   FSFrFSFSrS YYAYYTTATT   , . 

31rA  is generally chosen.  

Thus the coefficients appearing in (2) are 

functions of D and TS only. They form a non 

linear system of two differential equations. 

Solution of this system gives both functions 

   trtT SS ,  and consequently  tYFS
.Simplified 

hypotheses are used by Chin & Lefebvre [14], 

[15] to solve system (2). Two D
2
 laws can be 

considered, one for the heat-up period hut , the 

other for the steady-state phase QSt . The used 

relations result in particular from approximations 

of time derivatives. We present here a new 

method. 

Equations of system (2) can be written in the 

form    
S

2

S

S2 TG
td

Dd
,TF

td

Td
D    . We make the two 

following assumptions: 1) We suppose that the 

droplet temperature is of the form: 

  T
τ

t

QSiQSS
eTTTT


 where 
T
  is a thermal 

relaxation time and 
QSi

T,T  the droplet 

temperature, respectively in initial conditions 

and in stabilized regime. 2) In the stabilized 

regime, the droplet square radius is a linear 

function of time, then:  
QSSQSS

TTforKTG  . We 

suppose a linear law for  
S

TG : 

   
QSSQSS

TThKTG    for all the regimes. 

Then, we obtain the result: 

   




































iQS

SQS

QSTiS
TT

SQS

S TT

TT
lnKτTT

τ
hD

τ

TT
TF 2

i
  and  

for the diameter : 

(3)        T
τ

t

iQS
T

QSiQS
T

2

i

2 eTT
τ
htKTT

τ
hDD



       

QS
T  is such that   0

QS
TF , 

QS
K is such that 

 
QSQS

TGK  , 
T
  is equal to 

   
iiQST

TFDTTτ 2

i
 , and we have 

      
iQSiS

T_TTGTGh  . The profiles of   2
i

DD  

as a function of time are given in  figure 2 for 

particular values of the coefficients. 
 

CONCLUSIONS 
Two cases of droplet regression have been 

examined:  

- A near critical droplet in its pure vapor has 

been studied in section 1, which gives well a D
2
 

law but not for the droplet diameter D0 as usually 

defined, but for a particular diameter Dm. On the 

contrary a non linear law was found for D0 as a 

function of time. An approximate law was given, 

depending on a coefficient  .  
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- A subcritical vaporizing droplet in a hotter 

gaseous mixture. A simplifying assumption was 

that the droplet temperature keeps its uniformity. 

This corresponds to an infinite conductivity for 

the liquid. We have summarized the theory of 

Chin and Lefebvre who consider two successive 

D
2
 law, one for the heat up regime and the other 

for the following QS regime. In this section, we 

proposed an alternative method with simple 

hypotheses. A continuous profile is obtained. 

- The D
2
 law is not valid too in other cases of 

heat-up regime, when the droplet is not assumed 

to have a uniform temperature, without or with 

an external flow,  as it was supposed   in section 

2. Law & Sirignano [16] studied the case of  a 

purely conducting droplet numerically and using 

series expansions. To simplify the continuous 

conduction problem, it is possible to consider a 

two-layer model or a n-layer model [17]. For not 

purely conductive droplets, Abramson & 

Sirignano [18] proposed to assimilate the heat 

transfer inside the droplet to a purely conductive 

problem, and doing that they introduce an 

effective conduction coefficient. 

 
KEYWORDS 

Droplet regression; vaporization; combustion; 
transitory regime; heat-up; supercritical; subcritical 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Square of the droplet diameter as a 

function of the reduced time  for different 

pressures. Pc is the critical pressure. 

 

 

Figure 2.  2
i

DD  as a function of reduced time 

iQS
DtKτ , for 30.

T
 , for a subcritical droplet. 
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