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Abstract

Hierarchical Agglomerative Classification (HAC) with Ward’s linkage has been

widely used since its introduction by Ward (1963). This article reviews extensions

of HAC to various input data and contiguity-constrained HAC, and provides ap-

plicability conditions. In addition, various versions of the graphical representation

of the results as a dendrogram are also presented and their properties are clarified.

We clarify and complete the results already available in an heterogeneous literature

using a uniform background. In particular, this study reveals an important distinc-

tion between a consistency property of the dendrogram and the absence of crossover

within it. Finally, a simulation study shows that the constrained version of HAC

can sometimes provide more relevant results than its unconstrained version despite

the fact that the latter optimizes the objective criterion on a reduced set of solutions
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at each step. Overall, the article provides comprehensive recommendations for the

use of HAC and constrained HAC depending on the input data as well as for the

representation of the results.

Keywords: Hierarchical Agglomerative Clustering, Ward’s Linkage, Contiguity

Constraint, Dendrogram, Monotonicity

1 Introduction

Hierarchical Agglomerative Classification (HAC) with Ward’s linkage has been widely

used since its introduction by Ward (1963). The method is appealing since it provides

a simple approach to approximate, for any given number of clusters, the partition min-

imizing the within-cluster inertia or “error sum of squares”. In addition to its simplicity

and the fact that it is based on a natural quality criterion, HAC often comes with a pop-

ular graphical representation called a dendrogram, that is used as a support for model

selection (choice of the number of clusters) and result interpretation. Originally described

to cluster data in Rp, the method has been applied more generally to data described by

arbitrary distances (or dis-similarities). Constrained versions of HAC have also been pro-

posed to incorporate a “contiguity” relation between objects into the clustering process

(Lebart 1978; Grimm 1987).

However, as already shown by Murtagh and Legendre (2014), confusions still exist be-

tween the different versions and how the results are represented with a dendrogram, which

is also illustrated in (Grimm 1987) that presents different alternatives for the representa-

tion. These have resulted in different implementations of the Ward’s clustering algorithm,

with notable differences in the results. More importantly, the applicability framework of

the different versions is not always clear: Batagelj (1981) has given very general necessary

and sufficient conditions on a linkage value to ensure that it is always increasing for any

given dissimilarity. This property is important to ensure the consistency between the

results of HAC and their graphical display as a dendrogram. Conditions on a general

constraint are also provided in Ferligoj and Batagelj (1982) to ensure a similar property
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and Grimm (1987) proposes alternative solutions to the standard heights to address the

fact that the linkage might sometimes fail to provide a consistent representation of the

results of HAC. However, none of these articles fully cover the theoretical properties of

these alternatives, for unconstrained and constrained versions of the method.

The scope of the present article is to clarify the conditions of applicability and inter-

pretability of the different versions of HAC and contiguity-constrained HAC (CCHAC).

We discuss the relevance of using them with different types of input data and how the

corresponding results can be interpreted. We perform a systematic study of the mono-

tonicity of the different versions of the dendrogram heights by reporting the results already

available in the literature for standard HAC and its various extensions and by completing

the ones that were not available to our knowledge. In addition to providing a uniform

presentation of a number of results partially present in the literature, this study reveals

an important distinction between this consistency property and the absence of crossover

within the dendrogram that was not discussed before.

Finally, we illustrate the respective behavior of HAC and CCHAC in a simulation study

where the different heights are used in order to represent the results. This simulation shows

that, in addition to reducing the computational time needed to perform the method, the

constrained version (CCHAC) can also provide better solution than the standard one

(HAC) when the constraint is consistent with the data, despite the fact that it optimizes

the objective criterion on a reduced set of solutions at each step.

2 HAC and contiguity-constrained HAC

2.1 Hierarchical Agglomerative Clustering

HAC was initially described by Ward (1963) for data in Rp. Let Ω := {x1, · · · , xn} be

the set of objects to be clustered, which are assumed to lie in Rp. A cluster is a subset of

Ω. The loss of information when grouping objects into a cluster G ⊂ Ω is quantified by
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the inertia (also known as Error Sum of Squares, ESS):

I(G) =
∑
xi∈G

‖xi − x̄G‖2
Rp , (1)

where x̄G = n−1
∑n

i=1 xi is the center of gravity of G. Starting from a partition P =

{G1, · · · , Gl} of Ω, the loss of information when merging two clusters Gu and Gv of P is

quantified by :

δ(Gu, Gv) := I(Gu ∪Gv)− I(Gu)− I(Gv). (2)

The quantity δ is known as Ward’s linkage and it is equal to the variation of within-

cluster inertia (also called within-cluster sum of squares) after merging two clusters. It

also corresponds to the squared distance between centers of gravity:

δ(Gu, Gv) =
|Gu||Gv|
|Gu|+ |Gv|

‖x̄Gu − x̄Gv‖2
Rp . (3)

The HAC algorithm is described in Algorithm 1. Starting from the trivial partition

P1 = {{x1}, {x2}, · · · , {xn}} with n singletons, the HAC algorithm creates a sequence of

partitions by successively merging the two clusters whose linkage δ is the smallest, until all

objects have been merged into a single cluster. Linkage values at step t can be efficiently

Algorithm 1 Standard Hierarchical Agglomerative Clustering (HAC)
1: Initialization: P1 = {{x1}, {x2}, · · · , {xn}}
2: for t = 1 to n− 1 do
3: Compute all pairwise linkage values between clusters of the current partition Pt
4: Merge the two clusters with minimal linkage value to obtain the next partition
Pt+1

5: end for
6: return {P1,P2, . . . ,Pn}

updated using linkage values at step t − 1 with a formula known as the Lance-Williams

formula (Lance and Williams 1967). In the case of Ward’s linkage, this formula has first
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been demonstrated by Wishart (1969):

δ(Gu ∪Gv, Gw) =
|Gu|+ |Gw|

|Gu|+ |Gv|+ |Gw|
δ(Gu, Gw) +

|Gv|+ |Gw|
|Gu|+ |Gv|+ |Gw|

δ(Gv, Gw)

− |Gw|
|Gu|+ |Gv|+ |Gw|

δ(Gu, Gv) (4)

where |G| denotes the cardinal of any cluster G.

The framework of the current section can be extended straightforwardly to the case

where the objects to cluster are weighted. However, this study focuses on uniform weights

for the sake of simplicity.

2.2 HAC under contiguity constraint

In various applications, there exists an a priori information about the relations between

the objects. For instance, it is the case for spatial statistics, where objects possess nat-

ural proximity relations, in genomics, where genomic loci are linearly ordered along the

chromosome, or in neuroimaging, with the three-dimensional structure of the brain. Ac-

cording to this point of view, Contiguity-Constrained HAC (CCHAC) allows only mergers

between contiguous objects. Considering this approach can have two benefits: (i) more

interpretable results by taking into account the natural structure of the data; (ii) a de-

creased computational time, because only a subset of all possible mergers are considered.

A very general framework for constrained HAC is described in Ferligoj and Batagelj

(1982): the contiguity is defined by an arbitrary symmetric relation R ⊂ Ω × Ω that

indicates which pairs of objects are said contiguous. Only these pairs are then allowed to

be merged at the first step of the algorithm, using the same objective function than in

the standard HAC algorithm. The next step iterates similarly, by using the following rule

to extend the contiguity relation to merged clusters:

(Gu ∪Gv, Gw) ∈ R ⇔ (Gu, Gw) ∈ R or (Gv, Gw) ∈ R.

Algorithm 2 describes contiguity-constrained hierarchical agglomerative clustering
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(CCHAC). The only difference with standard HAC lies in the fact that only contigu-

Algorithm 2 Contiguity-Constrained Hierarchical Agglomerative Clustering (CCHAC)

1: Initialization: P1 = {G1
1, G

1
2, · · · , G1

n} where G1
u = {xu}. Contiguous singletons are

defined by R1 = R ⊂ Ω× Ω.
2: for t = 1 to n− 1 do
3: Compute all pairwise linkage values between contiguous clusters of the current

partition Pt with respect to Rt

4: Merge the two contiguous clusters, Gt
v1

and Gt
v2

with minimal linkage value to
obtain the next partition Pt+1 = {Gt+1

u }u=1,...,n−t−1

5: Extend the contiguity relation to the new cluster Gt
v1
∪Gt

v2
∈ Pt+1 by setting(

Gt
v1
∪Gt

v2
, Gt

w

)
∈ Rt+1 ⇔

(
Gt
v1
, Gt

w

)
∈ Rt or

(
Gt
v2
, Gt

w

)
∈ Rt.

6: end for
7: return {P1,P2, . . . ,Pn}

ous clusters are merged. From a computational viewpoint, only the linkage values for a

subset of Pt×Pt have to be considered, which can drastically reduce the number of values

to be computed with respect to the standard algorithm. This gain in computational time

comes at the price of a (potential) loss in the objective function at a given step of the

algorithm, especially if the constraint is not consistent with the dissimilarity or similar-

ity values (see Section 5 for illustration and discussion). This also has a side effect on

standard representations of the result of the algorithm, which is discussed in Section 4.

Order-constrained HAC. A simple and useful case of contiguity constraint is the

case when the symmetric relation is a contiguity relation defined along a line. This

special and simple case is frequently encountered in genomics (where the contiguity thus

corresponds to the genomic position on a given chromosome) and will be called order-

constrained HAC (OCHAC) in the sequel. In this specific case, every cluster has exactly

two neighbours (except for the two positioned at the beginning and the end of the line)

and at step t of the algorithm, only n − t values of the linkage have to be computed

(instead of (n− t)(n− t− 1)/2 for standard HAC). This case is the one implemented in

the R package adjclust and an efficient algorithm is described in Ambroise et al. (2019)

for sparse datasets. In this paper, we demonstrate the good properties of the CCHAC for

the case of a general contiguity relation and illustrate the opposite situation (where some
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good properties are not always satisfied for CCHAC) by providing counter-examples and

illustrations in the specific case of OCHAC.

3 Validity of HAC in possibly non-Euclidean settings

In this section, we systematically justify the use of HAC algorithm (with or without con-

tiguity constraints) for all kinds of proximity data, including dissimilarity and similarity

data.

3.1 Extension to dissimilarity data

The HAC algorithm of Ward (1963) has been designed to cluster elements of Rp. In

practice however, the objects to be clustered are often only indirectly described by a matrix

of pairwise dissimilarities, D = (dij)1≤i,j≤n. Formally, a dissimilarity is a generalization of

a distance, that can not necessarily be embedded into an Euclidean space (e.g., because

the triangle inequality does not hold for instance). Here, we only assume that D satisfies

the following properties for all i, j ∈ {1, . . . , n}:

dij ≥ 0; dii = 0; dij = dji .

The HAC algorithm will be applicable to such a dissimilarity matrix D if D is Eu-

clidean. Formally, D is Euclidean if there exists an Euclidean space (E, 〈·, ·〉) and n points

{x1, ..., xn} ⊂ E such that dij = ‖xi − xj‖ for all i, j ∈ {1, ..., n}, with ‖ · ‖ the norm

induced by the inner product, 〈., .〉, on E. Under this assumption, the dissimilarity case

is a simple extension of the original Rp framework described in Section 2. Different ver-

sions of a necessary and sufficient condition for which an observed dissimilarity matrix

is Euclidean have been obtained in Schoenberg (1935); Young and Householder (1938);

Krislock and Wolkowicz (2012).

When such conditions do not hold, D is simply called a dissimilarity dataset, which is a

particular case of proximity or relational datasets. Schleif and Tino (2015) have proposed

a typology of such datasets and described different approaches that can be used to extend
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statistical or learning methods defined for Euclidean data to such proximity data. In brief,

the first main strategy consists in finding a way to turn a non Euclidean dissimilarity into

an Euclidean distance, that is the closest (in some sense) to the original dissimilarity. This

can be performed using eigenvalue corrections (Chen et al. 2009), embedding strategies

(like multidimensional scaling, Kruskal (1964)) or solving a maximum alignment problem

(Chen and Ye 2008), for instance.

A general construction. Alternatively, by using an analogy between distance and

dissimilarity, HAC can be directly extended to non-Euclidean data as in Chavent et al.

(2018). This extension stems from the fact that, in the Euclidean case of Section 2, the

inertia of a clusters may be expressed only in function of sums of the entries of the pairwise

distances (‖xi − xj‖Rp , 1 ≤ i, j ≤ n):

I(G) =
∆(G,G)

2|G|
, (5)

where ∆ is defined by ∆(Gu, Gv) =
∑

xi∈Gu,xj∈Gv ‖xi − xj‖
2
Rp for any clusters Gu and Gv.

As a consequence of (5), Ward’s linkage between any two clusters Gu and Gv may be

itself be written in function of these pairwise distances, see, e.g., Murtagh and Legendre

(2014, p. 279):

δ(Gu, Gv) =
|Gu||Gv|
|Gu|+ |Gv|

(
∆(Gu, Gv)

|Gu||Gv|
− ∆(Gu, Gu)

2|Gu|2
− ∆(Gv, Gv)

2|Gv|2

)
. (6)

Therefore, as proposed by Chavent et al. (2018), an elegant way to extend Ward’s HAC

to dissimilarity data is to define the inertia of a cluster using (5), with (sums of) distances

replaced by (sums of) dissimilarities, that is:

Ĩ(G) =
∆̃(G,G)

2|G|
, (7)
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where

∆̃(Gu, Gv) =
∑

xi∈Gu,xj∈Gv

d2
ij . (8)

The corresponding HAC is then formally obtained as the output of Algorithm 1, as de-

scribed in Section 2.1. In particular, Ward’s linkage is still given by (6), with ∆ formally

replaced by ∆̃, and, as a consequence, the Lance-Williams update formula is also still

given by (4). When the elements of Ω do belong to an Euclidean space and the dissim-

ilarities are the pairwise Euclidean distances ‖xi − xj‖Rp , these two definitions of HAC

coincide. Otherwise, HAC is still formally defined, and the linkage can still be seen as a

measure of heterogeneity, but the interpretation of a cluster inertia as an average squared

distance to the center of gravity of the cluster (as in Equation (1)) is lost. Since the two

definitions, I and Ĩ coincide for the Euclidean case, we will only use the notation I in the

sequel for the sake of simplicity, even when the data are non Euclidean dissimilarity data.

The above approach based on pairwise dissimilarities and pseudo-intertia may be

used to recover generalizations of Ward-based HAC to non-Euclidean distances al-

ready proposed in the literature. In particular, the Ward HAC algorithm associated

to dij = ‖xi − xj‖α/2Rp for 0 < α ≤ 2 and dij = ‖xi − xj‖1,Rp (the latter is also called the

Manhattan distance) correspond to the methods proposed by Székely and Rizzo (2005)

and Strauss and von Maltitz (2017), respectively.

Remark 1. Székely and Rizzo (2005) and Strauss and von Maltitz (2017) take a different

point of view: they define the linkage between two clusters by (6) (up to a scaling factor

1/2); their generalized HAC is then the HAC associated to this linkage. Then, they prove

that the Lance-Williams Equation (4) is still valid for this linkage. We favor the above

construction by Chavent et al. (2018), which is simply based on pairwise dissimilarities,

as it is more intrinsic. It provides a justification for the linkage formula, and the Lance-

Williams formula is automatically valid with no proof required.

Finally, there is an ambiguity in the definition of the pseudo-inertia as an extension of

the Ward’s case. If most authors consider that the dissimilarity is associated to a distance
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and therefore define the pseudo-inertia based on the squared values d2
ij, some authors (as

Strauss and von Maltitz (2017)) define a linkage equal to the one that would have been

obtained with Ward’s linkage and a pseudo-inertia described as 1
2|G|
∑

xi,xj∈G dij. This

ambiguity has long been enforced by popular implemented versions of the algorithm, as

it was the case in the R function hclust before Murtagh and Legendre (2014) raised and

corrected this problem.

3.2 Extension to kernel data

In some cases, proximity relations between objects are described by their resemblance

instead of their dissimilarity. We start with the case when the data are described by a

kernel matrix. A kernel matrix is a symmetric positive-definite matrix K = (kij)1≤i,j≤n

whose entry kij corresponds to a measure of resemblance between xi and xj. Here, contrary

to the Euclidean setting, no specific structure is assumed for Ω, which can be an arbitrary

set.

Aronszajn (1950) has proved that there exists a unique Hilbert space H equipped with

the inner product 〈·, ·〉H and a unique map φ : Ω −→ H, such that kij = 〈φ(xi), φ(xj)〉H.

This allows to consider the associated distance in H between any two elements φ(xi) and

φ(xj) for xi, xj ∈ Ω, that implicitly defines a Euclidean distance in Ω by:

dij = d(xi, xj) := ‖φ(xi)− φ(xj)‖H ,

so that

d2
ij = kii + kjj − 2kij . (9)

Therefore, it is possible to use Algorithm 1 for kernel data, even when H is not known

explicitly and/or when it is not finite-dimensional. This is an instance of the so-called

“kernel trick” (Schölkopf and Smola 2002). The associated Ward’s linkage can itself be

re-written directly using sums of elements of the kernel matrix, as shown, e.g., in Dehman

(2015):

δ(Gu, Gv) =
|Gu||Gv|
|Gu|+ |Gv|

(
RGu,Gu

|Gu|2
+
RGv ,Gv

|Gv|2
− 2

RGu,Gv

|Gu||Gv|

)
, (10)
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where RGu,Gv =
∑

(xi,xj)∈Gu×Gv
kij.

Contrary to the dissimilarity case described in Section 3.1, the kernel case is a truly

interpretable generalization of Ward’s original approach because Ward’s linkage as calcu-

lated in (10) is the variation of within-cluster inertia in the associated Hilbert space H.

This case has been described previously in Qin et al. (2003); Ah-Pine and Wang (2016),

for instance.

3.3 Extension to similarity data

Similarity data also aim at describing pairwise resemblance relations between the objects

of Ω through a matrix of similarity (or proximity) measures S = (sij)1≤i,j≤n. Even

though the precise definition of a similarity matrix can differ within the literature (see

e.g., Hartigan (1967)), it is generally far less constrained than kernel matrices. In most

cases, the only conditions required to define a similarity is the symmetry of the matrix S

and the positivity of its diagonal. In some cases, similarity measures are also supposed

to take non negative values, but we will not make this assumption in the present article.

Since both similarities and kernels describe resemblance relations, it seems natural to try

to extend the background of Section 3.2 to similarity datasets by using Equation (10). This

allows the definition of a linkage, δS, between clusters via sums of elements of S. However,

this heuristic is not well justified since the quantity sii + sjj − 2sij is not necessarily non

negative when S is not a positive definite kernel. Thus, it can not be associated to a

squared distance as in Equation (9).

The previous work of Miyamoto et al. (2015) has explicitly linked similarity and

kernel data in HAC results. More precisely, for any given similarity S, the matrix

Sλ = (sλij)1≤i,j≤n such that sλij := sij +1{i=j}λ is definite positive for any λ larger than the

absolute value of the smallest eigenvalue of S. Therefore, the kernel matrix Sλ induces a

well-defined linkage δSλ via Equation (10), which is linked to δS by:

δSλ(Gu, Gv) = δS(Gu, Gv) + λ .
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This proposition justifies the extension of Equation (10) to similarity data with

RGu,Gv =
∑

(xi,xj)∈Gu×Gv sij. Using this heuristic is indeed equivalent to using a given

kernel matrix obtained by translating the diagonal of the original similarity S: doing

so, the clustering is unchanged and the linkage values are all translated from +λ

for the kernel matrix, which does not even change the global shape of the clustering

representation when the heights in this representation are the values of the linkage (as

discussed in Section 4). However, as for general dissimilarity data in Section 3.1, the

interpretation of the linkage as a variation of within-cluster inertia is lost.

Conclusion. In conclusion to this section, there is finally only two cases left: the Eu-

clidean case (in which objects are embedded in a direct or indirect manner in a Euclidean

framework) and the non-Euclidean case. The first case includes the standard case, the

case of Euclidean distance matrices and the case of kernels while the latter case includes

general dissimilarity and similarity matrices. In the Euclidean case, the original descrip-

tion of the Ward’s algorithm is valid as such while, in the second, the algorithm can still

be formally applied in a very similar manner at the cost of a loss of the interpretability

of the criterion.

4 Interpretability of dendrograms

4.1 Dendrograms

The results of HAC algorithms are usually displayed as dendrograms. A dendrogram is a

binary tree in which each node corresponds to a cluster, and, in particular, the leaves are

the original objects to be clustered. The edges connect the two clusters (nodes) merged at

a given step of the algorithm. The height of the leaves is generally supposed to be h0 = 0.

In the case of OCHAC, these leaves are displayed as indicated by the natural ordering

of the objects, while in the general case of unconstrained HAC they are ordered by a

permutation of the class labels that ensures that the successive mergers are neighbors in
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the dendrogram. The height of the node corresponding to the cluster created at merger t,

ht, is often the value of the linkage. To distinguish the height of the dendrogram from the

value of the linkage, we will denote by mt the value of the linkage at step t. Alternative

choices for the values of (ht)t are discussed in Section 4.4.

Dendrograms are used to obtain clusterings by horizontal cuts of the tree structure

at a chosen height. A desirable property of a dendrogram is thus that the clusterings

induced by such a cut corresponds to those defined by the HAC algorithm. This property

is equivalent to the fact that the sequence of heights is non-decreasing. When this mono-

tonicity property is not satisfied, a merging step t for which ht < ht−1, is called a reversal.

Reversals can be of two types, depending on whether or not they correspond to a visible

crossover between branches of the dendrogram. Mathematically, a crossover corresponds

to the case when the height of a given merger Gv1 ∪Gv2 is less than the height of Gv1 or

the height of Gv2 . A toy example of reversal with crossover is shown in Figure 1, between

nodes merged at steps 1 and 2, for the result of OCHAC.

The goal of this section is to study which settings and which definitions of height

guarantee the absence of reversals – with and without crossovers.

4.2 Monotonicity, crossovers and ultrametricity

A crossover in a dendrogram automatically implies the non-monotonicity of the sequence

of heights. The converse is true when the height of the dendrogram corresponds to the

value of the linkage (or to a non-decreasing function of the linkage) for the corresponding

merger, by virtue of Proposition 1 below.

Proposition 1. Consider a dendrogram whose sequence of heights (ht)t is a non-

decreasing transformation of the linkage values (mt)t. Then the only reversals that can

occur are crossovers.

The proof of Proposition 1 is not specific to Ward’s linkage and is a simple consequence

of the fact that the linkage is the objective function of the clustering:

Proof of Proposition 1. Consider an arbitrary merger step of the HAC, characterized by
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Figure 1: A crossover for Euclidean OCHAC with height defined as the linkage
mt. Top left: Configuration of the objects in R2. Top right : Coordinates of the objects
and Euclidean distance matrix corresponding to this configuration. Bottom left: Repre-
sentation of the values of the Euclidean distance (dark colors correspond to larger values,
so to distant objects). Bottom right: Dendrogram obtained from OCHAC (the ordering is
indicated by the indices of objects) and with the height corresponding to Ward’s linkage.
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the linkage value mt. If the next merger does not involve the newly created cluster, then

this merger was already a candidate at step t. Then, by optimality of the linkage value at

step t, this merger can not be a reversal. Therefore, any reversal must involve the newly

created cluster, and is thus a crossover.

An important consequence of Proposition 1 is that when the height of the dendrogram

is the corresponding linkage, the absence of crossovers is equivalent to the monotonicity

of the sequence of heights.

We shall see in Section 4.4 that for an arbitrary height, the absence of crossover

in the dendrogram is not necessarily equivalent to the monotonicity of the sequence of

heights. The absence of crossover can be characterized by a mathematical property of the

cophenetic distance associated to the heights of the dendrogram, called ultrametricity.

Formally, let us define, for all i, j ∈ {1, . . . , n}, the cophenetic distance hij between i

and j as the value of the height ht∗ such that t∗ is the first step (or the smallest merge

number) such that the i-th and j-th objects are in the same cluster. h is said to satisfy

the ultrametric inequality if:

∀i, j, k ∈ {1, ..., n}, hij ≤ max{hik, hkj}.

As announced, this property is key to ensure the monotonicity of the sequence of heights.

More precisely, Johnson (1967) has defined an explicit bijection between a hierarchy of

clusterings with an associated sequence of non-decreasing “heights” (called “values” in the

article) and matrix of values with a diagonal equal to zero and satisfying the ultrametric

inequality. It turns out that this bijection explicitly defines the entries of the ultrametric

matrix as the cophenetic distance of the dendrogram whose heights are the one of the

associated hierarchy of clusterings. In other words, this means that a given sequence of

heights defining a dendrogram is non-decreasing if and only if the cophenetic distance

associated to this dendrogram (or equivalently to this sequence of heights) satisfies the

ultrametric inequality.
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4.3 Monotonicity of Ward’s linkage

Ward’s linkage corresponds to the variation of within-cluster inertia, so that the mono-

tonicity of the linkage is ensured for Ward’s standard HAC algorithm with Euclidean

data. More generally, Batagelj (1981) gives necessary and sufficient conditions based only

on the Lance-Williams coefficients that ensures monotonicity for a given linkage. These

results apply to the extensions of HAC to non Euclidean datasets and show that the

monotonicity of the linkage values is always ensured for standard HAC with Ward’s link-

age. In addition, Ferligoj and Batagelj (1982) give necessary and sufficient conditions on

the Lance-Williams coefficients to ensure the monotonicity of the linkage values in con-

strained HAC, for an arbitrary symmetric relational constraint. These conditions are not

fulfilled for Ward’s linkage. Therefore, monotonicity is not guaranteed for CCHAC with

Ward’s linkage, as also noted by Grimm (1987) for the specific case of OCHAC. It can be

shown that even for Euclidean data, the contiguity constraint can induce non increasing

linkage values for some steps of the algorithm, as illustrated by Figure 1.

More precisely, if we consider OCHAC, the following proposition establishes necessary

and sufficient conditions on a dissimilarity d to observe a reversal at a given step of

OCHAC when the height is defined by Ward’s linkage:

Proposition 2. Suppose that Ω = {xi}i=1,...,n is equipped with the symmetric contiguity

relation xiRxj ⇔ |i − j| = 1 (OCHAC). Denote by l and r the indices of the left and

right clusters merged at a given step t, and by l̄ and r̄ their own left and right cluster,

respectively. Then there is a reversal at step t + 1 for the height defined by the linkage if

and only if:

δ(Gl, Gr) ≥ min

(
gl̄lδ(Gl̄, Gl) + gl̄rδ(Gl̄, Gr)

gl̄l + gl̄r
,
glr̄δ(Gl, Gr̄) + grr̄δ(Gr, Gr̄)

glr̄ + grr̄

)
(11)

where we have used the notation guv := |Gu ∪Gv| = |Gu|+ |Gv|.

The fact that Condition (11) involves clusters contiguous to the last merger is a conse-

quence of Proposition 1. The formulation of Condition (11) is quite intuitive: crossovers

correspond to situations in which the Ward linkage between two newly merged clusters
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is larger than a (weighted) average Ward linkage between each of these two clusters and

one of the contiguous clusters. The proof of Proposition 2 is given in Appendix A.

Let us apply Proposition 2 to the specific case of the first and second mergers in the al-

gorithm. Assuming that the optimal merger at step 1 is between the l-th and r-th objects,

and recalling that the Ward linkage between two singletons is simply δ({u}, {v}) = d2
uv/2,

Condition (11) reduces to:

2d2
l,r > min

(
d2
l̄,l + d2

l̄,r, d
2
r,r̄ + d2

l,r̄

)

In particular, given the p− 1 distances (d2
i,i+1)1≤i≤p−1 that determine the first step of the

OCHAC algorithm, it is always possible to find an adversarial dissimilarity yielding a

reversal at the second step, e.g., by choosing dl,r̄ such that d2
l,r̄ < 2d2

l,r − d2
r,r̄. This is the

case in the counter-example of Figure 1.

An example of relevant reversal for OCHAC. Because of the possible presence

of crossovers in OCHAC even in a simple Euclidean setting, CCHAC may appear as

a deteriorated version of standard HAC, where the optimal merger is chosen within a

reduced set of possible mergers compared to the unconstrained version. One may then

expect that the total within-cluster inertia at a given step of the algorithm is larger

than for the unconstrained version that chooses the “optimal” merger at this step (that

is, the merger with the smallest increase of the total within-inertia). In addition, the

algorithm does not necessarily exhibit a clear and understandable monotonic evolution of

the objective criterion, (mt)t. However, it can be shown, even in a very simple example,

that OCHAC can lead to better solutions in terms of within-cluser intertia, when the

constraint is consistent to the spatial structure of the data. This fact is illustrated in

Figure 2 (detailed analysis of all examples and counter-examples of this section is provided

in Appendix C). In this example, 7 data points are displayed in R2 with an order constraint

illustrated by a line linking two points allowed to be merged. In this situation, (mt)t is

indeed non monotonic for OCHAC (bottom left figure) but leads to a better total within-

cluster inertia for k = 3 clusters (vertical green line), which is also more relevant for
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the data configuration (top figures). This is a typical case where the constraint forces

the algorithm to explore under-efficient configurations but that can be aggregated into a

better solution, contrary to the unconstrained algorithm. This is explained by the fact

that even the unconstrained algorithm is greedy, by construction, and thus not optimal

compared to an exhaustive search of the best partition in k classes.

Figure 2: Simple configuration in which OCHAC outperforms standard HAC.
Top left: Initial configuration with the order constraint represented by straight lines. Top
right: Clustering with 3 clusters as produced by OCHAC (red) and standard HAC (blue).
Bottom: Evolution of (mt)t and of the total within-cluster inertia (also called, Error Sum
of Squares: (ESSt)t) along the clustering processes, the green line correspond to the 3
components clustering.
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4.4 Monotonicity of alternative heights

Since reversals can occur in CCHAC dendrograms with Ward’s linkage, alternative defi-

nitions of the height have been proposed to improve the interpretability of the result in

this case. They are defined as quantities related to the heterogeneity of the partition. In

this section, we study the monotonicity of such alternative heights.

Grimm (1987) presents three alternative heights to the standard variation of within-

cluster inertia (mt):

• the within-cluster (pseudo-)inertia (or Error Sum of Squares) that corresponds to

the value of the objective function. In this case, the height at step t is given by:

ESSt =
n−t∑
u=1

I(Gt+1
u ),

where P t+1 = {Gt+1
u }u=1,...,n−t is the partition obtained at step t of the algorithm.

This alternative height is very natural (and the one implemented in the R pack-

age rioja (Juggins 2012) for OCHAC) since it corresponds to the criterion whose

minimization is approximated by HAC (and OCHAC) in a greedy way;

• the (pseudo-)inertia of the current merger, which is defined as:

It = I(Gt
u ∪Gt

v)

where Gt
u and Gt

v are the two clusters merged at step t. Grimm (1987) remarks that

this measure is very sensitive to the cluster size |Gt
u|+ |Gt

v|.

• the average (pseudo-)inertia of the current merger, that has been designed so as to

avoid the bias related to the cluster size in It. It is defined as:

I t =
It

|Gt
u|+ |Gt

v|

Standard HAC: Known properties of alternative heights. Note that ESSt =∑
t′≤tmt′ . As explained in Section 4, (mt)t is monotonic for standard HAC, both for Eu-
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clidean and non Euclidean data. Sincem0 = 0 by definition, this ensures the monotonicity

of (ESSt)t, for Euclidean and non Euclidean data in the case of standard HAC.

On the contrary, It and I t may induce reversals even for standard HAC and Euclidean

data. More importantly, contrary to the case when the height of the dendrogram is mt,

even when the ultrametric property is satisfied, the monotonicity is not ensured for these

criteria. This is illustrated in Figure 3 (and in Figure 11 of the Appendix B), for It (and

for Īt, respectively) and data in R2.

In this case, the dendrogram has a conventional look but the mergers are not ordered

by increasing heights. For instance, in Figure 3, the cluster merged at step 2 is above the

one at step 3. Hence, cutting the dendrogram at height h = 2.5 leads to a clustering into

{x1, x2}, {x3}, {x4, x5}, but this clustering does not belong to the sequence of clusterings

induced by the HAC (where the clustering in 3 clusters is the one obtained after the

second merger, that is, {x1, x2, x3}, {x4}, {x5}).

CCHAC: Known properties of alternative heights. Figures 3 and 11 (the latter

in Appendix B) provide counter-examples for the monotonicity of (It)t and (Īt)t in the

Euclidean case for HAC. If the objects are pre-ordered as the nodes in these figures,

then OCHAC and standard HAC give identical hierarchical clusterings. Therefore, these

examples also provide counter-examples for the monotonicity of (It)t and (Īt)t in the

Euclidean case for OCHAC, and show that there is no guarantee for monotonicity in the

case of general CCHAC. The fact that (Īt)t is not necessarily monotonous for OCHAC

has already been mentioned by Grimm (1987).

CCHAC: Within-cluster pseudo-inertia for dissimilarity data. The only unan-

swered case is whether (ESSt)t is monotonic or not for CCHAC and non Euclidean

data. We provide a counter-example that proves that the monotonicity is not ensured in

this case: Figure 4 shows that the dendrogram obtained from OCHAC on a given non-

Euclidean dissimilarity D contains a crossover (m4 < m3). In particular, the associated

sequence of heights is not monotonic. However, Proposition 1 ensures that (ESSt)t has the

nice property that the absence of crossovers is equivalent to its monotonicity. Indeed, as
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D ≈


0.00 1.00 1.93 9.54 9.59
1.00 0.00 1.93 10.54 10.58
1.93 1.93 0.00 10.05 10.49
9.54 10.54 10.05 0.00 2.16
9.59 10.58 10.49 2.16 0.00
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Figure 3: A reversal for Euclidean standard HAC with height defined as It.
Top left: Configuration of the objects in R2. Top right: Coordinates of the objects and
Euclidean distance matrix corresponding to this configuration. Bottom left: Represen-
tation of the values of the dissimilarity (dark colors correspond to larger values, so to
distant objects). Bottom right: dendrogram obtained from standard HAC. Only the first
3 merges of the dendrogram is represented to ensure a comprehensive view of the sequence
of heights.
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(ESSt)t corresponds to the cumulative sums of the linkage (mt)t, the mapping between mt

and ESSt is equal to the addition of ESSt−1. As, by definition, ESSt−1 is, as any I(Gt−1
u ),

positive, this ensures that this mapping is non-decreasing.

Table 1 summarizes the properties of the different types of heights, respectively for

standard HAC and CCHAC. Note that the monotonicity of ESSt is a consequence of the

positivity of mt.

mt ESSt It It

HAC Euclidean 3Ward (1963) 3Ward (1963) 5 [Fig. 3] 5[Fig. 11]
Non Euclidean 3Batagelj (1981) 3Batagelj (1981) 5 [Fig. 3] 5[Fig. 11]

CCHAC Euclidiean 5Grimm (1987) 3Grimm (1987) 5 [Fig. 3] 5Grimm (1987)
Non Euclidean 5Grimm (1987) 5 [Fig. 4] 5 [Fig. 3] 5Grimm (1987)

Table 1: Monotonicity of heights for standard HAC (top) and CCHAC (bottom).
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Figure 4: A reversal for non-Euclidean OCHAC with height defined as ESSt.
Top: Dissimilarity matrix. Bottom left: Representation of the values of the dissimilarityD
(dark colors correspond to larger values, so to distant objects). Bottom right: Dendrogram
obtained from OCHAC (the ordering is indicated by the indices of objects) and with the
height corresponding to ESSt.

23



5 Simulation

HAC can be seen as a greedy algorithm to solve the problem of finding the partition with

minimal within-cluster inertia ESSt of n objects into n− t classes, for each t = 1 . . . n− 1.

It may be expected that the inertia of the partitions will be lower for HAC than OCHAC,

since the possible mergers in OCHAC are chosen among a subset of the possible mergers in

HAC. Can we quantify the impact of the order constraint on the quality of the partitions

(as measured by ESS) obtained for HAC and OCHAC, depending on the strength of the

actual order structure in the data? In this section, we address this question by analyzing

Hi-C data (Dixon et al. 2012), which present a strong order structure, as illustrated by

Figure 5. We use a perturbation process to progressively break the consistency between

the data structure and the constraint imposed in OCHAC.

5.1 Data and method

Hi-C studies aim at characterizing proximity relationships in the 3D structure of a genome,

by measuring the frequency of physical interaction between pairs of genomic locations via

sequencing experiments. Formally, an Hi-C map is a symmetric matrix S = (sij)i,j in

which each entry sij is equal to the frequency of interaction between genomic loci i and

j. Here, a locus is a fixed-size interval of genomic positions, also called a “bin”. Hi-C

maps are classically represented by the upper triangular part of the matrix, as shown in

Figure 5. The matrix has a strong diagonal structure that reflects the linear order of DNA

within chromosomes (loci that are close along the genome are more frequently interacting

than distant loci). An important question in Hi-C studies is to identify Topologically

Associating Domains (TADs), which are self-interacting genomic regions appearing to

be more compact than the rest of the genome. Indeed, TADs have been shown to play

an important role in gene regulation (Dixon et al. 2012). A number of TAD detection

methods have been proposed (see e.g., Zufferey et al. (2018) for a review) and some are

based on HAC or OCHAC (Fraser et al. 2015; Haddad et al. 2017; Ambroise et al. 2019).

This is both natural, since Hi-C maps can be seen as similarity matrices, and formally

justified, as explained in Section 3.3.
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Figure 5: Graphical representation of an Hi-C map. Horizontal position is defined
by the indices of bins within a single chromosome. Intensities of the frequency of physical
interaction between bins are represented by levels of red.

The simulations in this section are based on a single chromosome (chromosome 3)

from an experiment in human embryonic stem cells (hESC; Dixon et al. (2012)1). The

downloaded Hi-C matrix contains 4,864 bins. It has been obtained with a bin size of

40kb and normalized using ICE (Imakaev et al. 2012). We further performed a log-

transformation of the entries to reduce the distribution skewness prior clustering.

In order to assess the influence of the data structure on the quality of the partitions

obtained by OCHAC and standard HAC algorithms, we have used a perturbation process

to progressively remove the strong diagonal in the original Hi-C map. The perturbation

consists in swapping two entries, sij and si′j′ of the matrix, in which (i, j) and (i′, j′) have

been randomly sampled with uniform probability among the pairs {(u, v), (u′, v′)} for

which u ≤ v, u′ ≤ v′ and suv + su′v′ > 0, where the last condition avoids swapping entries

that are both zero. The proportion of such swapped pairs, which we call perturbation

level, varied from 0% up to 90% (Figure 6).

This process was repeated 50 times to allow assessing the variability. Since obtained

matrices are not necessarily positive definite, we translate their diagonal by a small quan-
1The pre-processed and normalized data have been downloaded from the authors’ website at http:

//chromosome.sdsc.edu/mouse/hi-c/download.html (raw sequence data are also published on the
GEO website, accession number GSE35156).
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Figure 6: Illustration of the perturbation process. From left to right : example of
Hi-C maps corresponding to increasing perturbation levels.

tity that ensures the positivity of all d2
ij = sii + sjj − 2sij as described in Section 3.2.

All simulations were performed with R. The results for standard HAC were computed

with the function hclust (from the stats package) and those for OCHAC were computed

with the function adjClust (from the adjclust package). Figures were obtained using

adjClust or ggplot2 (Wickham 2016).

5.2 Comparison of standard HAC and OCHAC results

In this section, the results of standard HAC and OCHAC are compared through the

corresponding height sequences the dendrograms, and through clusterings obtained by

horizontal cuts of the dendrograms. While the first two are a direct output of the HAC

process, clusterings are obtained using a model selection strategy. We have considered

two such strategies: the broken stick (Bennett 1996), as implemented in adjclust, and

the slope heuristic (Arlot et al. 2016), as implemented in capushe. As both of them gave

similar results, we chose to report here only the results obtained for the broken stick

heuristic.

Height sequences. Figure 7 shows the evolution of mt (normalized by its maximal

value among both methods at a given permutation level) and ESSt (normalized by the total

inertia of the set of bins) along the two clustering processes for increasing perturbation

levels. For the original dataset, which presents an organization strongly consistent with

the order constraint, the heights of standard HAC and OCHAC are very similar. However,

interestingly, OCHAC improves the objective criteria (ESSt and mt) for low perturbation

levels (15%-30%) across a wide range of merging levels.
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More specifically, we compared the heights obtained for HAC and OCHAC at the

merger number selected by the broken stick heuristic (Bennett (1996); vertical lines in

Figure 7). At these numbers of clusters or in their close neighbourhood, ESSt is always

smaller for OCHAC, which we interpret as more homogeneous clusterings for OCHAC

than for HAC. The magnitude of the improvement achieved by OCHAC with respect to

HAC depends on the perturbation level: for the original data, it is close to 5%, whereas it

is much larger (25-30%) when the perturbation level is 15%-30%. It then decreases again

(< 20%) for larger perturbation levels (60%).

The fact that OCHAC can achieve lower values than HAC for ESSt and mt may be

counter-intuitive, since –as explained at the beginning of Section 5– possible mergers in

OCHAC are chosen among only a subset of the possible mergers in standard HAC. In

fact, HAC itself is a heuristic for the minimization of ESSt, because of its hierarchical

agglomerative nature; in contrast, the optimal clustering at step t in the sense of ESSt

may not necessary be obtained by merging two clusters of the optimal clustering at step

t − 1. This result illustrates the robustness to noise of the constrained approach, which

is very interesting in practice: in Hi-C experiments, for instance, many biases (genomic,

experimental, etc.) are encountered. Thus, OCHAC has to be preferred in such contexts

and will additionally result in a lower computational cost.

For perturbation levels larger than 60%, the data structure is no more compatible with

the constraint (see Figure 6) and standard HAC seems to performs globally better than

OCHAC, as expected. In addition, in this extreme situation, OCHAC exibits very large

reversals in mt values (seen with the grey shadow in Figure 7), that are due to sudden

breaks in the quality of the clusterings, induced by the constraint. The presence of such

large reversals is a practical and visible indication that the constraint is not relevant for

the data and that OCHAC should not be used.

Dendrograms and clusterings. The same type of conclusion can be drawn when

comparing not just the heights of the dendrograms but the dendrograms themselves or

the clusterings induced by these dendrograms. Figure 8 shows the distribution of Baker’s γ

coefficients (Baker 1974) between the dendrograms of standard HAC and OCHAC versus
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Figure 7: Comparison of the height sequences for standard HAC (red, solid)
and OCHAC (blue, dashed) for ESSt (top) and mt (bottom) with various levels of
perturbations of the original Hi-C matrix. The curves correspond to the average criteria
over 50 simulations and the grey shadows correspond to the minimum and maximum of
the criteria over 50 simulations. The vertical lines correspond to the average number of
clusters chosen by the broken stick heuristic, respectively for standard HAC and OCHAC
(red, solid and blue, dashed).

the perturbation level. This coefficient corresponds to the Spearman correlation between

the pairwise values of the cophenetic distances between pairs of objects as induced by

the dendrogram. As the perturbation level increases, Baker’s γ linearly decreases from

a value close to 1 (implying very similar dendrograms) to a value close to 0 (implying

completely different dendrograms).

Finally, we compared the clusterings obtained by the broken stick heuristic (Bennett

1996) as follows. For larger perturbation levels (more than 60%) of permuted coefficients,

we obtained a trivial clustering with only one cluster, a strong indication that the cluster

structure had disappeared at these levels. For lower perturbation levels, the obtained

clusterings were compared using the Normalized Mutual Information (NMI, Danon et al.

(2005)). As for Baker’s γ, the NMI values obtained for the original data and low levels

of perturbations (up to 30%) are very close to 1, which shows a strong similarity of the

induced clusterings. As the perturbation level increases, the obtained partitions became
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Figure 8: Baker’s γ coefficient between OCHAC and standard HAC dendro-
grams versus perturbation level.

more and more different, with NMI values below 0.6 (results not shown).

5.3 Reversals for the different heights

In this section, we investigate the reversals obtained for different heights and for standard

HAC and OCHAC. Figure 9 gives the evolution of the percentage of reversals (relative to

the total number of simulations, 50), for standard HAC and OCHAC and for the different

types of heights, along the hierarchical clustering process.

As expected from Section 3 (Table 1), (ESSt)t does not have reversals and (mt)t

only has reversals for OCHAC. When the perturbation level increases, the evolution of

the number of reversals in (It)t and (Īt)t is markedly different from that of (mt)t. For

the smallest perturbation levels (up to 30%), the number of reversals of (mt)t is close

to 0, while it ranges from 10 to 50% for (It)t and (Īt)t. At these perturbation levels,

(mt)t almost never has a reversal at a merger number that corresponds to the number

of clusters chosen by the broken stick heuristic: most reversals are concentrated at a

merger number smaller than the merger chosen by the broken stick heuristic. Actually,
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Figure 9: Evolution of the number of reversals for ESSt, mt, It and Īt for standard
HAC (top) and OCHAC (bottom) for increasing levels of perturbation of the original Hi-C
matrix. The background shadow is the actual value and the strong line is a smoothed
value (box kernel, bandwith equal to 50). The dotted vertical line corresponds to the
average number of clusters chosen by the broken stick heuristic.

for small perturbation levels, these reversals in mt values help improve the quality of

further clusterings by choosing a solution that is less efficient than that of standard HAC

but more consistent with the data (as already discussed in the example of Figure 2).

Hence, when the data structure is consistent with the constraint, (mt)t typically provides

an interpretable dendrogram. This nice property is, of course, lost when the constraint is

no more consistent with the data structure (above a perturbation level of 60%), which is

explained by the fact that the OCHAC has a poor performance in that context, as already

discussed in the previous section.

On the contrary, (It)t and (Īt)t exhibit larger numbers of reversals. This is partic-

ularly the case for the last mergers, even for small levels of perturbation and even in

the unconstrained case: 40-60% of the simulations have reversals for both OCHAC and

standard HAC at a number of clusters corresponding to the selected clustering. We also

observe that the percentage of simulations showing a reversal for standard HAC tends

to decrease when the perturbation level in the data increases for the first steps of the
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hierarchical process (the same can be observed, to a much lesser extent, for OCHAC).

This phenomenon is explained below.

Figure 10: Evolution of the average cardinal of mergers along the hierarchical
clustering process for standard HAC (top) and OCHAC (bottom), and different levels
of perturbation. Note that the average is computed over the 50 simulations, whereas the
original data correspond to a unique value. Data are shown only for the first 4,000 mergers
and for a cardinal smaller than 8 for the sake of readability. The two dotted vertical lines
correspond, respectively to n/2 and 3n/4.

Figure 10 displays the evolution of the merged cluster size thorough the hierarchical

clustering and provides an explanation for this fact. For standard HAC, the number of

clusters with a size equal to 2 during the first steps of the algorithm is strongly increasing

when the perturbation level increases. For a permutation level of 90%, most of the mergers

have a size equal to 2 during half of the clustering process (for fusion numbers ranging from

1 to at least 2,000). However, for clusters with a size equal to 2, It is equal to mt which

explains the similiarities between mt and It curves during the first steps of the clustering

process, as the perturbation level increases. Since (mt)t is increasing for standard HAC,

this explains why It has less reversals in standard HAC for the first merger numbers when

the perturbation level is higher. The same holds for Īt up to a fixed size factor of 2.
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6 Conclusion

In this article, we studied the applicability of HAC and its constrained version to a wide

range of input data. In particular, we have shown that these applications are justified

beyond the Euclidean framework. We have also shown that the monotonicity of the

sequence of heights is not always ensured, although this property is necessary for the se-

quence of clusterings obtained by cutting dendrograms to be consistent with the sequence

of clusterings of the algorithm. We have clarified which heights have this property de-

pending on the input data types and for the constrained and unconstrained HAC. We have

also pinpointed an important distinction between this monotonicity and the existence of

crossovers.

These results imply that the variance of the merged cluster, It, or the average variance

of the merged cluster, Īt, are never ensured to be monotonic, and should thus not be

chosen to represent the dendrogram heights. Strikingly, we have also shown that the

constrained version of the HAC can provide more relevant and efficient solutions than its

unconstrained versions, not only in terms of algorithmic complexity, but also in terms of

the values of the objective function ESSt. In such cases, a small number of reversals can

actually be beneficial to explore intermediate solutions closer to the data and that lead

to more relevant clusters.

Acknowledgements

The authors would like to thank Marie Chavent for numerous instructive discussions on

this paper.

The authors are grateful to the GenoToul bioinformatics platform (INRA Toulouse,

http://bioinfo.genotoul.fr/) and its staff for providing computing facilities.

32



Funding

The PhD thesis of N.R. is funded by the INRA/Inria doctoral program 2018. This

work was also supported by the SCALES project funded by CNRS (Mission “Osez

l’interdisciplinarité”).

References

Ah-Pine, J. and Wang, X. (2016). Similarity based hierarchical clustering with an appli-

cation to text collections. In Boström, H., Knobbe, A., Soares, C., and Papapetrou, P.,

editors, Proceedings of the 15th International Symposium on Intelligent Data Analysis

(IDA 2016), Lecture Notes in Computer Sciences, pages 320–331, Stockholm, Sweden.

Ambroise, C., Dehman, A., Neuvial, P., Rigaill, G., and Vialaneix, N. (2019). Adjacency-

constrained hierarchical clustering of a band similarity matrix with application to ge-

nomics. arXiv preprint arXiv:1902.01596.

Arlot, S., Brault, V., Baudry, J.-P., Maugis, C., and Michel, B. (2016). capushe: CAli-

brating Penalities Using Slope HEuristics. R package version 1.1.1.

Aronszajn, N. (1950). Theory of reproducing kernels. Transactions of the American

Mathematical Society, 68(3):337–337.

Baker, F. B. (1974). Stability of two hierarchical grouping techniques case I: sensitivity

to data errors. Journal of the American Statistical Association, 69(346):440–445.

Batagelj, V. (1981). Note on ultrametric hierarchical clustering algorithms. Psychome-

trika, 46(3):351–352.

Bennett, K. D. (1996). Determination of the number of zones in a biostratigraphical

sequence. New Phytologist, 132(1):155–170.

Chavent, M., Kuentz-Simonet, V., Labenne, A., and Saracco, J. (2018). ClustGeo2: an R

package for hierarchical clustering with spatial constraints. Computational Statistics,

33(4):1799–1822.

33



Chen, J. and Ye, J. (2008). Training SVM with indefinite kernels. In Cohen, W., McCal-

lum, A., and Roweis, S., editors, Proceedings of the 25th International Conference on

Machine Learning (ICML 2008), pages 136–146, Helsinki, Finland. ACM, New York,

NY, USA.

Chen, Y., Garcia, E., Gupta, M., Rahimi, A., and Cazzanti, L. (2009). Similarity-based

classification: concepts and algorithm. Journal of Machine Learning Research, 10:747–

776.

Danon, L., Diaz-Guilera, A., Duch, J., and Arenas, A. (2005). Comparing community

structure identification. Journal of Statistical Mechanics: Theory and Experiment,

2005:P09008.

Dehman, A. (2015). Spatial Clustering of Linkage Disequilibrium Blocks for Genome-Wide

Association Studies. PhD thesis, Université Paris Saclay.

Dixon, J., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J., and Ren, B.

(2012). Topological domains in mammalian genomes identified by analysis of chromatin

interactions. Nature, 485:376–380.

Ferligoj, A. and Batagelj, V. (1982). Clustering with relational constraint. Psychometrika,

47(4):413–426.

Fraser, J., Ferrai, C., Chiariello, A. M., Schueler, M., Rito, T., Laudanno, G., Barbieri,

M., Moore, B. L., Kraemer, D. C., Aitken, S., Xie, S. Q., Morris, K. J., Itoh, M., Kawaji,

H., Jaeger, I., Hayashizaki, Y., Carninci, P., Forrest, A. R., The FANTOM Consortium,

Semple, C. A., Dostie, J., Pombo, A., and Nicodemi, M. (2015). Hierarchical folding

and reorganization of chromosomes are linked to transcriptional changes in cellular

differentiation. Molecular Systems Biology, 11:852.

Grimm, E. C. (1987). CONISS: a FORTRAN 77 program for stratigraphically constrained

analysis by the method of incremental sum of squares. Computers & Geosciences,

13(1):13–35.

34



Haddad, N., Vaillant, C., and Jost, D. (2017). IC-Finder: inferring robustly the hierar-

chical organization of chromatin folding. Nucleic Acids Research, 45(10):e81–e81.

Hartigan, J. A. (1967). Representation of similarity matrices by trees. Journal of the

American Statistical Association, 62(320):1140–1158.

Imakaev, M., Fudenberg, G., McCord, R., Naumova, N., Goloborodko, A., Lajoie, B.,

Dekker, J., and Mirny, L. (2012). Iterative correction of Hi-C data reveals hallmarks of

chromosome organization. Nature Methods, 9(10):999–1003.

Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika, 32(3):241–254.

Juggins, S. (2012). rioja: Analysis of Quaternary Science Data. CRAN, Newcastle, UK.

Krislock, N. and Wolkowicz, H. (2012). Handbook on Semidefinite, Conic and Polynomial

Optimization, volume 166 of International Series in Operations Research & Manage-

ment Science, chapter Euclidean distance matrices and applications, pages 879–914.

Springer, New York, Dordrecht, Heidelberg, London.

Kruskal, Joseph, B. (1964). Multidimensional scaling by optimizing goodness of fit to a

nonmetric hypothesis. Psychometrika, 29(1):1–27.

Lance, G. and Williams, W. (1967). A general theory of classificatory sorting strategies:

1. Hierarchical systems. The Computer Journal, 9(4):373–380.

Lebart, L. (1978). Programme d’agrégation avec contraintes. Les Cahiers de l’Analyse

des Données, 3(3):275–287.

Miyamoto, S., Abe, R., Endo, Y., and Takeshita, J.-I. (2015). Ward method of hier-

archical clustering for non-Euclidean similarity measures. In Proceedings of the VIIth

International Conference of Soft Computing and Pattern Recognition (SoCPaR 2015),

Fukuoka, Japan. IEEE.

Murtagh, F. and Legendre, P. (2014). Ward’s hierarchical agglomerative clustering

method: which algorithms implement Ward’s criterion. Journal of Classification,

31(3):274–295.

35



Qin, J., Lewis, D. P., and Noble, W. S. (2003). Kernel hierarchical gene clustering from

microarray expression data. Bioinformatics, 19(16):2097–2104.

Schleif, F.-M. and Tino, P. (2015). Indefinite proximity learning: a review. Neural

Computation, 27(10):2039–2096.

Schoenberg, I. (1935). Remarks to Maurice Fréchet’s article “Sur la définition axioma-

tique d’une classe d’espace distanciés vectoriellement applicable sur l’espace de Hilbert”.

Annals of Mathematics, 36:724–732.

Schölkopf, B. and Smola, A. J. (2002). Learning with Kernels: Support Vector Machines,

Regularization, Optimization, and Beyond. MIT Press.

Strauss, T. and von Maltitz, M. J. (2017). Generalising Ward’s method for use with

Manhattan distances. PLoS ONE, 12:e0168288.

Székely, G. J. and Rizzo, M. L. (2005). Hierarchical clustering via joint between-within

distances: extending Ward’s minimum variance method. Journal of Classification,

22(2):151–183.

Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of

the American Statistical Association, 58(301):236–244.

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New

York, USA.

Wishart, D. (1969). An algorithm for hierarchical classifications. Biometrics, 25(1):165–

170.

Young, G. and Householder, A. (1938). Discussion of a set of points in terms of their

mutual distances. Psychometrika, 3:19–22.

Zufferey, M., Tavernari, D., Oricchio, E., and Ciriello, G. (2018). Comparison of compu-

tational methods for the identification of topologically associating domains. Genome

biology, 19(1):217.

36



Appendix

A Proof of Proposition 2

Proof of Proposition 2. We begin by noting that by Proposition 1, the only reversals that

may occur are crossovers. With the notation of Proposition 2, a crossover at step t + 1

corresponds to the situation where

δ(Gl, Gr) ≥ δ(Gl ∪Gr, Gr̄) or δ(Gl, Gr) ≥ δ(Gl ∪Gr, Gl̄).

By symmetry we focus on the first case. With the notation of Proposition 2, and using

the Lance-Willams formula (4), the first condition is equivalent to

δ(Gl, Gr) ≥
glr′δ(Gl, Gr̄) + grr′δ(Gr, Gr̄)

glr′ + grr′

while the second one is equivalent to

δ(Gl, Gr) ≥
gl̄lδ(Gl̄, Gl) + gl̄rδ(Gl̄, Gr)

gl̄l + gl̄r

hence the result.
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B Counter-example of the monotonicity of Īt for stan-

dard HAC in the Euclidean case
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Figure 11: A reversal for Euclidean standard HAC with height defined as Īt. Top
left: Configuration of the objects in R2. Top right: Coordinates of the objects and Eu-
clidean distance matrix corresponding to this configuration. Bottom left: Representation
of the values of the dissimilarity (dark colors correspond to larger values, so distant ob-
jects). Bottom right: dendrogram obtained from standard HAC. Only the first 3 merges of
the dendrogram is represented to ensure a comprehensive view of the sequence of heights.
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C Step-by-step description of the counter-examples

In the following tables, red color is used to signal reversals. Green color in details of

Figure 2 is used to highlight the value of the objective function (ESSt) for the clustering

with 3 clusters.

Merger cluster 1 cluster 2 mt ESSt It I t

1 {x1} {x2} 1.000 1.000 1.000 0.500

2 {x1, x2} {x3} 0.517 1.517 1.517 0.506

Table 2: Details of Figure 1

OCHAC

Merger cluster 1 cluster 2 mt ESSt It I t

1 {x1} {x2} 2.500 2.500 2.500 1.250

2 {x1, x2} {x3} 2.167 4.667 4.667 1.556

3 {x6} {x7} 2.500 7.167 2.500 1.250

4 {x5} {x6, x7} 2.167 9.333 4.667 1.556

5 {x1, x2, x3} {x4} 13.333 22.667 18.000 4.500

6 {x1, x2, x3, x4} {x5, x6, x7} 20.762 43.429 43.429 6.204

HAC

Merger cluster 1 cluster 2 mt ESSt It I t

1 {x2} {x6} 0.500 0.500 0.500 0.250

2 {x1} {x3} 2.000 2.500 2.000 1.000

3 {x5} {x7} 2.000 4.500 2.000 1.000

4 {x2, x6} {x1, x3} 6.250 10.750 8.750 2.188

5 {x4} {x1, x2, x3, x6} 13.250 24.000 22.000 4.400

6 {x5, x7} {x1, x2, x3, x4, x6} 19.429 43.429 43.429 6.204

Table 3: Details of Figure 2
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Merger cluster 1 cluster 2 mt ESSt It I t

1 {x1} {x2} 0.50 0.50 0.50 0.25

2 {x1, x2} {x3} 2.32 2.82 2.82 0.94

3 {x4} {x5} 2.33 5.15 2.33 1.17

4 {x1, x2, x3} {x4, x5} 120.84 125.99 125.99 25.20

Table 4: Details of Figure 3

Merger cluster 1 cluster 2 mt ESSt It I t

1 {x1} {x2} 0.995 0.995 0.995 0.498

2 {x1, x2} {x3} 0.998 1.993 1.993 0.664

3 {x1, x2, x3} {x4} 0.997 2.990 2.990 0.748

4 {x1, x2, x3, x4} {x5} -0.192 2.798 2.798 0.560

5 {x1, x2, x3, x4, x5} {x6} 0.534 3.332 3.332 0.555

Table 5: Details of Figure 4

Merger cluster 1 cluster 2 mt ESSt It I t

1 {x1} {x2} 0.50 0.50 0.50 0.25

2 {x4} {x5} 2.31 2.81 2.31 1.16

3 {x1, x2} {x3} 2.32 5.13 2.82 0.94

4 {x1, x2, x3} {x4, x5} 120.83 125.96 125.96 25.19

Table 6: Details of Figure 11
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