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In this work we extend recently proposed observer designs based on high-gain to a more general first order quasilinear hyperbolic system of balance laws. This class of systems is written in an observable form with two states, two different characteristic velocities and distributed measurement. The exponential stability of the related observation error is fully established by means of Lyapunov-based analysis.

INTRODUCTION

The classical high-gain observer design for finite-dimensional nonlinear systems has gained great academic interest through the last decades. They apply to a large class of cases corresponding to uniformly observable systems [START_REF] Gauthier | Observability for any u(t) of a class of nonlinear systems[END_REF], [START_REF] Gauthier | A Simple Observer for Nonlinear Systems Applications to Bioreactors[END_REF]. It has been extensively studied in the literature and remains widely considered, see [START_REF] Khalil | High-gain observers in nonlinear feedback control[END_REF] and references therein. In the recent paper [START_REF] Kitsos | High-gain observer design for a class of hyperbolic systems of balance laws[END_REF], we extended this approach to a class of hyperbolic systems, for which first results on high-gain observer design have been proposed for a particular case of uniformly observable systems, written as an n × n quasi-linear hyperbolic system of balance laws and considering distributed measurements. In a more recent work [START_REF] Kitsos | A high-gain observer for a class of 2x2 hyperbolic systems with C1 exponential convergence[END_REF], we considered a more general case, where a 2 × 2 system is written in an observable form, differentiating from [START_REF] Kitsos | High-gain observer design for a class of hyperbolic systems of balance laws[END_REF] where we needed to consider identical chatacteristic velocities. There exist some results on observer design for hyperbolic systems in the literature, mainly considering the full state vector on the boundaries as measurement. Amongst others, one can refer to Di Meglio et al [2013] and [START_REF] Hasan | Boundary observer design for hyperbolic PDE-ODE cascade systems[END_REF] for the backstepping design, to [START_REF] Besançon | Sur la commande en dimension finie d'une classe de systèmes non linéaires de dimension infinie[END_REF] for a discretization approach, to [START_REF] Castillo | Boundary Observers for Linear and Quasi-Linear Hyperbolic Systems with Application to Flow Control[END_REF] for direct infinite-dimension-based Lyapunov techniques (see also [START_REF] Besançon | Robust state estimation for a class of convection-diffusion-reaction systems[END_REF]) or to [START_REF] Nguyen | State and parameter estimation in 1-d hyperbolic PDEs based on an adjoint method[END_REF] for optimization methods. For semigroup-based methods see [START_REF] Curtain | Finite-dimensional compensator design for parabolic distributed systems with point sensors and boundary input[END_REF], Christophides and Daoutidis [1996] and [START_REF] Schaum | A simple observer scheme for a class of 1-D semilinear parabolic distributed parameter systems[END_REF].

The present paper aims at providing sufficient conditions for high-gain observer design for a class of quasilinear hyperbolic systems of balance laws. The difficulty of the present approach comes from the fact that the Lyapunov stability analysis that we employ requires the existence of a positive definite symmetric Lyapunov matrix involved in the chosen Lyapunov functional, which has to additionally commute with the matrix of the characteristic velocities. For this reason, considering stability problems in [START_REF] Bastin | Stability and Boundary Stabilization of 1-D Hyperbolic Systems[END_REF], [START_REF] Coron | Dissipative boundary conditions for one-dimensional quasi-linear hyperbolic systems: Lyapunov stability for the C1-norm[END_REF] and in [START_REF] Prieur | Stability of switched linear hyperbolic systems by Lyapunov techniques[END_REF] (Proposition 2.1) and other approaches of these authors, either such a commutativity property is assumed to be satisfied, or a diagonal Lyapunov matrix is chosen. In our case, the Lyapunov matrix cannot commute with the matrix of the characteristic velocities, since it is required to satisfy silmutaneously a matrix Lyapunov equation and the involved stabilizable matrix, which describes the linear part of the balance laws, does not allow diagonal stability to hold. Due to this technical limitation, in the first approach [START_REF] Kitsos | High-gain observer design for a class of hyperbolic systems of balance laws[END_REF], the characteristic velocities were considered identical. In [START_REF] Kitsos | A high-gain observer for a class of 2x2 hyperbolic systems with C1 exponential convergence[END_REF] we considered a more general problem for a 2 × 2 system, where space derivatives of the output were injected in the observer's equations as correction terms, in order to confront this difficulty. The contribution of the present paper is twofold: First, by employing a triangular linear coordinates transformation technique, we avoid the restrictive injection of output's space derivatives, in order to confront the problem of distinct characteristic velocities. Second, we prove a stronger result of H 1 exponential stability of the observer error, contrary to the exponential stability result in the supremum norm [START_REF] Kitsos | High-gain observer design for a class of hyperbolic systems of balance laws[END_REF]).

The problem is illustrated in details in Section 2. The theoretical analysis and the full proofs for the observer design that we develop are presented in Section 3, where Theorem 2 constitutes the main result. In addition, an example illustrates the nature of our methodology. Some conclusions and perspectives are discussed in Section 4.

Notation: For a given x ∈ R n , |x| denotes its usual Euclidean norm. For a given constant matrix A ∈ R m×n , A T denotes its transpose, |A| := sup {|Ax| , |x| = 1} is its induced norm and Sym(A) = A+A T 2 stands for its symmetric part. By eig(A) we denote the minimum eigenvalue of a matrix A. For a function f (•), we use the difference operator given by ∆ ξ [f ] (ξ) := f ( ξ) -f (ξ), parametrized by ξ. For f ∈ C 1 by Df we denote its Jacobian. For a continuous (C 0 ) map [0,1] x → ξ(x) ∈ R n we adopt the notation ξ

0 := max{|ξ(x)| , x ∈ [0, 1]}. For a continuously differentiable (C 1 ) map [0, 1] x → ξ(x) ∈ R n we adopt the notation ξ 1 := ξ 0 + ξ x 0 . For a function ξ ∈ H 1 ([0, 1]; R n ) the definition of the H 1 - norm is ξ H 1 := 1 0 |ξ| 2 + |ξ x | 2 dx 1/2
. By B(δ) we denote the set B(δ

) := {ξ ∈ C 1 [0, +∞) × [0, 1]; R 2 : ξ(t, •) 1 ≤ δ, ∀t ≥ 0}.

CLASS OF SYSTEMS AND MAIN OBSERVER RESULT

Let us consider the first-order quasilinear hyperbolic system described by the following equations on a time and space domain Π := [0, +∞) × [0, 1]:

ξ t (t, x) + Λ(ξ 1 (t, x))ξ x (t, x) = Aξ(t, x) + f (ξ(t, x)) (1a)
where

[ξ 1 ξ 2 ] T = ξ : [0, +∞) × [0, 1] → R 2 is the state. Consider also distributed measurement y : [0, +∞) × [0, 1]
that is available at the output, given by y(t, x) = Cξ(t, x) (1b) We assume that

A = 0 1 0 0 , C = [1 0] , Λ(ξ 1 ) := diag {λ 1 (ξ 1 ), λ 2 (ξ 2 )} , f (ξ) = f 1 (ξ 1 ) f 2 (ξ 1 , ξ 2 )
with λ 1 (ξ 1 ), λ 2 (ξ 1 ) > 0, ∀ξ 1 ∈ R. We observe that the system satisfies some triangular structure (as in [START_REF] Kitsos | High-gain observer design for a class of hyperbolic systems of balance laws[END_REF]), which illustrates an analogy to the finitedimensional case.

We consider initial and boundary conditions of the form ξ(0, x) =:

ξ 0 (x), x ∈ [0, 1] (2a) ξ(t, 0) = H (ξ 1 (t, 1)) , t ∈ [0, +∞) (2b) 
Considering system's dynamics, we assume the following regularity.

A0. The involved mappings λ

i ∈ C 1 R; R 2 , i = 1, 2, f ∈ C 1 R 2 ; R 2 , H ∈ C 1 R; R 2 , ξ 0 ∈ C 1 [0, 1]; R 2 .
The following assumption is essential to assert the wellposedeness of our system, along with the minimal observer design requirement of "forward completeness" and, furthermore, it imposes boundedeness of the classical solutions in the C 1 -norm, which is essential in the design of our observer. For more detailed presentation, the reader can refer to [START_REF] Bastin | Stability and Boundary Stabilization of 1-D Hyperbolic Systems[END_REF], [START_REF] Li | Boundary value problems for quasilinear hyperbolic systems[END_REF] and references therein, where sufficient conditions for the well-posedeness of quasilinear hyperbolic systems of balance laws are given.

A1. There exists nonempty compact set M ⊂ C 1 [0, 1]; R 2 , such that, for any initial conditions ξ 0 ∈ M, satisfying zero-order and one-order compatibility conditions, problem (1a), (2) admits a unique classical solution in C 1 [0, +∞) × [0, 1]; R 2 . Moreover, for any ξ 0 in the above-mentioned class, there exists δ > 0, such that

ξ(t, •) 1 ≤ δ, ∀t ∈ [0, +∞). Also, λ 1 (Cξ) ≥ λ 2 (Cξ), ∀ξ ∈ B(δ).
The following global Lipschitzness assumption is crucial for the stability analysis of the observer error equation.

A2. There exists

Lipschitz constant L f > 0, such that for all ξ ∈ R 2 , |Df (ξ)| ≤ L f . There exists Lipschitz constant L f > 0, such that for all ξ, ξ ∈ R 2 , |∆ ξ [Df ] (ξ)| ≤ L f | ξ - ξ|.
In order to be able to adopt a high-gain observer methodology, we need to first perform the following invertible linear transformation, in order to obtain a more appropriate form:

ζ = T ξ (3a) T := 1 0 a 2 1 (3b)
with a 2 to be defined later.

Now system (1a), ( 1b), ( 2b) is rewritten as follows:

ζ t (t, x) + Λ(ζ 1 (t, x))ζ x (t, x) = Aζ(t, x) + M ζ(t, x) +T f (T -1 ζ(t, x)) (4a) y(t, x) = Cζ(t, x) (4b) ζ(t, 0) = T H (ζ 1 (t, 1))
(4c) defined on the domain Π, where M is given by

M := -a 2 0 -a 2 2 a 2 (5) and Λ(ζ 1 ) := T C T C (λ 1 (ζ 1 ) -λ 2 (ζ 1 )) + λ 2 (ζ 1 ) I 2×2 (6) 
Consider now K ∈ R 2 and P a symmetric and positive definite matrix satisfying 2Sym (P (A + KC)) = -I 2×2 (7) which is always feasible, due to the observability of the pair (A, C). Define also diagonal matrix Θ, given by Θ := diag θ, θ 2 (8) where θ > 1 is the candidate high-gain constant of the observer, which will be selected later. Then, set a 2 := a 2,0 /a 1,0 (9a)

a 1,0 a 2,0 := θ -1 ΘP -1 C T (9b)
Notice that a 2 is written in the form a 2 = θā 2 (10) where ā2 is independent of θ and depends only on components of P .

Let us now introduce our candidate observer dynamics defined on the domain Π and its boundary conditions for system (4), as follows:

ζt (t, x) + Λ(y(t, x)) ζx = A ζ(t, x) + M ζ(t, x) -ΘK - 2a 2 a 2 2 y(t, x) -C ζ(t, x) + T f (T -1 ζ(t, x)) (11a) ζ(t, 0) = T H (y(t, 1)) , t ≥ 0 (11b)
The following lemma guarantees the existence of unique global classical solutions for our candidate observer. We invoke [START_REF] Kmit | Classical solvability of nonlinear initial-boundary problems for first-order hyperbolic systems[END_REF], where an analogous result is proven under Lipschitzness properties of the dynamics. It is easy to check that our candidate observer under the transformation ζ := T -1 ζ is written in a well-posed characteristic form and satisfies semilinear hyperbolic laws. Assumptions A0 -A2 in conjunction with the previously mentioned comments (details are left to the reader) are compatible with the sufficient conditions of Theorem 2.1 in [START_REF] Kmit | Classical solvability of nonlinear initial-boundary problems for first-order hyperbolic systems[END_REF] and, thereby similar global existence result is established for our observer system, as given in the following result. Lemma 1. Under Assumptions A0, A2 and considering y ∈ C 1 ([0, +∞) × [0, 1]; R), with y globally bounded in the C 1 -norm, the problem described by (11) on domain Π and initial conditions ζ0 := ζ(0, x), ∀x ∈ [0, 1], satisfying zeroorder and one-order compatibility conditions (see [START_REF] Bastin | Stability and Boundary Stabilization of 1-D Hyperbolic Systems[END_REF] for details on compatibility conditions) admits a unique classical solution on Π, i.e., there exists a unique solution

ζ ∈ C 1 [0, +∞) × [0, 1]; R 2 .
We are now in a position to present our main result on the observer design.

Theorem 2. Consider system (1a) -( 2), defined on Π with output (1b) and suppose that Assumptions A0, A1 and A2 hold. Let also P ∈ R 2×2 be a positive definite symmetric matrix and K a vector both satisfying (7).

Then, for θ > 1, system (11) with initial condition ζ0 ∈ C 1 ([0, 1]; R 2 ), with ζ(0, x) = ζ0 (x), satisfying zero-order and one-order compatibility conditions, is a well-posed high-gain observer for ζ = T ξ, in the sense that it admits a unique classical solution in Π on the one hand, providing an estimate for the state of system (1a) -( 2) for choice of θ large enough on the other hand. More precisely, for any κ > 0, there exist θ > 1, such that the following estimate is satisfied:

ξ(t, •) -T -1 ζ(t, •) H 1 ≤ le -κt ξ 0 -T -1 ζ0 H 1 , t ≥ 0 ( 12 
) for some l > 0 depending on θ.

This theorem states that for system (1a) -(2) we have a systematic high-gain observer design providing an estimate of its full state, with a convergence rate adjustable via the high gain θ.

OBSERVER CONVERGENCE PROOF

This section is dedicated to the proof of Theorem 2.

We define the linearly transformed error by := Θ -1 ζ -ζ and we obtain the following equations defined on Π:

t + Λ 1 (y) x = θ (A + KC) +θā 2 + Θ -1 T ∆ T -1 ζ [f ] T -1 ζ (13) (t, 0) = 0 (14) where Λ 1 (y) := 1 a 1,0 P -1 C T C (λ 1 (y) -λ 2 (y)) + λ 2 (y)I 2×2 (15)
Observe from (15) that P Λ 1 (y) is symmetric for any symmetric matrix P , a fact that will allow an integration by parts that we will perform later.

At this point, let us introduce the operator

K : C 1 [0, +∞) × [0, 1]; R 2 → C 0 [0, +∞) × [0, 1]; R 2×2 defined by K[ξ] := Λ 1 (Cξ)Λ -1 1 (Cξ)C ∂ ∂t ξ (16) Define also K ζ 1 : C 1 [0, +∞) × [0, 1]; R 2 → C 0 [0, +∞) × [0, 1]; R 2×2 K ζ 2 : C 1 [0, +∞) × [0, 1]; R 2 → C 0 [0, +∞) × [0, 1]; R 2 (parametrized by ζ and acting on ξ = T -1 ζ) by K ζ 1 [ξ] := K[ξ] + Θ -1 T Df (T -1 ζ)T -1 Θ (17a) K ζ 2 [ξ] := -K[ξ]Θ -1 T ∆ T -1 ζ [f ] T -1 ζ +Θ -1 T ∆ T -1 ζ [Df ] T -1 ζ ∂ ∂t ξ (17b) 
Next by temporarily assuming that is of class C 2 , we derive the following hyperbolic equations for t :

tt + Λ 1 (y) tx = K ζ 1 [ξ] t + θā 2 t +θ(A + KC) t -θK[ξ](A + KC) + K ζ 2 [ξ] (18) 
t (t, 0) = 0 (19) Remark 3. Notice that whenever ξ ∈ B(δ), due to continuity and positiveness of λ i , i = 1, 2 and furthermore the fact that ξ(t,

•) 0 ≤ δ, ∀t ≥ 0, 0 < sup ξ∈B(δ)) (λ i (Cξ)), inf ξ∈B(δ)) (λ i (Cξ)) < +∞, i = 1, 2.
In addition, whenever ξ ∈ B(δ), as a result of the hyperbolic dynamics (1a), we easily calculate constant δ 1 > 0, such that

ξ t (t, •) 0 = T -1 ζ t (t, •) 0 ≤ δ 1 , ∀t ≥ 0 (20)
By virtue of the above arguments, the fact that θ > 1, (20), continuity and global Lipschitzness (Assumptions A0, A2) of the involved mappings, we can easily calculate positive constants γ i , i = 1, . . . , 6, such that whenever ξ ∈ B(δ), the following inequalities are satisfied for all

ζ ∈ C 0 [0, +∞) × [0, 1]; R 2 , t ≥ 0, x ∈ [0, 1]: |Θ -1 T Df (T -1 ζ(t, x))T -1 Θ| ≤ γ 1 (21a) |Θ -1 T ∆ T -1 ζ [f ] T -1 ζ(t, x) | ≤ γ 2 | (t, x)| (21b) |Θ -1 T ∆ T -1 ζ [Df ] T -1 ζ(t, x) | ≤ γ 3 | (t, x)| (21c) |Λ 1 (ξ 1 (t, x))| ≤ γ 4 (21d) γ 5 ≤ |Λ 1 (ξ 1 (t, x))| ≤ γ 6
(21e) Note that all the above constants γ 1 , . . . , γ 6 depend only on the Lipschitz constants of Assumption A2, constants δ, δ 1 , elements of matrices P and Λ and are independent of the high gain θ, due to the triangular structures of the nonlinear mappings. We can similarly obtain constants γ 7 , γ 8 > 0, such that for all (t, x) ∈ Π, we get

|K ζ 1 [ξ](t, x)| ≤ γ 7 := γ 1 + δ 1 γ 4 /γ 5 , |K ζ 2 [ξ](t, x)| ≤ γ 8 | (t, x)|; γ 8 := δ 1 γ 4 γ 2 /γ 5 + γ 3 δ 1 (22) To prove the error exponential stability, let us define functional W : C 1 ([0, 1]; R 2 ) → R by W[ ] := 1 0 e -µθā2x T P + ρ 0 T t P t dx ( 23 
)
where ρ 0 ∈ (0, 1] is a constant (to be chosen appropriately), P ∈ R 2×2 is a positive definite symmetric matrix satisfying (7) for appropriate K and µ > 0 will be chosen appropriately later.

By invoking Lemma 1 and Assumption A1, which establish global unique classical solutions for observer system (11) and system (1a), ( 2) respectively, we are now in a position to define W : [0, +∞) → R by W (t) := W[ ](t), t ≥ 0 (where we use the notation (t) := (t, x), ∀x ∈ [0, 1]).

Calculating the time-derivative Ẇ along the classical solutions of ( 13) -( 14), ( 18) -( 19), we get

Ẇ = 1 0 e -µθā2x
× T t P + T P t + ρ 0 T tt P t + ρ 0 T t P tt dx (24) In the following, we omit the arguments (t, x) of the mappings inside the integrals.

After substituting the dynamical equations ( 13) and ( 18) into the above equation and applying integration by parts, Ẇ can be written in the following form:

Ẇ = T 1 + T 2 + T 3 + T 4 (25) where T 1 := -e -µθā2
(1) T P Λ 1 (y( 1)) ( 1)

+ρ 0 t (1) T P Λ 1 (y(1)) t (1) (26a) 
T 2 := 1 0 e -µθā2x -µθā 2 T P Λ 1 (y) -µθā 2 ρ 0 T t P Λ 1 (y) t + T P Λ 1 (y)y x + ρ 0 T t P Λ 1 (y)y x t dx (26b) 
T 3 := 2 1 0 e -µθā2x T P Θ -1 T ∆ T -1 ζ [f ] T -1 ζ +ρ 0 T t P K ζ 2 [ξ] + ρ 0 T t Sym(P K ζ 1 [ξ]) t +θ ᾱ2 T P + ρ 0 T t P t dx (26c) 
T 4 := θ 1 0 e -µθā2x × 2 T Sym(P (A + KC)) + 2ρ 0 T t Sym(P (A + KC)) t -ρ 0 T t P K[ξ](A + KC) -ρ 0 T (A + KC) T K T [ξ]P t dx ( 
26d) It turns out from the above equations that T 1 ≤ 0 (27) Next, observe that the term T 2 can be bounded as follows:

T 2 ≤ (α -µθā 2 inf ξ∈B(δ) λ 2 (Cξ))W - µθā 2 a 1,0 1 0 e -µθā2x (λ 1 (y) -λ 2 (y)) 2 1 + ρ 0 (∂ t 1 ) 2 dx ( 28 
)
where α := |P |δγ4 eig(P ) and by virtue of Assumption A1, we finally obtain

T 2 ≤ (α -µθā 2 inf ξ∈B(δ) λ 2 (Cξ))W (29) 
By exploiting (21e), ( 22), T 3 can be bounded as follows:

T 3 ≤ 1 0 e -µθā2x × 2|P | γ 2 | | 2 + ρ 0 γ 8 | || t | + ρ 0 γ 7 | t | 2 dx + 2θ ᾱ2 W ≤ (γ 8 + 2 max(γ 2 , γ 7 )) |P | eig(P ) + 2θ ᾱ2 W (30) 
The term T 4 can be rewritten in the following form:

T 4 := -θ 1 0 e -µθā2x T T t Σ[ξ] t dx (31) 
where, after utilizing (7), Σ :

B(δ) → C 0 [0, +∞) × [0, 1]; R 4×4 is given by Σ[ξ] := I 2×2 -ρ 0 (A + KC) T K T [ξ]P -ρ 0 P K[ξ](A + KC) ρ 0 I 2×2 (32) We can easily verify that Σ[ξ]
0 (by solving a simple LMI) for every ξ ∈ B(δ) if

ρ 0 < γ 2 5 γ 2 4 δ 2 |P | 2 |A + KC| 2 (33) 
It turns out that for every choice of matrices P and K satisfying equation ( 7), there always exists a ρ 0 (sufficiently small), such that the above inequality is satisfied and this fact renders Σ[ξ] positive. Consequently, for appropriate choice of ρ 0 , there exists σ > 0, such that

T 4 ≤ -θ σ |P | W (34) Now, choose µ, such that µ > 2 inf ξ∈B(δ) λ 2 (Cξ) (35)
with the right-hand side being well-defined by Remark 3.1.

Combining equations ( 27), ( 29), ( 30), ( 34), ( 35) with ( 25), we deduce Ẇ ≤ (-θω 1 + ω 2 )W ( 36)

where

ω 1 := σ |P | , ω 2 := α + (γ 8 + 2 max(γ 2 , γ 7 )) |P | eig(P )
. We obtained the estimate (36) of Ẇp for of class C 2 , but the proof so far implies that the result does not depend on the C 2 -norms. Therefore, by invoking density arguments, the results remain valid with only of class C 1 .

Applying the comparison lemma to (36), we get W (t) ≤ e -(θω1-ω2)t W (0), ∀t ≥ 0 (37) Now, one can select the high-gain θ, such that θ > max(1, θ 0 ); θ 0 := ω 2 /ω 1 (38) and, therefore, for sufficiently large θ we achieve to obtain θω 1 -ω 2 > 0. In order to derive an estimation of the H 1norm, we can observe that a relationship of the following form can be deduced from the dynamics (13):

γ 5 x (t, •) L 2 ≤ t (t, •) L 2 ≤ γ 6 x (t, •) L 2 + (θ|A + KC| + θ|ā 2 | + γ 2 ) (t, •) L 2
(39) Performing trivial inequalities and using the abovementioned relation, we can derive a constant c > 0 dependent on θ, such that for all t ≥ 0,

(t, •) H 1 ≤ cρ -1/2 0 |P | eig(P ) e -ω 1 2 (θ-θ0)t 0 H 1 (40) 
where 0 (x) := (0, x) is the initial condition of the error.

In the above derivations we have used the inequality

ρ 0 eig(P ) (t, •) 2 H 1 ≤ W (t) ≤ e µā2θ |P | (t, •) 2 H 1 , t ≥ 0 ( 41 
) Now, it is clear that for any κ > 0, one can choose θ = 2 ω1 κ + θ 0 , so as to get an estimation error as in ( 12), with l being dependent on θ.

Hence, we designed an exponential in the H 1 -norm highgain observer which convergences to zero after an initial time t 0 and with tunable convergence rate κ, dependent on the selection of θ. The higher the values θ attains, the faster the observation error converges to zero. Remark 4. Let us remark here, that in (12), constant l depends exponentially on θ, contrary to the classical highgain observer design results, where it should only have polynomial dependence. In different formulation, we can rewrite (12) as

ξ(t, •) -T -1 ζ(t, •) H 1 ≤ le -κ(t-t0) ξ 0 -T -1 ζ0 H 1 , t ≥ 0 (42)
where, as we showed in the proof, l depends polynomially on θ and t

0 := µā 2 θ ω 1 (θ -θ 0 ) (43)
denotes the time from which the exponential converges starts and, by definition, it depends only on the minimum value of λ 2 (•). It is worthwile to remark that, the previous limitation leads to a slightly weaker result, compared to our previous approaches [START_REF] Kitsos | High-gain observer design for a class of hyperbolic systems of balance laws[END_REF], [START_REF] Kitsos | A high-gain observer for a class of 2x2 hyperbolic systems with C1 exponential convergence[END_REF], although here, we confronted the problem with distinct characteristic velocities by avoiding the restrictive limitation of injecting output's spatial derivatives, as in [START_REF] Kitsos | A high-gain observer for a class of 2x2 hyperbolic systems with C1 exponential convergence[END_REF]. Future studies will be dedicated to this.

To better illustrate the nature of the high-gain observer design, we use an example.

Example 1. Consider system 44) is of the form (1a) with boundary conditions described by (2). More particularly, Λ(ξ 1 ) = diag (2 + cos(ξ 1 ), 2 + sin(ξ 1 )), f (ξ) = sin(ξ 1 ) sin(ξ 2 -ξ 1 ) , H(•) = 0. All Assumptions A0 -A2 that we have assumed for system (1a) are satisfied for the choice of these initial conditions. We choose vector gain K = (-2, -1) T and after calculating all the essential constants that are used in Theorem 2, we can proceed to the observer design. We appropriately choose the high gain constant θ being equal to 50. We also calculate a 2 by ( 9) in order to perform the transformation T as in (3) into the system ζ and we can, therefore, obtain the high-gain observer dynamics for ζ as in (11). Finally, we choose arbitrary observer initial conditions (in accordance with the compatibility conditions) ζ0 1 (x) = ζ0 2 (x) = 0, x ∈ [0, 1]. In Figure 1 the solution ξ 1 is shown and in Figures 2 and3 we illustrate the estimation error functions for both states, which exhibit exponential convergence to zero, as predicted by Theorem 2.

∂ t ξ 1 + 0.1(2 + cos(ξ 1 ))∂ x ξ 1 = ξ 2 + sin(ξ 1 ), ( 44a 
) ∂ t ξ 2 + 0.1(2 + sin(ξ 1 ))∂ x ξ 2 = sin(ξ 2 -ξ 1 ), ( 44b 
(x) = x 2 , ξ 0 2 (x) = -x 2 /2, x ∈ [0, 1]. System (

CONCLUSION

In this paper we designed a high-gain observer for a class of observable hyperbolic systems with distributed measurement. This result constitutes an extension of the high-gain observer design for finite-dimensional systems to a class of hyperbolic systems and, also, an extension of our previous works towards this direction, as we considered here distinct characteristic velocities. We proved the exponential decay of the observer error in the H 1 -norm step by step by first choosing an appropriate Lyapunov functional. The extension of this methodology to more general cases of hyperbolic systems and weakening some of our assumptions, in order this methodology to apply to real systems, like chemical reactors, is subject to our future approaches.

  ) ∀(t, x) ∈ Π, with distributed measurement y = ξ 1 (44c) and boundary conditions of the form ξ(t, 0) = 0, t ≥ 0 (44d) Consider initial conditions ξ 0 1
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 1 Fig. 1. Time and Space Evolution of Solution ξ 1 (system's output)