
HAL Id: hal-02294900
https://hal.science/hal-02294900v1

Submitted on 23 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The role of APC-mediated actin assembly in
microtubule capture and focal adhesion turnover

M. Angeles Juanes, Daniel Isnardon, Ali Badache, Sophie Brasselet, Manos
Mavrakis, Bruce Goode

To cite this version:
M. Angeles Juanes, Daniel Isnardon, Ali Badache, Sophie Brasselet, Manos Mavrakis, et al.. The role
of APC-mediated actin assembly in microtubule capture and focal adhesion turnover. Journal of Cell
Biology, 2019, 218 (10), pp.3415. �10.1083/jcb.201904165�. �hal-02294900�

https://hal.science/hal-02294900v1
https://hal.archives-ouvertes.fr


   

 

The role of APC-mediated actin assembly in 
microtubule capture and focal adhesion turnover 
 

M. Angeles Juanes1*, Daniel Isnardon2, Ali Badache2, Sophie Brasselet3, Manos 
Mavrakis3, and Bruce L. Goode1* 

 

1Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454, 
USA 
2Centre de Recherche en Cancérologie de Marseille, Inserm, Institut Paoli-Calmettes, 
Aix-Marseille Université, CNRS, 13009 Marseille, France. 
 
3Aix-Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, 
France. 
 
 
*Correspondence to: juanes@brandeis.edu; goode@brandeis.edu 
 
M. Angeles Juanes https://orcid.org/0000-0002-9801-9652 
Ali Badache https://orcid.org/0000-0001-7710-2505 
Sophie Brasselet https://orcid.org/0000-0002-6766-9273 

Manos Mavrakis https://orcid.org/0000-0002-7980-1841 

Bruce L. Goode https://orcid.org/0000-0002-6443-5893 
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SUMMARY 
 
Actin assembly by APC maintains proper organization and dynamics of F-actin at focal 

adhesions. This, in turn, impacts the organization of other molecular components, and 

the responsiveness of focal adhesions to microtubule capture and autophagosome-

induced disassembly. 

 
ABSTRACT 
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Focal adhesion (FA) turnover depends on microtubules and actin. Microtubule ends are 

captured at FAs, where they induce rapid FA disassembly. However, actin’s roles are 

less clear. Here, we use polarization-resolved microscopy, FRAP, live cell imaging, and 

a mutant of Adenomatous polyposis coli (APC-m4) defective in actin nucleation to 

investigate the role of actin assembly in FA turnover. We show that APC-mediated actin 

assembly is critical for maintaining normal F-actin levels, organization, and dynamics at 

FAs, along with organization of FA components. In wild type cells, microtubules are 

captured repeatedly at FAs as they mature, but once a FA reaches peak maturity, the 

next microtubule capture event leads to delivery of an autophagosome, triggering FA 

disassembly. In APC-m4 cells, microtubule capture frequency and duration are altered, 

and there are long delays between autophagosome delivery and FA disassembly. Thus, 

APC-mediated actin assembly is required for normal feedback between microtubules 

and FAs, and maintaining FAs in a state ‘primed’ for microtubule-induced turnover.
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INTRODUCTION 
 

Directed cell migration is essential for embryonic development, immune surveillance, 

and tissue repair and regeneration (Weijer, 2009; Bravo-Cordero et al., 2012), and 

depends on coordinated assembly and turnover of focal adhesions (FAs). FAs are large 

macromolecular assemblages that link the actin cytoskeleton to the extra-cellular matrix 

(ECM) (Ridley et al., 2003; Gardel et al., 2010). FAs initially form at the leading edge of 

migrating cells as small nascent adhesions. The majority of nascent adhesions are 

unstable and disappear rapidly; however, a subset grow and mature, polymerize actin 

stress fibers, move rearward, and then are disassembled (Choi et al., 2008; Gardel et 

al., 2010; Geiger and Yamada, 2011; Mui et al., 2016).  

 

Microtubules play an important role in focal adhesion turnover (Vasiliev et al., 1970; 

Rinnerthaler et al., 1988).  Microtubule plus ends grow along stress fibers to reach FAs, 

where they are transiently captured and undergo repeated cycles of catastrophe and 

regrowth/recapture, ultimately leading to FA disassembly (Kaverina et al., 1998, 1999; 

Krylyshkina et al., 2003; Efimov et al., 2008). However, the timing and duration of 

microtubule capture events at FAs have not been quantified, nor have these events 

been correlated with FA maturation. It is also not well understood mechanistically how 

microtubule capture events induce FA disassembly, although different studies suggest 

that this involves clathrin-mediated endocytosis, exocytosis of vesicles carrying matrix 

metalloproteinases (MMPs), and/or selective autophagy (Kenific et al., 2016; Sharifi et 

al., 2016; Stehbens et al., 2014; Ezratty et al., 2005, 2009). In the selective autophagy 

pathway, LC3/ATG8-marked autophagosomes are delivered on microtubules to mature 
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FAs (Mackeh et al., 2013; Kenific et al., 2016), where LC3 interacts with phosphorylated 

Src and Paxillin, leading to autophagic turnover of FAs and Paxillin degradation (Sharifi 

et al., 2016). 

 

Actin is also critical for FA turnover. Formins and Ena/VASP help stimulate FA 

assembly and maturation (Hotulainen and Lappalainen, 2006; Tojkander et al., 2015, 

2018), whereas we recently reported that Adenomatous polyposis coli (APC) promotes 

FA disassembly (Juanes et al., 2017). APC is a potent actin nucleator in vitro (Okada et 

al., 2010; Breitsprecher et al., 2012; Jaiswal et al., 2013), and we generated a 

separation-of-function mutant, APC-m4, which abolishes APC’s actin nucleation activity 

by altering only two residues in the C-terminal Basic domain. Expression of full-length 

APC-m4 disrupted directional cell migration, and in non-migrating cells APC-m4 

impaired microtubule-induced FA turnover in nocodazole washout assays (Juanes et 

al., 2017). However, this study left unanswered: (i) whether APC-mediated actin 

assembly impacts F-actin organization and dynamics at FAs, (ii) whether it contributes 

to FA turnover in migrating cells, and (iii) which step(s) in FA turnover requires actin 

assembly.  

 

Here, we addressed these questions using polarization-resolved fluorescence 

microscopy, FRAP, super-resolution microscopy, and live-cell imaging. Our results 

show that actin assembly by APC plays a critical role in maintaining proper F-actin 

organization and dynamics at FAs in migrating cells, and that its loss results in severe 
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delays in FA disassembly stemming from an inability of FAs to respond properly to 

microtubule capture events. 

 

RESULTS 

 

Actin assembly by APC is required for proper organization of F-actin at focal 

adhesions 

 

We began by asking how APC-m4 expression affects F-actin organization and 

dynamics at FAs. For this, we tuned the expression levels of full-length APC-WT and 

APC-m4 (expressed concurrently, or not, with silencing of endogenous APC; referred to 

as ‘ectopic’ or ‘rescue’) to be similar to endogenous APC in U2OS osteosarcoma cells 

(Fig. S1 A). To assess the ‘molecular order’ of F-actin at FAs (‘inside’, Fig. 1 A), and at 

the stress fibers emanating from FAs (‘outside’, Fig. 1 A), we performed polarization-

resolved microscopy on fixed cells stained with Alexa-488-phalloidin. We focused our 

analysis on mature FAs at the two ends of ventral stress fibers (Hotulainen and 

Lappalainen, 2006; Tojkander et al., 2015, 2018). In this technique, images are 

acquired using variable angles of polarized excitation light (Kress et al., 2013; Loison et 

al., 2018; Mavrakis et al., 2014). Maximum fluorescence is achieved when the 

polarization angle of the excitation light matches the dipole angles of the fluorophores 

attached to F-actin. If the fluorophores have the same dipole orientation, and thus a 

high molecular order, a large change in the signal is detected when the polarization axis 

of the excitation light is rotated. These measurements yield two parameters of molecular 
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order: mean orientation (ρ) and angular distribution width () around the mean 

orientation (Fig. 1 B). Thus,  is a proxy for the molecular order of actin filaments, and 

contains contributions from both the actin structural order and the angular fluctuations of 

the fluorophore. Labelling actin with the phalloidin conjugate Alexa Fluor 488 produces 

a remaining angular fluctuation of ~ 90° (Valades Cruz et al., 2016), which imposes a 

minimum measurable  value.  is therefore represented on a scale from 100° (highest 

measurable order) to 180˚ (complete disorder) (Fig. 1 B). Under these fixation and 

staining conditions, the error in  and ρ is only ~ 2° (Kress et al., 2013). Previous 

studies on sarcomeres and contractile actin rings using polarization-resolved 

microscopy validated that a 5-10° change in  corresponds to a major changes in F-

actin organization (Mavrakis et al., 2014; Loison et al., 2018). 

 

We performed polarization-resolved microscopy on micropatterned cells (Fig. 1, C-I) 

and non-patterned cells (Fig. S1, B-E; and Fig. S2). The use of patterned cells 

eliminates variability in cell size and shape, and minimizes heterogeneity in cell 

architecture between cells in a population (Théry et al., 2006). We silenced endogenous 

APC and rescued with APC-WT or APC-m4. In APC-m4 rescue cells, F-actin levels in 

stress fibers and at FAs were significantly diminished (Fig. 1 F), and both regions of 

interest (inside and outside of FAs) were highly disordered compared to APC-WT cells 

(Fig. 1, D and E; and Fig. 1 G). In addition, we determined the standard deviation of  

(SD) and the standard deviation of  (SD) (Fig. 1, H and I) in order to assess the 

uniformity of disorder within the two regions of interest. An increase in standard 

deviation for both  and  is the signature of increased disorder at the scale over which 



 

 7 

the SD is measured, which is a few microns. We observed low standard deviations for 

 and  in both APC-WT and APC-m4 cells, indicating that the degree of molecular 

order in F-actin is fairly consistent throughout the entire region analyzed. Similar results 

were obtained for non-micropatterned cells (Fig. S1, C-E; and Fig. S2), and cells 

ectopically expressing APC-WT and APC-m4 (Fig. S2). Thus, APC-m4 expression 

decreases the molecular order (alignment and/or orientation) of F-actin at FAs and 

proximal regions of stress fibers.  

 

Actin assembly by APC is required for normal actin dynamics at focal adhesions 

 

We next performed fluorescence-recovery-after-photobleaching (FRAP) experiments on 

U2OS cells co-transfected with GFP-actin and mCherry-Zyxin, depleted of endogenous 

APC by RNAi, and rescued by APC-WT or APC-m4. After photobleaching, we 

monitored recovery of GFP-actin fluorescence at FA-ventral stress fiber junctions (Fig. 2 

A), and at regions of ventral stress fibers at least 5 µm away from FAs (Fig. 2 B). At 

both locations, there was no statistical difference in the recovery halftime (t1/2) (Fig. 2 

C, and E); however, the fraction that does not recover (immobile fraction) was much 

larger at FA-stress fiber junctions in APC-m4 compared to APC-WT cells (Fig. 2 D). In 

contrast, at locations on stress fibers farther away from FAs there was no significant 

difference in the immobile fractions (Fig. 2 F). Similar results were obtained for control 

(scramble) cells and APC-WT rescue cells, demonstrating that ectopic expression of 

APC-WT does not alter actin dynamics (Fig. 2, and Fig. S3). Similar results were 

observed for cells depleted of endogenous APC (no rescue) and cells depleted of APC 
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and rescued with APC-m4 (Fig. 2, and Fig. S3). Therefore, APC-mediated actin 

assembly contributes to normal actin turnover dynamics at or near FAs, but not farther 

away on stress fibers. 

 

Actin assembly by APC is required to maintain proper density of focal adhesion 

components 

 

Actin maintains the alignment and organization of FA components (Swaminathan et al., 

2017; Swaminathan and Waterman, 2016; Kumar et al., 2018), and is required for the 

recruitment of Src kinase to FAs (Fincham et al., 1996). Src binds to phospho-FAK 

tyrosine kinase, which leads to Src activation, and further phosphorylation of FAK, 

initiating a cascade of signaling events that result in FA disassembly (Li et al., 2002; 

Fincham and Frame, 1998). Therefore, we asked whether APC-m4 alters cellular levels 

and/or organization of these components at FAs. By immunostaining, there was a 

decrease in the levels of endogenous active Src, phospho-Paxillin, and phospho-FAK at 

the plasma membrane in APC-m4 cells, and a decrease in their total ‘densities’ 

(fluorescence intensity divided by cell area) (Fig. 3, A-D). In addition, super-resolution 

imaging revealed that the densities of these components were each reduced at FAs in 

APC-m4 cells (Fig. 3, E-H). Further, the densities of GFP-Paxillin, mCherry-Zyxin, and 

Vinculin were each reduced at FAs in APC-m4 cells (Fig. 3 I). Thus, APC-mediated 

actin assembly is required to maintain proper spatial organization of FA components. 

 

Loss of APC-mediated actin nucleation in migrating cells slows the rate of focal 
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adhesion disassembly 

  

To address how APC-m4 affects FA assembly and/or disassembly kinetics in migrating 

cells, we performed live-imaging on motile human breast cancer MDA-MB-231 cells 

expressing APC-WT or APC-m4 at levels similar to endogenous APC (Fig. S4, A and 

B). Cells above were transfected with mCherry-Zyxin to mark FAs and imaged by TIRF 

microscopy (Fig. 4, A and B; and Video 1 and 2). All FAs that grew to > 2 µm in length 

were monitored for FA assembly kinetics, from the time of first appearance of mCherry-

Zyxin signal to time of maximal intensity (Fig. 4 C). Average FA assembly time was not 

significantly different in APC-WT (4.8 ± 1.5 minutes) versus APC-m4 cells (4.8 ± 1.7 

minutes) (P = 0.68). However, APC-m4 cells showed dramatically slower FA 

disassembly kinetics, defined as the time from maximum mCherry-Zyxin fluorescence 

(peak FA maturity) to complete disappearance (Fig. 4 D). Average FA disassembly time 

was seven times longer in APC-m4 (17.5 ± 2.8 minutes) compared to APC-WT cells 

(2.5 ± 1.2 minutes) (P < 0.001). Since APC-m4 expression results in enlarged FAs, we 

also measured FA assembly and disassembly rates, which are independent of FA size. 

To accomplish this, we used the automatized focal adhesion analysis server (FAAS) 

method (Berginski et al., 2011; Berginski and Gomez, 2013). This analysis revealed no 

significant difference in the rate of FA assembly between APC-WT and APC-m4 cells. 

However, FA disassembly rates were greatly reduced in APC-m4 cells (Fig. 4 E). No 

statistical differences were observed in FA assembly or disassembly rates between FAs 

located at the leading versus trailing edges of the same cell type (APC-WT or APC-m4) 

(Fig. 4, F and G).  
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To test the specificity of APC’s effects on FA disassembly, we also genetically disrupted 

a different actin nucleator, the formin Dia1, which assembles actin at FAs and promotes 

FA maturation (Fessenden et al., 2018). FAAS analysis showed that RNAi silencing of 

Dia1 (si-Dia1) only modestly slowed rates of FA assembly and disassembly (Fig. 4. 

Importantly, its effects on FA disassembly were not nearly as severe as the effects of 

APC-m4. Moreover, APC-m4 and si-Dia1 each led to an ~ 30% reduction in total F-actin 

levels in cells (Fig. 4 I), as previously reported (Rao and Zaidel-Bar, 2016; Carramusa et 

al., 2007; Oakes et al., 2012; Juanes et al., 2017). Thus, the effects of APC-m4 on FA 

turnover do not appear to arise from a general loss of actin assembly in cells, but rather 

from a specific disruption of APC-mediated actin nucleation at FAs. Importantly, these 

results do not exclude the possibility that additional actin assembly-promoting factors 

(e.g., Arp2/3 complex, ENA/VASP, or other formins) also contribute to FA turnover. 

 

How loss of actin assembly impacts microtubule capture at focal adhesions 

 

We considered how changes in F-actin organization and dynamics caused by APC-m4 

might impact microtubule capture at FAs, which induces FA disassembly (Kaverina et 

al., 1998, 1999; Krylyshkina et al., 2003; Efimov et al., 2008). Microtubule capture was 

monitored by live TIRF imaging using mCherry-Zyxin to mark FAs and 3xGFP-

Ensconsin microtubule binding domain (EMBD) to mark microtubules (Fig. 5 A; and 

Video 3). It has been shown that microtubule plus ends grow to reach FAs, where they 

are transiently captured, then retract, regrow, and are captured several more times 
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preceding FA disassembly (Kaverina et al., 1998, 1999; Krylyshkina et al., 2003; Efimov 

et al., 2008). We observed similar microtubule behavior in MDA-MB-231 cells, and a 

comparison of APC-WT and APC-m4 cells revealed no significant difference in the 

percentage of FAs that experienced microtubule capture (Fig. 5 B), or in the frequency 

of microtubule capture events during FA assembly, and until peak maturation of the FA 

(Fig. 5 C). However, once FAs reached full maturity, there were almost twice as many 

microtubule capture events in APC-m4 cells (5.6 ± 3.9 times) compared to APC-WT 

cells (3.0 ± 1.6 times) (Fig. 5 C). Further, microtubules paused almost three times 

longer at mature FAs in APC-m4 (76.0 ± 7.9 s) compared to APC-WT cells (26.0 ± 3.2 

s) (Fig. 5 D). This suggests a disruption in the normal feedback communication between 

microtubules and FAs. We also asked whether microtubule ends are captured in 

specific regions of FAs: (1) proximal third (relative to microtubule arrival); (2) central 

third; and (3) distal third. In APC-WT cells, there was no statistical difference in docking 

sites; however, APC-m4 cells showed a bias for microtubule docking in zone 3 (Fig. 5 

E).  

 

In addition, we calculated the frequency of microtubule visits at FAs, which revealed a 

striking difference between APC-WT and APC-m4 cells (0.85 min-1 and 0.35 min-1, 

respectively). Thus, microtubule visits are more frequent in APC-WT cells. On the other 

hand, the average time between microtubule visits was about three times longer in 

APC-m4 cells compared to APC-WT cells (76 and 24 seconds, respectively). 

Altogether, microtubules were docked at mature FAs approximately half of the time in 

both APC-WT and APC-m4 cells, but in APC-m4 cells the mature FAs had longer 
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lifetimes. Because FAs take longer to disassemble in APC-m4 cells, there were more 

microtubule visits. In summary, microtubule capture is less efficient in APC-m4 cells, 

which may also explain the altered zone-preference of microtubule docking in the 

mutant.  

 

Autophagosome delivery and dynamics at focal adhesions 

 

Selective autophagy has recently been shown to play a critical role in FA turnover 

(Sharifi et al., 2016; Kenific et al., 2016). In selective autophagy, double-membrane 

compartments called autophagosomes engulf cytoplasmic material and fuse with 

lysosomes to degrade and recycle their contents (Dikic and Elazar, 2018; Kaur and 

Debnath, 2015). Autophagosomes (marked by GFP-LC3/ATG8) are delivered to FAs on 

microtubules just prior to FA disassembly, where autophagosome components LC3 and 

NBR1 interact with FA components, including phospho-Paxillin (which is phosphorylated 

by Src kinase) (Fass et al., 2006; Köchl et al., 2006; Kenific and Debnath, 2016; Sharifi 

et al., 2016). How the arrival of an LC3-positive autophagosome induces FA 

disassembly remains unclear, but may involve autophagosome-mediated removal of 

phosphorylated FA components, including Paxillin, triggering a cascade that leads to FA 

disassembly (Kenific et al., 2016). 

 

To investigate whether APC-m4 affects selective autophagy at FAs, we monitored 

autophagosome (marked with GFP-LC3) dynamics at mature FAs (marked with 

mCherry-Zyxin) in APC-WT versus APC-m4 cells (Fig. 6 A; and Video 4). In APC-WT 
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cells, autophagosomes were almost never delivered to a FA until it had reached peak 

maturity, as previously reported (Kenific et al., 2016). Further, most mature FAs 

experienced a single autophagosome visit (Fig. 6, B and C), which lasted < 40 seconds 

(Fig. 6 D), and then the FA rapidly disassembled (Fig. 6, E and F). In contrast, in APC-

m4 cells, autophagosomes were delivered multiple times to mature FAs (Fig. 6 C), and 

the duration of visits increased (Fig. 6 D). Further, there was a large delay between 

arrival of the first autophagosome and completion of FA disassembly (Fig. 6, E and F). 

We also monitored dynamics of the NBR1 receptor, which helps target LC3 to FAs 

(Kenific et al., 2016). APC-WT and APC-m4 cells showed similar targeting and dwell 

times of GFP-NBR1 at FAs (Fig. 6, G and H). Further, there was no difference in LC3 

co-immunoprecipitation with NBR1 (Fig. 6 I). Thus, APC-m4 does not slow FA turnover 

by altering NBR1 dynamics or interfering with NBR1-LC3 interactions. 

  

Finally, we tested whether APC-m4 alters general autophagy. However, APC-WT and 

APC-m4 cells showed no significant difference in endogenous LC3 levels, or the ratio of 

lipid-conjugated LC3 (LC3-II) to non-lipidated LC3 (LC3-I), or autophagosome 

maturation and eventual fusion with lysosomes (Fig. S5).  

 

DISCUSSION 

 

The question that launched our study was how actin assembly contributes to FA 

turnover in migrating cells. Recent electron microscopy and polarimetry studies have 

shown that actin filaments and other components of FAs are densely packed and 
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aligned, with F-actin forming the uppermost layer of a tiered structure approximately 120 

nm above the membrane (Nordenfelt et al., 2017; Swaminathan et al., 2017; Kumar et 

al., 2018). These actin structures undergo polarized flux, in which new actin subunits 

are incorporated at the FA, where the barbed ends are located, and move into the 

connecting stress fibers in a poleward fashion (Cramer et al., 1997). Our analysis using 

polarization-resolved microscopy corroborate these findings and show that there is a 

high degree of molecular order in the F-actin at FAs in APC-WT cells. However, in APC-

m4 cells, FAs showed substantially reduced levels of F-actin and increased molecular 

disorder. Further, our FRAP analysis revealed that F-actin at FAs is less dynamic in 

APC-m4 cells. Given that the APC-m4 mutant disrupts APC-mediated actin nucleation, 

without impairing APC’s binding and bundling of F-actin, or APC’s binding and bundling 

of microtubules (Juanes et al., 2017), these results demonstrate that actin assembly by 

APC is critical for maintaining proper levels, organization, and dynamics of F-actin at 

FAs. 

 

Using live-imaging, we also compared microtubule capture, autophagosome delivery, 

and FA disassembly kinetics at FAs in APC-m4 and APC-WT cells. Our data reveal 

which steps in FA turnover are influenced by APC-mediated actin assembly (Fig. 7). In 

APC-WT cells, microtubules are captured at FAs and somehow sense the maturation 

state of the FA, responding by delivering an autophagosome, and then retracting. All of 

these events occur, on average, within 26 seconds (the dwell time of microtubules at 

FAs), consistent with tight feedback between microtubules and FAs (Akhmanova et al., 

2009). By comparison, in APC-m4 cells there is a 3-fold decrease in the frequency of 
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microtubules visits and a 3-fold increase in their dwell times at FAs. These observations 

suggest a deficiency in microtubule capture and a delay in microtubule retraction in 

APC-m4 cells, accompanied by delays between autophagosome arrival and completion 

of FA disassembly. Together, this suggests that APC is required to maintain FAs in a 

state primed for microtubule- and autophagosome-induced disassembly. Previous 

studies showed that interactions between autophagosomes and phospho-Src, phospho-

Paxillin, and Zyxin are critical for FA turnover (Sandilands et al., 2011; Sharifi et al., 

2016; Kenific et al., 2016). APC-m4 cells showed reduced densities of phospho-Src, 

phospho-Paxillin, phospho-FAK, Paxillin, Zyxin, and Vinculin at FAs. Thus, actin 

assembly by APC is critically required to maintain normal levels and tight packing of 

these FA components, which may be required for FAs to respond properly to 

autophagosome arrival and rapidly disassemble.  

 

Finally, our data directly address the in vivo role of APC as an actin nucleator. APC is 

well known as a microtubule regulator, with less consideration given to its high affinity 

interactions with G-actin and F-actin and its potent actin nucleation activity (Moseley et 

al., 2007; Okada et al., 2010; Breitsprecher et al., 2012; Jaiswal et al., 2013; Juanes et 

al., 2017). However, in most cell types, APC is found primarily at actin-rich regions of 

the cell cortex, and localizes only to a small subset of the microtubule plus ends 

(Mimori-Kiyosue et al., 2000; Mogensen et al., 2002; Kita et al., 2006; Barth et al., 

2002). Further, Drosophila APC is critical for assembling in vivo actin structures that 

drive a number of important actin-based physiological processes (De Graeve et al., 

2012; Webb et al., 2009; Zhou et al., 2011; Molinar-Inglis et al., 2018). Our current 
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results combined with our previous observations (Juanes et al., 2017) demonstrate that 

human APC’s actin nucleation activity plays a critical role in maintaining proper F-actin 

levels, organization, and dynamics at FAs, which is required for FA turnover and 

directed cell migration. Thus, APC is a bona fide actin nucleator in vivo, and this may be 

one of its chief cytoskeletal roles. 

 

MATERIALS AND METHODS 

Cell culture, RNAi silencing, and transfection of plasmids 

Human osteosarcoma (U2OS, HTB96) and human breast cancer (MDA-MB-231, HTB-

26) cell lines were obtained directly from ATCC (American Type Culture Collection; 

Manassas, VA, USA), where their identities were authenticated by short tandem repeat 

DNA profiling and they were tested for mycoplasma contamination. Cell lines were used 

for a maximum of 25 passages. All cells were grown in DMEM (Gibco, Life 

technologies, Grand Island, NY, USA) supplemented with 200 mM L-glutamine (Thermo 

Fisher Scientific, Waltham, MA), and 10% fetal bovine serum (FBS; Sigma-Aldrich, St. 

Louis, MO) at 37°C and 5% CO2.  

 

All cell culture experiments were carried out in 6-well dishes, seeding each well with 

approximately 60,000 cells. To silence endogenous APC or Dia1, cells were transfected 

8-12 h after seeding with 50 nM RNAi oligos (for APC) using Lipofectamine 3000 

(Thermo Fisher Scientific), or with 30 nM RNAi oligos (for Dia1) using Lipofectamine 

RNAiMAX (Thermo Fisher Scientific), according to the manufacturer’s instructions. 

RNAi oligos were directed against the human APC coding region (si-APC): 5′-
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GGAUCUGUAUCAAGCCGUUTT-3′ sense and 5′-AACGGCUUGAUACAGAUCCTT-3′ 

antisense (Invitrogen, Carlsbad, CA); or the 3’ UTR region of the human Dia1 (si-Dia1): 

5′- CUGUUAAUAAAGCAUUGAAUU-3′ sense and 5′-AAUUCAAUGCUUUAUUAACAG 

-3′ antisense (Integrated DNA Technologies, Inc., Coralville, Iowa, USA). Cells were 

transfected in parallel with control ‘scramble’ RNAi oligos: 5′-

CAGUCGCGUUUGCGACUGG-3′ with dTdT 3’ overhangs. For APC rescue 

experiments, cells were transfected with rescue plasmids 12-16 h after silencing using 

Lipofectamine 3000, and then 24 h later the cells were collected for western blotting, 

fixed for immunofluorescence or used for live imaging. For all experiments where RNAi-

resistant full-length APC-WT or APC-m4 rescue plasmids were introduced into cells, 

with or without depletion of endogenous APC, 600 ng of plasmid was used for 

transfections. For all live-cell imaging, fixed-cell imaging, and immunoprecipitation 

experiments, plasmids were transfected as above into one of the same two cell lines, 

and used 12-16 h after transfection, as described in detail below for each experiment. 

 

Focal adhesion turnover assays and analysis 

MDA-MB-231 cells were transfected with 600 ng of APC plasmids (WT or m4) and 800 

ng of plasmid expressing either mCherry-Zyxin (Addgene, Watertown, MA, plasmid 

#55166) or GFP-Paxillin (Addgene #50529) in 6-well plates. 12-16 h after transfection, 

cells were replated on collagen-coated glass-bottom dishes and allowed to adhere for 3-

4 h. Immediately prior to imaging, the medium was replaced with DMEM containing high 

glucose and 25 mM HEPES (pH 7.4) (Gibco, Life Technologies), supplemented with 

10% FBS, 20 mM L-glutamine, and 1 mM sodium pyruvate. Transfection efficiencies 
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were >90% for mCherry-Zyxin. Cells were maintained at 37°C using an Ibidi heated 

stage and imaged by TIRF microscopy on a Ti200 inverted microscope (Nikon 

Instruments, Melville, NY) equipped with 100 mW solid-state lasers (Agilent 

Technologies, Santa Clara, CA), a CFI Apo 60× 1.49 N.A. oil-immersion TIRF objective 

(Nikon Instruments), an EMCCD camera with a pixel size of 0.267 μm (Andor Ixon, 

Belfast, North Ireland), and an additional 1.5× zoom module (Nikon Instruments). Focus 

was maintained using the Perfect Focus System (Nikon Instruments). Images were 

captured every 10 s for 40-45 min (10-20 ms exposure at 488nm excitation and 10% 

laser power) using Nikon Elements software (version 4.30.02, Nikon Instruments). 

Images were analyzed in Fiji. For comparing the kinetics of mCherry-Zyxin to follow FA 

turnover in cells expressing APC (WT or m4) (Fig. 4), only those FAs > 2 m, and that 

could be tracked from their initial formation through complete disassembly during the 

observation window were included in the analysis. To track FAs over time, the Bezier 

ROI tool was used to manually outline individual FAs. Outlines were redrawn in each 

frame as necessary, since the FA could change in both size and location, as previously 

described (Kenific et al., 2016). FA fluorescence intensities were measured in Fiji for 

each individual FA. To compare the kinetics of FA assembly phase in cells expressing 

APC-WT or APC-m4, 100 individual FAs per condition were monitored from the 

appearance of the FA signal to the point of FA maximum fluorescence intensity, and 

distributions were plotted in GraphPad (San Diego, CA) Prism 6.0c (Fig. 4 C). Maximum 

intensity, where a FA is fully assembled and ‘mature’ (primed for disassembly), was set 

to time zero. To compare the kinetics of FA disassembly for cells expressing APC (WT 

or m4), over 800 individual mature FAs per condition were monitored from the point of 
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FA maximum fluorescence intensity (mature) to complete disappearance, and 

distributions were plotted side by side in GraphPad Prism 6.0c (Fig. 4 D). To determine 

the rates of FA assembly and disassembly, which are independent of FA size, we used 

the Focal Adhesion Analysis Server (FAAS) method (Berginski et al., 2011; Berginski 

and Gomez, 2013). FAAS provides an unbiased and automated image processing 

pipeline, using submitted images, and it is available at: http://faas.bme.unc.edu/. Rates 

from 208-667 FAs from whole cells, or 200 FAs from the leading versus trailing edge of 

cells (from different conditions as listed in figure legends), were analyzed using FAAS, 

and the distributions plotted in GraphPad Prism 6.0c (Fig. 4, E-H; and Fig. S5 C). 

 

Live cell imaging of microtubule interactions with FAs 

For live imaging of microtubules and FAs, MDA-MB-231 cells were cotransfected as 

described in 6-well plates with three different plasmids: 200 ng of a plasmid expressing 

the microtubule-binding domain of E-MAP-115 (Ensconsin) fused to three copies of 

EGFP (3×GFP-EMTB; Addgene #26742); 400 ng of a plasmid expressing mCherry-

Zyxin; and 600 ng of the plasmid expressing full-length APC (WT or m4). 12-16 h after 

transfection, cells were replated on collagen-coated glass-bottom dishes and allowed to 

adhere for 3-4 h. Immediately prior to imaging, the medium was replaced with DMEM 

containing high glucose and 25mM HEPES (pH 7.4) (Gibco, Life Technologies), 

supplemented with 10% FBS, 20 mM L-glutamine, and 1 mM sodium pyruvate. 

Transfection efficiencies were >80% for each plasmid. Live cell imaging by TIRF 

microscopy was performed as described above for FA turnover assays. Images were 

captured every 5 s for a total of 30 min (10 ms exposure at 488 nm excitation; 15-20 ms 

http://faas.bme.unc.edu/
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exposure at 543 nm excitation, both at 10% laser power) using NIS Elements software 

(version 4.30.02, Nikon Instruments). Image analysis was performed in ImageJ. To 

quantify number of interactions, duration and location (within FAs) of microtubule plus 

end interactions with FAs, (Fig. 5, B-E), individual microtubules were tracked during a 

30 min observation window. Results were plotted in GraphPad Prism 6.0c. 

 

Live cell imaging of autophagosome dynamics at FAs 

To monitor autophagosome dynamics, MDA-MB-231 cells were transfected as above in 

6-well plates with three different plasmids: 400 ng of a plasmid expressing mCherry-

Zyxin, 500 ng of a plasmid expressing GFP-LC3 (to visualize autophagosomes; 

Addgene #11546), and 600 ng of a plasmid expressing full-length APC (WT or m4). 12-

16 h after transfection, cells were replated on collagen-coated glass-bottom dishes and 

allowed to adhere for 3-4 h. Immediately prior to imaging, the medium was replaced 

with DMEM containing high glucose and 25 mM HEPES (pH 7.4) (Gibco, Life 

Technologies), supplemented with 1% FBS, 20 mM L-glutamine, and 1 mM sodium 

pyruvate prior to imaging. Transfection efficiencies were >80% for each plasmid. Live 

cell imaging by TIRF was performed as above. Images were captured every 10 s for 35-

45 min (10 ms exposure at 488 nm excitation; 15-20 ms exposure at 543 nm excitation, 

both at 10% laser power) using Nikon Elements software (version 4.30.02, Nikon 

Instruments). Image analysis was performed in ImageJ. To analyze GFP-LC3 targeting 

at FAs (Fig. 6, B and C), we first identified FAs (marked by mCherry-Zyxin), and then 

quantified the number of times GFP-LC3 vesicles interacted with that FA (signals 

colocalized) during the observation window, and the durations of the interactions (Fig. 6 
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D). We also measured the time from first GFP-LC3 interaction with a FA to disassembly 

of the FA (Fig. 6 E) by co-tracking mCherry-Zyxin signal (and its disappearance). 

Results were plotted in GraphPad Prism 6.0c. 

 

To monitor autophagosome maturation, i.e., traffic of autophagosomes and fusion with 

lysosomes (also called autophagic flux), MDA-MB-231 cells were transfected as 

described in 6-well plates with 600 ng of a plasmid expressing full-length APC (WT or 

m4). 12-16 h after transfection, the medium was replaced with serum-free media 

(Thermo Fischer Scientific) supplemented with 20 mM HEPES (pH 7.4) and 20 mM L-

glutamine. Cells were then mixed with Premo™ Autophagy Tandem Sensor RFP-GFP-

LC3B (#P36239; Thermo Fischer Scientific) and incubated for 16 h as described in 

manufacturer’s instructions. The RFP-GFP-LC3B chimera contains an acid-sensitive 

green fluorescence protein (GFP) and an acid-resistant red fluorescence protein (RFP), 

allowing one to distinguish between LC3B-positive autophagosomes (green/yellow) and 

LC3B-positive autophagolysosomes (red only) (Kimura et al., 2007). To block 

autophagy, cells were treated with 2 M Pepstatin A (PepA) (US Biological) at the time 

of adding the RFP-GFP-LC3B sensor. Alternatively, where indicated, autophagy was 

inhibited 3 h prior to imaging with 100 nM Bafilomycin A1 (Sigma), BafA1, a V-ATPase 

inhibitor that blocks lysosomal acidification and autophagosome-lysosome fusion 

(Mauvezin et al., 2015). Live cell imaging by TIRF was performed as above. Images 

were captured with 10 ms exposure at 488 nm excitation and 10 ms at 543 nm 

excitation (both at 10% laser power) using Nikon Elements software (version 4.30.02, 

Nikon Instruments). Image analysis was performed in ImageJ. To quantify 
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autophagosome maturation (Fig. S5 C), we calculated the ratio of fluorescence intensity 

(543/488 wavelength) for each vesicle by tracing cells within the images, and then 

quantifying the integrated fluorescence intensities (for each separate channel) of all 

vesicles (threshold > 10 pixels) in an automated fashion using a custom script in 

ImageJ, after background subtraction from both channels. To monitor autophagosome 

fusion with autolysosomes (Fig. S5 D), MDA-MB-231 cells were transfected as 

described in collagen-coated glass-bottom dishes with three different plasmids: 500 ng 

of a plasmid expressing GFP-LC3 (autophagosomes marker), 500 ng of a plasmid 

expressing mCherry-LAMP1 (lysosomal-associated membrane protein 1, a 

lysosome/late endosome marker; Addgene #61524), and 600 ng of a plasmid 

expressing full-length APC (WT or m4). 12-16 h after transfection, and immediately prior 

to imaging, the medium was replaced with DMEM containing high glucose and 25mM 

HEPES (pH 7.4) (Gibco), supplemented with 10 % FBS, 20 mM L-glutamine, and 1 mM 

sodium pyruvate. Live imaging by TIRF was performed as above. Images were captured 

at 10 ms exposure at 488 nm excitation and 10 ms exposure at 543 nm excitation (both 

at 10% laser power) using Nikon Elements software (version 4.30.02, Nikon 

Instruments). Image analysis (colocalization) was performed in ImageJ.  

 

Live cell imaging of GFP-NBR1 at FAs 

To monitor GFP-NBR1 dynamics at FAs, MDA-MB-231 cells were cotransfected as 

described above in 6-well plates with three different plasmids: 1 g of a plasmid 

expressing GFP-NBR1 (Addgene # 74202); 800 ng of a plasmid expressing mCherry-

Zyxin; and 600 ng of a plasmid expressing full-length APC (WT or m4). 12-16 h after 
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transfection, cells were replated and imaged as above (for GFP-LC3 dynamics at FAs), 

except that images were acquired every 10 s for 30 min. Image analysis was performed 

in Fiji. NBR1 vesicles were tracked manually over time to quantify percent that interact 

with FAs and the duration of their interactions at FAs (Fig. 6, G and H). Results were 

plotted in GraphPad Prism 6.0c.  

  

Fluorescence recovery after photobleaching (FRAP) 

For FRAP analysis, U2OS cells were depleted of endogenous APC and rescued with 

plasmids expressing full-length APC (WT or m4). Cells (4 × 105 per well) were 

sequentially transfected as described in 6-well plates. They were first transfected 12 h 

after seeding, with 50nM RNAi oligonucleotides (scramble or siRNA against human 

APC). Then, 24 h after initial transfection, they were transfected with three different 

plasmids: 400 ng of a plasmid expressing GFP-actin, 600 ng of a plasmid expressing 

mCherry-Zyxin, and 600 ng of a plasmid expressing RNAi-resistant full-length APC-WT 

or APC-m4. Then 48 h after initial transfection, just prior to live imaging and FRAP, cells 

were washed and replenished with DMEM containing high glucose and 25 mM HEPES 

(Gibco, Life Technologies) supplemented with 10% FBS, 20 mM L-glutamine, and 1 mM 

sodium pyruvate. During live imaging, cells were maintained at 37°C with 5% CO2 using 

a Zeiss unit temperature and CO2 controller module, and a heating insert adapted to 

Zeiss Axio Observer Z1 microscope equipped with a CSU-X1 Yokogawa spinning disk. 

Images were captured using an alpha Plan-Apochromat 63x (NA 1.46) oil objective. The 

FRAP was controlled using an iLas2 Roper Scientific Module (Roper Scientific SAS, 

Evry, France) driven by MetaMorph Software 7.7.8 (Molecular Devices, Berkshire, UK). 
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To select regions of interest (1 m x 1 m) for FRAP, we first imaged GFP-actin and 

mCherry-Zyxin using lasers at 488 and 561 nm, respectively (10% laser power). For 

FRAP measurement of actin dynamics at regions of interest (Fig. 2; and Fig. S3), 10 

pre-bleach images were first acquired at 400 ms intervals, and then the region of 

interest was bleached using the 488 nm laser (100 mW) for 700 ms (at 100% laser 

power). After photobleaching, images were acquired every 400 ms for 24 s, and then 

every 3 s for 276 s (total observation window 5 min). For fluorescence recovery 

analysis, images were first analyzed with MetaMorph software 7.7.8 (Molecular 

Devices), as described (Lorente et al., 2014). The signal measured in the region of 

interest (ROI) was corrected for acquisition photobleaching and fluctuations of whole 

fluorescence following a double normalization method, calculated as follows: Recovery 

of fluorescence intensity = It/I0 * T0/Tt, where It is the average intensity in ROI at time t; I0 

is the average intensity of the ROI during the prebleaching period; T0 is the intensity 

during pre-bleaching of the non-bleached area (mean fluorescence intensity from at 

least two non-bleached ROI neighboring areas and from three different cells); and Tt is 

the intensity at time t of this area. The introduction of the correction factor (T0/Tt) 

accounts for possible small fluctuations in total fluorescence intensity caused by the 

bleaching itself, and yields a more accurate estimate of the measured fluorescence in 

the ROI (Phair et al., 2004). The immobile fraction was determined from normalized 

recovery fluorescence after bleach graphs: (1- Fend), where Fend is ROI mean intensity at 

the steady-state (mean from the last four time points on the graph). t1/2’s were defined 

as the time after bleaching required to reach half-maximal fluorescence recovery. 
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Maximum recovery was defined as the mean intensity of the last four data points. Data 

were plotted in GraphPad Prism 6.0. 

 

Immunostaining of fixed cells  

For immunostaining, cells were transfected and replated as described above on 3 × 1 × 

1 mm glass coverslips (VWR International, Radnor, PA), which had been acid-washed 

and coated with collagen I (Advanced BioMatrix, Carlsbad, CA). Cells were next fixed 

for 15 min with 4% paraformaldehyde in 1× PBS (2.7 mM KCl, 1.8 mM KH2PO4, 10 mM 

Na2HPO4, 140 mM NaCl pH 7.4) at room temperature, then permeabilized for 15 min in 

1× PBS plus 0.5% Triton X-100 and 0.3 M glycine.  

 

To image F-actin or endogenously-expressed proteins (phospho-Src, phospho-Paxillin, 

phospho-FAK, Paxillin, Vinculin, and LC3), cells were fixed and permeabilized as 

above, blocked for 1 h at room temperature in 1% BSA dissolved in PBST (1× PBS, 

0.1% v/v Tween-20). For F-actin staining, cells were incubated for 1 h with 1:1000 

Phalloidin-568 (A-12380, Thermo Fisher Scientific). For immunostaining, cells were 

incubated for 12 h at 4ºC with primary antibody: 1:400 rabbit anti-phospho Src (Tyr416, 

clone 2N8; 04-857 EMD Millipore, St. Louis, MO), 1:500 rabbit anti-phospho-Paxillin 

(Tyr118) (PP4501; ECM Biosciences), 1:500 rabbit anti-phospho-FAK (Tyr397, clone 

141-9; 44-625G; Invitrogen), 1:500 mouse anti-Paxillin (clone 5H11; AHO0492 

Invitrogen), 1:1000 mouse anti-Vinculin (V9131; Sigma-Aldrich), or 1:1000 rabbit anti-

LC3 (ab6556; Novus Biologicals, Littleton, CO). Next, coverslips were washed three 

times with 1× PBST and incubated for 1 h at room temperature with secondary 
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antibody: 1:1000 donkey anti-rabbit Alexa Fluor-488 (A-21206; Thermo Fisher 

Scientific), 1:1000 goat anti-rabbit Alexa Fluor-555 (A-21428, Thermo Fisher Scientific), 

or 1:1000 donkey anti-mouse Alexa Fluor-568 (A-10037, Thermo Fisher Scientific). 

Then, coverslips were washed three times with PBS plus 0.1% Tween-20, and once 

with PBS, then mounted with AquaMount (Thermo Fisher Scientific). Cells were imaged 

on a Nikon i-E upright confocal microscope (Nikon Instruments, New York, NY) 

equipped with a CSU-W1 spinning disk head (Yokogawa, Tokyo, Japan), 100 mW solid-

state lasers, an emission tuner for 488 nm and 561 nm wavelengths, 60x oil objective 

(NA 1.4; Nikon Instruments), and an Ixon 897 Ultra-CCD camera (Andor Technology). 

Images were captured as stacks (9 planes, 0.5 µm steps) at 15-20% laser power, with 

100-200 ms exposures sequentially at 488 and 561 nm using Nikon Elements software 

(version 4.30.02; Nikon Instruments). Fiji was used to generate maximum intensity 

projections and calculate raw integrated fluorescence values of endogenous phospho-

Src, phospho-Paxillin, phospho-FAK, Vinculin, or LC3 levels in cells and/or at FAs (Fig. 

3, D, H and I; and Fig. S5 B). 

 

For structured illumination microscopy (SIM) imaging (Fig. 3 E-G), cells were treated as 

above for immunofluorescence, except we used H-precision coverslips (Azer Scientific, 

Morgantown, PA), and Prolong Gold Diamond Antifade (Thermo Fisher Scientific) to 

mount slides 24-48 h prior to imaging. Images were collected at room temperature on a 

Nikon N-SIM (Structured Illumination Microscopy) instrument (Nikon Instruments) 

equipped with a SR Apo TIRF AC 100xHx1.49 N.A. oil immersion objective, a LU-N3-

SIM laser unit, and an ORCA-flash4.0 CMOS camera (Hamamatsu Photonics, Japan). 



 

 27 

For imaging phospho-Src, phospho-Paxillin, or phospho-FAK in combination with 

Paxillin (antibody dilutions and secondary antibodies as above, 3D-SIM image slices 

were acquired at the central plane of the cell (one single image, without Z-interval). 

Images were captured with 400 ms exposure times (70% laser power). Images were 

acquired using a violet-to-red diffraction grating at three angles and five phases of 

illumination, producing 15 raw images per Z-position, and reconstructed with the default 

slice reconstruction setting in NIS Elements (Nikon Instruments). All images comparing 

APC-WT and APC-m4 cells were acquired and processed identically in Fiji. Data were 

plotted using GraphPad Prism 6.0c. 

 

Polarization-resolved fluorescence microscopy 

To determine the molecular orientation and order of F-actin in stress fibers connected to 

FAs (Fig. 1; and Fig. S1 and S2), U2OS cells were grown, transfected, fixed, and 

processed for immunofluorescence as above. For experiments using micropatterned 

cells (Fig. 1, C-I), transfected cells were replated for 10 h on collagen-precoated 

micropatterned glass coverslips (#10-900-00, Starter’s CYTOO, Grenoble, France) 

(Théry et al., 2006), then fixed. Fixed cells were incubated for 12 h with 1:1000 rabbit 

anti-phospho-Paxillin (Tyr-118) (PP4501; ECM Biosciences, Versailles, KY), washed 

three times with 1× PBST, and incubated for 1 h at room temperature with 1:1000 goat 

anti-rabbit Alexa Fluor-555 (A-21428; Thermo Fisher Scientific), and 1:40 (165 nM) 

Alexa Fluor-488-Phalloidin (A12379, Invitrogen). After three washes with PBS plus 0.1% 

Triton X-100, and one wash with PBS, coverslips were mounted with Aqua-Mount 

(Thermo Fisher Scientific), and imaged by polarization-resolved fluorescence 
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microscopy at room temperature. The optical setup for polarization-resolved 

fluorescence microscopy, described in detail in (Wang et al., 2013), is based on a 

confocal spinning disk unit (CSU-X1-M1, Yokogawa, Tokyo, Japan) connected to the 

side-port of an inverted microscope (Eclipse Ti-U, Nikon, Tokyo, Japan). The excitation 

is provided by a polarized 488 nm continuous laser (Sapphire 488-200, Coherent, 

Salem, NH) in which power is controlled. The laser beam is sent into an electro-optic 

modulator (EOM) (Pockels cell, No 28-NP, Quantum Technology, Somerville, MA) 

followed by a quarter wave plate (WPQ05M-488, Thorlabs, Newton, NJ) for production 

of a linear rotating polarization. A polarization distortion compensator is used to 

compensate for ellipticity and diattenuation produced by the optics in the excitation path 

towards the microscope objective. The compensator is set to diattenuation and 

dichroism values that are initially measured using a calibration procedure described in 

(Wang et al., 2013). The beam is then expanded using a 10 × telescope (BE10, 

Thorlabs) and sent directly sent to the microlens array of the CSU by reflection in its 

dichroic mirror (Di01-T405/488/568/647, Semrock, Rochester, NY). An objective lens 

(Nikon Plan Apo VC 60 ×, N.A. = 1.2, water immersion) is used for excitation and light 

collection. The tube lens of the microscope is magnified by 1.5. An additional magnifier 

is used (× 2) for the final image in the EMCCD camera (iXon 888 EMCCD, 1024×1024 

pixels, Andor), resulting in a pixel size of 72 nm. The image is filtered (bandpass 

525/50). The microlens and pinhole array of the CSU disks rotate synchronously at a 

speed of 1800 rpm, while the EMCCD and EOM are synchronized to ensure a fast stack 

recording for a given number of incident polarization (Wang et al., 2013). A frame rate of 

50 ms per image and 10 polarization angles measured leads to a typical rate of 1 
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polarization stack recorded per second. Each polarization stack recording is followed by 

a measurement of the fluorescence image taken with the same optical system, using an 

excitation wavelength 640 nm (emission filter 675/50), in order to superimpose the actin 

order information with the presence of FAs in the cell. 

 

Data analysis for polarization-resolved fluorescence microscopy 

Inside the confocal volume, each Alexa488-Phalloidin molecule exhibits an absorption 

dipole vector 𝝁𝑎𝑏𝑠 with an orientation (𝜃, 𝜑) in 3D. Fluorescence is generated from the 

coupling of these dipoles with the incident linear polarization 𝑬(𝛼), which makes an 

angle 𝛼 with the horizontal axis X of the sample plane. The recorded fluorescence 

intensity is proportional to the absorption probability 𝑃𝑎𝑏𝑠 =  |𝝁𝑎𝑏𝑠(𝜃, 𝜑). 𝑬(𝛼)|2. The total 

intensity, built up from the incoherent emission from all molecules during the time of the 

measurement over which they might fluctuate in orientation, results in an angular 

integration over all angles explored in time and space: 

𝐼(𝛼) = ∫ ∫|𝝁𝑎𝑏𝑠(𝜃, 𝜑). 𝑬(𝛼)|2 sin 𝜃𝑑𝜃𝑑𝜑. This signal is modulated in 𝛼 when the 

absorption dipoles of the fluorescence probes are aligned, e.g., when they do not 

experience an isotropic distribution. We assume that the orientations explored by 

molecular dipoles are constrained within an angular cone of total aperture angle 𝜓, 

oriented in the sample plane along the direction 𝜌 relative to X (Fig. 1 B). Physically, 𝜓 

determines the degree of angular variations present within the focal spot at a given pixel 

position. This angle, denoted ‘molecular order’, encompasses the orientation variations 

among probes (related to the static organization of actin filaments) as well as their time 

angular fluctuations, integrated during the imaging integration time. 𝜌 determines the 
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preferential orientation of the probes. Thus,  𝜌 and 𝜓 permit quantification of the 

complete information on molecular organization at each pixel of an image. In 

practice, (𝜌, 𝜓) are deduced from the measurement of the intensity modulation 𝐼(𝛼). 

This is done by decomposing the dependence of the intensity 𝐼(𝛼) as a function of 

(𝜌, 𝜓) in a modulation form: 𝐼(𝛼) = 𝑎0 + 𝑎2(𝜌, 𝜓) cos 2𝛼 + 𝑏2(𝜌, 𝜓) sin 2𝛼. 𝑎2(𝜌, 𝜓) and 

𝑏2(𝜌, 𝜓) are the intensity modulation coefficients. The retrieval of (𝜌, 𝜓) is computed 

numerically from the measurement of (𝑎2, 𝑏2) at each pixel position, accounting for 

possible polarization distortions (Kress et al., 2013). In practice, these coefficients are 

measured from the computation of 𝑎2 = 2/𝑎0 ∑ 𝐼(𝛼𝑘)𝑘 cos 2𝛼𝑘 and 

𝑏2 = 2/𝑎0 ∑ 𝐼(𝛼𝑘)𝑘 sin 2𝛼𝑘, using 𝑎0 = ∑ 𝐼(𝛼𝑘)𝑘  the total intensity and 𝛼𝑘 the angles 

used for the polarization resolved measurements (typically 𝑘 = 1. .10 and 𝛼𝑘 =

0° … 180°). (𝜌, 𝜓) are finally represented in a map which combines molecular order and 

orientation. 

 

For analyzing the molecular organization of actin at FAs, ventral stress fibers were 

selected, because the majority of mature FAs are found at their two ends. Also, ventral 

stress fibers do not ‘cross over’ (like dorsal stress fibers and arcs do, which would 

interfere with the polarization-resolved microscopy analysis). The regions of actin stress 

fibers on which the polarization analysis is performed are selected based on: (1) a 

segmentation step, and (2) a selection or region of interest (ROI) where a FA is present. 

The segmentation step uses ‘filament sensor’, a tool recently developed in MATLAB for 

segmenting filament shapes in a 2D image (Eltzner et al., 2015), based on the filtering 

of straight contrasted features of an image, e.g., lines of typically several microns in 
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length and several pixels in width (300 nm – 1m). Only pixels selected by filament 

sensor are treated as relevant for polarization analysis. The second step in the process, 

selection of ROI, is based on a pure threshold of the FA intensity image, using a manual 

choice of thresholding conditions to ensure that the binary mask defining an ROI 

resembles, at best, the real size of the FA. The result of this segmentation is the 

selection of typically 5-10 ROIs per cell, each containing one stress fiber that overlaps 

at its end with a FA. From this segmentation, actin signal pixels that overlap with FA 

regions are considered as regions named ‘in’, e.g. actin elements present in the FA, 

while actin signal pixels that do not overlap with a FA are called ‘out’, for pixels outside 

the FA region (but within the stress fiber connected to the FA). For the analysis, we 

used two different patterns (Y and H) to help ensure that different patterns do not 

change the outcome, i.e., the differences between APC-WT and APC-m4. We pooled 

the data from both patterns and analyzed them together. For APC-WT cells, we 

analyzed n = 25 FA-stress fibers from patterned cells (17 from Y patterns, 8 from H 

patterns). For APC-m4 cells, we analyzed n = 31 FA-stress fibers from patterned cells 

(18 from Y patterns, 13 from H patterns). The representation of both  and 

parameters is combined in a graph where the processed pixels are overlapped with a 

line, or ‘stick’;  is indicated by the color of the stick, and  is indicated by the 

orientation of the stick. These ‘stick images’ are then overlapped with the intensity 

images, of either F-actin or FAs. 

 

Different parameters are calculated within each selected ROI (the ‘in’ and ‘out’ regions 

of the ROI, defined above). The <> and <> are the averaged values of the  and  
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parameters over the number of pixels present in the ROI. SD and SD are the standard 

deviation values of the  and  parameters. While <> represents the average 

molecular order in a given population of pixels, SD and SD represent the variations 

around the average for  and , and therefore permits the quantification of 

heterogeneity within the ROI. Once these values are collected for all ROIs, the 

averages are calculated and plotted with SD values (error bars) on Bee swarm plots. 

 

Western blotting and co-immunoprecipitation 

Western blotting was used to compare levels of endogenous APC in cells expressing 

APC (WT or m4) (Fig. S1, A and B; Fig. S4 A), levels of endogenous Dia1 in silenced or 

control cells (Fig. S4 D), and ratio of lipid-conjugated LC3 (LC3-II) to non-lipidated LC3 

(LC3-I) (Streeter et al., 2016) in cells expressing APC (WT or m4) (Fig. S5 A). In each 

case, cells were pelleted and resuspended in lysis buffer (150 mM NaCl, 1.0% NP-40, 

1.0% sodium deoxycholate, 1% SDS, 50 mM Tris, pH 7.5, 2 mM EDTA, 0.2 mM sodium 

orthovanadate, 20 mM β-glycerophosphate, 50 mM sodium fluoride, 1 mM PMSF, 1 mM 

DTT, and 1× Roche complete protease inhibitor mixture), and incubated for 30 min at 

4ºC with vortexing every 5 min. Lysate samples were precleared by centrifugation at 

15,300 x g for 30 min at 4ºC, quantified by Bradford assay, and equal amounts of total 

protein were immunoblotted. Blots were probed with 1:300 rabbit anti-APC (ab15270; 

Abcam, Cambridge MA), 1:1000 rabbit anti-LC3 (NB100-2220SS; Novus Biologicals), 

1:500 mouse anti-Dia1 (E-4, sc-373807, Santa Cruz Biotechnology, Inc, Dallas, USA), 

1:2000 rabbit anti-GFP (ab6556, Abcam) or 1:2000 rabbit/human anti-GADPH (ab9489; 

Abcam, Cambridge, MA), then washed, and probed with infrared dye–conjugated 
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secondary antibodies (Rockland Immunochemicals, Pottstown, PA). Proteins levels 

were detected and quantified by band densitometry using a LI-COR OdysseyTM 

Infrared Imaging System (LI-COR Biotechnology, Inc., Lincoln, NE, USA). 

 

For immunoprecipitations (Fig. 6 I; and Fig. S5 E) cells were transfected as described 

above with plasmids expressing full-length APC (WT or m4), GFP-LC3 (Addgene 

#11546), GFP-LAMP1 (Addgene #34831), and/or GFP-empty vector (Addgene 

#54522). 12 h after transfection, cells were pelleted and resuspended in lysis buffer 

(150 mM NaCl, 0.1% NP40, 50 mM Tris-Cl pH 7.5, 1 mM EDTA, 10% glycerol, 1 mM 

sodium orthovanadate, 60 mM β-glycerophosphate, 50 mM sodium fluoride, 1 mM 

PMSF and 1× Roche complete protease inhibitor mixture), then incubated for 30 min at 

4ºC with vortexing every 2 min. Samples were precleared by centrifugation at 15,300 x 

g for 30 min at 4ºC and quantified by Bradford assay. Equal amounts of total protein 

(cleared lysate) were incubated for 2 h at 4ºC with 20 µl GFP-Trap-A agarose beads 

(gta-20; ChromoTek, Hauppauge, NY), in a reaction volume of 500 µl. Beads were 

washed four times in lysis buffer without detergent, and then incubated with Laemmli 

buffer for 5 min at 95ºC, and immunoblotted. Blots were probed sequentially with 1:2000 

rabbit anti-GFP (ab6556; Abcam, Cambridge, MA) and 1:1000 mouse/human anti-

NBR1 (H00004077-A01; Abnova, Taipei City, Taiwan), and 1:1000 rabbit anti-LC3 

(NB100-2220SS; Novus Biologicals) antibodies, washed, probed with secondary 

antibodies as above, and detected by infrared imaging as above. 

 

Quantification and Statistical analysis  
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All experiments were repeated multiple times, as indicated in the legends for each 

figure. In each case the data were pooled, averaged, and errors (SD or SEM) were 

calculated using GraphPad Prism (version 6.0c; GraphPad Software, La Jolla, CA). 

Figure legends list the n values and error bars (SD or SEM) for each experiment. Data 

were tested for normality using D'Agostino-Pearson omnibus normality test, and 

statistical significance was calculated using ordinary one-way ANOVA Sidak’s multiple 

comparisons test (Fig. 5 C), ordinary one-way ANOVA Holm-Sidak’s multiple 

comparisons test (Fig. 4, E-I; Fig. 5 E; Fig. S1 A; Fig. S4 A and D, and Fig. S5 C), one-

way ANOVA Dunn’s multiple comparisons test (Fig. 6 B), or non-parametric Mann-

Whitney two-tailed student’s t-test (for all other experiments) in Prism software version 

6.0c (GraphPad Software, La Jolla, CA). Differences were considered significant if P 

value < 0.05 (*), <0.01(**), <0.001(***), or < 0.0001 (****); as reported in the legend for 

each figure.  

 

KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Rabbit anti-phospho Src (Tyr416; clone 2N8) EMD Millipore Cat# 04-857 

Rabbit anti-phospho FAK (Tyr397, clone 141-9) Invitrogen Cat# 44-625G 

Rabbit anti-phospho-Paxillin (Tyr-118) ECM Biosciences Cat# PP4501 

Mouse anti-Paxillin (clone 5H11) Invitrogen Cat# IAH00492 

Mouse anti-Vinculin Sigma-Aldrich Cat# V9131 

Rabbit anti-APC Abcam Cat# ab1527 

Mouse anti-Dia1 (E-4) Santa Cruz 
Biotechnology, Inc 

Cat# sc-373807 

Rabbit anti-LC3 Novus Biologicals Cat# NB100-2220SS 

Donkey anti-rabbit AlexaFluor-488 Thermo Fisher 
Scientific 

Cat# A-21206 

Goat anti-rabbit AlexaFluor-555 Thermo Fisher 
Scientific 

Cat# A-21428 

Donkey anti-mouse AlexaFluor-568 Thermo Fisher 
Scientific 

Cat# A-10037 

Rabbit anti-GFP Abcam Cat# ab6556 

Rabbit/human anti-GADPH Abcam Cat# ab9485 
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Mouse/human anti-NBR1 Abnova  Cat# H00004077-
A01 

Donkey anti-rabbit IRDye 680RD Rockland 
Immunochemicals 

Cat# 926-68073 

Mouse anti-rabbit IRDye 680RD Rockland 
Immunochemicals 

Cat# 926-32220 

Bacterial and Virus Strains  

XL Blue competent cells  This paper N/A 

Chemicals, Peptides, and Recombinant Proteins 

AlexaFluor-568-Phalloidin Invitrogen- Thermo 
Fisher Scientific 

Cat# A12380 

200 mM L-glutamine  Thermo Fisher 
Scientific 

Cat# 25030-081 

DMEM- Dulbecco's Modified Eagle Medium 
 

Thermo Fisher 
Scientific 

Cat# 11995-073  

FBS - Fetal bovine serum Sigma-Aldrich Cat# F9423 

Lipofectamine 3000  Thermo Fisher 
Scientific 

Cat# L3000-015 

Lipofectamine RNAiMAX Thermo Fisher 
Scientific 

Cat# 13778075 
 

HEPES Sigma-Aldrich Cat# H4034 

100mM Sodium pyruvate  Thermo Fisher 
Scientific 

Cat# 11360070 
 

Opti-MEM reduced serum media Thermo Fisher 
Scientific 

Cat# 31985-088 
 

Bafilomycin A Sigma Aldrich Cat# SML1661 
 

Pepstatin A US Biological Cat# P3280 
 

Collagen I  Advanced BioMatrix Cat# CB-40236 

Formaldehyde 37% Sigma-Aldrich Cat# 252549 

 

Experimental Models: Cell Lines 

Human osteosarcoma cells: U2OS ATCC  HTB96 

Human breast cancer cells: MDA-MB-231 ATCC  HTB-26 
 

Oligonucleotides 

siRNA targeting sequence against the human APC: 5′-
GGAUCUGUAUCAAGCCGUUTT-3′ sense and 5′-
AACGGCUUGAUACAGAUCCTT-3′ antisense 

(Juanes et al., 2017) N/A 

siRNA targeting sequence against the human Dia1: 5′- 
CUGUUAAUAAAGCAUUGAAUU-3′ sense and 5′- 
AAUUCAAUGCUUUAUUAACAG-3′ antisense 

This paper N/A 

Stealth siRNA-control ‘scramble’ oligos: 5′-
CAGUCGCGUUUGCGACUGG-3′  

Invitrogen Cat# 12935-200 

 

Recombinant DNA 

Plasmid: APC-WT (Juanes et al., 2017) Bruce Goode-US 

Plasmid: APC-m4 (Juanes et al., 2017) Bruce Goode-US 

Plasmid: mCherry-Zyxin (Kenific et al., 2016) Addgene #55166 

Plasmid: pRK-GFP-Paxillin (Chen et al., 2013) Addgene #50529 

Plasmid: 3×GFP-EMTB (Miller and Bement, 
2009) 

Addgene #26742 

https://www.thermofisher.com/order/catalog/product/13778075
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Plasmid: GFP-LC3 (Jackson et al., 2005) Addgene #11546 

Plasmid: GFP-NBR1 (Kenific et al., 2016) Addgene # 74202 

Plasmid: mCherry-LAMP1  (Miyamoto et al., 
2015) 

Addgene #61524 

Plasmid: GFP-LAMP1 (Falcón-Pérez et al., 
2005) 

Addgene #34831 

Plasmid: GFP-Actin (Svitkina et al., 2003) Tatyana Svitkina-US 
 

Plasmid: GFP-empty vector This paper Addgene #54522 

Premo™ Autophagy Tandem Sensor RFP-GFP-LC3B Thermo Fischer 
Scientific 

Cat# P36239 

Software and Algorithms 

Fiji / ImageJ  (Schindelin et al., 
2012) 

N/A 

NIS Elements software - version 4.30.02 Nikon Instruments N/A 

Metamorph Software 7.7.8 Molecular Devices  N/A 

MATLAB 2017 Mathworks N/A 

Focal adhesion analysis server (FAAS) 
http://faas.bme.unc.edu/  

(Berginski et al., 2011) N/A 

GraphPad Prism 6.0c GraphPad Software N/A 

Adobe Illustrator CS6 Adobe Systems N/A 

Filament sensor (Eltzner et al., 2015) N/A 

Matlab (Polarization resolved fluorescence analysis 
algorithm) 

Mathworks 
(Kress et al., 2013) 
and this paper 

N/A 

Labview (Acquisition software for polarization resolved 
fluorescence imaging) 

National Instruments 
(Wang et al., 2013) 
 

N/A 

LI-COR OdysseyTM Infrared Imaging System  LI-COR 
Biotechnology, Inc.  

N/A 

Other 

AquaMount mounting media Thermo Fisher 
Scientific  

Cat# 14-390-5 

Prolong Diamond Antifade Mounting Thermo Fisher 
Scientific  

Cat# P-36961 

GFP-Trap-A agarose beads ChromoTek  Cat# gta-20 

Micro cover glasses 22 x 22 mm VWR International PA Cat# 48366-067 

Circular Round cover glasses 0.15 mm Thermo Fischer 
Scientific 

Cat# 12-545-80 

High precision cover glasses No.1.5H 22 x 22 mm Azer Scientific 
 

Cat# ES0107052  

Dishes with 35mm glass bottom  Thermo Fischer 
Scientific 

Cat# P-35-1.5-14-C 
  

Glass pattern coverslips (starter’s CYTOO) CYTOO Cat# 10-900-00 

 

ONLINE SUPPLEMENTAL MATERIAL  

 

http://faas.bme.unc.edu/
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Fig. S1 A shows levels of APC and GAPDH by western blot, and ratio of APC : GADPH. 

Fig. S1 B shows a schematic of FA and stress fiber indicating the ‘inside’ FAs (In) and 

‘outside’ FAs (Out) regions of interest (ROI) quantified for the analysis of the molecular 

disorder of F-actin. Fig. S1 C shows representative images of cells stained for phospho-

Paxillin and F-actin from polarization-resolved microscopy experiments. Fig. S1, D and 

E show zooms of FA-stress fiber regions from the representative cells in Fig. S1 C. Fig. 

S2 shows total levels of F-actin, molecular disorder (), standard deviation of  and of 

. Fig. S3, A and B show FRAP recovery curves of GFP-actin after bleaching of ‘inside’ 

and ‘outside’ regions of stress fibers. Fig. S4 A shows levels of APC and GAPDH by 

western blotting. Fig. S4 B shows the ratio of APC : GADPH from western blots. Fig. S4 

C shows levels of Dia1 and GAPDH by western blotting. Fig. S4 D shows ratio of 

endogenous Dia1 : GADPH from western blots. Fig. S5 shows that APC-m4 expression 

does not alter general autophagy in cells. Fig. S5 A shows endogenous levels of LC3-I, 

LC3-II, and GADPH in cells, and the ratio of LC3-II : LC3-I from western blots. Fig. 5 B 

shows levels of endogenous LC3 determined by immunostaining. Fig. S5 C shows that 

APC-m4 expression does not alter autophagosome trafficking and fusion with 

lysosomes, indicated by the ratio of RFP/GFP-LC3 fluorescence intensity per LC3-

autophagosome. Fig. S5 D shows colocalization of GFP-LC3 (autophagosomes) and 

mCherry-LAMP1 (lysosomes) by live-cell imaging. Fig. S5 E shows co-

immunoprecipitation of endogenous LC3-II with GFP-LAMP1. Video 1 and Video 2 

(related to Fig. 4) show FAs in migrating cells. Video 3 (related to Fig. 5) shows 

microtubules and FAs. Video 4 (related to Fig. 6) shows autophagosomes and FAs in 

migrating cells. 
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Figure 1. APC-m4 disrupts the molecular order of F-actin at focal adhesions. All 

data are from U2OS cells. (A) Schematic of FA (grey) and emanating stress fiber 

(green), highlighting regions of interest (ROI) analyzed by polarization-resolved 

microscopy. ROIs overlapping with FAs are designated as ‘inside’, and ROIs just 

outside of FAs on the stress fiber are designated ‘outside’. (B) Schematic showing 

orientational order parameters  (mean orientation) and  (mean order or angular 

aperture). In the cartoon, fluorophores that label actin filaments are depicted as grey 

ellipsoids. The color bar provides a scale quantifying  for other panels. (C) 

Representative confocal images of cells grown on collagen micropatterns (H and Y 

shapes), depleted of endogenous APC and rescued with refractory APC constructs 

(APC-WT or APC-m4). Cells were fixed and stained with Alexa Fluor-488-phalloidin (F-

actin, grey) and P-Paxillin antibodies (pink). Yellow boxes highlight areas analyzed in 

(D) and (E). Scale bar, 20 m. (D) Representative zoom images from boxed region of 

APC-WT cell in (C) showing both the inside (‘In’) and outside (‘Out’) ROIs analyzed. Left 

panel shows an overlay of Alexa Fluor-488-phalloidin (grey) and phospho-Paxillin (pink). 

Remaining panels (left to right) show: the color-coded molecular order () super-

imposed on Alexa Fluor-488-phalloidin (F-actin, grey); intensity-thresholded image of 

FA (white) superimposed with stick representation of  (encoded in stick color); and 

mean orientation (encoded in stick orientation with thresholded image of FAs (grey). 

Below the image panels are histograms, displaying the  value distribution (in degrees) 

from the ‘In’ and ‘Out’ ROIs combined (<> = 133.8°), and separately from ‘In’ (<> = 

132.9°) and ‘Out’ (<> = 131.1°). Scale bar, 2 m. (E) Same as (D) except for APC-m4 

cells. Histograms display the  value distribution from the ‘In’ and ‘Out’ ROIs combined 
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(<> = 143.0°), and separately from ‘In’ (<> = 145.2°) and ‘Out’ (<> = 140.8°). (F) 

Total F-actin intensity (from ‘In’ and ‘Out’ ROIs combined). (G) Bee swarm plot showing 

average molecular order (), separately for inside and outside ROIs. (H) Bee swarm 

plot showing the standard deviation of  (SD), separately for inside and outside ROIs. 

(I) Bee swarm plot showing the standard deviation of  (SD), separately for inside and 

outside ROIs. Data in panels F-I averaged from three independent experiments. APC-

WT (n = 25 ROIs) and APC-m4 (n = 31 ROIs) from n ≥ 15 cells per condition. Error 

bars, SD. Statistical significance calculated by non-parametric Mann-Whitney two-tailed 

student’s t-test: *** P < 0.001, ** P < 0.01, * P < 0.05, n.s. (not significant). 

 

Figure 2. APC-m4 alters actin dynamics at focal adhesions. U2OS cells were 

depleted of endogenous APC and rescued with refractory APC constructs (APC-WT or 

APC-m4) along with plasmids expressing GFP-actin and mCherry-Zyxin. (A) FRAP 

analysis, in which regions of interest (ROI) were selected where GFP-actin and 

mCherry-Zyxin signals overlap (see orange box in cartoon). ROIs were then bleached 

and monitored for GFP-actin fluorescence recovery. Graphs show mean recovery 

profiles normalized to zero after bleaching. Data averaged from three independent 

experiments (n = 30 ROIs from n = 15 cells per condition). (B) FRAP experiments as in 

(A) except that ROIs were selected along stress fibers at a distance (> 5 µm) from FAs 

(see orange box in cartoon). Graphs show mean recovery profiles normalized to zero 

after bleaching. Data averaged from three independent experiments (n = 30 ROIs from 

n = 15 cells per condition). (C) Average time to 50% maximal recovery for experiments 

in (A). Error bars, SEM. Statistical significance calculated by non-parametric Mann-
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Whitney two-tailed student’s t-test: n.s. (not significant). (D) Average immobile fraction 

(does not recover in observation window) for experiments in (A). Error bars, SEM. 

Statistical significance calculated by non-parametric Mann-Whitney two-tailed student’s 

t-test: * P < 0.05. (E) Average time to 50% maximal recovery for experiments in (B). 

Error bars, SEM. Statistical significance calculated by non-parametric Mann-Whitney 

two-tailed student’s t-test: n.s. (not significant). (F) Average immobile fraction for 

experiments in (B). Error bars, SEM. Statistical significance calculated by non-

parametric Mann-Whitney two-tailed student’s t-test: n.s. (not significant). 

 

Figure 3. APC-m4 decreases the levels and/or densities of key molecular 

components at focal adhesions. All data are from MDA-MB-231 cells expressing APC 

constructs (APC-WT or APC-m4), using fixed or live-cell imaging as indicated. (A) 

Representative immunostaining of endogenous active phospho-Src detected by 

confocal imaging. Scale bar, 40 m. Green boxed regions correspond to zoom panels 

(right; scale bar, 10 m), which highlight the localization of phospho-Src at the cell 

periphery. (B) Representative immunostaining of endogenous active phospho-Paxillin 

detected by confocal imaging. Scale bar, 25 m. Green boxed regions correspond to 

zoom panels (right; scale bar, 5 m), which highlight the localization of phospho-Paxillin 

at the cell periphery. (C) Representative immunostaining of endogenous active 

phospho-FAK tyrosine kinase detected by confocal imaging. Scale bar, 25 m. Green 

boxed regions correspond to zoom panels (right; scale bar, 5 m), which highlight the 

localization of phospho-Paxillin at the cell periphery. (D) Densities of endogenous 

phospho-Src, phospho-Paxillin, and phospho-FAK determined from cell images as in (A, 
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B, C). Data averaged from three independent experiments. n ≥ 56 cells for phospho-

Src, n = 35 cells for phospho-Paxillin, n ≥ 103 cells for phospho-FAK per condition. Error 

bars, SEM. Statistical significance calculated by non-parametric Mann-Whitney two-

tailed student’s t-test: **** P < 0.0001. (E) Representative SIM images of cells 

immunostained for phospho-Src (green) and Paxillin (pink). Scale bar, 5 m. White 

boxed regions correspond to zoom panels (right; scale bar, 2 m), highlighting the 

localization of phospho-Src and Paxillin at FAs. (F) Representative SIM images of cells 

immunostained for phospho-Paxillin(green) and Paxillin (pink). Scale bar, 5 m. White 

boxed regions correspond to zoom panels (right; scale bar, 2 m), highlighting the 

localization of phospho-Paxillin and Paxillin at FAs. (G) Representative SIM images of 

cells immunostained for phospho-FAK (green) and Paxillin (pink). Scale bar, 5 m. 

White boxed regions correspond to zoom panels (right; scale bar, 2 m), highlighting 

the localization of phospho-Paxillin and Paxillin at FAs. (H) Density of phospho-Src, 

phospho-Paxillin, and phospho-FAK staining at individual FAs from cell images as in (E-

G). Data averaged from two independent experiments. n = 50 FAs total from 15 cells 

per condition. Error bars, SEM. Statistical significance calculated by non-parametric 

Mann-Whitney two-tailed student’s t-test: **** P < 0.0001, ** P < 0.01. (I) Densities of 

signals at FAs for different components: GFP-Paxillin and mCherry-Zyxin densities were 

measured from cell images captured by TIRF microscopy; Vinculin densities were 

measured from immunofluorescence images captured by confocal microscopy. Data 

averaged from three independent experiments. n = 34-159 FAs from n > 10 cells per 

condition. Error bars, SEM. Statistical significance calculated by non-parametric Mann-

Whitney two-tailed student’s t-test: **** P < 0.0001, *** P < 0.001. 
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Figure 4. APC-m4 slows focal adhesion disassembly. All data are from live TIRF 

microscopy imaging of migrating MDA-MB-231 cells expressing APC-WT or APC-m4, 

and either control-RNAi treated (scramble) or Dia1-silenced. (A) Representative image 

of an APC-WT cell (left; scale bar, 25 m) showing FAs marked with mCherry-Zyxin. 

The four FAs marked by yellow boxes and numbered correspond to the montages 

(right). Montages show time points from time-lapse imaging of FA assembly and 

disassembly. Time=0 represents FA maximum size (peak fluorescence intensity). Scale 

bar (in time-lapse montage), 3 m. (B) Same as in (A) except APC-m4 cell, and 

corresponding FAs. (C) Histograms showing the distributions of times for individual FAs 

to complete assembly (from the time of initial appearance of mCherry-Zyxin signal to 

time of peak intensity). Bin width, 2 min. Data from live imaging experiments as in (A, 

B). n = 100 FAs per condition from n = 10 cells per condition. (D) Overlaid histograms 

showing the distributions of times for individual FAs to complete disassembly (starting 

from the time of peak fluorescence intensity to complete disappearance of signal). Bin 

width, 2 min. Data from live imaging experiments as in (A, B). n = 840 FAs (APC-WT) 

and n = 961 FAs (APC-m4), each from n > 20 cells per condition. (E) Box and whisker 

plots showing data points from all regions of the cell used to determine global FA 

assembly and disassembly rates. Data are from live imaging experiments as in (A, B), 

and were analyzed with the webtool FAAS. APC-WT (n = 286 FAs for assembly rate, n 

= 312 FAs for disassembly rate) and APC-m4 (n = 208 FAs for assembly rate, n = 354 

FAs for disassembly rate), from n ≥ 8 cells per condition. Statistical significance 

calculated by ordinary one-way Anova Holm-Sidak´s multiple comparisons test: **** P < 
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0.0001; n.s. (not significant). (F, G) Box and whisker plots showing data points used to 

determine FA assembly (F) and disassembly (G) rates at the leading edge (front) or 

trailing edge (rear) of cells. Data are from live imaging experiments as in (A, B), and 

were analyzed with the webtool FAAS. n = 200 FAs from n ≥ 8 cells per condition. 

Statistical significance calculated by ordinary one-way Anova Holm-Sidak´s multiple 

comparisons test: **** P < 0.0001; n.s. (not significant). (H) Box and whisker plots 

showing data points from all regions of the cell used to determine global FA assembly 

and disassembly rates for mock (scramble) treated or Dia1-silenced cells. Data from live 

imaging experiments were analyzed with the webtool FAAS. Scramble (n = 499 FAs for 

assembly rate, and n = 344 FAs for disassembly rate) and si-Dia (n = 667 FAs for 

assembly rate, and n = 628 FAs for disassembly rate), from n ≥ 12 cells per condition. 

Statistical significance calculated by ordinary one-way Anova Holm-Sidak´s multiple 

comparisons test: * P < 0.05; n.s. (not significant). (I) Total F-actin levels in cells 

determined by phalloidin staining. Data averaged from three independent experiments. 

n = 40-100 cells per condition. Error bars, SEM. Statistical significance calculated by 

ordinary one-way Anova Holm-Sidak´s multiple comparisons test: **** P < 0.0001; n.s. 

(not significant). 

 

Figure 5. APC-m4 increases the number and duration of microtubule capture 

events at focal adhesions. All data are from live-cell TIRF imaging of migrating MDA-

MB-231 cells expressing APC constructs (APC-WT or APC-m4), along with a 

microtubule marker (3xGFP-EMDB) and FA marker (mCherry-Zyxin). (A) 

Representative time-lapse imaging of microtubules (3xGFP-EMDB; cyan) and FAs 
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(mCherry-Zyxin; pink). Scale bar, 4 m. (B) Percentage of mature FAs (per cell) that 

capture microtubule plus ends during the 30 min observation window. Data averaged 

from two experiments as in (A); n = 20 cells per condition. Error bars, SD. Statistical 

significance calculated by non-parametric Mann-Whitney two-tailed student’s t-test: P = 

0.9365, n.s. (not significant). (C) Scatter plots showing the number of microtubule 

capture events at individual FAs during FA assembly and disassembly phases (see 

legends Fig. 4 C and D for definitions of phases) from experiments as in (A). Data 

averaged from two experiments; n = 11 FAs per condition from n > 5 cells per condition. 

Error bars, SEM. Statistical significance calculated by ordinary one-way Anova Sidak´s 

multiple comparisons test: * P < 0.05; n.s. (not significant). (D) Scatter plot showing the 

durations of microtubule capture events at FAs from experiments as in (A). Data 

averaged from three experiments; n = 50 microtubule capture events per condition from 

n > 10 cells per condition. Error bars, SEM. Statistical significance calculated by non-

parametric Mann-Whitney two-tailed student’s t-test: **** P < 0.0001. (E) Percentage of 

microtubule ends that are captured at different regions or ‘zones’ of a FA, from 

experiments as in (A): Zone 1, proximal third of FA (relative to microtubule arrival); Zone 

2, central third; Zone 3, distal third. Data averaged from three experiments; n = 90 

microtubule capture events per condition from n > 15 cells per condition. Error bars, 

SEM. Statistical significance calculated by one-way Anova Holm-Sidak’s multiple 

comparisons test: ** P < 0.01; n.s. (not significant).  

 

Figure 6. APC-m4 alters autophagosome dynamics at focal adhesions. All data are 

from live-cell TIRF imaging of migrating MDA-MB-231 cells expressing APC constructs 
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(APC-WT or APC-m4), along with markers for autophagosomes (GFP-LC3) and FAs 

(mCherry-Zyxin). For all panels, data are averaged from at least three experiments. (A) 

Representative time-lapse imaging showing autophagosomes (GFP-LC3, cyan) and 

FAs (mCherry-Zyxin, pink). Time = 0 corresponds to maximum mCherry-Zyxin 

fluorescence intensity (peak FA growth). Scale bar, 3 m. (B) Percentage of mature 

FAs targeted by autophagosomes, analyzed from experiments as in (A). n > 800 FAs 

per condition from n ≥ 20 cells per condition. Error bars, SEM. Statistical significance 

calculated by one-way Anova Dunn’s multiple comparisons test: n.s. (not significant). 

(C) Histograms showing distributions of mature FAs targeted by autophagosomes in the 

30 min observation window, from experiments as in (A). n = 40 FAs from n > 5 cells per 

condition. (D) Scatter plot showing dwell times of autophagosomes at FAs, analyzed 

from experiments as in (A). n ≥ 42 autophagosomes per condition from n > 10 cells per 

condition. Error bars, SEM. Statistical significance calculated by non-parametric Mann-

Whitney two-tailed student’s t-test: **** P < 0.0001. (E) Scatter plot showing time after 

first appearance of an autophagosome at the FA to complete FA disassembly, analyzed 

from experiments as in (A). n = 31 FAs (APC-WT) or n = 50 FAs (APC-m4) from n > 10 

cells per condition. Error bars, SEM. Statistical significance calculated by non-

parametric Mann-Whitney two-tailed student’s t-test: **** P < 0.0001. (F) Overlaid 

histograms showing time elapsed from peak FA maturity (time=0) to arrival of 

autophagosome during the 40 min observation window. Negative numbers correspond 

to rare events in which autophagosomes arrive before FA peak maturation. Data are 

analyzed from experiments as in (A). n = 20 FAs from n > 5 cells per condition. (G) 

Percentage of mature FAs targeted by GFP-NBR1 receptor, analyzed from live imaging 
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experiments as in (A), except using cells expressing mCherry-Zyxin and GFP-NBR1. n 

= 100 FAs (from 15 cells) per condition. Error bars, SEM. Statistical significance 

calculated by non-parametric Mann-Whitney two-tailed student’s t-test: n.s. (not 

significant). (H) Scatter plot showing dwell times of GFP-NBR1 interactions with FAs, 

analyzed from live imaging experiments as in (G). n = 40 GFP-NBR1 visits to FAs (from 

n = 10 cells) per condition. Error bars, SEM. Statistical significance calculated by non-

parametric Mann-Whitney two-tailed student’s t-test: n.s. (not significant). (I) Co-

immunoprecipitation of endogenous NBR1 with GFP-LC3, pulled down using GFP-Trap-

A agarose beads. Cells transfected with empty vector (expressing GFP alone instead of 

GFP-LC3) serve as a negative control. 

 

Figure 7. Working model for the ordered events in focal adhesion turnover and 

the role of APC-mediated actin assembly. FA assembly (top panels) is similar in 

APC-WT and APC-m4 cells, with FAs growing for an average of 4.8 minutes before 

reaching peak maturity (maximum size). During this phase, microtubule plus ends are 

repeatedly captured at FAs and then retract, but rarely does this result in delivery of an 

autophagosome to the FA. However, FA disassembly (the time from peak maturity to 

complete disappearance) is strikingly different in APC-WT versus APC-m4 cells (bottom 

panels), taking ~ 7-fold longer in APC-m4 cells (17.5 versus 2.5 minutes). In APC-m4 

cells, microtubule capture events are approximately three times longer than in APC-WT 

cells (76 versus 26 seconds), and autophagosome dwell times at FAs are approximately 

twice as long (72 versus 36 seconds). However, the frequency of microtubule visits is 

reduced in APC-m4 cells, as the average time between microtubule visits is increased. 
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In APC-WT cells, once the FA reaches full maturity (stops growing), the next 

microtubule capture event typically results in autophagosome delivery, leading to rapid 

disassembly of the FA. However, in APC-m4 cells, microtubule capture and 

autophagosome delivery occurs repeatedly at mature FAs as they slowly disassemble. 

Zooms in lower panels depict the spatial organization of F-actin and FA components. In 

APC-m4 cells, F-actin levels and organization are reduced, and the density of FA 

components is reduced (see zooms in lower panels). Black arrows on the left sides of 

panels indicate normal timing of events in FA assembly and disassembly, while red 

arrows indicate prolonged events in FA disassembly in APC-m4 cells. The large red 

arrow on the right indicates an increase in the number of times specific steps in FA 

turnover are repeated in APC-m4 cells. 

 

SUPPLEMENTAL FIGURES 

 

Figure S1. Related to figure 1. APC-m4 disrupts the molecular order of F-actin at 

focal adhesions. All data are from U2OS cells, not micropatterned as in Figure 2 C-I. 

(A) Western blot of whole cell extracts from U2OS cells treated with scramble RNAi 

(control), depleted of endogenous APC (si-APC), depleted of endogenous APC and 

rescued with refractory APC-WT or APC-m4 (rescue), and cells expressing the APC 

constructs without depleting endogenous APC (ectopic). Blots were probed with 

antibodies to APC and GAPDH (loading control). Graph (right) quantifies ratio of APC to 

GAPDH signals from blots. Data averaged from two independent experiments. Error 

bars, SEM. Statistical significance calculated by one-way Anova Holm-Sidak’s multiple 
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comparisons test: (compared with scramble, and in order from left to right): *, P < 0.05, 

n.s. (not significant). (B) Schematic of FA (grey) and stress fiber (green), highlighting 

regions of interest (ROI) analyzed for F-actin molecular organization by polarization-

resolved microscopy. ROIs overlapping with FAs designated as ‘inside’; ROIs just 

outside of FAs on the stress fiber designated ‘outside’. (C) Representative confocal 

images of cells depleted of endogenous APC and rescued with APC-WT or APC-m4. 

Cells were fixed and stained with Alexa Fluor-488-phalloidin (F-actin, grey) and 

phospho-Paxillin antibodies (pink). Yellow boxes highlight areas analyzed in (D) and 

(E). Scale bar, 20 m. (D) Representative zooms from boxed region of APC-WT cell in 

(C). Left panel shows overlay of Alexa Fluor-488-phalloidin (grey) and phospho-Paxillin 

(pink). Remaining panels (left to right) show: the color-coded molecular order () super-

imposed on Alexa Fluor-488-phalloidin (F-actin, grey); intensity-thresholded image of 

FA (white) superimposed with stick representation of  (encoded in stick color); and 

mean orientation (encoded in stick orientation with thresholded image of FAs (grey). 

Histograms display  value distribution (in degrees) from inside and outside ROIs 

combined (<> = 136°). Scale bar, 2 m. (E) Same as (D) except APC-m4 cells (<> = 

145°). 

 

Figure S2. Related to figure 1. APC-m4 disrupts the molecular order of F-actin at 

focal adhesions. All data are from U2OS cells grown on collagen dishes, but not 

micropatterned as in Figures 2C-I. Left panels are data from cells depleted of 

endogenous APC (si-APC) and expressing APC-WT or APC-m4 rescue plasmids 

(silence and rescue). Right panels are data from cells ectopically expressing APC-WT 
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or APC-m4 (ectopic). (A) Total F-actin intensity from inside and outside ROIs combined. 

(B) Bee swarm plot showing average molecular order () separately for inside and 

outside ROIs. (C) Bee swarm plot showing standard deviation of  (SD) separately for 

inside and outside ROIs. (D) Bee swarm plot showing standard deviation of  (SD) 

separately for inside and outside ROIs. Data in left panels averaged from three 

independent experiments. n = 25 ROIs from n ≥ 15 cells per condition. Error bars, SD. 

Statistical significance calculated by non-parametric Mann-Whitney two-tailed student’s 

t-test: *** P < 0.001, ** P < 0.01, * P < 0.05, n.s. (not significant). Data in right panels 

averaged from two independent experiments. n = 10 ROIs from n = 8 cells per 

condition. Error bars, SD. Statistical significance calculated by non-parametric Mann-

Whitney two-tailed student’s t-test: *** P < 0.001, ** P < 0.01, * P < 0.05, n.s. (not 

significant). 

 

Figure S3. Related to figure 2. Effects of APC depletion on actin dynamics in focal 

adhesions and stress fibers. All data are from U2OS cells treated with scramble RNAi 

(control) or depleted of endogenous APC (si-APC). (A) FRAP analysis, in which regions 

of interest (ROI) were selected where GFP-actin and mCherry-Zyxin signals overlap 

(see orange box in cartoon). ROIs were then bleached and monitored for GFP-actin 

fluorescence recovery. Graphs show mean recovery profiles normalized to zero after 

bleaching. Data averaged from three independent experiments (n = 30 ROIs from n = 

15 cells per condition). (B) FRAP experiments as in (A) except that ROIs were selected 

along stress fibers at a distance (> 5 µm) away from FAs (see orange box in cartoon). 

Graphs show mean recovery profiles normalized to zero after bleaching. Data averaged 
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from three independent experiments (n = 30 ROIs from n = 15 cells per condition). (C) 

Average time to 50% maximal recovery for experiments in (A). Error bars, SEM. 

Statistical significance calculated by non-parametric Mann-Whitney two-tailed student’s 

t-test: n.s. (not significant). (D) Average immobile fraction (does not recover in 

observation window) for experiments in (A). Error bars, SEM. Statistical significance 

calculated by non-parametric Mann-Whitney two-tailed student’s t-test: * P < 0.05. (E) 

Average time to 50% maximal recovery for experiments in (B). Error bars, SEM. 

Statistical significance calculated by non-parametric Mann-Whitney two-tailed student’s 

t-test: n.s. (not significant). (F) Average immobile fraction for experiments in (B). Error 

bars, SEM. Statistical significance calculated by non-parametric Mann-Whitney two-

tailed student’s t-test: n.s. (not significant). 

 

Figure S4. Related to Figure 4. Levels of APC and Dia1 in MDA-MB-231 cells. (A) 

Western blot analysis of whole cell extracts from MDA-MB-231 cells treated with 

scramble RNAi (control), depleted of endogenous APC (si-APC), depleted of 

endogenous APC and rescued with refractory APC-WT or APC-m4 (rescue), and cells 

expressing the same APC constructs without depleting endogenous APC (ectopic). 

Blots were probed with antibodies to APC and GAPDH (loading control). (B) 

Quantification of the ratio of APC to GAPDH from blots as in (A). Data averaged from 

two experiments. Error bars, SEM. Statistical significance calculated by ordinary one-

way Anova Holm-Sidak’s multiple comparisons test (compared with scramble, and in 

order from left to right): *** P < 0.001, n.s. (not significant). (C) Western blot analysis of 

whole cell extracts from MDA-MB-231 cells that were untreated, control RNAi-treated 
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(scramble), or Dia1-silenced (si-Dia1). Blots were probed with antibodies to Dia1 and 

GAPDH (loading control). (D) Quantification of the ratio of Dia1 to GAPDH from blots as 

in (C). Data averaged from four separate experiments. Error bars, SEM. Statistical 

significance calculated by ordinary one-way Anova Holm-Sidak’s multiple comparisons 

test (compared with scramble, and in order from left to right): *** P < 0.001, n.s. (not 

significant).  

 

Figure S5. Related to Figure 6. APC-m4 expression does not alter global 

autophagy. All data are from MDA-MB-231 cells expressing APC constructs (APC-WT 

or APC-m4), using fixed or live imaging as indicated. (A) APC-m4 expression does not 

change total cellular levels of LC3-I and LC3-II. Western blotting of whole cell extracts 

from untreated cells or cells treated for 2 h with 100 nM Bafilomycin 1 (BafA1, an 

autophagy inhibitor). Blots were probed with antibodies to LC3, which detects both 

lipidated-LC3-II and non-lipidated-LC3-I, as indicated by arrows, and GAPDH (loading 

control). The graph below quantifies ratio of LC3-II to LC3-I. Data averaged from two 

independent experiments. Error bars, SEM. Statistical significance calculated by non-

parametric Mann-Whitney two-tailed student’s t-test: n.s. (not significant). (B) APC-m4 

expression does not change total cellular levels of LC3 detected by immunostaining. 

Fluorescence intensity of endogenous LC3, detected by antibody staining, from cell 

images treated as in (A). Data averaged from three independent experiments (n ≥ 20 

cells per condition). Error bars, SEM. Statistical significance calculated by non-

parametric Mann-Whitney two-tailed student’s t-test: n.s. (not significant). (C) APC-m4 

expression does not change the maturation state of autophagosomes trafficking from 
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ER to fuse with lysosomes. Cells were transduced with the pH-sensitive Premo 

autophagy tandem sensor (RFP-GFP-LC3B), then treated with BafA1 (autophagy 

inhibitor) or Pepstatin A (lysosome inhibitor) as indicated. Transitions from the 

autophagosome (yellow) to the autolysosome (red) were visualized by loss of GFP 

fluorescence (due to acidification following autophagosome-lysosomal fusion). Graphed 

is the ratio of RFP-LC3 to GFP-LC3 fluorescence in each LC3 vesicle, which provides 

an indication of autophagosome maturation state. Data averaged from three 

independent experiments (n = 280-958 vesicles from n = 10-50 cells per condition). 

Error bars, SEM. Statistical significance calculated by one-way ANOVA Holm-Sidak’s 

multiple comparisons test: n.s. (not significant). (D) APC-m4 expression does not 

change the percentage of autophagosomes in cells undergoing fusion with lysosomes. 

Live imaging was used to determine the percent colocalization of GFP-LC3 

(autophagosomes) with mCherry-LAMP1 (lysosome/ late endosome marker) to assess 

autophagosome-lysosome fusion. Data averaged from two independent experiments (n 

= 30 cells per condition). Error bars, SEM. Statistical significance calculated by non-

parametric Mann-Whitney two-tailed student’s t-test: n.s. (not significant). (E) APC-m4 

expression does not alter co-immunoprecipitation of endogenous LC3 with GFP-

LAMP1. GFP-LAMP1 was pulled down out of cell lysates using GFP-Trap-A agarose 

beads. Cells transfected with empty vector (expressing GFP alone instead of GFP-

LAMP1) were used as a negative control. A non-specific band that cross-reacts with the 

antibody is shown as (*). 
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Video 1. Related to Figure 4. Representative examples of time-lapse TIRF imaging of 

FAs (mCherry-Zyxin, pink) in migrating MDA-MB-231 cells ectopically expressing APC-

WT or APC-m4, as indicated. Yellow boxes that appear during the video highlight the 

same four FAs shown as examples in Figure 4 A and B. Images were acquired every 10 

sec. Video is shown at 7 frames per sec.  

 

Video 2. Related to Figure 4. Representative examples of time-lapse TIRF imaging of 

mCherry-Zyxin (FA marker) assembly and disassembly in migrating MDA-MB-231 cells 

ectopically expressing APC-WT or APC-m4, as indicated. The arrows that appear 

during the video indicate the point of FA peak growth or maturation (maximum 

intensity), which was set to time=0. Negative numbers correspond to the FA assembly 

phase, and positive numbers to disassembly phase. Images were acquired every 10 

sec. Video is shown at 7 frames per sec. 

 

Video 3. Related to Figure 5. Representative examples of time-lapse TIRF imaging of 

microtubules (3xGFP-EMDB, cyan) and FAs (mCherry-Zyxin, pink) in migrating MDA-

MB-231 cells ectopically expressing full-length APC-WT or APC-m4, as indicated. 

Images were acquired every 5 sec. Video is shown at 7 frames per sec.  

 

Video 4. Related to Figure 6. Representative examples of time-lapse TIRF imaging of 

autophagosomes (GFP-LC3, cyan) and FAs (mCherry-Zyxin, pink) in migrating MDA-

MB-231 cells ectopically expressing APC-WT or APC-m4, as indicated. The yellow 

arrows that appear during the video highlight a few examples of autophagosome 
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interactions with FAs, starting from the time of first contact of the autophagosome with 

the FA to complete disassembly of the FA. Images were acquired every 10 sec. Video is 

shown at 7 frames per sec.  
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