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On structure constants of Iwahori—Hecke
algebras for Kac—-Moody groups

Nicole Bardy-Panse & Guy Rousseau

ABSTRACT We consider the Iwahori-Hecke algebra 177 associated to an almost split Kac-Moody
group G (affine or not) over a nonarchimedean local field K. It has a canonical double-coset basis
(Tw)wew+ indexed by a sub-semigroup W of the affine Weyl group W. The multiplication

is given by structure constants ay, , € N = Z>q: Tw * Ty = ZueP al Tu. A conjecture,
) W W

by Braverman, Kazhdan, Patnaik, Gaussent and the authors, tells that ay, v is a polynomial,
with coefficients in N, in the parameters ¢; — 1,q, — 1 of G over K. We prove this conjecture
when w and v are spherical or, more generally, when they are said to be generic: this includes
all cases of w,v € W if G is of affine or strictly hyperbolic type. In the split affine case (where
qi = q; = q, Vi) we get a universal Iwahori-Hecke algebra with the same basis (Tw)ywep+ Over
a polynomial ring Z[Q)]; it specializes to 17 when one sets Q = q.

INTRODUCTION

Let G be a split, semi-simple, simply connected algebraic group over a non
archimedean local field K. So K is complete for a discrete, non trivial valuation
with a finite residue field k. We write O C I for the ring of integers and ¢ for the
cardinality of k. Then G is locally compact. In this situation, Nagayoshi Iwahori
and Hideya Matsumoto in [22], introduced an open compact subgroup K; of G, now
known as an Iwahori subgroup. If NV is the normalizer of a suitable split maximal
torus 7' ~ (K*)", then (K, N) is a BN pair. The Iwahori—-Hecke algebra of G is the
algebra Li#% = L#%(G, K1) of locally constant, compactly supported functions on G,
with values in a ring R, that are bi-invariant by the left and right actions of K;. The
multiplication is given by the convolution product.

If H ~ (O*)™ is the maximal compact subgroup of T', then H C Ky and W = N/H
is the affine Weyl group. One has the Bruhat decomposition G = K; - W - K =
Uwew K71 - w - K;. If one considers the characteristic function Ty of K;-w - Ky,
we get a basis of Li#k: 1t = @wewR - Tw. The convolution product is given by
Tw+Ty = ZuePW,v ag vTu, with Py v a finite subset of W. The numbers ay, , € R
are the structure constants of L#%. The unit is 1 = T..

Iwahori and Matsumoto gave a precise (and now classical) definition of L#% by
generators and relations. The group W is an infinite Coxeter group generated by
{ro,...,7n}. Then Li#% is generated by {7, ..., T, } with relations T,?i =q-1+(¢—
1)-Ty, and Ty, % Ty, * Ty % - - - = T, % Ty % Ty %+ - - (with my ; factors on each side) for
i # j, if m; ; is the finite order of r;r;. For w =r;, -....7; areduced expression in W,
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one has Ty, =T, *---*T;, . In a Coxeter group one knows the rules to get (using the
Coxeter relations between the 7;) a reduced expression from a non reduced expression
(e.g. the product of two reduced expressions w =7, -...-r;, and v="7j -...-7;,).
So one deduces easily (using the above relations between the T;.,) that each structure
constant ay, ,, (for u,v,w € W) is in Z[g]. More precisely it is a polynomial in g — 1
with coeflicients in N = Z(. This polynomial depends only on u,v,w and W.

So one has a universal description of 1.7, as a Z[q]—algebra, depending only on W.

There are various generalizations of the above situation. First one may replace G
by a general reductive group over K, isotropic but potentially non split. Then one has
to consider the relative affine Weyl group W, which is a Coxeter group. One may still
define a compact, open Iwahori subgroup K; and there is a Bruhat decomposition
G = K;-W - K;. Now the description of L#% involves parameters ¢; (satisfying
Trzi = ¢; -1+ (¢ — 1) - T;,) which are potentially different from ¢. This gives the
Iwahori-Hecke algebra with unequal parameters. There is a pleasant description of
I using the Bruhat-Tits building associated to the BN pair (K7, N), see e.g. [29].

For now more than twenty years, there is an increasing interest in the study of
Kac—Moody groups over local fields, see the works of Braverman, Garland, Kapranov,
Kazhdan, Patnaik, Gaussent and the authors: e.g. [3, 4, 5, 6, 7, 8, 16, 17, 19, 24]. It
has been possible to define and study for Kac-Moody groups (supposed at first affine)
the spherical Hecke algebra, the Iwahori-Hecke algebra, the Satake isomorphism, .. ..
This is also closely related to more abstract works on Hecke algebras by Cherednik
and Macdonald, e.g. [13, 14, 25].

We are mainly interested in Iwahori-Hecke algebras for Kac—Moody groups over
local fields. They were introduced and described by Braverman, Kazhdan and Patnaik
in the affine case [8] and then in general by Gaussent and the authors [3]. So let us
consider a Kac-Moody group G (affine or not) over the local field K. We suppose it
split (as defined by Tits [34]) or more generally almost split [30]. Let us choose also
a maximal split subtorus. To this situation are associated an affine (relative) Weyl
group W and an Iwahori subgroup K (defined up to conjugacy by W), see 1.4.5
and 1.4.7 below. This group W is not a Coxeter group but may be described as a
semi-direct product W = W? x Y, where W is a Coxeter group, the relative Weyl
group, and Y is (essentially) the cocharacter group of the torus.

Unfortunately the Bruhat decomposition “G = K;-W - K;” fails to be true (even in
the untwisted affine case, i.e. for loop groups). One has to consider the sub-semigroup
W+ = WY x YT (resp. W9 = WY x Y19) of W, where YT (resp. Y9) is the
intersection of Y with the Tits cone T (resp. with a cone 7° U Vy C T, where T° is
the open Tits cone) in V =Y ®zR (see 1.2, 1.5, and 1.8 below). Then Gt = K;- W
Ky (resp. Gt = Ky - W19 . K; C GT) is a sub-semigroup of G: the Kac-Moody—
Tits semigroup (resp. the generic Kac-Moody—Tits semigroup). We may consider the
characteristic functions Ty, of the double cosets K- w - K and one proves in [3] that:

The space '#% (resp. #7) of R—valued functions with finite support on
K/\G'/K; (resp. K;\G19/K) is naturally endowed with a structure of algebra
(see 1.11). We get thus the Iwahori-Hecke algebra 7% = @y ew+R - Tw (resp. the
generic Iwahori—Hecke algebra I.%”]g = Dwew+sR - Tw). The product is given by

structure constants ay, , € N =7Z>¢: Tw x Ty, = > uep, Ay v1Tu-

CoNJECTURE 1 ([3, 2.5]). Each ay,  is a polynomial, with coefficients in N = Zx, in

the parameters q; — 1,q, — 1 of the situation, see 1.4.6 below. This polynomial depends
only on the affine Weyl group W acting on the apartment A and on w,v,u € W+.

One may consider that this is a translation of the following question of Braverman,
Kazhdan and Patnaik:
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QUESTION ([8, end of 1.2.4]). Has the algebra %% a purely algebraic or combinatorial
description with respect to the coset basis (Tw)wew+ ¢

But a more precise formulation of this question is as follows:

CONJECTURE 2. The algebra 154, (or 13} ) is the specialization of an algebra {%Oz[g]
(or I%”Zi@]) with the same basis (Tw)wew+ (or (Tw)wew+s) over Z[2]. Here 2 is
a set of indeterminates Q;, Q} (with some equalities between them, see 1.4.6 below)
and the specialization is given by Q; — ¢;,Q: — ¢,,¥i € I. The algebra I%[g] (or
Iifzg[g]) depends only on the affine Weyl group W acting on the apartment A.

Let us consider the split case: G is a split Kac-Moody group, all parameters g¢;, ¢/
are equal to ¢ = |&| and all indeterminates Q;, Q; are equal to a single indeterminate
Q. Then the conjecture 1 has already been proved by Gaussent and the authors [3,
6.7] and independently by Muthiah [28] if, moreover, G is untwisted affine. Actually
the same proof gives also conjecture 2, see 1.4.7 below.

In the general (non split) case, weakened versions were obtained in [3]: the ay,
are Laurent polynomials in the ¢;, ¢} [l.c. 6.7]; they are true polynomials if w,v €
W x (Y NT°) and v is “regular” [l.c. 3.8].

In this article, we prove the conjecture 1 when w and v are in W9 (see 3.4).
We remark also that W+ = W9 in the affine case (twisted or not) or the strictly
hyperbolic case, even if G is not split. This is a first step towards the description of an
abstract algebra L) (vesp. I%g[ Q]) over Z[2] in the affine (or strictly hyperbolic)
case (resp. in the general case).

One should mention here that one may give a more precise description of the
Iwahori-Hecke algebra using a Bernstein-Lusztig presentation (see [17], [8] and [3]).
But this description is given in a new basis and the coefficients of the change of basis
matrix are Laurent polynomials in the parameters g¢;, g;. So this description is not
sufficient to prove the conjecture.

Actually this article is written in a more general framework explained in Section 1:
as in [3], we work with an abstract masure .# and we take G to be a strongly tran-
sitive group of vectorially-Weyl automorphisms of .. In Section 2 we gather the
additional technical tools (e.g. decorated Hecke paths) needed to improve the results
of [3, Section 3]. We get our main results about ay, , in Section 3: we deal with the
cases w, v spherical. In Section 4 we deal with the remaining cases where w, v are in
W9 i.e. when w, v are said generic.

1. GENERAL FRAMEWORK

1.1. VECTORIAL DATA. We consider a quadruple (V, WV, («;)ier, (o) )icr) where V
is a finite dimensional real vector space, W" a subgroup of GL(V') (the vectorial Weyl
group), I a finite set, (a));cs a free family in V and (o;);es a free family in the dual
V*. We ask these data to satisfy the conditions of [31, 1.1]. In particular, the formula
ri(v) = v — a;(v)e; defines a linear involution in V' which is an element in W" and
(W {r; | i € I}) is a Coxeter system.

To be more concrete, we consider the Kac-Moody case of [l.c. ; 1.2]: the matrix
M = (a;()))i jer is a generalized Cartan matrix. Then W is the Weyl group of the
corresponding Kac—-Moody Lie algebra gy and the associated real root system is

O ={w() |weW’icl}CcQ=Q Z-«.
i€l
We set &+ = @ NQ* where QF = £(B,.; (Z>0) ;) and Q¥ = (B,; Z- o)), QY =
+(Dic; (Zx0) ). We have ® = ®T U®~ and, for a = w(a;) € ®, 1 = w-1;-w™ !
and 74 (v) = v — a(v)a", where the coroot a¥ = w(a') depends only on «.
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The set ® is an (abstract, reduced) real root system in the sense of [26], [27]
or [1]. We shall sometimes also use the set A = ® UA} U A} of all roots (with
—A; = A} C Qt, WV—stable) defined in [23]. It is an (abstract, reduced) root
system in the sense of [1].

The fundamental positive chamber is C} = {v € V' | a;(v) > 0,Vi € I}. Its closure
07; is the disjoint union of the vectorial faces F(J) = {v € V | a;(v) = 0,Vi € J,
a;(v) > 0,Vi € I~ J} for J C I. We set Vj = F¥(I). The positive (resp. negative)
vectorial faces are the sets w - FV(J) (resp. —w - F'*(J)) for w € WY and J C I.
The support of such a face is the vector space it generates. The set J or the face
w - FY(J) or an element of this face is called spherical if the group W"(J) generated
by {r; | ¢ € J} (which is the fixator or stabilizer in W of F¥(J)) is finite. An element
of a vectorial chamber +w - C}i is called regular.

The Tits cone T (vesp.its interior 7°) is the (disjoint) union of the positive
(resp. and spherical) vectorial faces. It is a W¥—stable convex cone in V. One has
T =T°=V (resp. Vo C T \ T°) in the classical (resp. non classical) case, i.e. when
W7 is finite (resp. infinite). By the above characterization of spherical faces, T° is the
set of x € T whose fixator in W" is finite.

We say that AV = (V, W") is a vectorial apartment.

1.2. THE MODEL APARTMENT. As in [31, 1.4] the model apartment A is V' con-
sidered as an affine space and endowed with a family M of walls. These walls are
affine hyperplanes directed by ker(«) for aw € ®. More precisely, they may be written
Mo, k) ={veV]alw)+k=0}, forac®and keR.

We ask this apartment to be semi-discrete and the origin 0 to be special. This
means that these walls are the hyperplanes M (o, k) = {v € V | a(v) + k = 0} for
a € ®and k € A,, with A, =k, - Z a non trivial discrete subgroup of R. Using [19,
Lemma 1.3] (i.e. replacing ® by another system ®;) we may (and shall) assume that
Ao =Z,Va € .

For o = w(ey;) € ®, k € Z and M = M(a, k), the reflection r,, , = rps with respect
to M is the affine involution of A with fixed points the wall M and associated linear
involution r,. The affine Weyl group W is the group generated by the reflections rp,
for M € M; we assume that W stabilizes M. We know that W* = W" x Q¥ and we
write Wi = WV x V; here @V and V have to be understood as groups of translations.

An automorphism of A is an affine bijection ¢ : A — A stabilizing the set of pairs
(M,a") of a wall M and the coroot associated with o € ® such that M = M (a, k),
k € Z. The group Aut(A) of these automorphisms contains W* and normalizes it. We
consider also the group Autly (A) = {p € Aut(A) | @ € W*} = Aut(A) N Wg.

Fora € ® and k € R, D(o, k) = {v € V | a(v) + k > 0} is a half-space, it is called
a half-apartment if k € Z. We write D(a, 00) = A.

The Tits cone T and its interior 7° are convex and W"—stable cones, therefore,
we can define three W¥—invariant preorder relations on A:

o
r<y & y—zeT; xgy S y—zxz€eT’ zsy e y—xeT°UV.

If W has no fixed point in V' \ {0} (i.e. Vj = {0}) and no finite factor, then they are
orders; but, in general, they are not.

1.3. FACES, SECTORS. The faces in A are associated to the above systems of walls
and half-apartments. As in [9], they are no longer subsets of A, but filters of subsets
of A. For the definition of that notion and its properties, we refer to [9] or [18].

If F' is a subset of A containing an element z in its closure, the germ of F in z
is the filter germ, (F') consisting of all subsets of A which contain intersections of F
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and neighbourhoods of z. In particular, if x # y € A, we denote the germ in x of the
segment [z,y] (resp. of the interval |z, y]) by [z,y) (resp. ]z, y)).
For y#x, the segment germ [z,y) is called of sign + if y — x € £7. The segment
[z,y] (or the segment germ [z,y) or the ray with origin = containing y) is called
o o

preordered if x < y or y < x and generic if x < y or y < x.

Given F a filter of subsets of A, its strict enclosure cly(F) (resp. closure F) is the
filter made of the subsets of A containing an element of F' of the shape Noea D(ev, ky ),
where k, € Z U {oc} (resp. containing the closure S of some S € F). One considers
also the (larger) enclosure CIK(F) of [33, 3.6.1] (introduced in [10, 11, 12] and well
studied in [21], see also [20]). It is the filter made of the subsets of A containing an
element of F' of the shape NyewD(a, ko), with ¥ C @ finite and k, € Z (i.e. a finite
intersection of half apartments).

A local face F in the apartment A is associated to a point x € A, its vertex, and
a vectorial face FV in V), its direction. It is defined as F' = germ,(x + F) and we
denote it by F = F‘(x, FV). Tts closure is F*(z, F’) = germ,(z + V) . There is
an order on the local faces: the assertions “F is a face of F'”, “F’ covers F” and
“F < F'” are by definition equivalent to F' C F’. The dimension of a local face F
is the smallest dimension of an affine space generated by some S € F. The (unique)
such affine space E of minimal dimension is the support of F; if ' = F(x, F"),
supp(F) = z + supp(F"?). A local face F = F*(z, F?) is spherical if the direction of
its support meets the open Tits cone (i.e. when F is spherical), then its pointwise
stabilizer Wr in W or Wy is finite and fixes z.

We shall actually here speak only of local faces, and sometimes forget the word
local or write F' = F(z, F"?).

A local chamber is a maximal local face, i.e. a local face F*(z, +w-C}) forz € A and
w € W. The fundamental local positive (resp. negative) chamber is Cf = germ, (C7)
(resp. Cy = germy(—C7)).

A (local) panel is a spherical local face maximal among local faces which are not
chambers, or, equivalently, a spherical face of dimension n — 1. Its support is a hy-
perplane parallel to a wall.

A sector in A is a V —translate s = x + C" of a vectorial chamber C¥ = fw - C}’,
w € WV. The point z is its base point and CV its direction. Two sectors have the
same direction if, and only if, they are conjugate by V —translation, and if, and only
if, their intersection contains another sector.

The sector-germ of a sector s = z+C" in A is the filter & of subsets of A consisting
of the sets containing a V —translate of s, it is well determined by the direction C".
So, the set of translation classes of sectors in A, the set of vectorial chambers in V'
and the set of sector-germs in A are in canonical bijection.

A sector-face in A is a V —translate f = x4+ F¥ of a vectorial face F¥ = tw- F?(J).
The sector-face-germ of f is the filter § of subsets containing a translate f' of f by an
element of FV (i.e. f C f). If F¥ is spherical, then f and § are also called spherical.
The sign of f and § is the sign of F".

1.4. THE MASURE. In this section, we recall the definition and some properties of a
masure given by Guy Rousseau in [31] and simplified by Auguste Hébert [21].

1.4.1. An apartment of type A is a set A endowed with a set IsomW(A, A) of bijections
(called Weyl-isomorphisms) such that, if fy € Tsom" (A, A), then f € Tsom" (A, A) if,
and only if, there exists w € W satisfying f = fyow. An isomorphism (resp. a Weyl-
isomorphism, a vectorially-Weyl isomorphism) between two apartments ¢ : A — A’
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is a bijection such that, for any f € Isom"(A, A), f/ € Isom"(A,A"), f~lopo
f € Aut(A) (resp. € W%, € Auty (A)); the group of these isomorphisms is written
Isom(A, A") (resp. IsomW(A,A’), Isom]l‘g/(A, A")). As the filters in A defined in 1.3
above (e.g. local faces, sectors, walls,...) are permuted by Aut(A), they are well defined
in any apartment of type A and exchanged by any isomorphism.

A masure (formerly called an ordered affine hovel) of type A is a set .# endowed
with a covering A of subsets called apartments, each endowed with some structure
of an apartment of type A. We recall here the simplification and improvement of the
original definition given by Auguste Hébert in [21]: these data have to satisfy the
following two axioms:

(MA ii) If two apartments A, A" are such that A N A’ contains a generic ray, then
AN A’ is a finite intersection of half-apartments (i.e. AN A’ = Clﬁ(A nA")
and there exists a Weyl isomorphism ¢ : A — A’ fixing AN A’.

(MA iii) If R is the germ of a splayed chimney and if F' is a local face or a germ of
a chimney, then there exists an apartment containing R and F'

Actually a filter or subset in .# is called a preordered (or generic) segment (or
segment germ), a local face, a spherical sector face or a spherical sector face germ if
it is included in some apartment A and is called like that in A. We do not recall here
what is (a germ of) a (splayed) chimney; it contains (the germ of) a (spherical) sector
face. We shall actually use (MA iii) uniquely through its consequence (b) below.

In the affine case the hypothesis “A N A’ contains a generic ray” may be omitted
in (MA ii).

We list now some of the properties of masures we shall use.

(a) If F is a point, a preordered segment, a local face or a spherical sector face
in an apartment A and if A’ is another apartment containing F, then AN A’
contains the enclosure clﬁ (F) of F and there exists a Weyl-isomorphism from
A onto A’ fixing el (F), see [21, 5.11] or [20, 4.4.10]. Hence any isomorphism
from A onto A’ fixing F fixes F (and even Clﬁ (F) Nsupp(F)).

More generally the intersection of two apartments A, A’ is always closed
(in A and A’), see [21, 3.9] or [20, 4.2.17].

(b) If § is the germ of a spherical sector face and if F' is a local face or a germ of
a sector face, then there exists an apartment that contains § and F.

(¢) If two apartments A, A’ contain § and F as in (b), then their intersection
contains clf(& U F) and there exists a Weyl-isomorphism from A onto A’
fixing clﬁ (FUF).

o
(d) We consider the relations, < and < on .# defined as follows:
o o
z <y (resp. v < y,z <)
o
<= JA € A such that z,y € A and <,y (resp. x <4 Y,z <4 Y).

Then < (resp. 2, %) is a well defined preorder relation, in particular tran-
sitive; it is called the Tits preorder (rvesp. Tits open preorder, large Tits open
preorder), see [21].

(e) We ask here .# to be thick of finite thickness: the number of local chambers
covering a given (local) panel in a wall has to be finite > 3. This number
is the same for any panel F' in a given wall M [31, 2.9]; we denote it by
1+qu=14qr.

(f) An automorphism (resp. a Weyl-automorphism, a vectorially-Weyl automor-
phism) of .# is a bijection ¢ : & — & such that A € A <= ¢(A4) € A and
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then pla @ A — ¢(A4) is an isomorphism (resp. a Weyl-isomorphism,
a vectorially-Weyl isomorphism). We write Aut(.#) (resp. Aut" (.#),
Auty (.#)) the group of these automorphisms.

1.4.2. For z € Z, the set T,".# (resp. T,”.%) of segment germs [z,y) for y > x
(resp. y < z) may be considered as a building, the positive (resp. negative) tangent
building. The corresponding faces are the local faces of positive (resp. negative) direc-
tion and vertex x. For such a local face F', we write sometimes [z,y) € F if |x,y) C F.
The associated Weyl group is W. If the W —distance (calculated in 7;*.#) of two lo-
cal chambers is dV (C,,C’) = w € WY, to any reduced decomposition w = r;, ---7;,
corresponds a unique minimal gallery from C, to C., of type (i1, -+ ,ip).

The buildings 7, and 7, .# are actually twinned. The codistance d*" (C,, C%)
of two opposite sign chambers C, and C’, is the W —distance d"V'(C,,op C%), where
op C! denotes the opposite chamber to C’, in an apartment containing C, and C.
Similarly two segment germs n € T,7.# and ( € T, . are said opposite if they are
in a same apartment A and opposite in this apartment (i.e. in the same line, with
opposite directions).

1.4.3. Lemma. ([31, 2.9]) Let D be a half-apartment in .# and M = 9D its wall
(i.e. its boundary). One considers a panel F' in M and a local chamber C in &
covering F. Then there is an apartment containing D and C.

1.4.4. We assume that .# has a strongly transitive group of automorphisms G,
i.e. 1.4.1(a) and (c) above (after replacing cl% by cl,) are satisfied by isomorphisms
induced by elements of G, cf. [33, 4.10] and [15, 4.7].

We choose in .# a fundamental apartment which we identify with A. As G is
strongly transitive, the apartments of .# are the sets g- A for g € G. The stabilizer N
of A in G induces a group W = v(N) C Aut(A) of affine automorphisms of A which
permutes the walls, local faces, sectors, sector-faces... and contains the affine Weyl
group We =W" x QV [33, 4.13.1].

We denote the stabilizer of 0 € A in G by K and the pointwise stabilizer (or
fixator) of Cf (resp. Cy) by K; = K; (vesp. K; ). This group K is called the
Twahori subgroup.

1.4.5. We ask W = v(N) to be vectorially- Weyl for its action on the vectorial faces.
This means that the associated linear map W of any w € v(N) is in W*. As v(N)
contains W and stabilizes M, we have W = v(N) = W x Y, where W fixes the
origin 0 of A and Y is a group of translations such that: QY CY C PY={veV|
a(v) € Z,Ya € ®}. An element w € W will often be written w = A - w, with A € Y
and w € W°.

We ask Y to be discrete in V. This is clearly satisfied if ® generates V* i.e. (o;)icr
is a basis of V*.

1.4.6. Note that there is only a finite number of constants gp; as in the defini-
tion of thickness. Indeed, we must have g, = qar, Yw € v(N) and w - M(a, k) =
M(w(a), k),Yw € W". So now, fix i € I, as a;()) = 2 the translation by o) per-
mutes the walls M = M (a;, k) (for k € Z) with two orbits. So, Q¥ C W has at most
two orbits in the set of the constants gps(a,,x): one containing the ¢; = qs(a,,0) and
the other containing the ¢; = qas(a,,+1). Hence, the number of (possibly) different g/
is at most 2 - |I|. We denote this set of parameters by Q = {¢;,¢; | ¢ € I'}.

In [3, 1.4.5] one proves the following further equalities: ¢; = ¢} if a;(Y) = Z and

¢ = ¢; = ¢; = ¢ if ai(af) = a;(a)) = 1.
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We consider also the polynomial algebra Z[2], where 2 is the set 2 = {Q;, Q) |
i € I} of indeterminates, satisfying the same equalities: @Q; = Q} if «;(Y) = Z and

(2

Qi =Q;=Q; = Qjif ay(a)) = () = —1. See [3, 6.1] where Q; = 07, Q} = (07)*.

1.4.7. Ezamples. The main examples of all the above situation are provided by the
Kac-Moody theory, as already indicated in the introduction. More precisely let G
be an almost split Kac-Moody group over a non archimedean complete field K. We
suppose moreover the valuation of I discrete and its residue field x perfect. Then
there is a masure .# on which G acts strongly transitively by vectorially Weyl auto-
morphisms. If K is a local field (i.e.  is finite), then we are in the situation described
above. This is the main result of [10], [11], [12] and [33].

When G is actually split, this result was known previously by [19] and [32]. And
in this case all the constants g, ¢;, ¢; are equal to the cardinality g of the residue
field k.

We gave in [3, 6.7] a proof of conjecture 1 for this split case; see also [28]. Actually
these proofs are proofs of conjecture 2, as the polynomials ag, ,, are Laurent poly-
nomials inherited from the description of L7 as a specialization of the associative
Bernstein-Lusztig algebra over Z[2]: the algebra L3 o) over Z[2] defined by these
structure constants on the basis (Tw)wew+ is associative.

1.4.8. Remark. All isomorphisms in [31] are Weyl-isomorphisms, and, when G is
strongly transitive, all isomorphisms constructed in l.c. are induced by an element
of G.

1.5. TYPE O VERTICES. The elements of Y, through the identification Y = N-0 C A,
are called vertices of type 0 in A; they are special vertices. We note Y+ =Y N T,
YT =Y Nn(T°uV), Y " =YNnlyand YTt =Y N Ci}’ The type 0 vertices in
# are the points on the orbit %, of 0 by G. This set .# is often called the affine
Grassmannian as it is equal to G/K, where K = Stabg({0}). But in general, G is
not equal to KYK = KNK [18, 6.10] i.e. Sy # K -Y.

We know that .# is endowed with a G—invariant preorder < which induces the

known one on A. Moreover, if z < y, then x and y are in the same apartment.
Weset St ={r e s/ |0<a}, 4 = ANIT, Gt={geG|0<g-0}

and Gt = {g € G |0 % g-0};s0 7" = GT-0=GT/K. As < (resp. %) is a
G—invariant preorder, G (resp. G19) is a semigroup, called the Kac—Moody-Tits
semigroup (resp. the generic Kac—Moody—Tits semigroup).

One has G = K(N N GT)K; more precisely the map Y+ — K\GT/K is a
bijection, if we identify A € Y*+ Cc WY x Y = W = N/kerv with its class in N
modulo kerv C K. Clearly GT9 = K(Y*tT NYT9)K.

1.6. VECTORIAL DISTANCE. For z in the Tits cone 7, we denote by ™" the unique
element in Ci;i conjugated by W9 to x.

Let S x< ¥ ={(z,y) €  x I | x <y} be the set of increasing pairs in #. Such
a pair (z,y) is always in a same apartment g - A; so (¢7!) -y — (¢71) -2 € T and we
define the vectorial distance d*(z,y) € C’i}’ by d¥(z,y) = ((971) -y — (¢71) - 2)T+. It
does not depend on the choices we made (by 1.8(b) below).

For (z,y) € S x< H = {(z,y) € Fp x H | © < y}, the vectorial distance d”(z,y)
takes values in Y. Actually, as .% = G-0, K is the stabilizer of 0 and .%;" = K-Y*++
(with uniqueness of the element in Y ™), the map d¥ induces a bijection between the
set (S x< #)/G of G—orbits in S x< Fp and Y.

Further, d¥ gives the inverse of the map Y*t* — K\G*/K, as any g € G' is in
K-d(0,g-0) K.
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1.7. PATHS AND RETRACTIONS. We consider piecewise linear continuous paths 7 :
[0,1] — A such that each (existing) tangent vector 7’(¢) belongs to an orbit W@ -
for some A € C’}’. Such a path is called a A—path; it is increasing with respect to the

preorder relation < on A. If A € 6; N (7°UVy), then it is increasing for %

For any t # 0 (resp. t # 1), we let w’_(t) (resp. 7/, (t)) denote the derivative of 7
at ¢t from the left (resp. from the right). Further, we define w(t) € W" to be the
smallest element in its (W"),—class such that 7/ (t) = w4 (t) - A (where (W?), is the
stabilizer in W of \).

Moreover, we denote by 7_(t) = 7(t) — [0, )7’ (¢) = [r(t),7(t —€)) (resp. m4(t) =
w(t) + [0,1)n’ (t) = [#(t),7(t +¢)) (for ¢ > 0 small) the negative (resp. positive)
segment-germ of w at ¢, for 0 < ¢ < 1 (resp. 0 <t < 1).

Let C, (resp. ) be a local chamber with vertex z (resp. a sector germ) in an
apartment A of &. Forallz € S5, = {y € J |y > z} (resp. x € &) there is an
apartment A’ containing x and C, (resp. ). And this apartment is conjugated to
A by an element of G fixing C, (resp. &) (cf. 1.4.1(a) and 1.4.4). So, by the usual
arguments we can define the retraction p = pa ¢, from &, (resp. p = pa,e from &)
onto A>, = AN &, (resp. onto the apartment A) with center C, (resp. &).

For any such retraction p, the image of any segment [z,y] with (z,y) € & x¢ &
and d¥(z,y) = X € C’i}’ (with moreover x,y € I, if p = pac.) is a A—path [18,
4.4]. In particular, p(z) < p(y). By definition, if A’ is another apartment containing
S (resp. C), then p induces an isomorphism from A’ onto A. As we assume the
existence of the strongly transitive group G, this isomorphism is the restriction of an
automorphism of .7.

1.8. PREORDERED CONVEXITY. Let €+ (resp. €;5) be the set of all local chambers of
direction + (resp. with moreover vertices of type 0). A positive (resp. negative) local

chamber of Veieg( x € .# will often be written C,, (resp. C ) and its direction C?= C,,
(resp. C; V= C ). We consider the set €T x< ¢+ = {(C,,Cy) € €T x €1 |z < y}
(resp. € x2 €+ = {(Cy,Cy) € €T x G | < y}). We sometimes write Cp < Cy
(resp. Cy < Cy) when z < y (resp. = < ).

PROPOSITION. Let z,y € & with x < y. We consider two local faces F,, F, with
respective vertices x,y. Then

(a) Fy and F, are contained in a common apartment.

(b) If A,B are two apartments containing {x,y} (resp. Fy U Fy), then there is
a Weyl-isomorphism from A onto B, firing the enclosure clf({x,y})
clﬁ({x,y}) D [z,y] (resp.the closed conver hull conva(F, U F,)
conv g (Fy U Fy)).

This improvement of results in [31, 5.4, 5.1] and [3, 1.10] is proved by Auguste
Hébert: [21, 5.17, 5.18], see also [20, 4.4.16, 4.4.17]. In (b) the case of {x,y} is proved
in [31, 5.4] as, by [21, 5.1] or [20, 4.4.1], one may replace cl by cl*. This property is
called the preordered convezity of intersections of apartments.

CONSEQUENCE. We define Wt = WY x YT (resp. W19 = WV x Y19) which is a
subsemigroup of W, and call it the Tits—Weyl (resp. generic Tits—Weyl) semigroup.
An element w € W9 is called generic (in a large sense) and spherical if, moreover,
AeTenyt.

Let e,n € {+,—}. If C% € €¢ and 0<z, we know by (b) above, that there is an
apartment A containing C{/ and C¢. But all apartments containing C{] are conjugated

Algebraic Combinatorics, Vol. 4 #3 (2021) 473



NICOLE BARDY-PANSE & GUY ROUSSEAU

to A by K] (by 1.4.1(a)), so there is k € K] with k~1-CS C A. Now the vertex k=12 €
Iy of k=1 C¢ satisfies k=1 - 2 > 0, so there is w € W such that k=1 - C2 = w - C§.
When g € G, g-C§ is in 6§ and there are k € K}, w € W+ with g-C§ = k-w-Cj,
ie. g€ KJ-W+.K$. We have proved the Bruhat decompositions Gt = K& -W+. K
and the Birkhoff decompositions Gt = K -W - K. For uniqueness, see 1.10 below.
Similarly we also have Gt9 = KF - W*9 . KF and GT9 = K - W9 . KF.

1.9. REMARK. If the generalized Cartan matrix M is of affine or strictly hyperbolic
type (in the sense of [23, 4.3 or Ex. 4.1]), then any non spherical vectorial face is
w-F'(I)=F'(I) =Vo ={v eV | ay(v) =0,Vi € I}. So the Tits cones satisfy
T=T°UVyand YT =Y+ W+ =WH+9,

1.10. W-DISTANCE. Let (C,,Cy) € ‘50+ X g‘éﬁ, there is an apartment A containing C,
and C,. We identify (A, Cj) with (A, Cy) i.e. we consider the unique f € Isomy (A, A)
such that f(Cy") = C,. Then f~1(y) > 0 and there is w € W7 such that f~1(C,) =
w - C; . By 1.8(b), w does not depend on the choice of A.

We define the W —distance between the two local chambers C; and C, to be this
unique element: dV(C,,Cy) =w e W =Y T x W?. If w =X w, with A € Y and
w € WY, we write also d"V (Cy, y) = A; it implies d”(z,y) = AT+, As < is G—invariant,
the W—distance is also G—invariant. When w = w € WY and w = ry, - --- -1, is
a reduced decomposition, we have d" (C, C,) = w if and only if there is a minimal
gallery (of local chambers in 7;*.#) from C, to Cy of type (i1,...,i,), in particular
z = y. When x = y, this definition coincides with the one in 1.4.2.

Let us consider an apartment A and local chambers Cy,Cy,C, € %, included in
A If dV(Cy, Cy) = w, we write Cy, = C, * w. Conversely, for any w € W, there is a
unique local chamber C, = C, * w in A such that d"V(C,,C.) = w; actually C,, x w
depends on A, but not on an identification of A with A. For z < y < z, we have (in A)
the Chasles relation: dV(C,,C,) = dV(C,,C,) - d" (Cy, C,); i.e. (Cpyw) = Cp x W
is a right action of the semi-group W*. When (4, C,) is identified with (A, C{), one
has C, x w = w(C,.

When C, = C and C, = g-Cy (with g € G*), dV(C,,C,) is the only w € W+
such that ¢ € K;-w - K;. This is the uniqueness result in Bruhat decomposition:
Gt = Hwew+ Kr-w- Kj. Similarly we have Gt9 = Hwews Kr-w- K.

The W —distance classifies the orbits of K; on {C, € €, | y > 0}, hence also the
orbits of G on €, x< €,

1.11. IWAHORI-HECKE ALGEBRAS. We consider any commutative ring with unity
R. The Iwahori-Hecke algebra TH g associated to .# with coefficients in R introduced
in [3] is as follows:
To each w € W+, we associate a function Ty, from 6,5 x< €, to R defined by
e W "N
Tu(C.C) = {1 if d (Q,C)_w,
0 otherwise.

The Iwahori-Hecke algebra {Hp is the free R—module

{ Z awTw | aw € R, aw = 0 except for a finite number of w} ,
weWw+
endowed with the convolution product:
(0 V) (Car Cy) = Y p(Ca, C)Y(C2, Cy),
C.
where C, € ‘50+ is such that =z < z < y.
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Actually, 7H g can be identified with the natural convolution algebra of the func-
tions Gt — R, bi-invariant under K and with finite support (in K;\G™/K); this
is the definition given in the introduction.

More precisely Hp is the space of functions ¢ : 6," x< €,;F — R, that are left
G—invariant and with support a finite union of orbits (see the last two lines of 1.10).
To a ¢ € IHp is associated % : K;/\G*/K; — R such that ¢%(g) = ¢(Cy,g-C;).
So, for ¢, € THp,

(ex )% (9) = (pxV)(CFg-CH) =Y o(CF,C)(Carg- CF)

C'z
= Y eCf h-CHp(h-Cf L g-CF)
heGt /Ky
= > pCr h-CHYCT. g Cf) = Y G (ne(hly),
h€G+/K] hEG+/KI

we get the convolution product (in the classical case, we take a Haar measure on G
with K of measure 1).

One also considers the subspace I’H% = Y wewts - Ty. From 4.2 and Re-
mark 3.3(2) one sees that it is a subalgebra of {H . We call it the generic Twahori-
Hecke algebra associated to .# with coefficients in R. From 1.9 one has 'Hpr = TH%
in the affine or strictly hyperbolic cases.

We now recall some useful results of [3] in order to introduce the structure constants
and a way to compute them.

PROPOSITION 1.1 ([3, 2.3]). Let us fiz two local chambers C,, and Cy, in €% with x < y
and dV (Cy,Cy) =u € WT. We consider w and v in W*. Then the number a%, , of
C. € 6,7 withr <2<y, dV(Cy,C.) =w and dV (C.,C,) = v is finite (i.e. in N).
THEOREM 1.2 ([3, 2.4]). For any ring R, THp is an algebra with identity element
Id =Ti such that

Tow*Ty= > a% T

u€ Py v

where Py v is a finite subset of W, such that ag,v =0 forug Py y.

2. PROJECTIONS AND RETRACTIONS

In this section we introduce the new tools that we shall use in the next section to
compute the structure constants of the Iwahori-Hecke algebra.

2.1. PROJECTIONS OF CHAMBERS.

2.1.1. Projection of a chamber Cy on a point x. Let x € &, Cy € €+ with x < y,
x # y. We consider an apartment A containing « and Cy (by 1.8(a) above) and write
Cy = F(y,Cy) in A. For y' € y + C} sufficiently near to y, a(y’ — x) # 0 for any
root o and y' —z € T°. So ]z,y’) is in a unique positive local chamber pr,(Cy) of
vertex x; this chamber satisfies [z,y) C pr,(Cy) C cla({z,y’}) and does not depend
on the choice of y'. Moreover, if A’ is another apartment containing = and C,, we
may suppose ¥’ € AN A" and |z,y’), cla({z,y'}), pr,(Cy) are the same in A’. The
local chamber pr,(Cy) is well determined by x and Cy, it is the projection of Cy in
T.F7.

The same things may be done changing + to — or < to >. But, in the above
situation, if C, € ¥, we have to assume x < y to define pr (Cy) € €*: otherwise
], y’) might be outside z + T.

When z = y, we write pr,(Cy) = C,.
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2.1.2. Projection of a chamber Cy, on a generic segment germ. Let z € 7,6 = [z,2') a
generic segment-germ and C,, € € with 2 < y. By 2.1.1 we can consider pr,(Cy) € €+

(with the hypothesis x 2 y if Cy € ¥~). We consider now an apartment A containing
[z,2) and pr,(Cy) (by 1.8(a) above).

We consider inside A the prism denoted by prisms(C,) obtained as the intersection
of all half-spaces D(a, k) (for o € ® and k € R) that contain pr,(Cy) and such that
0 C M(wa, k). We can see that if § = [z,2’) is regular, prismgs(Cy) = A. If the
apartment A contains ¢ and C, (hence also pr,(C,)) we may replace pr,(C,) by C,
in the above definition of prismg(Cy).

LEMMA 2.1. In prism(Cy), there is a unique local chamber of vertex x that contains
6 in its closure. This chamber is independent of the choice of A.

N.B. This local chamber is, by definition, the projection prs(Cy) of the chamber
Cy on the segment-germ 6. It is the local chamber containing & in its closure
which is the mearest from pr,(Cy): either dV (pr,(Cy),prs(Cy)) is minimum or
d*W (pr,(Cy), prs(Cy)) is mazimum.

The same things may be done when one supposes y < x and C, € €~ or y Sz
and C, € €.

Proof. In the apartment A, we consider . the segment-germ ¢ if ¢ is in 7T,7.# and
op4(0) if § € T~ % (where op 4(9) denotes the opposite segment-germ in A). By 1.4.2,
we can consider in the building 7.t .# the minimal galleries from pr,(C,) to 4 (more
exactly to a chamber C such that §, € C). The last chamber of each of these galleries
is the same (as it has to be on the same side as pr,(C,) of any hyperplane of A,
containing §, and parallel to a wall); we denote it C;™. This chamber is associated to
a positive system of roots @ and a root basis (a1, ..., ay), satisfying a;(6) =0 <=
i < r, where 0 < 7 < ¢ (we identify x and 0). Then, we have the characterization
of the prism : p € prismys(Cy) <= (a;(p) = 0 for 1 < ¢ < r). We consider w, the
element of highest length in the finite Weyl group ((rq, )i<r)-

The local chamber C;t+ if § € T,t.% (resp. opy(w,(CHT) if not) is the unique
chamber with vertex z of prismg(Cy) that contains ¢ in its closure. Indeed, if C
is such a chamber, then if |z,p) C C, we have a;(p) > 0 for all i < r (because
C C prismg(Cy)) and ;(p) of the same sign as a;(0) if i > r (because § C C). So
C=CfTiftdeT I (resp. C =opy(w.(CH))if 6 € T, 7).

In the case § € T,.#, the characterization of C; T in the building 7,".# proves
that it does not depend on the choice of A.

The chamber op 4 (w,(C;1)) also only depends on § and C, if 6 € T, 7. It is
sufficient to prove that it intersects conv 4 (6 Upr,(Cy)). Indeed, let us choose § and y
such that [z,£) = ¢ and |z,y) C pr,(Cy). We have o;(§) = 0 for i < r, a;(£) < 0 for
i > r and a;(y) > 0 for i < r. So for ¢t near 1 enough, a;(t§ + (1 —¢)y) > 0 for ¢ < r
and < 0 for i > r, so |z, t€ + (1 —t)y) C op4(w,(CFT). By Proposition 1.8, the local
chamber op 4 (w,(C;} 1)) is included in all apartments containing ¢ and pr,(Cy), so is
independent of the choice of A. O

2.2. CENTRIFUGALLY FOLDED GALLERIES OF CHAMBERS. Let z be a point in the
standard apartment A. We have twinned buildings 7.*.# (resp. T,”.#). As in 1.4.2,
we consider their unrestricted structure, so the associated Weyl group is W' and
the chambers (resp. closed chambers) are the local chambers C' = germ,(z + C?)
(resp. local closed chambers C' = germ_(z + C?)), where C? is a vectorial chamber,
cf. [18, 4.5] or [31, § 5]. The distances (resp. codistances) between these chambers
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are written d" (resp. d*"V). To A is associated a twin system of apartments A, =
(A7,AT).

Let i = (41,...,%,) be the type of a minimal gallery. We choose in A a negative
(local) chamber C and denote by C its opposite in Af. We consider now galleries
of (local) chambers ¢ = (C;,CY4,...,C,) in the apartment A starting at C; and of
type i. Their set is written I'(C,i). We consider the root §; corresponding to the
common limit hyperplane M; = M(8;,—p;(z)) of type i; of C;_, and C; satisfying
moreover (3;(C;) = B;(2).

We consider the system of positive roots ®* associated to CF. Actually, ®T =
w-®F, if ®F is the system & defined in 1.1 and CF = germ, (2 +w - C}). We denote
by (c)ier the corresponding basis of ® and by (r;);er the corresponding generators
of W?. Note that this change of notation for ®* and r; is limited to subsection 2.2.

The set T'(C;,i) of galleries is in bijection with the set T'(i) = {1,7r;} X

- x {1,r;.} via the map (c1,...,¢) — (C;,c1CL,...,c1--¢,C;). Moreover
Bj = —c1---cilay).

DEFINITION. Let 9 be a chamber in A,. A gallery c = (C;,Ch,...,C.) € T'(C7,1) is
said to be centrifugally folded with respect to Q if C; = Cj_1 implies that M; is a wall
and separates Q from C; = Cj_1. We denote this set of centrifugally folded galleries
by TH(C,i). We write TH(C;,1,C) the subset of galleries in T'q(CJ ,i) such that
C, is a given chamber C'.

2.3. LIFTINGS OF GALLERIES. Next, let pq : 7,.# — A, be the retraction centered at
9. To a gallery of chambers ¢ = (C;,C4,...,C,) in I'(C,1i), one can associate the
set of all galleries of type i starting at C in 7.~ .# that retract onto ¢, we denote this
set by Cq(C; ,c). We denote the set of galleries ¢/ = (C;,C1,...,CL) in Cq(Cy ,c)
that are minimal (i.e. satisfy C7_; # C; for any j) by CZ(C;,c). Recall from [19,
Proposition 4.4], that the set CJ(C7,c) is nonempty if, and only if, the gallery c is
centrifugally folded with respect to Q. Recall also from loc. cit., Corollary 4.5, that
if c e TH(C,1), then the number of elements in C%(C7, c) is:

iegce)=[[@-Dx [[ o
Jen JEJ2
where ¢; = g, € Q,
S={je{l,-rilg=1={jef{l,---,r}[Cj1 =C5}
and
Jo={je{l,---,r}|C;j_1#C; and M; is a wall separating Q (and C;_;) from C}}.

One may remark that {1,---,r} contains the disjoint union J; U J2, but may be
different from it. The missing j are precisely those j such that M is not a wall (hence
qu; is not defined) or that Q (and C;) are separated from C;_; by M;.

More generally let ¢™ = (C;,C7",...,C/™) be the minimal gallery in A} of type i.
We write C™(C , 1) the set of all minimal galleries in .# of type i starting from C .
Its cardinality is [] e G where Js is the set of 1 < j < r such that the hyperplane
M; separating C7"; from C7" is a wall.

N.B. The q; = qu; in the above formulas are in the set Q of parameters. More
precisely, by 1.4.6, if M; = M(B;,k;) with 5; = w - oy (for some w € WV, i €I and
k; € Z), then one has q; = q; if k;j is even and q; = ¢; if k; is odd.
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2.4. HECKE PATHS. The Hecke paths we consider here are slight modifications of
those used in [19]. They were defined in [3], or in [2] (for the classical case).
Let us fix a local chamber C, € %, N A.

DEFINITION. A Hecke path of shape A\ € YT with respect to C, in A is a A—path in

A that satisfies the following assumptions. For all p = nw(t), we ask x < D, $0 we can
consider the local negative chamber C, = pr,(Cy) by 2.1.1. Then we assume moreover
that for all t € [0,1] ~ {0,1}, there exist finite sequences (§o = 7 (t),&1,...,& =
7', (t)) of vectors in V and (B1,...,Bs) of real roots such that, for all j =1,..., s:
(1) rs;(§5-1) = &

(11) ﬂj(é-]fl) < 07

(iii) Bj(w(t)) € Z, i.e. w(t) is in a wall of direction ker 3;,

(iv) B1(Cryy) < By ((t).

One says then that these two sequences are a (W;’(t),C’;(t))fcham from 7’_(t)

to ' (t). Actually W;(t) is the subgroup of W' generated by the rg such that
M(B,—B(n(t))) is a wall.

When ¢ € ]0, 1] is such that s # 0, one has 7’ (t) # 7/, (t), the path is centrifugally
folded with respect to C, at w(t).

LEMMA 2.2. Let m C A be a Hecke path with respect to C, as above. Then,

(a) Fort varying in [0,1] and p = w(t), the set of vectorial rays Ry (x — w(t)) is
contained in a finite set of closures of (negative) vectorial chambers.

(b) There is only a finite number of pairs (M,t) with a wall M containing a point
p=m(t) fort >0, such that w_(t) is not in M and x is not in the same side
of M as w_(t) (but may be x € M ).

(c) One writes pg = w(to),p1 = w(t1),...,pe, = w(te,) with 0 =1ty <t1 <--- <
te,—1 < 1=t the points p = 7(t) satisfying to (b) above (ort=0,t=1).
Then any point t where the path is (centrifugally) folded with respect to Cy at
7(t) appears in the set {ty, | 1 < k <l —1}.

Proof. (a) The A—path 7 is a union of line segments [pf, p1]U [p1, p5]U- - -U[pl,_1, Ph]-
By hypothesis on Hecke paths, for each point p = 7 (t),  — p is in the open negative
Tits cone —7° (in particular only in a finite number of closures of negative vectorial
chambers). Let p € [pj,pj ], then x —p = = — p; — (p — pj) and Ry (z —p) C
conv(R4 (x — p), —R,(p — p})) and this convex hull is independent of p and only in
a finite number of closures of (negative) vectorial chambers (as (x — p;) € —T° and
(p —p;) € Ry (pipy — i) CT). So (a) is proved.

(b) There is only a finite number of vectorial walls separating (strictly) a chamber
in the set of (a) above and a vector pj — pj_ ;. And, for each such vectorial wall, there
is only a finite number of walls with this direction meeting the compact set 7 ([0, 1]).
Moreover such a wall meets a segment |p},pj, ;] at most once or contains [p;, p;_ ]
(hence 7_(t) € M for n(t) € |p}, pj,1])-

(¢) The folding points are among {pi,...,pe.—1} by (iv) and (ii) above for
j=1 O
2.5. RETRACTIONS AND LIFTINGS OF LINE SEGMENTS.

2.5.1. Local study. In tangent buildings, the centrifugally folded galleries are related
with retractions of opposite segment germs, by the following lemma proved in [19,
Lemma 4.6].

We consider a point z € A and a negative local chamber C in A . Let £ and n be
two segment germs in AT = ANT,".7. Let —n and —¢ opposite respectively n and &
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in A7 . Let i be the type of a minimal gallery between C7 and C_¢, where C_¢ is the
negative (local) chamber containing —¢ such that d" (C;, C_¢) is of minimal length.
Let 9 be a chamber of AT containing . We suppose £ and 1 conjugated by W2.

LEMMA. The following conditions are equivalent:
(a) There exists an opposite ¢ ton in T, 7 such that p, - (¢) = —&.
(b) There ezists a gallery ¢ € T{(C7, 1) ending in —n.
(¢) There exists a (WY, C; )—chain from & to n.
Moreover the possible ¢ are in one-to-one correspondence with the disjoint union
of the sets CB(C7 ,c) for ¢ in the set TH(CZ,1,—n) of galleries in T'§(CZ 1) ending
in —n.

2.5.2. Consequence. Let C; be a positive local chamber in A and z € A a point such

that z < z. We consider C; = pr,(C,). Then one knows that the restriction of the
retraction p = pa ¢, to the tangent twin building 7..# is the retraction p A..O

We consider two points y, zg in .# such that x < 20 < y, with d¥(z0,y) = A € YT,
By 1.7, the image p([z9,y]) is a A—path 7 from p(zo) to p(y). For z € [z0,y[, we
consider an apartment A containing [z,y) and C,, hence also C . We write p = p(2).
The restriction p|4 is the restriction to A of an automorphism ¢ of .# fixing C, (and
an isomorphism from A to A); ¢ induces an isomorphism |7, # from T,.# onto T,.7.
One has p|7, s = Pa,.c5 © ¢l7..7 = ¢la. 0 pa, o-- So one may use the above Lemma,
more precisely the implication (a) == (c): we get a (W}, C,")—chain from 7’ (¢) to
7 (t) (if p=7(t)).

We have proved that m = p([z0,y]) is a Hecke path of shape A with respect to C,
in A. This result is a part of [3, Theorem 3.4]. It is also a consequence of the proof
of [2, Th. 3.8] which deals with the classical case of buildings.

2.5.3. Liftings of Hecke paths. One considers in A a positive local chamber C,, a
Hecke path 7 of shape A € YT with respect to C,, and the retraction p = pa ¢, .
Given a point y € . with p(y) = 7(1), we consider the set Sc, (7, y) of all segment
germs [z,y] in .# such that p([z,y]) = 7. The above Lemma (essentially (b)) is used
in [3] to compute the cardinality of Sc, (m,y).

We consider the notation of 1.7 and the numbers t;, of Lemma 2.2. Then pj, = 7(tx),
& = —m_(tr), m = T4 (tx) and i}, is the type of a minimal gallery between C

and C_¢,, where C_¢, is the negative (local) chamber such that —&, C C_¢, and
dW(C’p’k,C_gk) is of minimal length. Let Qi be a fixed chamber in A containing 7y
in its closure and I‘;Sk(Cgkﬁk, —nx) be the set of all the galleries (C7,,C1, ..., C;) of
type ix in A, centrifugally folded with respect to Q) and with —n; € C..

The following result is Theorem 3.4 in [3]. One uses the notation of 2.2 and 2.3.
One considers paths m more general than Hecke paths. The idea is to lift the path 7
step by step starting from its end by using the above Lemma. We shall generalize it
in Theorem 3.3 by lifting decorated Hecke paths (see just below).

THEOREM 2.3. The set Sc, (m,y) is non empty if, and only if, 7 is a Hecke path with
respect to C,. Then, we have a bijection

lr—1

Se,(my) ~ | ] 11 C3.(C, ) | C™(Cy L ie,).

k=1 cel“glc (Cpy, sl —1k)

In particular, the number of elements in this set is a polynomial in the numbers
q € Q with coefficients in Z depending only on A.
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2.6. DECORATED SEGMENTS AND PATHS. Let us consider zp and y in .# such that
o
2o < Y.

DEFINITION 2.4. A decorated segment [zg, y] is the datum of a segment [zg,y] as above

and, for any z € [z0,y| (resp. z € ]z0,y]) of a positive (resp. negative) chamber C}
(resp. C7 ) with vertex z and containing the segment germ [z,y) (resp. [z,z0)) in its
closure. One asks moreover that Cf = pr(, ,\(C) (resp. C = pry, ,1(C)) for any local
chamber C = CJ, or C = C!, as above. One may remark that, then, C = pr,(C)
(resp. C7) = pr (C)) if 2’ € [z,y] (resp. 2’ € [20, 2]).

Clearly the decorated segment [zq,y] is entirely determined by the segment [zo, 3]

and any of the local chambers C’;? or C7,. It is entirely contained in any apartment
containing [zo,y] and one local chamber C, or C?, (by 2.1).

For points z{, # 4’ in [20, y] in the order 2o, 2, ¥, y (i-e. 2 < y') the datum [z{,y'] =

([25,¥'], (Cj)ze[z{),y’[a (C;’)ZE}267y/]) is a decorated segment.

LEMMA 2.5. Let [z0,y] be a segment as above, z1 € [20,y] and C, a local chamber with
vertex zy contained in a same apartment A as [20,y]. Let us define CF = pr(, . (C.,)
and C/ = pry, ,1(Cs,). Then [20,y] = ([20, Y], (CF)zelzols (CF)2€120.47) 18 @ decorated

segment. Moreover in A all chambers C} (resp. C!') are deduced from each other by
a translation.

N.B. If z1 is zp ory then any local chamber C,, with vertex z; is contained in a same
apartment as 20, y].

Proof. We have to prove that C; = pr(, ,,(C) (resp. C' = pr(, ,,(C)) for any local
chamber C = C, or C = C”,. Let us recall that the chamber C (resp. C?) is the
unique chamber, that contains 6 = [z,y) (resp. § = [z, 20)) in its closure, of the prism
prismg(C5, ) defined in A as the intersection of all half-spaces D(«, k) (for o € @ and
k € R) that contain C,, and such that § C M(«, k). In fact each prism considered
to define all these chambers in these definitions is the same prism prism, ,(C,), as
§ C M(a, k) < [20,y] C M(a, k). Moreover, as already partially remarked in 2.1.2,
prismp, 1(Cs,) = prismp, (C) for C = Ch or C = C7,. Indeed, such a C is in
prism, 1(C-,) and any M (a, k) containing [20, y] cannot cut C', so prism, ,1(C.,) =
prismp, . (C).

It is now clear that C = pr(, ,(C) (resp. C7 = pry, ,,(C)) for any local chamber
C = CJ, or C = CZ,. Moreover the translations of a vector in the direction of the line
of A containing § stabilize the prism and exchange the segment germs. So the last
assertion of the lemma is clear. O

DEFINITIONS 2.6. A decorated A—path « is the datum of:
e a A—path {n(t) |0 <t < 1},
e q positive (resp. a negative) local chamber C:rr(t) (resp. C;r’(t)) of vertex m(t)
forO0<t<1 (resp. 0 <t <1).
Such that there are numbers 0 =1t <t} < --- <t =1 satisfying, for any 1 <i < r,
o {m(t) | tiy <t <t} is asegment [w(t,_y),7(t))],
o [m(ti_y), m(t)] = ([r(ti—1), 7)), (Chiyecre et (Covey)eeres 1) i a deco-

i

rated segment (in particular w(t,_;) < w(t)), hence X is spherical).

A decorated Hecke path of shape \ with respect to C,, in A is a decorated A—path
7 such that the underlying path 7 is a Hecke path of shape A with respect to C,, in
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A. One assumes moreover that the numbers 0 < t} < --- < ¢, = 1 are equal to the
numbers 0 < t; <ty <--- <ty =1 of Lemma 2.2 above.

PROPOSITION 2.7. Let [z9,y] be a decorated segment (with d°(zo,y) = X € YT spher-

ical), Cy a chamber of vertex x in A with x < 2 (hence x < 2 for any z € [20,9]) and
p = pa,c, the associated retraction. We parametrize [z, y] by z(t) = zo + t(y — z0) in
any apartment containing [zo,y]. Then:

p([z0.9]) = (m = poz,(C}, .y = pCLyiero] (Cray = PO )eejon))

is a decorated Hecke path of shape A\ with respect to C in A.

N.B. Conversely a decorated Hecke path is not always the image by p of a decorated
segment. But the calculations of the number of such liftings (as in Theorem 2.3) is the
main ingredient of our main theorem (3.3 below) generalizing the Theorem 8.7 in [3].

Proof. For any z € |29, y[ (resp. z € |z0,9]), we consider an apartment A} (resp. AY)
containing C, and CF (resp. CY). Then Af U A7 (or A, A) contains a neighbour-
hood of z (or zp, y) in the segment [zp,y]. By compactness of this segment we get
numbers 0 = t[; < ¢} < ---t/ = 1 and apartments A; such that A; contains Cj,
z([ti_q,ti]) and either C’j(t; or C’;’(tg). By the projection properties of decorated
segments, it contains all other C’:(t) (resp. C’;’(t)) for t € [t;_q,t.[ (vesp. t € |t;_q,tl]).
As p sends isomorphically A; onto A, we get that p([z0,y]) is a decorated A—path,
with underlying path a Hecke path of shape A with respect to C in A.

To get that p([zo,y]) is a decorated Hecke path, we have now to prove that the ¢}
may be replaced by the t; associated to this Hecke path by Lemma 2.2. We may apply
the following Lemma to [m(t;—1),7(t;)]. Any apartment A containing C; and C7, )
contains [z(t;—1), 2(t;)], hence also C’;’(t) for t;_1 <t <t; and C’;r(t) for t;_1 <t <y,
by the projection properties of decorated segments. But p induces an isomorphism
from A onto A. So ([7(ti—1), 7(t:)], (pC’j(t))ti_ngti, (PC;/(t))t1_1<t<t7:) is a decorated
segment, as expected. O

LEMMA 2.8. In an apartment A of a masure &, we consider a local chamber C, and a

line segment [po, p1] with x < po < p1. We suppose that, for any p € |po,p1| and any
wall M containing p, then [p,po] is in the half-apartment containing C, delimited by
M. We consider the retraction p = pa.c,. Then, for any segment germ [z1, z) in &
such that p([z1, 2)) = [p1,po) (hence p(z1) = p1), there is a unique line segment [z1, 2o
such that [z1,20) = [21,2) and p([z1, 20]) = [p1,p0]. More precisely any apartment A
containing Cy and [z1, z) contains [z1, o).

Proof. Let A be an apartment containing C, and [z1,z). Up to the isomorphism
p from A onto A, one may suppose A = A. Then z; = p; and [p1,po] satisfies
[p1,p0) = [P1, 2), p([P1,P0]) = [P1,P0] as expected for [p1, z0]. Let us consider another
solution [p1, 0], so [p1,20) = [p1,p0) and p([p1, 20]) = [p1,po]- Let 2z’ be the point
satisfying [p1, 2'] C [p1,p0] N [p1, 20] that is the nearest from py. One has 2z’ # p; and
one wants to prove that 2’ = pg. If 2’ # pg, one may consider a minimal gallery ¢’
in 7. from C,, = pr,,(C;) to the segment germ [z, zy). Clearly ¢ = p(c’) is a
minimal gallery in A_, from C, to the segment germ [2',pg). If we write Q = C,,
we have ¢’ € CJ(C,, c), with the notation of 2.3. But by the hypotheses, no wall M
containing z’ separates strictly C, (i.e. C,) from [2/,po). Hence the formula in 2.3

tells that CZ(C,,c) is reduced to one element: we have ¢’ = ¢, [#/,2) = [¢',po),
contrary to the hypothesis on z’. O
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REMARK 2.9. The definitions and results in 2.6, 2.7, 2.8 above are also true if we
replace C, by a negative sector germ & in A and p by pa . The corresponding
results of the lemma are more or less implicit in [3], see the last paragraph of proof
of Lemma 2.1 or of Proposition 2.3 in l.c.

3. STRUCTURE CONSTANTS IN SPHERICAL CASES

In this section, we compute the structure constants ay, , of the Iwahori-Hecke algebra
1 ’Hﬁ , assuming that v = - v and w = A - w are spherical, i.e. 4 and A\ are spherical
(see 1.1 for the definitions). As in [3], we will adapt some results obtained in the
spherical case in [19] to our situation.

These structure constants depend on the shape of the standard apartment A and
on the numbers ¢,r of 1.4.6. Recall that the number of (possibly) different parameters
is at most 2 - |I|. We denoted by Q = {¢1, -+ ,q,¢} = @41, -+ , ¢, = g1} this set of
parameters.

For A € Yt spherical, we denote w) (resp. wj\r) the smallest (resp. longest) element
w € W such that w - A € C'7. We start by several lemmas.

LEMMA 3.1 ([3, 3.6]). Let C,,C, € 6,7 with x < z and A\ € Y spherical, w € W".
We write C; = pr,(Cy). Then

dV(Cp,2) = A
dV(Cp, C) = X w <= V[E _Z) N

WV (C;,C,) =wyw.
LeMMA 3.2. Let C,,C, € Ct with z < y and u € YT spherical, v € WV. We write
CF =pr,(Cy) and Cy = pr[yyz)(Cj) = pry(C’j). Then

dW(Cz7 Cj) = v(qu,u)_l

d(C,,C,) = pv <=
) G = {dW(O;cy):ww“

.
dV(CF,y) = ptt

b) dV(CF,C,)) = pTTwy-1., —
(b) (C3 y) Wyt {d*W(C{/’7Cy):w:++wv1.#

Proof. (a) Let us fix an apartment A’ containing C,, C, and so CI and identify
(A7, C,) with (A, C{).

Let us suppose that d"(C.,C,) = pv and denote Cf := CF + p. Clearly
dV(C,,C, + pu) = p and, by Chasles in A, p-v = dV(C,,C,) = dV(C.,C, +
w)d"V (C, + p, Cy), hence dV(C, + u,Cy) = v ie. Cy = (C, + p) x v (cf. 1.10).
By G—invariance of d" and Chasles, we have d"(C.,Cf) = dV(C. 4+ p,Cf) =
dV(C.+p, Cy)d" (Cy, Cf ) = vd™ (Cy, C;f). Among the walls containing [z, y], no one
separates C’;r from C,, so the local chamber C;r is the closest chamber to Cy among
those containing the segment-germ |y, y + u) in their closure, i.e. C'y+ = Py yt ) (Cy)
and d"(Cy, C;f) = w' where w' is the smallest w € W* C W (for the Bruhat order
of WV) such that Jy,y + p) C Cyxw = Coppxvw = C, x pow = powC,, as we
identified C, with Ci . As u = y—z, we can see w’ as the smallest w € W¥ C W (for
the Bruhat order of W) such that |z, z+p) C vwC, ie. vl € w@ (as we identified
C. with Cf), so w' = (w,-1.,) . Finally, we get dV(C.,C}) = v(w,-1.,,) " and so

dW(C’j,Cy) = (dW(CZ,Cj))_ldW(CZ,Cy) = wv—1‘Mv_luv(wv_l_u)_lwv_l‘u

— .

4
In the same way, if we suppose that d" (C., C) = v(w,-1.,)~! and " (CS,C,) =
p T w,-1.,, by Chasles we obtain d" (C., Cy) = pw.
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(b) We consider now the opposite local chamber at y of C,f (resp. Cy) in A’ which
is denoted by —C;f (resp. —C,). If &V (CF,Cy) = pttw,-1.,, we have dV (CF,y) =
ptt =dV(CH CF) and dV(C;f, Cy) = wy-1.y, so &V (=C;,Cy) = w,-1.,. By the
proof of 2.1, we see that C;/ and —C; are such that dV (—C;f,C})) = d" (C}, —C}f) =
w:++ (the longest element of W:H the fixator of ™" in W?). By Chasles in A’, we
have

" (cy,c,) =dv(C,,-Cy) =dV (Cy,—CHdY (-=C;f

— .t
y 770?4) - le«'H' CWy—1.y-

The converse result is clear by Chasles. O

3.1. LocAL sTuDy. We shall need a partial generalization of Lemma 2.5.1 dealing
with decorations.

We consider a point z € A, a negative local chamber C; in A7 and the retraction
p=p,. c- nT.7. Let C} (resp. C¥) be a positive (resp. negative) local chamber in
A, we also introduce the retraction p' = p a..cr i T2 Let £ and n be two segment
germs in AT = ANT,F.7 of the same “type” (i.e. n=[z,z+w-\), E = [z, 2 +w' - \)

for some A € Y** and w,w’ € W?). We suppose that C; contains  and C? contains
the opposite —¢ = [z,z — w'A) of £ in A,. We denote —n = [z, z — w - \) the opposite
ofpin A, and C, = prfn(Cj). Let i be the type of a minimal gallery from C to C%.

LEMMA. The following conditions are equivalent:

(a) There exists a segment germ ¢ opposite n) in T, .7 and a negative local cham-
ber C containing ¢ in its closure such that p(¢) = =&, p(CY) = C¥ and
C7 = pre(CY).

(b) There exists a gallery c € Fg+ (C7 1) ending in the local chamber C.,.

Moreover the possible (¢,CY) are in one-to-one correspondence with the disjoint
union of the sets C%(C’;,C) for c in the set Fg; (C7,i,Cy).

z

Proof. If ¢, a segment germ opposite n in 7, .#, and C?, a negative local chamber

containing ¢ in its closure, are such that p(¢) = =&, p(C?) = C; and C7 = pr (C),
there is a unique minimal gallery ¢’ from C7 to C/ of type i (as p induces a bijection
between the minimal galleries from C to C7 and the minimal galleries from C; to
C7). The gallery ¢ = p/(c') isin 1"2+ (C;,1,C5). Indeed, ¢ is opposite 1 so p'(¢) = —n,

hence the image of C/ = pr.(C}) by p' is C. = pr_,(C}).
Reciprocally, let ¢ € F}r (C7,1) be a gallery ending in the local chamber C.. We

can lift this gallery with respect to p’ while preserving the first chamber C to obtain
a minimal gallery ¢’ of type i. Let us call C? the last chamber of the lifted gallery.
The isomorphism associated to p’ (see 1.7) between an apartment A, containing C
and C7 and A, enables us to say that the lifting of —7 is a segment germ ¢ opposite
nin A, and C = pr(CJ). As the gallery c is of type i, p sends C? onto the end of
the minimal gallery of same type beginning at CJ , so p(CY) = C. Moreover, ( is of
the same type as —n (and —¢), so p(¢) = —¢.

From the first paragraph above, we get an injective map (¢, C?) — ¢’ from the set
of pairs (¢, C?) as in (a) and the disjoint union of the sets o (C,c) for ¢ in the set

I‘}r(C* i, 6’2): indeed, ( is fully determined by C? (and \). The second paragraph

z
proves that this map is surjective. O

3.2. OPPOSITE LINE SEGMENTS. The following lemma will be useful in Theorem 3.3.
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LEMMA. Let us consider in a masure & two preordered line segments or rays 61,2
in apartments Ay, As, sharing the same origin x. One supposes the segments germs
germ,,(81) and germ,(d2) opposite (in any apartment containing them both). Then
there is a line in an apartment A of & containing 01 and do. In particular, if 61,02
are line segments (resp. rays), then d1 U dy is also a line segment (resp. a line).

Proof. The case of line segments is Lemma 4.9 in [19]. The case of rays may be
deduced from the fact stated in part 2 of the proof of [31, Prop. 5.4]. As we shall not
use it, we omit the details. O

3.3. THE MAIN FORMULA. Let us fix two local chambers C,, and Cy, in 6" with z < y
and d"(C,,Cy) =u=v-u € WT. We consider w = X\-w and v = p-v in W+,
Then we know that the structure constant ag, , is the number of C;, € %y~ with
< 20 <y, dV(Cy, Csy) = w and dV(C,,, Cy) = v; moreover this number is finite,
see Proposition 1.1. In Lemmas 3.1 and 3.2 we gave conditions equivalent to these
W —distance conditions.

We choose the standard apartment A containing C, and C,, and we identify C,
with the fundamental local chamber C . The datum of zj is equivalent to the datum
of the segment [zp, y| or of the decorated segment [zg, y] associated, as in 2.5, to [z, y]
and Cy. We consider then the decorated Hecke path 7 image of [zg, y] by the retraction
PA,Cy -

To the Hecke path 7 underlying a decorated Hecke path 7 are associated ¢, € N
and numbers tp = 0 < ¢; <ty < --- <ty =1 asin Lemma 2.2 and Definition 2.6.
We write pp = 7(tg). We write C’;r (resp. C;; instead of C}/) the decorations of 7 at a
point p of m. We write C (resp. C7/) the decorations of a decorated segment at one
of its points z.

We use freely the notations from 2.1, 2.2 and 2.3.

THEOREM. Assume i and A spherical. Then the structure constant ag, , is given by:

Lr
a’&,v = Z H aﬂ(k)

T k=0
where m runs over the decorated Hecke paths in A of shape p™+ with respect to C,
frompo=x+A=Xtoy=x+v=r, and the integers ar(k) are given by:

(a) ax(lr) = Zdergy (5 ieCy) iCe (G, d), where iy is the type of a fived mini-
mal gallery from C to Cy and C'y is the unique local chamber aty in A such
that d*W(Cya Cy) = w:++wqu~/t-

(b) For1 <k < {4r—1, az(k) = ZC€F2+ (i Cpy) ]jC’C”;k (Cprs€), where iy is

)

Pi -
the type of a fized minimal gallery from C,, to Cp, and Cp, = pr
with —ny, the segment germ of origin py in A opposite ny = w4 (tx).
(c) ax(0) = Zeel“z, (Cy T ) ﬁcg;O (Cy s e), where i is the type of a fized reduced

Po?

*ﬂk(

ro
decomposition of wy-1.,

in A such that &*V (C;

po?

v~ and G}, is the unique local chamber at po = 7(0)
Cp,) =wyw.

REMARKS.

(1) Actually Hi’;l ar (k) is the number of decorated segments [z, y] such that
p([20,y]) = = and C; = C}/. It may be zero.

Algebraic Combinatorics, Vol. 4 #3 (2021) 484



On structure constants of Iwahori-Hecke algebras for Kac—Moody groups

(2) If ay, , # 0, then necessarily v is spherical (in particular u € W9), as then

any Hecke path of shape u™ is increasing for < (see 1.7). The arguments
of [3] are sufficient for this result.
(3) From this theorem we deduce that ay, , # 0 is equivalent to the following:
e there exists a Hecke path in A of shape u™ with respect to C, from
p=rx+A=Atoy=z+v=r,
e there exists a decoration m of 7 (always true),
o for this decorated Hecke path each of the sets I‘gy(C*, ir,C,),

y
Fa_;k (Cpp»ik; Cp, ) and FJ(;;O (Chos
(4) The number of decorated Hecke paths 7 as above is finite: we know that the

number of paths 7 is finite (it is a consequence of Theorem 3.5 in [3]) and, as

1 is spherical, the number of decorations of 7 is finite.

i,C}, ) is non empty.

Proof. ay, ., is the number of local chambers C,, € G)" with 2 < 20 <,
dV(Cy,Cy) = w and dV(C,,,Cy) = v (we chose C,,C, in A such that
dV(Cy,Cy) = u). We know that this number is finite, see Proposition 1.1. The
datum of zy is equivalent to the datum of the segment [zp,y] or of the decorated
segment [2p,y] associated, as in 2.5, to [z0,y] and C,. We use now the retraction
p=pac, : Iz — A. We have y = p(y) =  + v and the condition dV (Cy,20) = A
is equivalent to p(z9) =« + A = pg. So p([z0,y]) has to be a decorated Hecke path &
as asked in the theorem. And we get the formula:

aw = Z(number of liftings of ) x (number of C, for zy given),

us

It is possible to calculate like that for p(C}) = Cf is well determined by the
decorated path w. Hence (as we shall see in (b) or (c) below), the number of C,, only
depends on 7w and not on the lifting of 7. In [3, Theorem 3.7] we argued the same way,
but with Hecke paths (without decoration) so we had to suppose u™* regular to get
that p(C ) was well determined by the path 7.

For short, we write £ = ¢,. We compute the number of liftings of m by looking
successively at the number of liftings of [ps—1,pel, [Pe—2,Pe-1]s - -, [Po,D1]-

(a) The number a.(¢) of liftings of [p,—1,ps =y] is the number of liftings

[z0-1,2¢ = y] of [pe—1,p¢ = y] and C;’ of Cy such that [y, ze-1) C CT;’ and
av(cy,c,) = w:++wvfl,u (by Lemma 3.2(b)). But [y, z¢—1] is determined by
[y, ze-1) (cf. Lemma 2.8) and [y, z¢_1) is determined by C} and p*+. So we just have
to count the liftings C} of Cy. By the same way as in the proof of Lemma 3.1, we
are going to prove that the possible C;’ are in one-to-one correspondence with the

disjoint union of the sets Cg‘y(Cy_, c) for ¢ in ng(Cy_, ir,Cy). In this case, the tools

are p = pa,c,, that on 7,.#, coincides with p = Pacy 2.5.2 and p’ = ppc,-

If C} is given, there is a unique minimal gallery ¢’ from C; to C of type i, (as
p induces a bijection between the minimal galleries from C,~ to Cy/ = pry, ., 1(Cy)
and those from Cy to Cy = pry,, 1(Cy)). By Lemma 3.2(b) we know that

d*W(C’?’J’,Cy) = w:vafl,M, so p'(Cy) = Cy, and the gallery ¢ = p/(¢/) is in
FJCCy (Cy i, Cy), while ¢’ is in CZ (C, c).

Reciprocally, if ¢ is in the set ng (c,
of ¢’ a lifted gallery of ¢ with respect to p’. The condition on C'y enables to say that
d*W(C’Z’/’, Cy) = w:vafl.# and so, by Lemma 3.2 the decoration Cy/ of [2¢—1,y] at y

satisfies the expected codistance condition.

,ig, Cy), let us consider C;/ the last chamber
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(b) For 1 < k < £ — 1, we suppose given the lifting [2x,y] of 7|, 1). The number
ax (k) of suitable liftings [2_1, 2&] of [px—1,px] is the number of pairs ([2x—1, 2&), CY,)
of liftings [zx—1, 2k] of [pk—1,pk] and C’;’k of Cp, such that [2k, 2k—1) 1S opposite to

[2k, 2k+1) (see Lemma 3.2), [zx,2k-1) € W and C!' is the decoration of [zx, zx_1]
associated to Cy. Let us consider an apartment A contalnlng C, and Czk+ , hence
also [z, zk41] and CF (see Lemma 2.8). The restriction p|4 is the restriction to A
of an automorphism ¢ of & fixing C, that induces an isomorphism |7 T from
T...# onto Tp,.# and sends C; C A to Cf = p(C}). So the map ¢ induces
a bijection from the set of suitable liftings ([zx—1,2%],C%,) of ([pr—1,px), C,) onto
the set of pairs ([z},_,px], C},) such that [pg,z,_,) € C” is opposite to [pk, Pr+1)
(= p([zk, 2111]) = o([2k, 2011))), Cp, = Pf[pk,z;cfl)(cf):) and Py.c; (C ) =05, (as
PA,cp—k ° <P|Tz,cﬂ(cél,€) = P(C;/k))

By Lemma 3.1 the possible ([p, z;,_; ), C,), ) (and so the possible ([px, 2;,_,],C}, ) by
Lemma 2.8) are in one-to-one correspondence with the union of the sets %k (Cprs€)

for ¢ in the set I‘g;rk (Cpy» e, Cy,), with C,, = pr (C)-
(c) For the last step of the lifting, by the same way as before, we suppose given the

lifting [29, y] and we suppose zg = pp. So we know that C’+ = Cf . The Lemma 3.1 says

that &*V(C,.,C.,) = wiw, and Lemma 3.2 that dW((C’I‘,'[),C’ZO) = wy-1,v"". So, as

before, the number of C, is the number of elements of the different sets Cm (C’;; ,€e)

— Mk

where e is a gallery of I‘+ (C;;, i,C}, ) as iis the type of a minimal gallery from cr

to C, that retracts by pA o to a gallery from C;O to Cz/m' g
Cro

3.4. CONSEQUENCE. The above explicit formula, together with the formula for
1CH(C7,c) in 2.3, tell us that the structure constant ay, , is a polynomial in the
parameters ¢ — 1,¢; — 1 for ¢;,q;, € Q with coeflicients in N = Z( and that this
polynomial depends only on A, W, w, v and u. So we have proved the conjecture 1
of the introduction in this generic case: when A and p are spherical.

Note that we did not obtain all the structure constants ag, ,, for the generic Iwahori-
Hecke algebra I’H%. The cases w € WY x Vporve WY x Vy (iie. A€ Vyor p € Vp in
the above notation) are missing. We deal with them in the following section.

4. STRUCTURE CONSTANTS IN REMAINING GENERIC CASES

4.1. THE PROBLEM. Let us choose Cy,C, € ‘fd" with z < y and d" (C,, Cy) =u=
v-u € WH = WY x Y. Then the structure constant ay, (for w = A-w and
v = p-v in W) is the number of C,, € ¢, with z < 20 <y, "V (Cs, C,,) = w and
dV(C.,,,Cy) = v, see Proposition 1.1.

In Theorem 3.3, we computed ay, ,, when w, v are spherical (i.e. A\, € YNT°). We
shall compute it below in the remaining cases where w,v € W9 = W" x (Y N (T°U
Vb))- So, in the affine or strictly hyperbolic cases, we shall get ay, | for any w,v € W,
But we get, in general, these structure constants for w,v € W+9 = WY x Y19, ie. we
get the structure constants of 1H9, see 3.4 and 4.5.

We start with a lemma analogous to lemmas 3.1 and 3.2.

LEMMA 4.1. Let C,.,C, € €, with x < z and A € Y10, w € W?. We write Cf =
pr,(C.), then

W(C C))\w<:>{ W(Cz72): <:>{dW(Cz,Z):)\
zy Uz (C’Z’CZ)
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Actually dV (Cy,z) = X € Vg implies * < z and z < z. So C; = pr,(C,) is well
defined, by 2.1.1, and is a positive local chamber.

Proof. By definition dV (C,,C,) = X - w implies d" (C,, z) = A (1.10). Suppose now
d"(C,,z) = A. Then d’(z,z) = A\ € Vp, so any apartment A containing x or z
contains z or x and, in A, one has z = x4+ A < x; this is a consequence of 1.4.1(a), as
any enclosure is stable under V. Hence C; = pr,(C,) € A is well defined, by 2.1.1,
and is a positive local chamber. Actually C; = Cy + A (calculation in A). We have
also Cf = C, — \. It is now clear that dW(CI,CZ) =\ w <= dV(C;,C,) =
w <= dV(C,,C}) =w. O

4.2. FIRST REDUCTION. We consider u,v,w € Wt and writeu =v-u,v = p-v,w =
A-w with A, pu,v € YT and u,v,w € W". We choose C,,C,, € %0+ with z < y and
dV(C,,C,) = u; we may suppose C,, C,, C A. We choose C,, € 6, with z < zy < v,
dV (Cy, Cy,) = w and dV (C,,,Cy) = v

If A € Y*0 = Y NV, one has dV(Cy,, 20) = A (Lemma 4.1) and 25 € A, more
precisely zo =  + A (as we saw in the proof of Lemma 4.1).

If p € YT, then we get 29 € A, more precisely zgp = y — p, by Lemma 4.1 applied
to C,, Cy instead of Cy, C..

In both cases zp has to be a well determined point in A and v = d%(x,y) €
WP\ + W¥u. In particular, if w,v € W9 ie. \,u € Y79, one has also v € Y19
ie.ue Wt

We now want to compute the number ay, , of C,, € G, with # < 20 <,
d"V (Cy, Cs,) = wand d" (C,,, Cy) = v. For this we separate below the cases A € Y0
and p € Y10

4.3. THE CASE p € Y10, We suppose A € Y NT° (resp. A € Y10). By Lemma 4.1
above and Lemma 3.1, we have to find the number ay, |, of C, € %, satisfying (with

Ol = Prizg) (Cy) = Pray (Cy)):

(a) d"(Cuy20) = A,
(b) dW(szy) =
(c) dV(Cs,CH) =

(d) & (C C’ o) =wi w (resp. (d) dV(C;,C.,) = w).

207 207
Actually p € Vj is fixed by W* and y, C,, C are in a same apartment (containing
Cy, and C.,), so dV(C,,,y) = p < dW(C’ZO,y) = p. Then a¥  is the number of
C., € €, satisfying (a), (b') d"(CL,y) = p, (c) and (d). The first two conditions
involve only 2y, Cy, Cy € A.

is either O (if the conditions (a), (b’) above are in-

> e (CF @)

eer (C’j0 ,1,C’ )
20

PROPOSITION. The number ay,
compatible) or

v

where i is the type of a fized reduced decomposition of v=! and C7, is the unique local
chamber at zo in A such that d*V (CZ,CL ) = wy -w (resp. dW(C Cl)=w).

z0? z0?

REMARK. The coefficient a3, , is zero when (a) and (b’) are incompatible, i.e. when
v # A+ if in A we identify C, to the fundamental chamber Cf, (a) is equivalent
to 20 =z + A, (b') to y = 20 + p and dV (C,, C,) = v - u implies y = = + v.

But the other case where ay, ,, = 0 is when I‘+ (C’Jr i,C. ) is empty.

207
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Proof. We have to translate the conditions (c) and (d). We consider the retraction

p = py o - The condition (c) is equivalent to the existence of a minimal gallery c
C2,

starting from C, of type i (i.e. ¢ € C"™(C, 1)) ending in C,; and there is a bijection

between these ¢ and the C,, satisfying (c). Now the condition (d) is equivalent to

p(C,) = C., (as p preserves the W—distances to C ). Considering e = p(c), the

proposition is now clear. O

4.4. THE CASE A € Y10 (AND € Y NT°). By Lemma 4.1 above and Lemma 3.2,
we have to find the number ay, | of C, € %, satisfying:

(a) dW(Cy,20) = A,

(b) dV(CF,y) = pt,
(C) d*W(Cg,//ﬂ C ) - w:—%—-%—wv*l-p,
(d) d¥(C5,,Cx) =

(e) dV(CH,Csy) = wy-1.p, - v7L
But Cf = pr, (C,), C; = pr,(CF) and C;,Cy, 20 = x + A are in A. So the condi-
tions (a), (b), (¢) 1nvolve only Cx, Cy and z.

PROPOSITION. The number ay,
incompatible) or

is either O (if the conditions (a), (b), (c) above are

Y. - (Cle)

eer;O (C’z0 A,C

where i is the type of a fized reduced decomposition of wy,-1., - v~ and C., is the
unique local chamber at zy in A such that "V (C,CL ) =

zZ0?

v

%)

REMARK. The coefficient ay, ,, is zero when (a), (b) and (c) are incompatible, i.e. when
20, determined by (b) does not satisfy (a) and (c). But it is more difficult than in 4.3
to translate it simply. It is also zero when F+ (C’;L0 ,i,C7L ) is empty.

Proof. We have to translate conditions (d) and (e). It goes the same way as in 4.3. 0O

4.5. CoNcCLUSION. In all cases where A\,u € Y9 =Y N (T°UV,), we may use the
formula for CZ(C’,c) in 2.3, the Theorem 3.3 and/or the Propositions 4.3, 4.4. We
get the expected result: the structure constant ag, ,, is a polynomial in the parameters
¢ — 1,¢; — 1 for ¢;, ¢; € Q with coeflicients in N = Z( and this polynomial depends
only on A, W, w, v and u. We have proved Conjecture 1 in these cases, in particular
in the affine or strictly hyperbolic cases.
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