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On structure constants of Iwahori–Hecke
algebras for Kac–Moody groups

Nicole Bardy-Panse & Guy Rousseau

Abstract We consider the Iwahori–Hecke algebra IH associated to an almost split Kac–Moody
group G (affine or not) over a nonarchimedean local field K. It has a canonical double-coset basis
(Tw)w∈W + indexed by a sub-semigroup W + of the affine Weyl group W . The multiplication
is given by structure constants au

w,v ∈ N = Z>0: Tw ∗ Tv =
∑

u∈Pw,v
au

w,vTu. A conjecture,
by Braverman, Kazhdan, Patnaik, Gaussent and the authors, tells that au

w,v is a polynomial,
with coefficients in N, in the parameters qi − 1, q′

i − 1 of G over K. We prove this conjecture
when w and v are spherical or, more generally, when they are said to be generic: this includes
all cases of w, v ∈W + if G is of affine or strictly hyperbolic type. In the split affine case (where
qi = q′

i = q, ∀i) we get a universal Iwahori–Hecke algebra with the same basis (Tw)w∈W + over
a polynomial ring Z[Q]; it specializes to IH when one sets Q = q.

Introduction
Let G be a split, semi-simple, simply connected algebraic group over a non
archimedean local field K. So K is complete for a discrete, non trivial valuation
with a finite residue field κ. We write O ⊂ K for the ring of integers and q for the
cardinality of κ. Then G is locally compact. In this situation, Nagayoshi Iwahori
and Hideya Matsumoto in [22], introduced an open compact subgroup KI of G, now
known as an Iwahori subgroup. If N is the normalizer of a suitable split maximal
torus T ' (K∗)n, then (KI , N) is a BN pair. The Iwahori–Hecke algebra of G is the
algebra IHR = IHR(G,KI) of locally constant, compactly supported functions on G,
with values in a ring R, that are bi-invariant by the left and right actions of KI . The
multiplication is given by the convolution product.

If H ' (O∗)n is the maximal compact subgroup of T , then H ⊂ KI andW = N/H
is the affine Weyl group. One has the Bruhat decomposition G = KI · W · KI =
tw∈WKI · w · KI . If one considers the characteristic function Tw of KI · w · KI ,
we get a basis of IHR: IHR = ⊕w∈WR · Tw. The convolution product is given by
Tw ∗ Tv =

∑
u∈Pw,v

au
w,vTu, with Pw,v a finite subset of W . The numbers au

w,v ∈ R
are the structure constants of IHR. The unit is 1 = Te.

Iwahori and Matsumoto gave a precise (and now classical) definition of IHR by
generators and relations. The group W is an infinite Coxeter group generated by
{r0, . . . , rn}. Then IHR is generated by {Tr0 , . . . , Trn} with relations T 2

ri = q ·1+(q−
1) ·Tri and Tri ∗Trj ∗Tri ∗ · · · = Trj ∗Tri ∗Trj ∗ · · · (with mi,j factors on each side) for
i 6= j, if mi,j is the finite order of rirj . For w = ri1 · . . . ·ris a reduced expression inW ,
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one has Tw = Tri1 ∗· · ·∗Tris . In a Coxeter group one knows the rules to get (using the
Coxeter relations between the ri) a reduced expression from a non reduced expression
(e.g. the product of two reduced expressions w = ri1 · . . . · ris and v = rj1 · . . . · rjt).
So one deduces easily (using the above relations between the Tri) that each structure
constant au

w,v (for u,v,w ∈ W ) is in Z[q]. More precisely it is a polynomial in q − 1
with coefficients in N = Z>0. This polynomial depends only on u,v,w and W .

So one has a universal description of IHZ as a Z[q]−algebra, depending only onW .
There are various generalizations of the above situation. First one may replace G

by a general reductive group over K, isotropic but potentially non split. Then one has
to consider the relative affine Weyl group W , which is a Coxeter group. One may still
define a compact, open Iwahori subgroup KI and there is a Bruhat decomposition
G = KI · W · KI . Now the description of IHR involves parameters qi (satisfying
T 2
ri = qi · 1 + (qi − 1) · Tri) which are potentially different from q. This gives the

Iwahori–Hecke algebra with unequal parameters. There is a pleasant description of
IHR using the Bruhat–Tits building associated to the BN pair (KI , N), see e.g. [29].

For now more than twenty years, there is an increasing interest in the study of
Kac–Moody groups over local fields, see the works of Braverman, Garland, Kapranov,
Kazhdan, Patnaik, Gaussent and the authors: e.g. [3, 4, 5, 6, 7, 8, 16, 17, 19, 24]. It
has been possible to define and study for Kac–Moody groups (supposed at first affine)
the spherical Hecke algebra, the Iwahori–Hecke algebra, the Satake isomorphism, . . . .
This is also closely related to more abstract works on Hecke algebras by Cherednik
and Macdonald, e.g. [13, 14, 25].

We are mainly interested in Iwahori–Hecke algebras for Kac–Moody groups over
local fields. They were introduced and described by Braverman, Kazhdan and Patnaik
in the affine case [8] and then in general by Gaussent and the authors [3]. So let us
consider a Kac–Moody group G (affine or not) over the local field K. We suppose it
split (as defined by Tits [34]) or more generally almost split [30]. Let us choose also
a maximal split subtorus. To this situation are associated an affine (relative) Weyl
group W and an Iwahori subgroup KI (defined up to conjugacy by W ), see 1.4.5
and 1.4.7 below. This group W is not a Coxeter group but may be described as a
semi-direct product W = W v n Y , where W v is a Coxeter group, the relative Weyl
group, and Y is (essentially) the cocharacter group of the torus.

Unfortunately the Bruhat decomposition “G = KI ·W ·KI” fails to be true (even in
the untwisted affine case, i.e. for loop groups). One has to consider the sub-semigroup
W+ = W v n Y + (resp. W+g = W v n Y +g) of W , where Y + (resp. Y +g) is the
intersection of Y with the Tits cone T (resp. with a cone T ◦ ∪ V0 ⊂ T , where T ◦ is
the open Tits cone) in V = Y ⊗ZR (see 1.2, 1.5, and 1.8 below). Then G+ = KI ·W+ ·
KI (resp. G+g = KI ·W+g · KI ⊂ G+) is a sub-semigroup of G: the Kac–Moody–
Tits semigroup (resp. the generic Kac–Moody–Tits semigroup). We may consider the
characteristic functions Tw of the double cosets KI ·w ·KI and one proves in [3] that:

The space IHR (resp. IH g
R ) of R−valued functions with finite support on

KI\G+/KI (resp. KI\G+g/KI) is naturally endowed with a structure of algebra
(see 1.11). We get thus the Iwahori–Hecke algebra IHR = ⊕w∈W+R · Tw (resp. the
generic Iwahori–Hecke algebra IH g

R = ⊕w∈W+gR · Tw). The product is given by
structure constants au

w,v ∈ N = Z>0: Tw ∗ Tv =
∑

u∈Pw,v
au

w,vTu.

Conjecture 1 ([3, 2.5]). Each au
w,v is a polynomial, with coefficients in N = Z>0, in

the parameters qi−1, q′i−1 of the situation, see 1.4.6 below. This polynomial depends
only on the affine Weyl group W acting on the apartment A and on w,v,u ∈W+.

One may consider that this is a translation of the following question of Braverman,
Kazhdan and Patnaik:
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Question ([8, end of 1.2.4]).Has the algebra IHC a purely algebraic or combinatorial
description with respect to the coset basis (Tw)w∈W+?

But a more precise formulation of this question is as follows:
Conjecture 2. The algebra IHZ (or IH g

Z ) is the specialization of an algebra IHZ[Q]
(or IH g

Z[Q]) with the same basis (Tw)w∈W+ (or (Tw)w∈W+g) over Z[Q]. Here Q is
a set of indeterminates Qi, Q′i (with some equalities between them, see 1.4.6 below)
and the specialization is given by Qi 7→ qi, Q

′
i 7→ q′i,∀i ∈ I. The algebra IHZ[Q] (or

IH g
Z[Q]) depends only on the affine Weyl group W acting on the apartment A.

Let us consider the split case: G is a split Kac–Moody group, all parameters qi, q′i
are equal to q = |κ| and all indeterminates Qi, Q′i are equal to a single indeterminate
Q. Then the conjecture 1 has already been proved by Gaussent and the authors [3,
6.7] and independently by Muthiah [28] if, moreover, G is untwisted affine. Actually
the same proof gives also conjecture 2, see 1.4.7 below.

In the general (non split) case, weakened versions were obtained in [3]: the au
w,v

are Laurent polynomials in the qi, q′i [l.c. 6.7]; they are true polynomials if w,v ∈
W v n (Y ∩ T ◦) and v is “regular” [l.c. 3.8].

In this article, we prove the conjecture 1 when w and v are in W+g (see 3.4).
We remark also that W+ = W+g in the affine case (twisted or not) or the strictly
hyperbolic case, even if G is not split. This is a first step towards the description of an
abstract algebra IHZ[Q] (resp. IH g

Z[Q]) over Z[Q] in the affine (or strictly hyperbolic)
case (resp. in the general case).

One should mention here that one may give a more precise description of the
Iwahori–Hecke algebra using a Bernstein–Lusztig presentation (see [17], [8] and [3]).
But this description is given in a new basis and the coefficients of the change of basis
matrix are Laurent polynomials in the parameters qi, q′i. So this description is not
sufficient to prove the conjecture.

Actually this article is written in a more general framework explained in Section 1:
as in [3], we work with an abstract masure I and we take G to be a strongly tran-
sitive group of vectorially-Weyl automorphisms of I . In Section 2 we gather the
additional technical tools (e.g. decorated Hecke paths) needed to improve the results
of [3, Section 3]. We get our main results about au

w,v in Section 3: we deal with the
cases w,v spherical. In Section 4 we deal with the remaining cases where w,v are in
W+g, i.e. when w,v are said generic.

1. General framework
1.1. Vectorial data. We consider a quadruple (V,W v, (αi)i∈I , (α∨i )i∈I) where V
is a finite dimensional real vector space, W v a subgroup of GL(V ) (the vectorial Weyl
group), I a finite set, (α∨i )i∈I a free family in V and (αi)i∈I a free family in the dual
V ∗. We ask these data to satisfy the conditions of [31, 1.1]. In particular, the formula
ri(v) = v − αi(v)α∨i defines a linear involution in V which is an element in W v and
(W v, {ri | i ∈ I}) is a Coxeter system.

To be more concrete, we consider the Kac–Moody case of [l.c. ; 1.2]: the matrix
M = (αj(α∨i ))i,j∈I is a generalized Cartan matrix. Then W v is the Weyl group of the
corresponding Kac–Moody Lie algebra gM and the associated real root system is

Φ = {w(αi) | w ∈W v, i ∈ I} ⊂ Q =
⊕
i∈I

Z · αi.

We set Φ± = Φ∩Q± where Q± = ±(
⊕

i∈I (Z>0) ·αi) and Q∨ = (
⊕

i∈I Z ·α∨i ), Q∨± =
±(

⊕
i∈I (Z>0) ·α∨i ). We have Φ = Φ+ ∪Φ− and, for α = w(αi) ∈ Φ, rα = w · ri ·w−1

and rα(v) = v − α(v)α∨, where the coroot α∨ = w(α∨i ) depends only on α.
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The set Φ is an (abstract, reduced) real root system in the sense of [26], [27]
or [1]. We shall sometimes also use the set ∆ = Φ ∪ ∆+

im ∪ ∆−im of all roots (with
−∆−im = ∆+

im ⊂ Q+, W v−stable) defined in [23]. It is an (abstract, reduced) root
system in the sense of [1].

The fundamental positive chamber is Cvf = {v ∈ V | αi(v) > 0,∀i ∈ I}. Its closure
Cvf is the disjoint union of the vectorial faces F v(J) = {v ∈ V | αi(v) = 0,∀i ∈ J ,
αi(v) > 0,∀i ∈ I r J} for J ⊂ I. We set V0 = F v(I). The positive (resp. negative)
vectorial faces are the sets w · F v(J) (resp. −w · F v(J)) for w ∈ W v and J ⊂ I.
The support of such a face is the vector space it generates. The set J or the face
w · F v(J) or an element of this face is called spherical if the group W v(J) generated
by {ri | i ∈ J} (which is the fixator or stabilizer in W v of F v(J)) is finite. An element
of a vectorial chamber ±w · Cvf is called regular.

The Tits cone T (resp. its interior T ◦) is the (disjoint) union of the positive
(resp. and spherical) vectorial faces. It is a W v−stable convex cone in V . One has
T = T ◦ = V (resp. V0 ⊂ T r T ◦) in the classical (resp. non classical) case, i.e. when
W v is finite (resp. infinite). By the above characterization of spherical faces, T ◦ is the
set of x ∈ T whose fixator in W v is finite.

We say that Av = (V,W v) is a vectorial apartment.

1.2. The model apartment. As in [31, 1.4] the model apartment A is V con-
sidered as an affine space and endowed with a family M of walls. These walls are
affine hyperplanes directed by ker(α) for α ∈ Φ. More precisely, they may be written
M(α, k) = {v ∈ V | α(v) + k = 0}, for α ∈ Φ and k ∈ R.

We ask this apartment to be semi-discrete and the origin 0 to be special. This
means that these walls are the hyperplanes M(α, k) = {v ∈ V | α(v) + k = 0} for
α ∈ Φ and k ∈ Λα, with Λα = kα · Z a non trivial discrete subgroup of R. Using [19,
Lemma 1.3] (i.e. replacing Φ by another system Φ1) we may (and shall) assume that
Λα = Z,∀α ∈ Φ.

For α = w(αi) ∈ Φ, k ∈ Z and M = M(α, k), the reflection rα,k = rM with respect
to M is the affine involution of A with fixed points the wall M and associated linear
involution rα. The affine Weyl group W a is the group generated by the reflections rM
for M ∈M; we assume that W a stabilizesM. We know that W a = W vnQ∨ and we
write W a

R = W vnV ; here Q∨ and V have to be understood as groups of translations.
An automorphism of A is an affine bijection ϕ : A→ A stabilizing the set of pairs

(M,α∨) of a wall M and the coroot associated with α ∈ Φ such that M = M(α, k),
k ∈ Z. The group Aut(A) of these automorphisms contains W a and normalizes it. We
consider also the group AutWR (A) = {ϕ ∈ Aut(A) | −→ϕ ∈W v} = Aut(A) ∩W a

R .
For α ∈ Φ and k ∈ R, D(α, k) = {v ∈ V | α(v) + k > 0} is a half-space, it is called

a half-apartment if k ∈ Z. We write D(α,∞) = A.
The Tits cone T and its interior T o are convex and W v−stable cones, therefore,

we can define three W v−invariant preorder relations on A:

x 6 y ⇔ y − x ∈ T ; x
o
< y ⇔ y − x ∈ T o; x

o
6 y ⇔ y − x ∈ T o ∪ V0.

If W v has no fixed point in V r {0} (i.e. V0 = {0}) and no finite factor, then they are
orders; but, in general, they are not.

1.3. Faces, sectors. The faces in A are associated to the above systems of walls
and half-apartments. As in [9], they are no longer subsets of A, but filters of subsets
of A. For the definition of that notion and its properties, we refer to [9] or [18].

If F is a subset of A containing an element x in its closure, the germ of F in x
is the filter germx(F ) consisting of all subsets of A which contain intersections of F
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and neighbourhoods of x. In particular, if x 6= y ∈ A, we denote the germ in x of the
segment [x, y] (resp. of the interval ]x, y]) by [x, y) (resp. ]x, y)).

For y 6=x, the segment germ [x, y) is called of sign ± if y − x ∈ ±T . The segment
[x, y] (or the segment germ [x, y) or the ray with origin x containing y) is called
preordered if x 6 y or y 6 x and generic if x

o
< y or y

o
< x.

Given F a filter of subsets of A, its strict enclosure clA(F ) (resp. closure F ) is the
filter made of the subsets of A containing an element of F of the shape ∩α∈∆D(α, kα),
where kα ∈ Z ∪ {∞} (resp. containing the closure S of some S ∈ F ). One considers
also the (larger) enclosure cl#A (F ) of [33, 3.6.1] (introduced in [10, 11, 12] and well
studied in [21], see also [20]). It is the filter made of the subsets of A containing an
element of F of the shape ∩α∈ΨD(α, kα), with Ψ ⊂ Φ finite and kα ∈ Z (i.e. a finite
intersection of half apartments).

A local face F in the apartment A is associated to a point x ∈ A, its vertex, and
a vectorial face F v in V , its direction. It is defined as F = germx(x + F v) and we
denote it by F = F `(x, F v). Its closure is F `(x, F v) = germx(x + F v) . There is
an order on the local faces: the assertions “F is a face of F ′”, “F ′ covers F” and
“F 6 F ′” are by definition equivalent to F ⊂ F ′. The dimension of a local face F
is the smallest dimension of an affine space generated by some S ∈ F . The (unique)
such affine space E of minimal dimension is the support of F ; if F = F `(x, F v),
supp(F ) = x + supp(F v). A local face F = F `(x, F v) is spherical if the direction of
its support meets the open Tits cone (i.e. when F v is spherical), then its pointwise
stabilizer WF in W a or W a

R is finite and fixes x.
We shall actually here speak only of local faces, and sometimes forget the word

local or write F = F (x, F v).
A local chamber is a maximal local face, i.e. a local face F `(x,±w·Cvf ) for x ∈ A and

w ∈W v. The fundamental local positive (resp. negative) chamber is C+
0 = germ0(Cvf )

(resp. C−0 = germ0(−Cvf )).
A (local) panel is a spherical local face maximal among local faces which are not

chambers, or, equivalently, a spherical face of dimension n − 1. Its support is a hy-
perplane parallel to a wall.

A sector in A is a V−translate s = x+ Cv of a vectorial chamber Cv = ±w · Cvf ,
w ∈ W v. The point x is its base point and Cv its direction. Two sectors have the
same direction if, and only if, they are conjugate by V−translation, and if, and only
if, their intersection contains another sector.

The sector-germ of a sector s = x+Cv in A is the filter S of subsets of A consisting
of the sets containing a V−translate of s, it is well determined by the direction Cv.
So, the set of translation classes of sectors in A, the set of vectorial chambers in V
and the set of sector-germs in A are in canonical bijection.

A sector-face in A is a V−translate f = x+F v of a vectorial face F v = ±w ·F v(J).
The sector-face-germ of f is the filter F of subsets containing a translate f′ of f by an
element of F v (i.e. f′ ⊂ f). If F v is spherical, then f and F are also called spherical.
The sign of f and F is the sign of F v.

1.4. The Masure. In this section, we recall the definition and some properties of a
masure given by Guy Rousseau in [31] and simplified by Auguste Hébert [21].

1.4.1. An apartment of type A is a setA endowed with a set IsomW(A, A) of bijections
(called Weyl-isomorphisms) such that, if f0 ∈ IsomW(A, A), then f ∈ IsomW(A, A) if,
and only if, there exists w ∈W a satisfying f = f0 ◦w. An isomorphism (resp. a Weyl-
isomorphism, a vectorially-Weyl isomorphism) between two apartments ϕ : A → A′
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is a bijection such that, for any f ∈ IsomW(A, A), f ′ ∈ IsomW(A, A′), f ′−1 ◦ ϕ ◦
f ∈ Aut(A) (resp. ∈ W a, ∈ AutWR (A)); the group of these isomorphisms is written
Isom(A,A′) (resp. IsomW (A,A′), IsomW

R (A,A′)). As the filters in A defined in 1.3
above (e.g. local faces, sectors, walls,...) are permuted by Aut(A), they are well defined
in any apartment of type A and exchanged by any isomorphism.

A masure (formerly called an ordered affine hovel) of type A is a set I endowed
with a covering A of subsets called apartments, each endowed with some structure
of an apartment of type A. We recall here the simplification and improvement of the
original definition given by Auguste Hébert in [21]: these data have to satisfy the
following two axioms:
(MA ii) If two apartments A,A′ are such that A ∩ A′ contains a generic ray, then

A∩A′ is a finite intersection of half-apartments (i.e. A∩A′ = cl#A(A∩A′))
and there exists a Weyl isomorphism ϕ : A→ A′ fixing A ∩A′.

(MA iii) If R is the germ of a splayed chimney and if F is a local face or a germ of
a chimney, then there exists an apartment containing R and F .

Actually a filter or subset in I is called a preordered (or generic) segment (or
segment germ), a local face, a spherical sector face or a spherical sector face germ if
it is included in some apartment A and is called like that in A. We do not recall here
what is (a germ of) a (splayed) chimney; it contains (the germ of) a (spherical) sector
face. We shall actually use (MA iii) uniquely through its consequence (b) below.

In the affine case the hypothesis “A ∩ A′ contains a generic ray” may be omitted
in (MA ii).

We list now some of the properties of masures we shall use.
(a) If F is a point, a preordered segment, a local face or a spherical sector face

in an apartment A and if A′ is another apartment containing F , then A ∩A′
contains the enclosure cl#A(F ) of F and there exists a Weyl-isomorphism from
A onto A′ fixing cl#A(F ), see [21, 5.11] or [20, 4.4.10]. Hence any isomorphism
from A onto A′ fixing F fixes F (and even cl#A(F ) ∩ supp(F )).

More generally the intersection of two apartments A,A′ is always closed
(in A and A′), see [21, 3.9] or [20, 4.2.17].

(b) If F is the germ of a spherical sector face and if F is a local face or a germ of
a sector face, then there exists an apartment that contains F and F .

(c) If two apartments A,A′ contain F and F as in (b), then their intersection
contains cl#A(F ∪ F ) and there exists a Weyl-isomorphism from A onto A′

fixing cl#A(F ∪ F ).
(d) We consider the relations,

o
< and

o
6 on I defined as follows:

x 6 y (resp. x
o
< y, x

o
6 y)

⇐⇒ ∃A ∈ A such that x, y ∈ A and x6Ay (resp. x
o
<A y, x

o
6A y).

Then 6 (resp.
o
<,

o
6) is a well defined preorder relation, in particular tran-

sitive; it is called the Tits preorder (resp. Tits open preorder, large Tits open
preorder), see [21].

(e) We ask here I to be thick of finite thickness: the number of local chambers
covering a given (local) panel in a wall has to be finite > 3. This number
is the same for any panel F in a given wall M [31, 2.9]; we denote it by
1 + qM = 1 + qF .

(f) An automorphism (resp. a Weyl-automorphism, a vectorially-Weyl automor-
phism) of I is a bijection ϕ : I → I such that A ∈ A ⇐⇒ ϕ(A) ∈ A and
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then ϕ|A : A → ϕ(A) is an isomorphism (resp. a Weyl-isomorphism,
a vectorially-Weyl isomorphism). We write Aut(I ) (resp. AutW (I ),
AutWR (I )) the group of these automorphisms.

1.4.2. For x ∈ I , the set T +
x I (resp. T −x I ) of segment germs [x, y) for y > x

(resp. y < x) may be considered as a building, the positive (resp. negative) tangent
building. The corresponding faces are the local faces of positive (resp. negative) direc-
tion and vertex x. For such a local face F , we write sometimes [x, y) ∈ F if ]x, y) ⊂ F .
The associated Weyl group is W v. If the W−distance (calculated in T ±x I ) of two lo-
cal chambers is dW (Cx, C ′x) = w ∈W v, to any reduced decomposition w = ri1 · · · rin
corresponds a unique minimal gallery from Cx to C ′x of type (i1, · · · , in).

The buildings T +
x I and T −x I are actually twinned. The codistance d∗W (Cx, C ′x)

of two opposite sign chambers Cx and C ′x is the W−distance dW (Cx, opC ′x), where
opC ′x denotes the opposite chamber to C ′x in an apartment containing Cx and C ′x.
Similarly two segment germs η ∈ T +

x I and ζ ∈ T −x I are said opposite if they are
in a same apartment A and opposite in this apartment (i.e. in the same line, with
opposite directions).

1.4.3. Lemma. ([31, 2.9]) Let D be a half-apartment in I and M = ∂D its wall
(i.e. its boundary). One considers a panel F in M and a local chamber C in I
covering F . Then there is an apartment containing D and C.

1.4.4. We assume that I has a strongly transitive group of automorphisms G,
i.e. 1.4.1(a) and (c) above (after replacing cl#A by clA) are satisfied by isomorphisms
induced by elements of G, cf. [33, 4.10] and [15, 4.7].

We choose in I a fundamental apartment which we identify with A. As G is
strongly transitive, the apartments of I are the sets g ·A for g ∈ G. The stabilizer N
of A in G induces a group W = ν(N) ⊂ Aut(A) of affine automorphisms of A which
permutes the walls, local faces, sectors, sector-faces... and contains the affine Weyl
group W a = W v nQ∨ [33, 4.13.1].

We denote the stabilizer of 0 ∈ A in G by K and the pointwise stabilizer (or
fixator) of C+

0 (resp. C−0 ) by KI = K+
I (resp. K−I ). This group KI is called the

Iwahori subgroup.

1.4.5. We ask W = ν(N) to be vectorially-Weyl for its action on the vectorial faces.
This means that the associated linear map −→w of any w ∈ ν(N) is in W v. As ν(N)
contains W a and stabilizes M, we have W = ν(N) = W v n Y , where W v fixes the
origin 0 of A and Y is a group of translations such that: Q∨ ⊂ Y ⊂ P∨ = {v ∈ V |
α(v) ∈ Z,∀α ∈ Φ}. An element w ∈ W will often be written w = λ · w, with λ ∈ Y
and w ∈W v.

We ask Y to be discrete in V . This is clearly satisfied if Φ generates V ∗ i.e. (αi)i∈I
is a basis of V ∗.

1.4.6. Note that there is only a finite number of constants qM as in the defini-
tion of thickness. Indeed, we must have qwM = qM , ∀w ∈ ν(N) and w ·M(α, k) =
M(w(α), k),∀w ∈ W v. So now, fix i ∈ I, as αi(α∨i ) = 2 the translation by α∨i per-
mutes the walls M = M(αi, k) (for k ∈ Z) with two orbits. So, Q∨ ⊂W a has at most
two orbits in the set of the constants qM(αi,k): one containing the qi = qM(αi,0) and
the other containing the q′i = qM(αi,±1). Hence, the number of (possibly) different qM
is at most 2 · |I|. We denote this set of parameters by Q = {qi, q′i | i ∈ I}.

In [3, 1.4.5] one proves the following further equalities: qi = q′i if αi(Y ) = Z and
qi = q′i = qj = q′j if αi(α∨j ) = αj(α∨i ) = −1.
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We consider also the polynomial algebra Z[Q], where Q is the set Q = {Qi, Q′i |
i ∈ I} of indeterminates, satisfying the same equalities: Qi = Q′i if αi(Y ) = Z and
Qi = Q′i = Qj = Q′j if αi(α∨j ) = αj(α∨i ) = −1. See [3, 6.1] where Qi = σ2

i , Q
′
i = (σ′i)2.

1.4.7. Examples. The main examples of all the above situation are provided by the
Kac–Moody theory, as already indicated in the introduction. More precisely let G
be an almost split Kac–Moody group over a non archimedean complete field K. We
suppose moreover the valuation of K discrete and its residue field κ perfect. Then
there is a masure I on which G acts strongly transitively by vectorially Weyl auto-
morphisms. If K is a local field (i.e. κ is finite), then we are in the situation described
above. This is the main result of [10], [11], [12] and [33].

When G is actually split, this result was known previously by [19] and [32]. And
in this case all the constants qM , qi, q′i are equal to the cardinality q of the residue
field κ.

We gave in [3, 6.7] a proof of conjecture 1 for this split case; see also [28]. Actually
these proofs are proofs of conjecture 2, as the polynomials au

w,v are Laurent poly-
nomials inherited from the description of IH as a specialization of the associative
Bernstein–Lusztig algebra over Z[Q]: the algebra IHZ[Q] over Z[Q] defined by these
structure constants on the basis (Tw)w∈W+ is associative.

1.4.8. Remark. All isomorphisms in [31] are Weyl-isomorphisms, and, when G is
strongly transitive, all isomorphisms constructed in l.c. are induced by an element
of G.

1.5. Type 0 vertices. The elements of Y , through the identification Y = N ·0 ⊂ A,
are called vertices of type 0 in A; they are special vertices. We note Y + = Y ∩ T ,
Y +g = Y ∩ (T ◦ ∪ V0), Y +0 = Y ∩ V0 and Y ++ = Y ∩ Cvf . The type 0 vertices in
I are the points on the orbit I0 of 0 by G. This set I0 is often called the affine
Grassmannian as it is equal to G/K, where K = StabG({0}). But in general, G is
not equal to KYK = KNK [18, 6.10] i.e. I0 6= K · Y .

We know that I is endowed with a G−invariant preorder 6 which induces the
known one on A. Moreover, if x 6 y, then x and y are in the same apartment.

We set I + = {x ∈ I | 0 6 x}, I +
0 = I0 ∩ I +, G+ = {g ∈ G | 0 6 g · 0}

and G+g = {g ∈ G | 0
o
6 g · 0}; so I +

0 = G+ · 0 = G+/K. As 6 (resp.
o
6) is a

G−invariant preorder, G+ (resp. G+g) is a semigroup, called the Kac–Moody–Tits
semigroup (resp. the generic Kac–Moody–Tits semigroup).

One has G+ = K(N ∩ G+)K; more precisely the map Y ++ → K\G+/K is a
bijection, if we identify λ ∈ Y ++ ⊂ W v n Y = W = N/ ker ν with its class in N
modulo ker ν ⊂ K. Clearly G+g = K(Y ++ ∩ Y +g)K.

1.6. Vectorial distance. For x in the Tits cone T , we denote by x++ the unique
element in Cvf conjugated by W v to x.

Let I ×6 I = {(x, y) ∈ I ×I | x 6 y} be the set of increasing pairs in I . Such
a pair (x, y) is always in a same apartment g · A; so (g−1) · y − (g−1) · x ∈ T and we
define the vectorial distance dv(x, y) ∈ Cvf by dv(x, y) = ((g−1) · y − (g−1) · x)++. It
does not depend on the choices we made (by 1.8(b) below).

For (x, y) ∈ I0×6 I0 = {(x, y) ∈ I0×I0 | x 6 y}, the vectorial distance dv(x, y)
takes values in Y ++. Actually, as I0 = G·0,K is the stabilizer of 0 and I +

0 = K ·Y ++

(with uniqueness of the element in Y ++), the map dv induces a bijection between the
set (I0 ×6 I0)/G of G−orbits in I0 ×6 I0 and Y ++.

Further, dv gives the inverse of the map Y ++ → K\G+/K, as any g ∈ G+ is in
K · dv(0, g · 0) ·K.
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1.7. Paths and retractions. We consider piecewise linear continuous paths π :
[0, 1] → A such that each (existing) tangent vector π′(t) belongs to an orbit W v · λ
for some λ ∈ Cvf . Such a path is called a λ−path; it is increasing with respect to the

preorder relation 6 on A. If λ ∈ Cvf ∩ (T ◦ ∪ V0), then it is increasing for
o
6.

For any t 6= 0 (resp. t 6= 1), we let π′−(t) (resp. π′+(t)) denote the derivative of π
at t from the left (resp. from the right). Further, we define w±(t) ∈ W v to be the
smallest element in its (W v)λ−class such that π′±(t) = w±(t) · λ (where (W v)λ is the
stabilizer in W v of λ).

Moreover, we denote by π−(t) = π(t)− [0, 1)π′−(t) = [π(t), π(t− ε) ) (resp. π+(t) =
π(t) + [0, 1)π′+(t) = [π(t), π(t + ε) ) (for ε > 0 small) the negative (resp. positive)
segment-germ of π at t, for 0 < t 6 1 (resp. 0 6 t < 1).

Let Cz (resp. S) be a local chamber with vertex z (resp. a sector germ) in an
apartment A of I . For all x ∈ I>z = {y ∈ I | y > z} (resp. x ∈ I ) there is an
apartment A′ containing x and Cz (resp. S). And this apartment is conjugated to
A by an element of G fixing Cz (resp. S) (cf. 1.4.1(a) and 1.4.4). So, by the usual
arguments we can define the retraction ρ = ρA,Cz from I>z (resp. ρ = ρA,S from I )
onto A>z = A ∩I>z (resp. onto the apartment A) with center Cz (resp. S).

For any such retraction ρ, the image of any segment [x, y] with (x, y) ∈ I ×6 I
and dv(x, y) = λ ∈ Cvf (with moreover x, y ∈ I>z if ρ = ρA,Cz ) is a λ−path [18,
4.4]. In particular, ρ(x) 6 ρ(y). By definition, if A′ is another apartment containing
S (resp. Cz), then ρ induces an isomorphism from A′ onto A. As we assume the
existence of the strongly transitive group G, this isomorphism is the restriction of an
automorphism of I .

1.8. Preordered convexity. Let C± (resp. C±0 ) be the set of all local chambers of
direction ± (resp. with moreover vertices of type 0). A positive (resp. negative) local
chamber of vertex x ∈ I will often be written Cx (resp. C−x ) and its direction Cvx= −→Cx
(resp. C− vx =

−→
C−x ). We consider the set C + ×6 C + = {(Cx, Cy) ∈ C + × C + | x 6 y}

(resp. C + ×◦6 C + = {(Cx, Cy) ∈ C + × C + | x
o
6 y}). We sometimes write Cx 6 Cy

(resp. Cx
o
6 Cy) when x 6 y (resp. x

o
6 y).

Proposition. Let x, y ∈ I with x 6 y. We consider two local faces Fx, Fy with
respective vertices x, y. Then

(a) Fx and Fy are contained in a common apartment.
(b) If A,B are two apartments containing {x, y} (resp. Fx ∪ Fy), then there is

a Weyl-isomorphism from A onto B, fixing the enclosure cl#A({x, y}) =
cl#B({x, y}) ⊃ [x, y] (resp. the closed convex hull convA(Fx ∪ Fy) =
convB(Fx ∪ Fy)).

This improvement of results in [31, 5.4, 5.1] and [3, 1.10] is proved by Auguste
Hébert: [21, 5.17, 5.18], see also [20, 4.4.16, 4.4.17]. In (b) the case of {x, y} is proved
in [31, 5.4] as, by [21, 5.1] or [20, 4.4.1], one may replace cl by cl#. This property is
called the preordered convexity of intersections of apartments.

Consequence.We define W+ = W v n Y + (resp. W+g = W v n Y +g) which is a
subsemigroup of W , and call it the Tits–Weyl (resp. generic Tits–Weyl) semigroup.
An element w ∈ W+g is called generic (in a large sense) and spherical if, moreover,
λ ∈ T ◦ ∩ Y +.

Let ε, η ∈ {+,−}. If Cεx ∈ C ε
0 and 06x, we know by (b) above, that there is an

apartment A containing Cη0 and Cεx. But all apartments containing Cη0 are conjugated
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to A byKη
I (by 1.4.1(a)), so there is k ∈ Kη

I with k−1·Cεx ⊂ A. Now the vertex k−1·x ∈
I0 of k−1 · Cεx satisfies k−1 · x > 0, so there is w ∈W+ such that k−1 · Cεx = w · Cε0 .

When g ∈ G+, g ·Cε0 is in C ε
0 and there are k ∈ Kη

I , w ∈W+ with g ·Cε0 = k ·w ·Cε0 ,
i.e. g ∈ Kη

I ·W+ ·Kε
I . We have proved the Bruhat decompositions G+ = K±I ·W+ ·K±I

and the Birkhoff decompositions G+ = K∓I ·W+ ·K±I . For uniqueness, see 1.10 below.
Similarly we also have G+g = K±I ·W+g ·K±I and G+g = K∓I ·W+g ·K±I .

1.9. Remark. If the generalized Cartan matrix M is of affine or strictly hyperbolic
type (in the sense of [23, 4.3 or Ex. 4.1]), then any non spherical vectorial face is
w · F v(I) = F v(I) = V0 = {v ∈ V | αi(v) = 0,∀i ∈ I}. So the Tits cones satisfy
T = T ◦ t V0 and Y + = Y +g, W+ = W+g.

1.10. W -distance. Let (Cx, Cy) ∈ C +
0 ×6C +

0 , there is an apartment A containing Cx
and Cy. We identify (A, C+

0 ) with (A,Cx) i.e. we consider the unique f ∈ IsomW
R (A, A)

such that f(C+
0 ) = Cx. Then f−1(y) > 0 and there is w ∈W+ such that f−1(Cy) =

w · C+
0 . By 1.8(b), w does not depend on the choice of A.

We define the W−distance between the two local chambers Cx and Cy to be this
unique element: dW (Cx, Cy) = w ∈W+ = Y + oW v. If w = λ · w, with λ ∈ Y + and
w ∈W v, we write also dW (Cx, y) = λ; it implies dv(x, y) = λ++. As 6 is G−invariant,
the W−distance is also G−invariant. When w = w ∈ W v and w = ri1 · · · · · rir is
a reduced decomposition, we have dW (Cx, Cy) = w if and only if there is a minimal
gallery (of local chambers in T +

x I ) from Cx to Cy of type (i1, . . . , ir), in particular
x = y. When x = y, this definition coincides with the one in 1.4.2.

Let us consider an apartment A and local chambers Cx, Cy, Cz ∈ C +
0 included in

A. If dW (Cx, Cy) = w, we write Cy = Cx ∗w. Conversely, for any w ∈W+, there is a
unique local chamber Cz = Cx ∗w in A such that dW (Cx, Cz) = w; actually Cx ∗w
depends on A, but not on an identification of A with A. For x 6 y 6 z, we have (in A)
the Chasles relation: dW (Cx, Cz) = dW (Cx, Cy) · dW (Cy, Cz); i.e. (Cx,w) 7→ Cx ∗w
is a right action of the semi-group W+. When (A,Cx) is identified with (A, C+

0 ), one
has Cx ∗w = wCx.

When Cx = C+
0 and Cy = g · C+

0 (with g ∈ G+), dW (Cx, Cy) is the only w ∈W+

such that g ∈ KI · w · KI . This is the uniqueness result in Bruhat decomposition:
G+ =

∐
w∈W+ KI ·w ·KI . Similarly we have G+g =

∐
w∈W+g KI ·w ·KI .

The W−distance classifies the orbits of KI on {Cy ∈ C +
0 | y > 0}, hence also the

orbits of G on C +
0 ×6 C +

0 .

1.11. Iwahori–Hecke Algebras. We consider any commutative ring with unity
R. The Iwahori–Hecke algebra IHR associated to I with coefficients in R introduced
in [3] is as follows:

To each w ∈W+, we associate a function Tw from C +
0 ×6 C +

0 to R defined by

Tw(C,C ′) =
{

1 if dW (C,C ′) = w,
0 otherwise.

The Iwahori–Hecke algebra IHR is the free R−module{ ∑
w∈W+

awTw | aw ∈ R, aw = 0 except for a finite number of w
}
,

endowed with the convolution product:

(ϕ ∗ ψ)(Cx, Cy) =
∑
Cz

ϕ(Cx, Cz)ψ(Cz, Cy),

where Cz ∈ C +
0 is such that x 6 z 6 y.

Algebraic Combinatorics, Vol. 4 #3 (2021) 474



On structure constants of Iwahori–Hecke algebras for Kac–Moody groups

Actually, IHR can be identified with the natural convolution algebra of the func-
tions G+ → R, bi-invariant under KI and with finite support (in KI\G+/KI); this
is the definition given in the introduction.

More precisely IHR is the space of functions ϕ : C +
0 ×6 C +

0 → R, that are left
G−invariant and with support a finite union of orbits (see the last two lines of 1.10).
To a ϕ ∈ IHR is associated ϕG : KI\G+/KI → R such that ϕG(g) = ϕ(C+

0 , g · C
+
0 ).

So, for ϕ,ψ ∈ IHR,

(ϕ ∗ ψ)G(g) = (ϕ ∗ ψ)(C+
0 , g · C

+
0 ) =

∑
Cz

ϕ(C+
0 , Cz)ψ(Cz, g · C+

0 )

=
∑

h∈G+/KI

ϕ(C+
0 , h · C

+
0 )ψ(h · C+

0 , g · C
+
0 )

=
∑

h∈G+/KI

ϕ(C+
0 , h · C

+
0 )ψ(C+

0 , h
−1g · C+

0 ) =
∑

h∈G+/KI

ϕG(h)ψG(h−1g),

we get the convolution product (in the classical case, we take a Haar measure on G
with KI of measure 1).

One also considers the subspace IHgR =
∑

w∈W+g R · Tw. From 4.2 and Re-
mark 3.3(2) one sees that it is a subalgebra of IHR. We call it the generic Iwahori–
Hecke algebra associated to I with coefficients in R. From 1.9 one has IHR = IHgR
in the affine or strictly hyperbolic cases.

We now recall some useful results of [3] in order to introduce the structure constants
and a way to compute them.
Proposition 1.1 ([3, 2.3]). Let us fix two local chambers Cx and Cy in C +

0 with x 6 y
and dW (Cx, Cy) = u ∈W+. We consider w and v in W+. Then the number au

w,v of
Cz ∈ C +

0 with x 6 z 6 y, dW (Cx, Cz) = w and dW (Cz, Cy) = v is finite (i.e. in N).
Theorem 1.2 ([3, 2.4]). For any ring R, IHR is an algebra with identity element
Id = T1 such that

Tw ∗ Tv =
∑

u∈Pw,v

au
w,vTu

where Pw,v is a finite subset of W+, such that au
w,v = 0 for u /∈ Pw,v.

2. Projections and retractions
In this section we introduce the new tools that we shall use in the next section to
compute the structure constants of the Iwahori–Hecke algebra.

2.1. Projections of chambers.

2.1.1. Projection of a chamber Cy on a point x. Let x ∈ I , Cy ∈ C + with x 6 y,
x 6= y. We consider an apartment A containing x and Cy (by 1.8(a) above) and write
Cy = F (y, Cvy ) in A. For y′ ∈ y + Cvy sufficiently near to y, α(y′ − x) 6= 0 for any
root α and y′ − x ∈ T ◦. So ]x, y′) is in a unique positive local chamber prx(Cy) of
vertex x; this chamber satisfies [x, y) ⊂ prx(Cy) ⊂ clA({x, y′}) and does not depend
on the choice of y′. Moreover, if A′ is another apartment containing x and Cy, we
may suppose y′ ∈ A ∩ A′ and ]x, y′), clA({x, y′}), prx(Cy) are the same in A′. The
local chamber prx(Cy) is well determined by x and Cy, it is the projection of Cy in
T +
x I .
The same things may be done changing + to − or 6 to >. But, in the above

situation, if Cy ∈ C−, we have to assume x
o
< y to define prx(Cy) ∈ C +: otherwise

]x, y′) might be outside x+ T .
When x = y, we write prx(Cy) = Cy.
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2.1.2. Projection of a chamber Cy on a generic segment germ. Let x ∈ I , δ = [x, x′) a
generic segment-germ and Cy ∈ C with x 6 y. By 2.1.1 we can consider prx(Cy) ∈ C +

(with the hypothesis x
o
< y if Cy ∈ C−). We consider now an apartment A containing

[x, x′) and prx(Cy) (by 1.8(a) above).
We consider inside A the prism denoted by prismδ(Cy) obtained as the intersection

of all half-spaces D(α, k) (for α ∈ Φ and k ∈ R) that contain prx(Cy) and such that
δ ⊂ M(α, k). We can see that if δ = [x, x′) is regular, prismδ(Cy) = A. If the
apartment A contains δ and Cy (hence also prx(Cy)) we may replace prx(Cy) by Cy
in the above definition of prismδ(Cy).

Lemma 2.1. In prismδ(Cy), there is a unique local chamber of vertex x that contains
δ in its closure. This chamber is independent of the choice of A.

N.B. This local chamber is, by definition, the projection prδ(Cy) of the chamber
Cy on the segment-germ δ. It is the local chamber containing δ in its closure
which is the nearest from prx(Cy): either dW (prx(Cy),prδ(Cy)) is minimum or
d∗W (prx(Cy),prδ(Cy)) is maximum.

The same things may be done when one supposes y 6 x and Cy ∈ C− or y
o
< x

and Cy ∈ C +.

Proof. In the apartment A, we consider δ+ the segment-germ δ if δ is in T +
x I and

opA(δ) if δ ∈ T −x I (where opA(δ) denotes the opposite segment-germ in A). By 1.4.2,
we can consider in the building T +

x I the minimal galleries from prx(Cy) to δ+ (more
exactly to a chamber C such that δ+ ∈ C̄). The last chamber of each of these galleries
is the same (as it has to be on the same side as prx(Cy) of any hyperplane of A,
containing δ+ and parallel to a wall); we denote it C++

x . This chamber is associated to
a positive system of roots Φ+ and a root basis (α1, . . . , α`), satisfying αi(δ) = 0 ⇐⇒
i 6 r, where 0 6 r < ` (we identify x and 0). Then, we have the characterization
of the prism : p ∈ prismδ(Cy) ⇐⇒ (αi(p) > 0 for 1 6 i 6 r). We consider wr the
element of highest length in the finite Weyl group 〈(rαi)i6r〉.

The local chamber C++
x if δ ∈ T +

x I (resp. opA(wr(C++
x ) if not) is the unique

chamber with vertex x of prismδ(Cy) that contains δ in its closure. Indeed, if C
is such a chamber, then if ]x, p) ⊂ C, we have αi(p) > 0 for all i 6 r (because
C ⊂ prismδ(Cy)) and αi(p) of the same sign as αi(δ) if i > r (because δ ⊂ C̄). So
C = C++

x if δ ∈ T +
x I (resp. C = opA(wr(C++

x )) if δ ∈ T −x I ).
In the case δ ∈ T +

x I , the characterization of C++
x in the building T +

x I proves
that it does not depend on the choice of A.

The chamber opA(wr(C++
x )) also only depends on δ and Cy if δ ∈ T −x I . It is

sufficient to prove that it intersects convA(δ ∪prx(Cy)). Indeed, let us choose ξ and y
such that [x, ξ) = δ and ]x, y) ⊂ prx(Cy). We have αi(ξ) = 0 for i 6 r, αi(ξ) < 0 for
i > r and αi(y) > 0 for i 6 r. So for t near 1 enough, αi(tξ + (1− t)y) > 0 for i 6 r
and < 0 for i > r, so ]x, tξ + (1− t)y) ⊂ opA(wr(C++

x ). By Proposition 1.8, the local
chamber opA(wr(C++

x )) is included in all apartments containing δ and prx(Cy), so is
independent of the choice of A. �

2.2. Centrifugally folded galleries of chambers. Let z be a point in the
standard apartment A. We have twinned buildings T +

z I (resp. T −z I ). As in 1.4.2,
we consider their unrestricted structure, so the associated Weyl group is W v and
the chambers (resp. closed chambers) are the local chambers C = germz(z + Cv)
(resp. local closed chambers C = germz(z + Cv)), where Cv is a vectorial chamber,
cf. [18, 4.5] or [31, § 5]. The distances (resp. codistances) between these chambers
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are written dW (resp. d∗W ). To A is associated a twin system of apartments Az =
(A−z ,A+

z ).
Let i = (i1, . . . , ir) be the type of a minimal gallery. We choose in A−z a negative

(local) chamber C−z and denote by C+
z its opposite in A+

z . We consider now galleries
of (local) chambers c = (C−z , C1, . . . , Cr) in the apartment A−z starting at C−z and of
type i. Their set is written Γ(C−z , i). We consider the root βj corresponding to the
common limit hyperplane Mj = M(βj ,−βj(z)) of type ij of Cj−1 and Cj satisfying
moreover βj(Cj) > βj(z).

We consider the system of positive roots Φ+ associated to C+
z . Actually, Φ+ =

w ·Φ+
f , if Φ+

f is the system Φ+ defined in 1.1 and C+
z = germz(z+w ·Cvf ). We denote

by (αi)i∈I the corresponding basis of Φ and by (ri)i∈I the corresponding generators
of W v. Note that this change of notation for Φ+ and ri is limited to subsection 2.2.

The set Γ(C−z , i) of galleries is in bijection with the set Γ(i) = {1, ri1} ×
· · · × {1, rir} via the map (c1, . . . , cr) 7→ (C−z , c1C−z , . . . , c1 · · · crC−z ). Moreover
βj = −c1 · · · cj(αij ).

Definition. Let Q be a chamber in Az. A gallery c = (C−z , C1, . . . , Cr) ∈ Γ(C−z , i) is
said to be centrifugally folded with respect to Q if Cj = Cj−1 implies that Mj is a wall
and separates Q from Cj = Cj−1. We denote this set of centrifugally folded galleries
by Γ+

Q(C−z , i). We write Γ+
Q(C−z , i, C) the subset of galleries in ΓQ(C−z , i) such that

Cr is a given chamber C.

2.3. Liftings of galleries. Next, let ρQ : TzI → Az be the retraction centered at
Q. To a gallery of chambers c = (C−z , C1, . . . , Cr) in Γ(C−z , i), one can associate the
set of all galleries of type i starting at C−z in T −z I that retract onto c, we denote this
set by CQ(C−z , c). We denote the set of galleries c′ = (C−z , C ′1, . . . , C ′r) in CQ(C−z , c)
that are minimal (i.e. satisfy C ′j−1 6= C ′j for any j) by CmQ (C−z , c). Recall from [19,
Proposition 4.4], that the set CmQ (C−z , c) is nonempty if, and only if, the gallery c is
centrifugally folded with respect to Q. Recall also from loc. cit., Corollary 4.5, that
if c ∈ Γ+

Q(C−z , i), then the number of elements in CmQ (C−z , c) is:

]CmQ (C−z , c) =
∏
j∈J1

(qj − 1)×
∏
j∈J2

qj

where qj = qMj
∈ Q,

J1 = {j ∈ {1, · · · , r} | cj = 1} = {j ∈ {1, · · · , r} | Cj−1 = Cj}

and

J2 = {j ∈{1, · · · , r} |Cj−1 6=Cj and Mj is a wall separating Q (and Cj−1) from Cj}.

One may remark that {1, · · · , r} contains the disjoint union J1 t J2, but may be
different from it. The missing j are precisely those j such thatMj is not a wall (hence
qMj

is not defined) or that Q (and Cj) are separated from Cj−1 by Mj .

More generally let cm = (C−z , Cm1 , . . . , Cmr ) be the minimal gallery in A−z of type i.
We write Cm(C−z , i) the set of all minimal galleries in I of type i starting from C−z .
Its cardinality is

∏
j∈J2

qj , where J2 is the set of 1 6 j 6 r such that the hyperplane
Mj separating Cmj−1 from Cmj is a wall.

N.B. The qj = qMj
in the above formulas are in the set Q of parameters. More

precisely, by 1.4.6, if Mj = M(βj , kj) with βj = w · αi (for some w ∈ W v, i ∈ I and
kj ∈ Z), then one has qj = qi if kj is even and qj = q′i if kj is odd.
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2.4. Hecke paths. The Hecke paths we consider here are slight modifications of
those used in [19]. They were defined in [3], or in [2] (for the classical case).

Let us fix a local chamber Cx ∈ C0 ∩ A.

Definition.A Hecke path of shape λ ∈ Y ++ with respect to Cx in A is a λ−path in
A that satisfies the following assumptions. For all p = π(t), we ask x

o
< p, so we can

consider the local negative chamber C−p = prp(Cx) by 2.1.1. Then we assume moreover
that for all t ∈ [0, 1] r {0, 1}, there exist finite sequences (ξ0 = π′−(t), ξ1, . . . , ξs =
π′+(t)) of vectors in V and (β1, . . . , βs) of real roots such that, for all j = 1, . . . , s:

(i) rβj (ξj−1) = ξj,
(ii) βj(ξj−1) < 0,
(iii) βj(π(t)) ∈ Z, i.e. π(t) is in a wall of direction kerβj,
(iv) βj(C−π(t)) < βj(π(t)).
One says then that these two sequences are a (W v

π(t), C
−
π(t))−chain from π′−(t)

to π′+(t). Actually W v
π(t) is the subgroup of W v generated by the rβ such that

M(β,−β(π(t))) is a wall.

When t ∈ ]0, 1[ is such that s 6= 0, one has π′−(t) 6= π′+(t), the path is centrifugally
folded with respect to Cx at π(t).

Lemma 2.2. Let π ⊂ A be a Hecke path with respect to Cx as above. Then,
(a) For t varying in [0, 1] and p = π(t), the set of vectorial rays R+(x− π(t)) is

contained in a finite set of closures of (negative) vectorial chambers.
(b) There is only a finite number of pairs (M, t) with a wall M containing a point

p = π(t) for t > 0, such that π−(t) is not in M and x is not in the same side
of M as π−(t) (but may be x ∈M).

(c) One writes p0 = π(t0), p1 = π(t1), . . . , p`π = π(t`π ) with 0 = t0 < t1 < · · · <
t`π−1 < 1 = t`π the points p = π(t) satisfying to (b) above (or t = 0, t = 1).
Then any point t where the path is (centrifugally) folded with respect to Cx at
π(t) appears in the set {tk | 1 6 k 6 `π − 1}.

Proof. (a) The λ−path π is a union of line segments [p′0, p′1]∪ [p′1, p′2]∪· · ·∪ [p′n−1, p
′
n].

By hypothesis on Hecke paths, for each point p = π(t), x− p is in the open negative
Tits cone −T ◦ (in particular only in a finite number of closures of negative vectorial
chambers). Let p ∈ [p′i, p′i+1], then x − p = x − p′i − (p − p′i) and R+(x − p) ⊂
conv(R+(x − p′i),−R+(p − p′i)) and this convex hull is independent of p and only in
a finite number of closures of (negative) vectorial chambers (as (x − p′i) ∈ −T ◦ and
(p− p′i) ∈ R+(p′i+1 − p′i) ⊂ T ). So (a) is proved.

(b) There is only a finite number of vectorial walls separating (strictly) a chamber
in the set of (a) above and a vector p′i− p′i+1. And, for each such vectorial wall, there
is only a finite number of walls with this direction meeting the compact set π([0, 1]).
Moreover such a wall meets a segment ]p′i, p′i+1] at most once or contains [p′i, p′i+1]
(hence π−(t) ⊂M for π(t) ∈ ]p′i, p′i+1]).

(c) The folding points are among {p1, . . . , p`π−1} by (iv) and (ii) above for
j = 1. �

2.5. Retractions and liftings of line segments.

2.5.1. Local study. In tangent buildings, the centrifugally folded galleries are related
with retractions of opposite segment germs, by the following lemma proved in [19,
Lemma 4.6].

We consider a point z ∈ A and a negative local chamber C−z in A−z . Let ξ and η be
two segment germs in A+

z = A ∩ T +
z I . Let −η and −ξ opposite respectively η and ξ
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in A−z . Let i be the type of a minimal gallery between C−z and C−ξ, where C−ξ is the
negative (local) chamber containing −ξ such that dW (C−z , C−ξ) is of minimal length.
Let Q be a chamber of A+

z containing η. We suppose ξ and η conjugated by W v
z .

Lemma. The following conditions are equivalent:
(a) There exists an opposite ζ to η in T −z I such that ρAz,C−z (ζ) = −ξ.
(b) There exists a gallery c ∈ Γ+

Q(C−z , i) ending in −η.
(c) There exists a (W v

z , C
−
z )−chain from ξ to η.

Moreover the possible ζ are in one-to-one correspondence with the disjoint union
of the sets CmQ (C−z , c) for c in the set Γ+

Q(C−z , i,−η) of galleries in Γ+
Q(C−z , i) ending

in −η.

2.5.2. Consequence. Let Cx be a positive local chamber in A and z ∈ A a point such
that x

o
< z. We consider C−z = prz(Cx). Then one knows that the restriction of the

retraction ρ = ρA,Cx to the tangent twin building TzI is the retraction ρAz,C−z .
We consider two points y, z0 in I such that x

o
< z0 6 y, with dv(z0, y) = λ ∈ Y ++.

By 1.7, the image ρ([z0, y]) is a λ−path π from ρ(z0) to ρ(y). For z ∈ [z0, y[, we
consider an apartment A containing [z, y) and Cx, hence also C−z . We write p = ρ(z).
The restriction ρ|A is the restriction to A of an automorphism ϕ of I fixing Cx (and
an isomorphism from A to A); ϕ induces an isomorphism ϕ|TzI from TzI onto TzI .
One has ρ|TzI = ρAp,C−p ◦ϕ|TzI = ϕ|Az ◦ ρAz,C−z . So one may use the above Lemma,
more precisely the implication (a) =⇒ (c): we get a (W v

p , C
−
p )−chain from π′−(t) to

π′+(t) (if p = π(t)).
We have proved that π = ρ([z0, y]) is a Hecke path of shape λ with respect to Cx

in A. This result is a part of [3, Theorem 3.4]. It is also a consequence of the proof
of [2, Th. 3.8] which deals with the classical case of buildings.

2.5.3. Liftings of Hecke paths. One considers in A a positive local chamber Cx, a
Hecke path π of shape λ ∈ Y ++ with respect to Cx and the retraction ρ = ρA,Cx .
Given a point y ∈ I with ρ(y) = π(1), we consider the set SCx(π, y) of all segment
germs [z, y] in I such that ρ([z, y]) = π. The above Lemma (essentially (b)) is used
in [3] to compute the cardinality of SCx(π, y).

We consider the notation of 1.7 and the numbers tk of Lemma 2.2. Then pk = π(tk),
ξk = −π−(tk), ηk = π+(tk) and ik is the type of a minimal gallery between C−pk
and C−ξk , where C−ξk is the negative (local) chamber such that −ξk ⊂ C−ξk and
dW (C−pk , C−ξk) is of minimal length. Let Qk be a fixed chamber in A+

zk
containing ηk

in its closure and Γ+
Qk

(C−pk , ik,−ηk) be the set of all the galleries (C−zk , C1, . . . , Cr) of
type ik in A−zk , centrifugally folded with respect to Qk and with −ηk ∈ Cr.

The following result is Theorem 3.4 in [3]. One uses the notation of 2.2 and 2.3.
One considers paths π more general than Hecke paths. The idea is to lift the path π
step by step starting from its end by using the above Lemma. We shall generalize it
in Theorem 3.3 by lifting decorated Hecke paths (see just below).

Theorem 2.3. The set SCx(π, y) is non empty if, and only if, π is a Hecke path with
respect to Cx. Then, we have a bijection

SCx(π, y) '

`π−1∏
k=1

∐
c∈Γ+

Qk
(C−pk ,ik,−ηk)

CmQk(C−pk ,c)

 .Cm(C−y , i`π ).

In particular, the number of elements in this set is a polynomial in the numbers
q ∈ Q with coefficients in Z depending only on A.
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2.6. Decorated segments and paths. Let us consider z0 and y in I such that
z0

o
< y.

Definition 2.4.A decorated segment [z0, y] is the datum of a segment [z0, y] as above
and, for any z ∈ [z0, y[ (resp. z ∈ ]z0, y]) of a positive (resp. negative) chamber C+

z

(resp. C ′′z ) with vertex z and containing the segment germ [z, y) (resp. [z, z0)) in its
closure. One asks moreover that C+

z = pr[z,y)(C) (resp. C ′′z = pr[z,z0)(C)) for any local
chamber C = C+

z′ or C = C ′′z′ as above. One may remark that, then, C+
z = prz(C)

(resp. C ′′z = prz(C)) if z′ ∈ [z, y] (resp. z′ ∈ [z0, z]).

Clearly the decorated segment [z0, y] is entirely determined by the segment [z0, y]
and any of the local chambers C+

z′ or C ′′z′ . It is entirely contained in any apartment
containing [z0, y] and one local chamber C+

z′ or C ′′z′ (by 2.1).
For points z′0 6= y′ in [z0, y] in the order z0, z

′
0, y
′, y (i.e. z′0

o
< y′) the datum [z′0, y′] =

([z′0, y′], (C+
z )z∈[z′0,y′[, (C

′′
z )z∈]z′0,y′]) is a decorated segment.

Lemma 2.5. Let [z0, y] be a segment as above, z1 ∈ [z0, y] and Cz1 a local chamber with
vertex z1 contained in a same apartment A as [z0, y]. Let us define C+

z = pr[z,y)(Cz1)
and C ′′z = pr[z,z0)(Cz1). Then [z0, y] = ([z0, y], (C+

z )z∈[z0,y[, (C ′′z )z∈]z0,y]) is a decorated
segment. Moreover in A all chambers C+

z (resp. C ′′z ) are deduced from each other by
a translation.

N.B. If z1 is z0 or y then any local chamber Cz1 with vertex z1 is contained in a same
apartment as [z0, y].

Proof. We have to prove that C+
z = pr[z,y)(C) (resp. C ′′z = pr[z,z0)(C)) for any local

chamber C = C+
z′ or C = C ′′z′ . Let us recall that the chamber C+

z (resp. C ′′z ) is the
unique chamber, that contains δ = [z, y) (resp. δ = [z, z0)) in its closure, of the prism
prismδ(Cz1) defined in A as the intersection of all half-spaces D(α, k) (for α ∈ Φ and
k ∈ R) that contain Cz1 and such that δ ⊂ M(α, k). In fact each prism considered
to define all these chambers in these definitions is the same prism prism[z0,y](Cz1), as
δ ⊂M(α, k) ⇐⇒ [z0, y] ⊂M(α, k). Moreover, as already partially remarked in 2.1.2,
prism[z0,y](Cz1) = prism[z0,y](C) for C = C+

z′ or C = C ′′z′ . Indeed, such a C is in
prism[z0,y](Cz1) and anyM(α, k) containing [z0, y] cannot cut C, so prism[z0,y](Cz1) =
prism[z0,y](C).

It is now clear that C+
z = pr[z,y)(C) (resp. C ′′z = pr[z,z0)(C)) for any local chamber

C = C+
z′ or C = C ′′z′ . Moreover the translations of a vector in the direction of the line

of A containing δ stabilize the prism and exchange the segment germs. So the last
assertion of the lemma is clear. �

Definitions 2.6.A decorated λ−path π is the datum of:
• a λ−path {π(t) | 0 6 t 6 1},
• a positive (resp. a negative) local chamber C+

π(t) (resp. C ′′π(t)) of vertex π(t)
for 0 6 t < 1 (resp. 0 < t 6 1).

Such that there are numbers 0 = t′0 < t′1 < · · · < t′r = 1 satisfying, for any 1 6 i 6 r,
• {π(t) | t′i−1 6 t 6 t

′
i} is a segment [π(t′i−1), π(t′i)],

• [π(t′i−1), π(t′i)] = ([π(t′i−1), π(t′i)], (C+
π(t))t∈[t′

i−1,t
′
i
[, (C ′′π(t))t∈]t′

i−1,t
′
i
]) is a deco-

rated segment (in particular π(t′i−1)
o
< π(t′i)), hence λ is spherical).

A decorated Hecke path of shape λ with respect to Cx in A is a decorated λ−path
π such that the underlying path π is a Hecke path of shape λ with respect to Cx in
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A. One assumes moreover that the numbers 0 < t′1 < · · · < t′r = 1 are equal to the
numbers 0 < t1 < t2 < · · · < t`π = 1 of Lemma 2.2 above.

Proposition 2.7. Let [z0, y] be a decorated segment (with dv(z0, y) = λ ∈ Y ++ spher-
ical), Cx a chamber of vertex x in A with x

o
< z0 (hence x

o
< z for any z ∈ [z0, y]) and

ρ = ρA,Cx the associated retraction. We parametrize [z0, y] by z(t) = z0 + t(y − z0) in
any apartment containing [z0, y]. Then:

ρ([z0, y]) = (π = ρ ◦ z, (C+
ρz(t) = ρC+

z(t))t∈[0,1[, (C∗ρz(t) = ρC ′′z(t))t∈]0,1])

is a decorated Hecke path of shape λ with respect to Cx in A.

N.B. Conversely a decorated Hecke path is not always the image by ρ of a decorated
segment. But the calculations of the number of such liftings (as in Theorem 2.3) is the
main ingredient of our main theorem (3.3 below) generalizing the Theorem 3.7 in [3].

Proof. For any z ∈ [z0, y[ (resp. z ∈ ]z0, y]), we consider an apartment A+
z (resp. A′′z )

containing Cx and C+
z (resp. C ′′z ). Then A+

z ∪A′′z (or A+
z0
, A′′y) contains a neighbour-

hood of z (or z0, y) in the segment [z0, y]. By compactness of this segment we get
numbers 0 = t′0 < t′1 < · · · t′r = 1 and apartments Ai such that Ai contains Cx,
z([t′i−1, t

′
i]) and either C+

z(t′
i−1) or C ′′z(t′

i
). By the projection properties of decorated

segments, it contains all other C+
z(t) (resp. C ′′z(t)) for t ∈ [t′i−1, t

′
i[ (resp. t ∈ ]t′i−1, t

′
i]).

As ρ sends isomorphically Ai onto A, we get that ρ([z0, y]) is a decorated λ−path,
with underlying path a Hecke path of shape λ with respect to Cx in A.

To get that ρ([z0, y]) is a decorated Hecke path, we have now to prove that the t′i
may be replaced by the ti associated to this Hecke path by Lemma 2.2. We may apply
the following Lemma to [π(ti−1), π(ti)]. Any apartment A containing Cx and C ′′z(ti)
contains [z(ti−1), z(ti)], hence also C ′′z(t) for ti−1 < t 6 ti and C+

z(t) for ti−1 6 t < ti,
by the projection properties of decorated segments. But ρ induces an isomorphism
from A onto A. So ([π(ti−1), π(ti)], (ρC+

z(t))ti−16t<ti , (ρC ′′z(t))ti−1<t6ti) is a decorated
segment, as expected. �

Lemma 2.8. In an apartment A of a masure I , we consider a local chamber Cx and a
line segment [p0, p1] with x

o
< p0 6 p1. We suppose that, for any p ∈ ]p0, p1[ and any

wall M containing p, then [p, p0] is in the half-apartment containing Cx delimited by
M . We consider the retraction ρ = ρA,Cx . Then, for any segment germ [z1, z) in I
such that ρ([z1, z)) = [p1, p0) (hence ρ(z1) = p1), there is a unique line segment [z1, z0]
such that [z1, z0) = [z1, z) and ρ([z1, z0]) = [p1, p0]. More precisely any apartment A
containing Cx and [z1, z) contains [z1, z0].

Proof. Let A be an apartment containing Cx and [z1, z). Up to the isomorphism
ρ from A onto A, one may suppose A = A. Then z1 = p1 and [p1, p0] satisfies
[p1, p0) = [p1, z), ρ([p1, p0]) = [p1, p0] as expected for [p1, z0]. Let us consider another
solution [p1, z0], so [p1, z0) = [p1, p0) and ρ([p1, z0]) = [p1, p0]. Let z′ be the point
satisfying [p1, z

′] ⊂ [p1, p0] ∩ [p1, z0] that is the nearest from p0. One has z′ 6= p1 and
one wants to prove that z′ = p0. If z′ 6= p0, one may consider a minimal gallery c′
in T −z′ I from C−z′ = prz′(Cx) to the segment germ [z′, z0). Clearly c = ρ(c′) is a
minimal gallery in A−z′ from C−z′ to the segment germ [z′, p0). If we write Q = C−z′ ,
we have c′ ∈ CmQ (C−z′ , c), with the notation of 2.3. But by the hypotheses, no wall M
containing z′ separates strictly Cx (i.e. C−z′) from [z′, p0). Hence the formula in 2.3
tells that CmQ (C−z′ , c) is reduced to one element: we have c′ = c, [z′, z0) = [z′, p0),
contrary to the hypothesis on z′. �
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Remark 2.9. The definitions and results in 2.6, 2.7, 2.8 above are also true if we
replace Cx by a negative sector germ S in A and ρ by ρA,S. The corresponding
results of the lemma are more or less implicit in [3], see the last paragraph of proof
of Lemma 2.1 or of Proposition 2.3 in l.c.

3. Structure constants in spherical cases
In this section, we compute the structure constants au

w,v of the Iwahori–Hecke algebra
IHI

R , assuming that v = µ · v and w = λ · w are spherical, i.e. µ and λ are spherical
(see 1.1 for the definitions). As in [3], we will adapt some results obtained in the
spherical case in [19] to our situation.

These structure constants depend on the shape of the standard apartment A and
on the numbers qM of 1.4.6. Recall that the number of (possibly) different parameters
is at most 2 · |I|. We denoted by Q = {q1, · · · , ql, q′1 = ql+1, · · · , q′l = q2l} this set of
parameters.

For λ ∈ Y + spherical, we denote wλ (resp. w+
λ ) the smallest (resp. longest) element

w ∈W v such that w · λ ∈ Cvf . We start by several lemmas.

Lemma 3.1 ([3, 3.6]). Let Cx, Cz ∈ C +
0 with x 6 z and λ ∈ Y + spherical, w ∈ W v.

We write C−z = prz(Cx). Then

dW (Cx, Cz) = λ · w ⇐⇒

{
dW (Cx, z) = λ

d∗W (C−z , Cz) = w+
λ w.

Lemma 3.2. Let Cz, Cy ∈ C +
0 with z

o
< y and µ ∈ Y + spherical, v ∈ W v. We write

C+
z = prz(Cy) and C ′′y = pr[y,z)(C+

z ) = pry(C+
z ). Then

(a) dW (Cz, Cy) = µv ⇐⇒

{
dW (Cz, C+

z ) = v(wv−1·µ)−1

dW (C+
z , Cy) = µ++wv−1·µ.

(b) dW (C+
z , Cy) = µ++wv−1·µ ⇐⇒

{
dW (C+

z , y) = µ++

d∗W (C ′′y , Cy) = w+
µ++wv−1·µ

Proof. (a) Let us fix an apartment A′ containing Cz, Cy and so C+
z and identify

(A′, Cz) with (A, C+
0 ).

Let us suppose that dW (Cz, Cy) = µv and denote C+
y := C+

z + µ. Clearly
dW (Cz, Cz + µ) = µ and, by Chasles in A′, µ · v = dW (Cz, Cy) = dW (Cz, Cz +
µ)dW (Cz + µ,Cy), hence dW (Cz + µ,Cy) = v i.e. Cy = (Cz + µ) ∗ v (cf. 1.10).
By G−invariance of dW and Chasles, we have dW (Cz, C+

z ) = dW (Cz + µ,C+
y ) =

dW (Cz+µ,Cy)dW (Cy, C+
y ) = vdW (Cy, C+

y ). Among the walls containing [z, y], no one
separates C+

y from Cy, so the local chamber C+
y is the closest chamber to Cy among

those containing the segment-germ ]y, y + µ) in their closure, i.e. C+
y = pr[y,y+µ)(Cy)

and dW (Cy, C+
y ) = w′ where w′ is the smallest w ∈W v ⊂W+ (for the Bruhat order

of W v) such that ]y, y + µ) ⊂ Cy ∗ w = Cz+µ ∗ vw = Cz ∗ µvw = µvwCz, as we
identified Cz with C+

0 . As µ = y−z, we can see w′ as the smallest w ∈W v ⊂W+ (for
the Bruhat order ofW v) such that ]z, z+µ) ⊂ vwCz i.e. v−1µ ∈ wCvf (as we identified
Cz with C+

0 ), so w′ = (wv−1·µ)−1. Finally, we get dW (Cz, C+
z ) = v(wv−1·µ)−1 and so

dW (C+
z , Cy) = (dW (Cz, C+

z ))−1dW (Cz, Cy) = wv−1·µv
−1µv(wv−1.µ)−1wv−1·µ

= µ++wv−1·µ.

In the same way, if we suppose that dW (Cz, C+
z ) = v(wv−1·µ)−1 and dW (C+

z , Cy) =
µ++wv−1·µ, by Chasles we obtain dW (Cz, Cy) = µv.
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(b) We consider now the opposite local chamber at y of C+
y (resp. Cy) in A′ which

is denoted by −C+
y (resp. −Cy). If dW (C+

z , Cy) = µ++wv−1·µ, we have dW (C+
z , y) =

µ++ = dW (C+
z , C

+
y ) and dW (C+

y , Cy) = wv−1·µ, so d∗W (−C+
y , Cy) = wv−1·µ. By the

proof of 2.1, we see that C ′′y and −C+
y are such that dW (−C+

y , C
′′
y ) = dW (C ′′y ,−C+

y ) =
w+
µ++ (the longest element of W v

µ++ the fixator of µ++ in W v). By Chasles in A′, we
have

d∗W (C ′′y , Cy) = dW (C ′′y ,−Cy) = dW (C ′′y ,−C+
y )dW (−C+

y ,−Cy) = w+
µ++ · wv−1·µ.

The converse result is clear by Chasles. �

3.1. Local study. We shall need a partial generalization of Lemma 2.5.1 dealing
with decorations.

We consider a point z ∈ A, a negative local chamber C−z in A−z and the retraction
ρ = ρAz,C−z in TzI . Let C+

z (resp. C∗z ) be a positive (resp. negative) local chamber in
Az, we also introduce the retraction ρ′ = ρAz,C+

z
in TzI . Let ξ and η be two segment

germs in A+
z = A∩ T +

z I of the same “type” (i.e. η = [z, z +w · λ), ξ = [z, z +w′ · λ)
for some λ ∈ Y ++ and w,w′ ∈W v). We suppose that C+

z contains η and C∗z contains
the opposite −ξ = [z, z −w′λ) of ξ in Az. We denote −η = [z, z −w · λ) the opposite
of η in Az and C̃z = pr−η(C+

z ). Let i be the type of a minimal gallery from C−z to C∗z .

Lemma. The following conditions are equivalent:
(a) There exists a segment germ ζ opposite η in T −z I and a negative local cham-

ber C ′′z containing ζ in its closure such that ρ(ζ) = −ξ, ρ(C ′′z ) = C∗z and
C ′′z = prζ(C+

z ).
(b) There exists a gallery c ∈ Γ+

C+
z

(C−z , i) ending in the local chamber C̃z.

Moreover the possible (ζ, C ′′z ) are in one-to-one correspondence with the disjoint
union of the sets Cm

C+
z

(C−z , c) for c in the set Γ+
C+
z

(C−z , i, C̃z).

Proof. If ζ, a segment germ opposite η in T −z I , and C ′′z , a negative local chamber
containing ζ in its closure, are such that ρ(ζ) = −ξ, ρ(C ′′z ) = C∗z and C ′′z = prζ(C+

z ),
there is a unique minimal gallery c′ from C−z to C ′′z of type i (as ρ induces a bijection
between the minimal galleries from C−z to C ′′z and the minimal galleries from C−z to
C∗z ). The gallery c = ρ′(c′) is in Γ+

C+
z

(C−z , i, C̃z). Indeed, ζ is opposite η so ρ′(ζ) = −η,
hence the image of C ′′z = prζ(C+

z ) by ρ′ is C̃z = pr−η(C+
z ).

Reciprocally, let c ∈ Γ+
C+
z

(C−z , i) be a gallery ending in the local chamber C̃z. We
can lift this gallery with respect to ρ′ while preserving the first chamber C−z to obtain
a minimal gallery c′ of type i. Let us call C ′′z the last chamber of the lifted gallery.
The isomorphism associated to ρ′ (see 1.7) between an apartment Az containing C+

z

and C ′′z and Az enables us to say that the lifting of −η is a segment germ ζ opposite
η in Az and C ′′z = prζ(C+

z ). As the gallery c is of type i, ρ sends C ′′z onto the end of
the minimal gallery of same type beginning at C−z , so ρ(C ′′z ) = C∗z . Moreover, ζ is of
the same type as −η (and −ξ), so ρ(ζ) = −ξ.

From the first paragraph above, we get an injective map (ζ, C ′′z ) 7→ c′ from the set
of pairs (ζ, C ′′z ) as in (a) and the disjoint union of the sets Cm

C+
z

(C−z , c) for c in the set
Γ+
C+
z

(C−z , i, C̃z): indeed, ζ is fully determined by C ′′z (and λ). The second paragraph
proves that this map is surjective. �

3.2. Opposite line segments. The following lemma will be useful in Theorem 3.3.
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Lemma. Let us consider in a masure I two preordered line segments or rays δ1, δ2
in apartments A1, A2, sharing the same origin x. One supposes the segments germs
germx(δ1) and germx(δ2) opposite (in any apartment containing them both). Then
there is a line in an apartment A of I containing δ1 and δ2. In particular, if δ1, δ2
are line segments (resp. rays), then δ1 ∪ δ2 is also a line segment (resp. a line).

Proof. The case of line segments is Lemma 4.9 in [19]. The case of rays may be
deduced from the fact stated in part 2 of the proof of [31, Prop. 5.4]. As we shall not
use it, we omit the details. �

3.3. The main formula. Let us fix two local chambers Cx and Cy in C +
0 with x 6 y

and dW (Cx, Cy) = u = ν · u ∈ W+. We consider w = λ · w and v = µ · v in W+.
Then we know that the structure constant au

w,v is the number of Cz0 ∈ C +
0 with

x 6 z0 6 y, dW (Cx, Cz0) = w and dW (Cz0 , Cy) = v; moreover this number is finite,
see Proposition 1.1. In Lemmas 3.1 and 3.2 we gave conditions equivalent to these
W−distance conditions.

We choose the standard apartment A containing Cx and Cy, and we identify Cx
with the fundamental local chamber C+

0 . The datum of z0 is equivalent to the datum
of the segment [z0, y] or of the decorated segment [z0, y] associated, as in 2.5, to [z0, y]
and Cy. We consider then the decorated Hecke path π image of [z0, y] by the retraction
ρA,Cx .

To the Hecke path π underlying a decorated Hecke path π are associated `π ∈ N
and numbers t0 = 0 < t1 < t2 < · · · < t`π = 1 as in Lemma 2.2 and Definition 2.6.
We write pk = π(tk). We write C+

p (resp. C∗p instead of C ′′p ) the decorations of π at a
point p of π. We write C+

z (resp. C ′′z ) the decorations of a decorated segment at one
of its points z.

We use freely the notations from 2.1, 2.2 and 2.3.

Theorem.Assume µ and λ spherical. Then the structure constant au
w,v is given by:

au
w,v =

∑
π

`π∏
k=0

aπ(k)

where π runs over the decorated Hecke paths in A of shape µ++ with respect to Cx
from p0 = x+ λ = λ to y = x+ ν = ν, and the integers aπ(k) are given by:

(a) aπ(`π) =
∑

d∈Γ+
Cy

(C−y ,i`,C̃y) ]CmCy (C−y ,d), where i` is the type of a fixed mini-

mal gallery from C−y to C∗y and C̃y is the unique local chamber at y in A such
that d∗W (C̃y, Cy) = w+

µ++wv−1·µ.
(b) For 1 6 k 6 `π − 1, aπ(k) =

∑
c∈Γ+

C
+
pk

(C−pk ,ik,C̃pk ) ]CmC+
pk

(C−pk , c), where ik is

the type of a fixed minimal gallery from C−pk to C∗pk and C̃pk = pr−ηk(C+
pk

)
with −ηk the segment germ of origin pk in A opposite ηk = π+(tk).

(c) aπ(0) =
∑

e∈Γ+
C
−
p0

(C+
p0 ,i,C

′
p0 ) ]CmC−p0

(C+
p0
, e), where i is the type of a fixed reduced

decomposition of wv−1·µ ·v−1 and C ′p0
is the unique local chamber at p0 = π(0)

in A such that d∗W (C−p0
, C ′p0

) = w+
λ w.

Remarks.
(1) Actually

∏`π−1
k=1 aπ(k) is the number of decorated segments [z0, y] such that

ρ([z0, y]) = π and C∗y = C ′′y . It may be zero.
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(2) If au
w,v 6= 0, then necessarily ν is spherical (in particular u ∈ W+g), as then

any Hecke path of shape µ++ is increasing for
o
< (see 1.7). The arguments

of [3] are sufficient for this result.
(3) From this theorem we deduce that au

w,v 6= 0 is equivalent to the following:
• there exists a Hecke path in A of shape µ++ with respect to Cx from
p0 = x+ λ = λ to y = x+ ν = ν,

• there exists a decoration π of π (always true),
• for this decorated Hecke path each of the sets Γ+

Cy
(C−y , i`, C̃y),

Γ+
C+
pk

(C−pk , ik, C̃pk) and Γ+
C−p0

(C+
p0
, i, C ′p0

) is non empty.
(4) The number of decorated Hecke paths π as above is finite: we know that the

number of paths π is finite (it is a consequence of Theorem 3.5 in [3]) and, as
µ is spherical, the number of decorations of π is finite.

Proof. au
w,v is the number of local chambers Cz0 ∈ C +

0 with x 6 z0 6 y,
dW (Cx, Cz0) = w and dW (Cz0 , Cy) = v (we chose Cx, Cy in A such that
dW (Cx, Cy) = u). We know that this number is finite, see Proposition 1.1. The
datum of z0 is equivalent to the datum of the segment [z0, y] or of the decorated
segment [z0, y] associated, as in 2.5, to [z0, y] and Cy. We use now the retraction
ρ = ρA,Cx : I>x → A. We have y = ρ(y) = x + ν and the condition dW (Cx, z0) = λ
is equivalent to ρ(z0) = x+ λ = p0. So ρ([z0, y]) has to be a decorated Hecke path π
as asked in the theorem. And we get the formula:

au
w,v =

∑
π

(number of liftings of π)× (number of Cz0 for z0 given),

It is possible to calculate like that for ρ(C+
z0

) = C+
p0

is well determined by the
decorated path π. Hence (as we shall see in (b) or (c) below), the number of Cz0 only
depends on π and not on the lifting of π. In [3, Theorem 3.7] we argued the same way,
but with Hecke paths (without decoration) so we had to suppose µ++ regular to get
that ρ(C+

z0
) was well determined by the path π.

For short, we write ` = `π. We compute the number of liftings of π by looking
successively at the number of liftings of [p`−1, p`], [p`−2, p`−1], . . . , [p0, p1].

(a) The number aπ(`) of liftings of [p`−1, p` = y] is the number of liftings
[z`−1, z` = y] of [p`−1, p` = y] and C ′′y of C∗y such that [y, z`−1) ⊂ C ′′y and
d∗W (C ′′y , Cy) = w+

µ++wv−1·µ (by Lemma 3.2(b)). But [y, z`−1] is determined by
[y, z`−1) (cf. Lemma 2.8) and [y, z`−1) is determined by C ′′y and µ++. So we just have
to count the liftings C ′′y of C∗y . By the same way as in the proof of Lemma 3.1, we
are going to prove that the possible C ′′y are in one-to-one correspondence with the
disjoint union of the sets CmCy (C−y , c) for c in Γ+

Cy
(C−y , i`, C̃y). In this case, the tools

are ρ = ρA,Cx , that on TyI , coincides with ρ = ρA,C−y 2.5.2 and ρ′ = ρA,Cy .
If C ′′y is given, there is a unique minimal gallery c′ from C−y to C ′′y of type i` (as

ρ induces a bijection between the minimal galleries from C−y to C ′′y = pr[y,z`−1)(Cy)
and those from C−y to C∗y = pr[y,p`−1)(Cy)). By Lemma 3.2(b) we know that
d∗W (C ′′y , Cy) = w+

µ++wv−1·µ, so ρ′(C ′′y ) = C̃y, and the gallery c = ρ′(c′) is in
Γ+
Cy

(C−y , i`, C̃y), while c′ is in CmCy (C−y , c).
Reciprocally, if c is in the set Γ+

Cy
(C−y , i`, C̃y), let us consider C ′′y the last chamber

of c′ a lifted gallery of c with respect to ρ′. The condition on C̃y enables to say that
d∗W (C ′′y , Cy) = w+

µ++wv−1·µ and so, by Lemma 3.2 the decoration C ′′y of [z`−1, y] at y
satisfies the expected codistance condition.
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(b) For 1 6 k 6 ` − 1, we suppose given the lifting [zk, y] of π|[tk,1]. The number
aπ(k) of suitable liftings [zk−1, zk] of [pk−1, pk] is the number of pairs ([zk−1, zk], C ′′zk)
of liftings [zk−1, zk] of [pk−1, pk] and C ′′zk of C∗pk such that [zk, zk−1) is opposite to
[zk, zk+1) (see Lemma 3.2), [zk, zk−1) ∈ C ′′zk and C ′′zk is the decoration of [zk, zk−1]
associated to Cy. Let us consider an apartment A containing Cx and C ′′zk+1

hence
also [zk, zk+1] and C+

zk
(see Lemma 2.8). The restriction ρ|A is the restriction to A

of an automorphism ϕ of I fixing Cx that induces an isomorphism ϕ|TzkI from
TzkI onto TpkI and sends C+

zk
⊂ A to C+

pk
= ρ(C+

zk
). So the map ϕ induces

a bijection from the set of suitable liftings ([zk−1, zk], C ′′zk) of ([pk−1, pk], C∗zk) onto
the set of pairs ([z′k−1, pk], C ′′pk) such that [pk, z′k−1) ∈ C ′′pk is opposite to [pk, pk+1]
(= ρ([zk, zk+1]) = ϕ([zk, zk+1])), C ′′pk = pr[pk,z′k−1)(C+

pk
) and ρA,C−pk

(C ′′pk) = C∗pk (as
ρA,C−pk

◦ ϕ|TzkI (C ′′zk) = ρ(C ′′zk)).
By Lemma 3.1 the possible ([pk, z′k−1), C ′′pk) (and so the possible ([pk, z′k−1], C ′′pk) by

Lemma 2.8) are in one-to-one correspondence with the union of the sets Cm
C+
pk

(C−pk , c)

for c in the set Γ+
C+
pk

(C−pk , i`, C̃pk), with C̃pk = pr−ηk(C+
pk

).
(c) For the last step of the lifting, by the same way as before, we suppose given the

lifting [z0, y] and we suppose z0 = p0. So we know that C+
p0

= C+
z0
. The Lemma 3.1 says

that d∗W (C−p0
, Cz0) = w+

λ w, and Lemma 3.2 that dW ((C+
p0
, Cz0) = wv−1µv

−1. So, as
before, the number of Cz0 is the number of elements of the different sets Cm

C−p0
(C+

p0
, e)

where e is a gallery of Γ+
C−p0

(C+
p0
, i, C ′p0

) as i is the type of a minimal gallery from C+
p0

to Cz0 that retracts by ρA,C−p0
to a gallery from C+

p0
to C ′p0

. �

3.4. Consequence. The above explicit formula, together with the formula for
]CmQ (C−z , c) in 2.3, tell us that the structure constant au

w,v is a polynomial in the
parameters qi − 1, q′i − 1 for qi, q′i ∈ Q with coefficients in N = Z>0 and that this
polynomial depends only on A, W , w, v and u. So we have proved the conjecture 1
of the introduction in this generic case: when λ and µ are spherical.

Note that we did not obtain all the structure constants au
w,v for the generic Iwahori–

Hecke algebra IHgZ. The cases w ∈W v n V0 or v ∈W v n V0 (i.e. λ ∈ V0 or µ ∈ V0 in
the above notation) are missing. We deal with them in the following section.

4. Structure constants in remaining generic cases
4.1. The problem. Let us choose Cx, Cy ∈ C +

0 with x 6 y and dW (Cx, Cy) = u =
ν · u ∈ W+ = W v n Y +. Then the structure constant au

w,v (for w = λ · w and
v = µ · v in W+) is the number of Cz0 ∈ C +

0 with x 6 z0 6 y, dW (Cx, Cz0) = w and
dW (Cz0 , Cy) = v, see Proposition 1.1.

In Theorem 3.3, we computed au
w,v when w,v are spherical (i.e. λ, µ ∈ Y ∩T ◦). We

shall compute it below in the remaining cases where w,v ∈W+g = W v n (Y ∩ (T ◦ ∪
V0)). So, in the affine or strictly hyperbolic cases, we shall get au

w,v for any w,v ∈W+.
But we get, in general, these structure constants for w,v ∈W+g = W vnY +g, i.e. we
get the structure constants of IHg, see 3.4 and 4.5.

We start with a lemma analogous to lemmas 3.1 and 3.2.

Lemma 4.1. Let Cx, Cz ∈ C +
0 with x 6 z and λ ∈ Y +0, w ∈ W v. We write C+

x =
prx(Cz), then

dW (Cx, Cz) = λ · w ⇐⇒

{
dW (Cx, z) = λ

dW (C−z , Cz) = w
⇐⇒

{
dW (Cx, z) = λ

dW (Cx, C+
x ) = w.
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Actually dW (Cx, z) = λ ∈ V0 implies x 6 z and z 6 x. So C−z := prz(Cx) is well
defined, by 2.1.1, and is a positive local chamber.

Proof. By definition dW (Cx, Cz) = λ · w implies dW (Cx, z) = λ (1.10). Suppose now
dW (Cx, z) = λ. Then dv(x, z) = λ ∈ V0, so any apartment A containing x or z
contains z or x and, in A, one has z = x+λ 6 x; this is a consequence of 1.4.1(a), as
any enclosure is stable under V0. Hence C−z = prz(Cx) ∈ A is well defined, by 2.1.1,
and is a positive local chamber. Actually C−z = Cx + λ (calculation in A). We have
also C+

x = Cz − λ. It is now clear that dW (Cx, Cz) = λ · w ⇐⇒ dW (C−z , Cz) =
w ⇐⇒ dW (Cx, C+

x ) = w. �

4.2. First reduction. We consider u,v,w ∈W+ and write u = ν ·u,v = µ ·v,w =
λ · w with λ, µ, ν ∈ Y + and u, v, w ∈ W v. We choose Cx, Cy ∈ C +

0 with x 6 y and
dW (Cx, Cy) = u; we may suppose Cx, Cy ⊂ A. We choose Cz0 ∈ C +

0 with x 6 z0 6 y,
dW (Cx, Cz0) = w and dW (Cz0 , Cy) = v.

If λ ∈ Y +0 = Y ∩ V0, one has dW (Cx, z0) = λ (Lemma 4.1) and z0 ∈ A, more
precisely z0 = x+ λ (as we saw in the proof of Lemma 4.1).

If µ ∈ Y +0, then we get z0 ∈ A, more precisely z0 = y − µ, by Lemma 4.1 applied
to Cz0 , Cy instead of Cx, Cz.

In both cases z0 has to be a well determined point in A and ν = dv(x, y) ∈
W vλ + W vµ. In particular, if w,v ∈ W+g i.e. λ, µ ∈ Y +g, one has also ν ∈ Y +g

i.e. u ∈W+g.
We now want to compute the number au

w,v of Cz0 ∈ C +
0 with x 6 z0 6 y,

dW (Cx, Cz0) = w and dW (Cz0 , Cy) = v. For this we separate below the cases λ ∈ Y +0

and µ ∈ Y +0.

4.3. The case µ ∈ Y +0. We suppose λ ∈ Y ∩ T ◦ (resp. λ ∈ Y +0). By Lemma 4.1
above and Lemma 3.1, we have to find the number au

w,v of Cz0 ∈ C +
0 satisfying (with

C+
z0

= pr[z0,y)(Cy) = prz0(Cy)):

(a) dW (Cx, z0) = λ,
(b) dW (Cz0 , y) = µ,
(c) dW (Cz0 , C

+
z0

) = v

(d) d∗W (C−z0
, Cz0) = w+

λ · w (resp. (d) dW (C−z0
, Cz0) = w).

Actually µ ∈ V0 is fixed byW v and y, Cz0 , C
+
z0

are in a same apartment (containing
Cy and Cz0), so dW (Cz0 , y) = µ ⇐⇒ dW (C+

z0
, y) = µ. Then au

w,v is the number of
Cz0 ∈ C +

0 satisfying (a), (b′) dW (C+
z0
, y) = µ, (c) and (d). The first two conditions

involve only z0, Cx, Cy ∈ A.

Proposition. The number au
w,v is either 0 (if the conditions (a), (b′) above are in-

compatible) or ∑
e∈Γ+

C
−
z0

(C+
z0 ,i,C

′
z0 )

]Cm
C−z0

(C+
z0
, e)

where i is the type of a fixed reduced decomposition of v−1 and C ′z0
is the unique local

chamber at z0 in A such that d∗W (C−z0
, C ′z0

) = w+
λ · w (resp. dW (C−z0

, C ′z0
) = w).

Remark. The coefficient au
w,v is zero when (a) and (b′) are incompatible, i.e. when

ν 6= λ + µ: if in A we identify Cx to the fundamental chamber C+
0 , (a) is equivalent

to z0 = x+ λ, (b′) to y = z0 + µ and dW (Cx, Cy) = ν · u implies y = x+ ν.
But the other case where au

w,v = 0 is when Γ+
C−z0

(C+
z0
, i, C ′z0

) is empty.
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Proof. We have to translate the conditions (c) and (d). We consider the retraction
ρ = ρA,C−z0

. The condition (c) is equivalent to the existence of a minimal gallery c
starting from C+

z0
, of type i (i.e. c ∈ Cm(C+

z0
, i)) ending in Cz0 ; and there is a bijection

between these c and the Cz0 satisfying (c). Now the condition (d) is equivalent to
ρ(Cz0) = C ′z0

(as ρ preserves the W−distances to C−z0
). Considering e = ρ(c), the

proposition is now clear. �

4.4. The case λ ∈ Y +0 (and µ ∈ Y ∩ T ◦). By Lemma 4.1 above and Lemma 3.2,
we have to find the number au

w,v of Cz0 ∈ C +
0 satisfying:

(a) dW (Cx, z0) = λ,
(b) dW (C+

z0
, y) = µ++,

(c) d∗W (C ′′y , Cy) = w+
µ++wv−1·µ

(d) dW (C−z0
, Cz0) = w

(e) dW (C+
z0
, Cz0) = wv−1·µ · v−1.

But C+
z0

= prz0(Cy), C ′′y = pry(C+
z0

) and Cx, Cy, z0 = x + λ are in A. So the condi-
tions (a), (b), (c) involve only Cx, Cy and z0.

Proposition. The number au
w,v is either 0 (if the conditions (a), (b), (c) above are

incompatible) or ∑
e∈Γ+

C
−
z0

(C+
z0 ,i,C

′
z0 )

]Cm
C−z0

(C+
z0
, e)

where i is the type of a fixed reduced decomposition of wv−1·µ · v−1 and C ′z0
is the

unique local chamber at z0 in A such that dW (C−z0
, C ′z0

) = w.

Remark. The coefficient au
w,v is zero when (a), (b) and (c) are incompatible, i.e. when

z0, determined by (b) does not satisfy (a) and (c). But it is more difficult than in 4.3
to translate it simply. It is also zero when Γ+

C−z0
(C+

z0
, i, C ′z0

) is empty.

Proof. We have to translate conditions (d) and (e). It goes the same way as in 4.3. �

4.5. Conclusion. In all cases where λ, µ ∈ Y +g = Y ∩ (T ◦ ∪ V0), we may use the
formula for CmQ (C ′z, c) in 2.3, the Theorem 3.3 and/or the Propositions 4.3, 4.4. We
get the expected result: the structure constant au

w,v is a polynomial in the parameters
qi − 1, q′i − 1 for qi, q′i ∈ Q with coefficients in N = Z>0 and this polynomial depends
only on A, W , w, v and u. We have proved Conjecture 1 in these cases, in particular
in the affine or strictly hyperbolic cases.
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