
HAL Id: hal-02294962
https://hal.science/hal-02294962

Submitted on 23 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High-gain observers for a class of 2 x 2 quasilinear
hyperbolic systems with 2 different velocities

Constantinos Kitsos, Gildas Besancon, Christophe Prieur

To cite this version:
Constantinos Kitsos, Gildas Besancon, Christophe Prieur. High-gain observers for a class of 2 x 2
quasilinear hyperbolic systems with 2 different velocities. MECHATRONICS 2019 - NOLCOS 2019 -
8th IFAC Symposium on Mechatronic Systems - 11th IFAC Symposium on Nonlinear Control Systems,
Sep 2019, Vienne, Austria. �10.1016/j.ifacol.2019.11.780�. �hal-02294962�

https://hal.science/hal-02294962
https://hal.archives-ouvertes.fr


High-gain observers for a class of 2× 2
quasilinear hyperbolic systems with 2

different velocities

Constantinos Kitsos ∗ Gildas Besançon ∗ Christophe Prieur ∗
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Abstract: In this work we extend recently proposed observer designs based on high-gain to
a more general first order quasilinear hyperbolic system of balance laws. This class of systems
is written in an observable form with two states, two different characteristic velocities and
distributed measurement. The exponential stability of the related observation error is fully
established by means of Lyapunov-based analysis.
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1. INTRODUCTION

The classical high-gain observer design for finite-dimensional
nonlinear systems has gained great academic interest
through the last decades. They apply to a large class
of cases corresponding to uniformly observable systems
Gauthier and Bornard [1981], Gauthier et al [1992]. It
has been extensively studied in the literature and remains
widely considered, see Khalil [2017] and references therein.
In the recent paper Kitsos et al [2018], we extended this
approach to a class of hyperbolic systems, for which first
results on high-gain observer design have been proposed
for a particular case of uniformly observable systems, writ-
ten as an n × n quasi-linear hyperbolic system of balance
laws and considering distributed measurements. In a more
recent work Kitsos et al [2019], we considered a more
general case, where a 2× 2 system is written in an observ-
able form, differentiating from Kitsos et al [2018] where
we needed to consider identical chatacteristic velocities.
There exist some results on observer design for hyperbolic
systems in the literature, mainly considering the full state
vector on the boundaries as measurement. Amongst oth-
ers, one can refer to Di Meglio et al [2013] and Hasan et
al [2016] for the backstepping design, to Besançon et al
[2006] for a discretization approach, to Castillo et al [2013]
for direct infinite-dimension-based Lyapunov techniques
(see also Besançon et al [2013]) or to Nguyen et al [2016]
for optimization methods. For semigroup-based methods
see Curtain [1982], Christophides and Daoutidis [1996]
and Schaum et al [2015].

The present paper aims at providing sufficient conditions
for high-gain observer design for a class of quasilinear
hyperbolic systems of balance laws. The difficulty of the
present approach comes from the fact that the Lyapunov
stability analysis that we employ requires the existence of
a positive definite symmetric Lyapunov matrix involved in
the chosen Lyapunov functional, which has to additionally

commute with the matrix of the characteristic velocities.
For this reason, considering stability problems in Bastin
and Coron [2016], Coron and Bastin [2015] and in Prieur
et al [2014] (Proposition 2.1) and other approaches of
these authors, either such a commutativity property is
assumed to be satisfied, or a diagonal Lyapunov matrix is
chosen. In our case, the Lyapunov matrix cannot commute
with the matrix of the characteristic velocities, since it
is required to satisfy silmutaneously a matrix Lyapunov
equation and the involved stabilizable matrix, which de-
scribes the linear part of the balance laws, does not allow
diagonal stability to hold. Due to this technical limitation,
in the first approach Kitsos et al [2018], the characteristic
velocities were considered identical. In Kitsos et al [2019]
we considered a more general problem for a 2× 2 system,
where space derivatives of the output were injected in the
observer’s equations as correction terms, in order to con-
front this difficulty. The contribution of the present paper
is twofold: First, by employing a triangular linear coor-
dinates transformation technique, we avoid the restrictive
injection of output’s space derivatives, in order to confront
the problem of distinct characteristic velocities. Second, we
prove a stronger result of H1 exponential stability of the
observer error, contrary to the exponential stability result
in the supremum norm (Kitsos et al [2018]).

The problem is illustrated in details in Section 2. The
theoretical analysis and the full proofs for the observer
design that we develop are presented in Section 3, where
Theorem 2 constitutes the main result. In addition, an
example illustrates the nature of our methodology. Some
conclusions and perspectives are discussed in Section 4.

Notation: For a given x ∈ Rn, |x| denotes its usual Eu-
clidean norm. For a given constant matrix A ∈ Rm×n,
AT denotes its transpose, |A| := sup {|Ax| , |x| = 1} is its

induced norm and Sym(A) = A+AT

2 stands for its sym-
metric part. By eig(A) we denote the minimum eigenvalue



of a matrix A. For a function f(·), we use the difference

operator given by ∆ξ̂ [f ] (ξ) := f(ξ̂) − f(ξ), parametrized

by ξ̂. For f ∈ C1 by Df we denote its Jacobian. For
a continuous (C0) map [0, 1] 3 x 7→ ξ(x) ∈ Rn we
adopt the notation ‖ξ‖0 := max{|ξ(x)| , x ∈ [0, 1]}. For
a continuously differentiable (C1) map [0, 1] 3 x 7→ ξ(x) ∈
Rn we adopt the notation ‖ξ‖1 := ‖ξ‖0 + ‖ξx‖0. For
a function ξ ∈ H1 ([0, 1];Rn) the definition of the H1-

norm is ‖ξ‖H1 :=
(∫ 1

0

(
|ξ|2 + |ξx|2

)
dx
)1/2

. By B(δ) we

denote the set B(δ) := {ξ ∈ C1
(
[0,+∞)× [0, 1];R2

)
:

‖ξ(t, ·)‖1 ≤ δ, ∀t ≥ 0}.

2. CLASS OF SYSTEMS AND MAIN OBSERVER
RESULT

Let us consider the first-order quasilinear hyperbolic sys-
tem described by the following equations on a time and
space domain Π := [0,+∞)× [0, 1]:

ξt(t, x) + Λ(ξ1(t, x))ξx(t, x) = Aξ(t, x) + f (ξ(t, x)) (1a)

where [ξ1 ξ2]
T

= ξ : [0,+∞) × [0, 1] → R2 is the state.
Consider also distributed measurement y : [0,+∞)× [0, 1]
that is available at the output, given by

y(t, x) = Cξ(t, x) (1b)

We assume that

A =

[
0 1
0 0

]
, C = [1 0] ,

Λ(ξ1) := diag {λ1(ξ1), λ2(ξ2)} , f(ξ) =

[
f1(ξ1)

f2(ξ1, ξ2)

]
with λ1(ξ1), λ2(ξ1) > 0,∀ξ1 ∈ R. We observe that the
system satisfies some triangular structure (as in Kitsos
et al [2018]), which illustrates an analogy to the finite-
dimensional case.

We consider initial and boundary conditions of the form

ξ(0, x) =: ξ0(x), x ∈ [0, 1] (2a)

ξ(t, 0) = H (ξ1(t, 1)) , t ∈ [0,+∞) (2b)

Considering system’s dynamics, we assume the following
regularity.

A0. The involved mappings λi ∈ C1
(
R;R2

)
, i = 1, 2,

f ∈ C1
(
R2;R2

)
, H ∈ C1

(
R;R2

)
, ξ0 ∈ C1

(
[0, 1];R2

)
.

The following assumption is essential to assert the well-
posedeness of our system, along with the minimal observer
design requirement of ”forward completeness” and, fur-
thermore, it imposes boundedeness of the classical solu-
tions in the C1-norm, which is essential in the design of our
observer. For more detailed presentation, the reader can
refer to Bastin and Coron [2016], Li [1985] and references
therein, where sufficient conditions for the well-posedeness
of quasilinear hyperbolic systems of balance laws are given.

A1. There exists nonempty compact set
M ⊂ C1

(
[0, 1];R2

)
, such that, for any initial conditions

ξ0 ∈M, satisfying zero-order and one-order compatibility
conditions, problem (1a), (2) admits a unique classical
solution in C1

(
[0,+∞)× [0, 1];R2

)
. Moreover, for any ξ0

in the above-mentioned class, there exists δ > 0, such that
‖ξ(t, ·)‖1 ≤ δ, ∀t ∈ [0,+∞). Also, λ1(Cξ) ≥ λ2(Cξ),∀ξ ∈
B(δ).

The following global Lipschitzness assumption is crucial
for the stability analysis of the observer error equation.

A2. There exists Lipschitz constant Lf > 0, such that for
all ξ ∈ R2, |Df(ξ)| ≤ Lf . There exists Lipschitz constant

Lf ′ > 0, such that for all ξ, ξ̂ ∈ R2, |∆ξ̂ [Df ] (ξ)| ≤ Lf ′ |ξ̂−
ξ|.
In order to be able to adopt a high-gain observer methodol-
ogy, we need to first perform the following invertible linear
transformation, in order to obtain a more appropriate
form:

ζ = Tξ (3a)

T :=

[
1 0
a2 1

]
(3b)

with a2 to be defined later.

Now system (1a), (1b), (2b) is rewritten as follows:

ζt(t, x) + Λ̄(ζ1(t, x))ζx(t, x) = Aζ(t, x) +Mζ(t, x)

+Tf(T−1ζ(t, x)) (4a)

y(t, x) = Cζ(t, x) (4b)

ζ(t, 0) = TH (ζ1(t, 1)) (4c)

defined on the domain Π, where M is given by

M :=

[
−a2 0
−a2

2 a2

]
(5)

and

Λ̄(ζ1) := TCTC (λ1 (ζ1)− λ2 (ζ1)) + λ2 (ζ1) I2×2 (6)

Consider now K ∈ R2 and P a symmetric and positive
definite matrix satisfying

2Sym (P (A+KC)) = −I2×2 (7)

which is always feasible, due to the observability of the
pair (A,C). Define also diagonal matrix Θ, given by

Θ := diag
{
θ, θ2

}
(8)

where θ > 1 is the candidate high-gain constant of the
observer, which will be selected later. Then, set

a2 := a2,0/a1,0 (9a)[
a1,0

a2,0

]
:= θ−1ΘP−1CT (9b)

Notice that a2 is written in the form

a2 = θā2 (10)

where ā2 is independent of θ and depends only on compo-
nents of P .

Let us now introduce our candidate observer dynamics
defined on the domain Π and its boundary conditions for
system (4), as follows:

ζ̂t(t, x) + Λ̄(y(t, x))ζ̂x = Aζ̂(t, x) +Mζ̂(t, x)

−
(

ΘK −
[
2a2

a2
2

])(
y(t, x)− Cζ̂(t, x)

)
+ Tf(T−1ζ̂(t, x))

(11a)

ζ̂(t, 0) = TH (y(t, 1)) , t ≥ 0 (11b)

The following lemma guarantees the existence of unique
global classical solutions for our candidate observer. We
invoke Kmit [2008], where an analogous result is proven
under Lipschitzness properties of the dynamics. It is easy



to check that our candidate observer under the transfor-
mation ζ := T−1ζ̂ is written in a well-posed characteristic
form and satisfies semilinear hyperbolic laws. Assumptions
A0 - A2 in conjunction with the previously mentioned com-
ments (details are left to the reader) are compatible with
the sufficient conditions of Theorem 2.1 in Kmit [2008]
and, thereby similar global existence result is established
for our observer system, as given in the following result.

Lemma 1. Under Assumptions A0, A2 and considering
y ∈ C1 ([0,+∞)× [0, 1];R), with y globally bounded in the
C1-norm, the problem described by (11) on domain Π and

initial conditions ζ̂0 := ζ̂(0, x),∀x ∈ [0, 1], satisfying zero-
order and one-order compatibility conditions (see Bastin
and Coron [2016] for details on compatibility conditions)
admits a unique classical solution on Π, i.e., there exists a

unique solution ζ̂ ∈ C1
(
[0,+∞)× [0, 1];R2

)
.

We are now in a position to present our main result on the
observer design.

Theorem 2. Consider system (1a) - (2), defined on Π
with output (1b) and suppose that Assumptions A0, A1
and A2 hold. Let also P ∈ R2×2 be a positive definite
symmetric matrix and K a vector both satisfying (7).

Then, for θ > 1, system (11) with initial condition ζ̂0 ∈
C1([0, 1];R2), with ζ̂(0, x) = ζ̂0(x), satisfying zero-order
and one-order compatibility conditions, is a well-posed
high-gain observer for ζ = Tξ, in the sense that it admits
a unique classical solution in Π on the one hand, providing
an estimate for the state of system (1a) - (2) for choice of
θ large enough on the other hand. More precisely, for any
κ > 0, there exist θ > 1, such that the following estimate
is satisfied:

‖ξ(t, ·)− T−1ζ̂(t, ·)‖H1 ≤ le−κt‖ξ0 − T−1ζ̂0‖H1 , t ≥ 0
(12)

for some l > 0 depending on θ.

This theorem states that for system (1a) - (2) we have a
systematic high-gain observer design providing an estimate
of its full state, with a convergence rate adjustable via the
high gain θ.

3. OBSERVER CONVERGENCE PROOF

This section is dedicated to the proof of Theorem 2.

We define the linearly transformed error by

ε := Θ−1
(
ζ̂ − ζ

)
and we obtain the following equations defined on Π:

εt + Λ1(y)εx = θ (A+KC) ε

+θā2ε+ Θ−1T∆T−1ζ̂ [f ]
(
T−1ζ

)
(13)

ε(t, 0) = 0 (14)

where

Λ1(y) :=
1

a1,0
P−1CTC (λ1(y)− λ2(y)) + λ2(y)I2×2 (15)

Observe from (15) that PΛ1(y) is symmetric for any
symmetric matrix P , a fact that will allow an integration
by parts that we will perform later.

At this point, let us introduce the operator

K : C1
(
[0,+∞)× [0, 1];R2

)
→ C0

(
[0,+∞)× [0, 1];R2×2

)

defined by

K[ξ] := Λ′1(Cξ)Λ−1
1 (Cξ)C

∂

∂t
ξ (16)

Define also

Kζ̂1 :

C1
(
[0,+∞)× [0, 1];R2

)
→ C0

(
[0,+∞)× [0, 1];R2×2

)
Kζ̂2 :

C1
(
[0,+∞)× [0, 1];R2

)
→ C0

(
[0,+∞)× [0, 1];R2

)
(parametrized by ζ̂ and acting on ξ = T−1ζ) by

Kζ̂1[ξ] := K[ξ] + Θ−1TDf(T−1ζ̂)T−1Θ (17a)

Kζ̂2[ξ] := −K[ξ]Θ−1T∆T−1ζ̂ [f ]
(
T−1ζ

)
+Θ−1T∆T−1ζ̂ [Df ]

(
T−1ζ

) ∂
∂t
ξ (17b)

Next by temporarily assuming that ε is of class C2, we
derive the following hyperbolic equations for εt:

εtt + Λ1(y)εtx = Kζ̂1[ξ]εt + θā2εt

+θ(A+KC)εt − θK[ξ](A+KC)ε+Kζ̂2[ξ] (18)

εt(t, 0) = 0 (19)

Remark 3. Notice that whenever ξ ∈ B(δ), due to conti-
nuity and positiveness of λi, i = 1, 2 and furthermore the
fact that ‖ξ(t, ·)‖0 ≤ δ, ∀t ≥ 0, 0 < supξ∈B(δ))(λi(Cξ)),

infξ∈B(δ))(λi(Cξ)) < +∞, i = 1, 2. In addition, whenever
ξ ∈ B(δ), as a result of the hyperbolic dynamics (1a), we
easily calculate constant δ1 > 0, such that

‖ξt(t, ·)‖0 = ‖T−1ζt(t, ·)‖0 ≤ δ1,∀t ≥ 0 (20)

By virtue of the above arguments, the fact that θ > 1,
(20), continuity and global Lipschitzness (Assumptions
A0, A2) of the involved mappings, we can easily calculate
positive constants γi, i = 1, . . . , 6, such that whenever
ξ ∈ B(δ), the following inequalities are satisfied for all

ζ̂ ∈ C0
(
[0,+∞)× [0, 1];R2

)
, t ≥ 0, x ∈ [0, 1]:

|Θ−1TDf(T−1ζ̂(t, x))T−1Θ| ≤ γ1 (21a)

|Θ−1T∆T−1ζ̂ [f ]
(
T−1ζ(t, x)

)
| ≤ γ2|ε(t, x)| (21b)

|Θ−1T∆T−1ζ̂ [Df ]
(
T−1ζ(t, x)

)
| ≤ γ3|ε(t, x)| (21c)

|Λ′1(ξ1(t, x))| ≤ γ4 (21d)

γ5 ≤ |Λ1(ξ1(t, x))| ≤ γ6 (21e)

Note that all the above constants γ1, . . . , γ6 depend only
on the Lipschitz constants of Assumption A2, constants
δ, δ1, elements of matrices P and Λ and are independent
of the high gain θ, due to the triangular structures of
the nonlinear mappings. We can similarly obtain constants
γ7, γ8 > 0, such that for all (t, x) ∈ Π, we get

|Kζ̂1[ξ](t, x)| ≤ γ7 := γ1 + δ1γ4/γ5,

|Kζ̂2[ξ](t, x)| ≤ γ8|ε(t, x)|; γ8 := δ1γ4γ2/γ5 + γ3δ1 (22)

To prove the error exponential stability, let us define
functional W : C1([0, 1];R2)→ R by

W[ε] :=

∫ 1

0

e−µθā2x
(
εTPε+ ρ0ε

T
t Pεt

)
dx (23)

where ρ0 ∈ (0, 1] is a constant (to be chosen appropri-
ately), P ∈ R2×2 is a positive definite symmetric matrix
satisfying (7) for appropriate K and µ > 0 will be chosen
appropriately later.



By invoking Lemma 1 and Assumption A1, which establish
global unique classical solutions for observer system (11)
and system (1a), (2) respectively, we are now in a position
to define W : [0,+∞) → R by W (t) := W[ε](t), t ≥ 0
(where we use the notation ε(t) := ε(t, x),∀x ∈ [0, 1]).

Calculating the time-derivative Ẇ along the classical so-
lutions of (13) - (14), (18) - (19), we get

Ẇ =

∫ 1

0

e−µθā2x

×
(
εTt Pε+ εTPεt + ρ0ε

T
ttPεt + ρ0ε

T
t Pεtt

)
dx (24)

In the following, we omit the arguments (t, x) of the
mappings inside the integrals.

After substituting the dynamical equations (13) and (18)
into the above equation and applying integration by parts,
Ẇ can be written in the following form:

Ẇ = T1 + T2 + T3 + T4 (25)

where

T1 := −e−µθā2
(
ε(1)TPΛ1(y(1))ε(1)

+ρ0εt(1)TPΛ1(y(1))εt(1)
)

(26a)

T2 :=

∫ 1

0

e−µθā2x
(
−µθā2ε

TPΛ1(y)ε− µθā2ρ0ε
T
t PΛ1(y)εt

+εTPΛ′1(y)yxε+ ρ0ε
T
t PΛ′1(y)yxεt

)
dx (26b)

T3 := 2

∫ 1

0

e−µθā2x
(
εTPΘ−1T∆T−1ζ̂ [f ]

(
T−1ζ

)
+ρ0ε

T
t PK

ζ̂
2[ξ] + ρ0ε

T
t Sym(PKζ̂1[ξ])εt

+θᾱ2

(
εTPε+ ρ0ε

T
t Pεt

))
dx (26c)

T4 := θ

∫ 1

0

e−µθā2x

×
(
2εTSym(P (A+KC))ε+ 2ρ0ε

T
t Sym(P (A+KC))εt

−ρ0ε
T
t PK[ξ](A+KC)ε− ρ0ε

T(A+KC)TKT[ξ]Pεt
)

dx
(26d)

It turns out from the above equations that

T1 ≤ 0 (27)

Next, observe that the term T2 can be bounded as follows:

T2 ≤ (α− µθā2 inf
ξ∈B(δ)

λ2(Cξ))W

−µθā2

a1,0

∫ 1

0

e−µθā2x(λ1(y)− λ2(y))
(
ε21 + ρ0(∂tε1)2

)
dx

(28)

where α := |P |δγ4
eig(P ) and by virtue of Assumption A1, we

finally obtain

T2 ≤ (α− µθā2 inf
ξ∈B(δ)

λ2(Cξ))W (29)

By exploiting (21e), (22), T3 can be bounded as follows:

T3 ≤
∫ 1

0

e−µθā2x

×
(
2|P |

(
γ2|ε|2 + ρ0γ8|ε||εt|+ ρ0γ7|εt|2

))
dx+ 2θᾱ2W

≤
(

(γ8 + 2 max(γ2, γ7))
|P |

eig(P )
+ 2θᾱ2

)
W (30)

The term T4 can be rewritten in the following form:

T4 := −θ
∫ 1

0

e−µθā2x
([
εT εTt

]
Σ[ξ]

[
ε
εt

])
dx (31)

where, after utilizing (7), Σ : B(δ)
→ C0

(
[0,+∞)× [0, 1];R4×4

)
is given by

Σ[ξ] :=

[
I2×2 −ρ0(A+KC)TKT[ξ]P

−ρ0PK[ξ](A+KC) ρ0I2×2

]
(32)

We can easily verify that Σ[ξ] � 0 (by solving a simple
LMI) for every ξ ∈ B(δ) if

ρ0 <
γ2

5

γ2
4δ

2|P |2|A+KC|2
(33)

It turns out that for every choice of matrices P and K sat-
isfying equation (7), there always exists a ρ0 (sufficiently
small), such that the above inequality is satisfied and this
fact renders Σ[ξ] positive. Consequently, for appropriate
choice of ρ0, there exists σ > 0, such that

T4 ≤ −θ
σ

|P |
W (34)

Now, choose µ, such that

µ >
2

infξ∈B(δ) λ2(Cξ)
(35)

with the right-hand side being well-defined by Remark 3.1.
Combining equations (27), (29), (30), (34), (35) with (25),
we deduce

Ẇ ≤ (−θω1 + ω2)W (36)

where ω1 := σ
|P | , ω2 := α+ (γ8 + 2 max(γ2, γ7)) |P |

eig(P ) . We

obtained the estimate (36) of Ẇp for ε of class C2, but the
proof so far implies that the result does not depend on the
C2-norms. Therefore, by invoking density arguments, the
results remain valid with ε only of class C1.

Applying the comparison lemma to (36), we get

W (t) ≤ e−(θω1−ω2)tW (0),∀t ≥ 0 (37)

Now, one can select the high-gain θ, such that

θ > max(1, θ0); θ0 := ω2/ω1 (38)

and, therefore, for sufficiently large θ we achieve to obtain
θω1 − ω2 > 0. In order to derive an estimation of the H1-
norm, we can observe that a relationship of the following
form can be deduced from the dynamics (13):

γ5‖εx(t, ·)‖L2 ≤ ‖εt(t, ·)‖L2

≤ γ6‖εx(t, ·)‖L2 + (θ|A+KC|+ θ|ā2|+ γ2)‖ε(t, ·)‖L2

(39)

Performing trivial inequalities and using the above-
mentioned relation, we can derive a constant c > 0 de-
pendent on θ, such that for all t ≥ 0,

‖ε(t, ·)‖H1 ≤ cρ−1/2
0

√
|P |

eig(P )
e−

ω1
2 (θ−θ0)t‖ε0‖H1 (40)

where ε0(x) := ε(0, x) is the initial condition of the error.

In the above derivations we have used the inequality

ρ0eig(P )‖ε(t, ·)‖2H1 ≤W (t) ≤ eµā2θ|P |‖ε(t, ·)‖2H1 , t ≥ 0

(41)

Now, it is clear that for any κ > 0, one can choose
θ = 2

ω1
κ + θ0, so as to get an estimation error as in (12),

with l being dependent on θ.

Hence, we designed an exponential in the H1-norm high-
gain observer which convergences to zero after an initial
time t0 and with tunable convergence rate κ, dependent



on the selection of θ. The higher the values θ attains, the
faster the observation error converges to zero.

Remark 4. Let us remark here, that in (12), constant l
depends exponentially on θ, contrary to the classical high-
gain observer design results, where it should only have
polynomial dependence. In different formulation, we can
rewrite (12) as

‖ξ(t, ·)− T−1ζ̂(t, ·)‖H1 ≤ l̄e−κ(t−t0)‖ξ0 − T−1ζ̂0‖H1 , t ≥ 0
(42)

where, as we showed in the proof, l̄ depends polynomially
on θ and

t0 :=
µā2θ

ω1(θ − θ0)
(43)

denotes the time from which the exponential converges
starts and, by definition, it depends only on the minimum
value of λ2(·). It is worthwile to remark that, the previous
limitation leads to a slightly weaker result, compared to
our previous approaches Kitsos et al [2018], Kitsos et
al [2019], although here, we confronted the problem with
distinct characteristic velocities by avoiding the restrictive
limitation of injecting output’s spatial derivatives, as in
Kitsos et al [2019]. Future studies will be dedicated to
this.

To better illustrate the nature of the high-gain observer
design, we use an example.

Example 1. Consider system

∂tξ1 + 0.1(2 + cos(ξ1))∂xξ1 = ξ2 + sin(ξ1), (44a)

∂tξ2 + 0.1(2 + sin(ξ1))∂xξ2 = sin(ξ2 − ξ1), (44b)

∀(t, x) ∈ Π, with distributed measurement

y = ξ1 (44c)

and boundary conditions of the form

ξ(t, 0) = 0, t ≥ 0 (44d)

Consider initial conditions ξ0
1(x) = x2, ξ0

2(x) = −x2/2, x ∈
[0, 1]. System (44) is of the form (1a) with boundary
conditions described by (2). More particularly, Λ(ξ1) =

diag (2 + cos(ξ1), 2 + sin(ξ1)), f(ξ) =

[
sin(ξ1)

sin(ξ2 − ξ1)

]
,

H(·) = 0. All Assumptions A0 - A2 that we have assumed
for system (1a) are satisfied for the choice of these initial
conditions. We choose vector gain K = (−2,−1)T and
after calculating all the essential constants that are used
in Theorem 2, we can proceed to the observer design. We
appropriately choose the high gain constant θ being equal
to 50. We also calculate a2 by (9) in order to perform
the transformation T as in (3) into the system ζ and
we can, therefore, obtain the high-gain observer dynamics
for ζ as in (11). Finally, we choose arbitrary observer
initial conditions (in accordance with the compatibility

conditions) ζ̂0
1 (x) = ζ̂0

2 (x) = 0, x ∈ [0, 1].

In Figure 1 the solution ξ1 is shown and in Figures 2
and 3 we illustrate the estimation error functions for both
states, which exhibit exponential convergence to zero, as
predicted by Theorem 2.

4. CONCLUSION

In this paper we designed a high-gain observer for a class of
observable hyperbolic systems with distributed measure-
ment. This result constitutes an extension of the high-gain

Fig. 1. Time and Space Evolution of Solution ξ1(system’s
output)

Fig. 2. Time and Space Evolution of Observer Error

T−1ζ̂1 − ξ1

Fig. 3. Time and Space Evolution of Observer Error

T−1ζ̂2 − ξ2



observer design for finite-dimensional systems to a class of
hyperbolic systems and, also, an extension of our previous
works towards this direction, as we considered here distinct
characteristic velocities. We proved the exponential decay
of the observer error in the H1- norm step by step by
first choosing an appropriate Lyapunov functional. The
extension of this methodology to more general cases of hy-
perbolic systems and weakening some of our assumptions,
in order this methodology to apply to real systems, like
chemical reactors, is subject to our future approaches.
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