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Fabrication of sharp silicon arrays to wound Caenorhabditis elegans

Understanding how animals respond to injury and how wounds heal remains a challenge. These questions can be addressed using genetically tractable animals, including the nematode Caenorhabditis elegans. Given its small size, the current methods for inflicting wounds in a controlled manner are demanding. To facilitate and accelerate the procedure, we fabricated regular arrays of pyramidal features ("pins") sharp enough to pierce the tough nematode cuticle. The pyramids were made from monocrystalline silicon wafers that were micro-structured using optical lithography and alkaline wet etching. The fabrication protocol and the geometry of the pins, determined by electron microscopy, are described in detail. Upon wounding, C. elegans expresses genes encoding antimicrobial peptides. A comparison of the induction of antimicrobial peptide gene expression using traditional needles and the pin arrays demonstrates the utility of this new method.

Introduction

As part of the investigation of innate immune defences in C. elegans, worms are generally wounded in one of two ways. For precise cell-biological studies, individual worms mounted on glass slides can be injured using a laser coupled with an inverted microscope. As a complementary method, worms can be wounded manually, using standard glass microinjection needles 1 . Both techniques are time-consuming and require meticulousness. More than 20 years ago, a method for genetically transforming nematodes using arrays of silicon micromechanical piercing structures was published [START_REF] Hashmi | Genetic transformation of nematodes using arrays of micromechanical piercing structures[END_REF][START_REF] Trimmer | Injection of DNA into plant and animal tissues with micromechanical piercing structures[END_REF] . This inspired us to investigate their possible use as a tool to wound C. elegans in a less painstaking manner.

Silicon is the most widely used material in the microelectronics industry and in the production of micro-electromechanical systems. It is abundant, inexpensive and mechanically robust [START_REF] Hopcroft | What is the young's modulus of silicon?[END_REF] . High-quality silicon wafers are widely available commercially and fabrication processes for silicon features have been developed for more than 50 years [START_REF] Fruhauf | Shape and Functional Elements of the Bulk Silicon Microtechnique[END_REF] . Silicon microstructures have been already successfully used for piercing of biological objects [START_REF] Hashmi | Genetic transformation of nematodes using arrays of micromechanical piercing structures[END_REF] and for the fabrication of microneedles [START_REF] Mcallister | Microfabricated microneedles for gene and drug delivery[END_REF] for gene and drug delivery [START_REF] Larrañeta | Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development[END_REF] . These studies have shown that silicon is a chemically and mechanically stable biocompatible material. Despite the apparent simplicity of the method described by Trimmer and colleagues [START_REF] Hashmi | Genetic transformation of nematodes using arrays of micromechanical piercing structures[END_REF] , there appears to be no other study using these arrays to transform any nematode species. On the other hand, such arrays could be well suited for use as tools to wound worms [START_REF] Reed | Microsystems for Drug and Gene Delivery[END_REF] . Unfortunately, neither the arrays nor a protocol for their fabrication are available any more (W. Trimmer, personal communication). In order to fabricate equivalent microstructures we therefore developed our own protocol, based on optical lithography and alkaline wet etching.

Materials and Methods

Array production

As initial material, we used n-type monocrystalline silicon wafers doped by phosphorus (5 -10 Ω cm) oriented with [100] as the surface plane (from Sil'tronix, France). The wafers were polished on both sides and covered with a 290 nm-thick thermally grown oxide layer. We used two sizes of wafers with diameters of 1 inch (25.4 ± 0.3 mm) and 4 inches (100 ± 0.3 mm).

All the microfabrication processes were carried out in a clean room of air purity class ISO 5. The wafers were cleaned in successive baths of acetone and isopropyl alcohol (IPA) with ultrasonic agitation, then rinsed with deionized water and dried under clean nitrogen flow. In order to improve the adhesion of the photoresist and to remove the traces of organic solvents and humidity, the wafers were exposed to oxygen plasma at a temperature of 150 • C for 10 minutes in a plasma chamber (Nanoplas, France). The radiofrequency power for plasma excitation was 200W. Then, the wafers were spin-coated with a positive photoresist (Microposit S1813 from MicroChem) and exposed to UV-light using MJB-4 (Suss MicroTec, Germany) or PLA-501 (Canon, Japan) optical lithography tools through a mask of round features.

We studied two types of arrays using masks with different geometries: hexagonal and square arrays. The hexagonal arrays were denser than the square ones, but in both cases we kept the distance between the features equal to 100 µm in order to prevent possible proximity effects. During the lithography step, we usually oriented the x-axis of the arrays along the [110] silicon crystalline axis in order to cut the samples in between the features during the silicon cleavage; the orientation should not affect the final shape of individual microfeatures [START_REF] Wilke | Silicon microneedle formation using modified mask designs based on convex corner undercut[END_REF] .

The feature diameters were 75, 100 and 300 µm and the center-to-center distances were 100, 133 and 400 µm respectively in the hexagonal arrays. The mask designs for the 75 and 100 µm feature arrays are shown in Fig. 1. For square arrays, we used only 300 µm features with 400 and 600 µm center-to-center distances (pitch). After UV light exposure the features were developed in a commercially available solution (Microposit MF-319) containing tetramethylammonium hydroxide (TMAH). The thickness of the deposited photoresist was about 1.4 µm and it was monitored by a mechanical contact profilometer (Dektak, Bruker).

The features were transferred from the resist layer to silicon dioxide by reactive ion etching (MG-200, Plassys, France). The silicon dioxide was completely removed from the topside of the wafers in the areas between the features that were protected by photoresist. We used CHF 3 reactive plasma because of its good selectivity in etching of SiO 2 , silicon and the photoresist polymer [START_REF] Jansen | A survey on the reactive ion etching of silicon in microtechnology[END_REF] . The remaining photoresist was removed in a solution of 1165 (from Microposit) containing N-methyl-2-pyrrolidone. We confirmed complete removal of the oxide layer in the areas between the round features by contact profilometry. Finally, several wafers were directly processed by alkaline solution while the other wafers were cut in 1 cm x 1 cm square pieces along [110] the crystalline directions of the silicon crystal using a diamond scriber.

Each sample was exposed to potassium hydroxide (KOH) solution in order to etch silicon in the areas not protected by the SiO 2 hard mask. Wet chemical attack by hydroxide solutions is known to be anisotropic because KOH etches different crystalline planes with significantly different rates [START_REF] Wind | Macroscopic etch anisotropies and microscopic reaction mechanisms: a micromachined structure for the rapid assay of etchant anisotropy[END_REF] . We chose a relatively high KOH concentration of 45% (in deionized water; Fluka) because the resulting surface quality is known to be better for highly concentrated solutions (see page 40 in Fruhauf et al. [START_REF] Fruhauf | Shape and Functional Elements of the Bulk Silicon Microtechnique[END_REF] ). In several experimental series, we also saturated the solution by addition of isopropanol (IPA) or ethanol.

A borosilicate glass beaker containing the etching solution was placed into a water bath on a regulated hotplate. The etching solution was kept at a temperature of 60 -75 • C during the etching in order to control the shape of the obtained features, which was also influenced by the etching time. The temperature was measured by a thermometer immersed in the KOH solution. We developed a series of custom designed magnetic 3-D printed sample holders allowing constant uniform agitation for the samples of different sizes and shapes [START_REF] Belougne | Method and Apparatus for Etching a Substrate[END_REF] . The samples were fixed on the magnetic holders fabricated from a temperature resistant photopolymer plastic resin (Formlabs High Temp Resin) and then immersed in the etching solution. Before their first use, the sample holders were rinsed in a hot KOH solution for at least one hour, to remove polymer residues that otherwise interfered with alkaline etching. The samples were agitated at high speed in hot alkaline solution on a standard bench-top magnetic stirrer in order to homogenize the etching and to disperse hydrogen bubbles that appear during the chemical reaction of silicon with hydroxide ions [START_REF] Wind | Macroscopic etch anisotropies and microscopic reaction mechanisms: a micromachined structure for the rapid assay of etchant anisotropy[END_REF] . It was possible to install up to four small samples onto the holders (Figure 2) and to process them in the same etching run. The samples could be then extracted one by one after the desired etching times. The 4 inch wafers were processed one-by-one. In order to keep the most stable conditions we used the same quantity of KOH (650-750 ml) in the beaker and we changed the solution regularly to prevent the alteration of its composition through the introduction of chemical reaction products and by evaporation.

The typical etching time in KOH solution depended on the feature size. For the 75 µm feature arrays it was between 50-60 minutes and for 300 µm feature arrays, about 90 minutes at 65 • C. After the etching, the samples were rinsed in deionized water in order to stop the reaction, then dried under clean nitrogen and observed by optical and scanning electron microscopy (SEM). The optical microscopy gives an immediate evaluation of the etching homogeneity and microscopic defects present on the sample surface. Moreover, the feature base size, the undercut depth and the presence of any remaining SiO 2 mask can also be estimated from optical microscopy. In order to measure the size and characterize the shape of pyramids, however, we needed to use SEM and to tilt the samples from normal incidence to angles from 40 to 70 • . For SEM observation we used a tungsten-filament JEOL JSM-5910 microscope with a typical electron acceleration voltage of 20-30 kV.

After the observations, samples could be returned to the KOH solution in order to continue the etching to obtain the desired pin shape of the features. Several samples which were almost finished were placed into a ultrasonic bath in order to obtain sharp features by mechanical breaking of the remaining silicon at the top of the pin tip.

Worm methods

The strains IG274 1 and IG1061 [START_REF] Dierking | Unusual regulation of a stat protein by an slc6 family transporter in C. elegans epidermal innate immunity[END_REF] carrying the frIS7 (nlp-29p::GFP; col-12p::DsRed2) integrated array in the wild-type or sta-2(ok1860) background, respectively were cultured under standard conditions, i.e. on E. coli OP50 on NGM agar plates 14 . Wounding with a micro-injection needle was performed as previously described [START_REF] Pujol | Anti-fungal innate immunity in C. elegans is enhanced by evolutionary diversification of antimicrobial peptides[END_REF] . For experiments using the silicon arrays, the wafers were mounted either on plastic handles using a cyanoacrylate adhesive ("superglue") or on the end of syringe 2/11 plungers, using household double-sided adhesive tape. Synchronized populations of young adult worms, obtained by alkaline hypochlorite treatment 14 , were transferred to plates without bacteria, rapidly wounded by bringing the wafer down with gentle pressure, repeatedly in a tiling fashion to cover the surface of the plate before transfer to a fresh OP50-seeded plate. In both cases, upregulation of nlp-29p::GFP reporter gene levels were quantified after 6 hours with the COPAS Biosort (Union Biometrica) [START_REF] Pujol | Anti-fungal innate immunity in C. elegans is enhanced by evolutionary diversification of antimicrobial peptides[END_REF] . Staining of adult worms with Hoechst 33258 was performed as previously described [START_REF] Ward | Defects in the C. elegans acyl-coa synthase, acs-3, and nuclear hormone receptor, nhr-25, cause sensitivity to distinct, but overlapping stresses[END_REF] .

Results

Array microfabrication

In order to obtain an initial estimate of the required etching time and the final shape of the pins, we modelled the etching process using ACES software [START_REF] Zhu | Anisotropic Crystalline Etching Simulation (ACES)[END_REF] , taking the data from Seidel et al. [START_REF] Seidel | Anisotropic Etching of Crystalline Silicon in Alkaline Solutions[END_REF] . We simulated different mask shapes including circles (Fig. 3A) and squares (Fig. 3B) and we chose the former in order to simplify process optimization and to get closest to the desired final pin shape. The round features with initial mask diameters of 75, 100 and 300 µm were organized in arrays with separation distances sufficient for pyramid pin development. The pin density, i.e. the center-to-center pin distance, was chosen to be small enough to wound young adult C. elegans that are typically about 1 mm in length.

The selectivity in the etching of Si and SiO 2 was very high, and the oxide mask protected the silicon from alkaline attack relatively well. Fig. 4 shows the result of Si etching by KOH solution observed by SEM. KOH solution attacks (100) Si planes and, because of the strong undercut, the thin 290 nm-thick SiO 2 layer remained only in an area with a size of 5 -7µm. For some pyramids, we observed complete removal of the SiO 2 protection, but in general, the etching was very homogeneous when we used our custom-designed 3D-printed rotating sample holder (Fig. 2) at speeds of 100 to 180 rpm. SEM images similar to Fig. 4 were taken for all samples in order to ensure that etching was homogeneous over the entire wafer surface.

Fig. 6 shows the successive SEM images of typical individual silicon pyramids that were taken on samples removed from KOH solution after 100, 110 and 118 minutes of etching. The solution was kept at the T=63 • C and the rotation speed was 170 r.p.m. These pyramids were obtained using a hexagonal mask with the pitch of 100 µm and initial feature diameter of 75 µm. In the Fig. 6A obtained after 100 minutes of etching, one can clearly see the pyramid with a octagonal trunk, resulting from undercutting of silicon under the SiO 2 mask, with a lateral size of about 30 µm, corresponding to the pyramid base, and 16 µm corresponding to the pyramid top. The remaining SiO 2 mask is clearly visible on the top of the pyramid. Fig. 6B shows a pyramid obtained after 110 minutes of alkaline etching. One can see that the under-etching is deeper and the lateral sizes of both base and top of the pyramid are decreased to 25 and 5.5 µm, respectively. Finally, Fig. 6C shows a pyramid obtained after etching in the same solution for a total time of 118 minutes. The remaining pyramid has a base size of 21 µm and a very sharp tip. This form most closely resembles the pins previously described [START_REF] Hashmi | Genetic transformation of nematodes using arrays of micromechanical piercing structures[END_REF] .

In earlier work, the crystalline planes that form the pyramid pins were identified as (411) [START_REF] Trimmer | Injection of DNA into plant and animal tissues with micromechanical piercing structures[END_REF][START_REF] Mcallister | Microfabricated microneedles for gene and drug delivery[END_REF][START_REF] Offereins | Methods for the fabrication of convex corners in anisotropic etching of (100) silicon in aqueous KOH[END_REF] . These crystal planes give a tetragonal tip similar to those observed for Si etching in Triton X-100 supplemented TMAH [START_REF] Tang | Sharp silicon tips with different aspect ratios in wet etching/drie and surfactantmodified tmah etching[END_REF] . In our case, the tips of the pins are octagonal with the shapes similar to those reported by Wilke et al. [START_REF] Wilke | Silicon microneedle formation using modified mask designs based on convex corner undercut[END_REF][START_REF] Wilke | The evolution from convex corner undercut towards microneedle formation: theory and experimental verification[END_REF] . Those authors identified the crystal planes forming the main sharp part of pyramids as belonging to (312) family, while the crystalline planes of the base were identified as (228) [START_REF] Wilke | The evolution from convex corner undercut towards microneedle formation: theory and experimental verification[END_REF] . In order to ensure scalability of the process, we compared the shape of the pyramids obtained using 75 and 100 µm masks and found that the angles of the tips were similar; only the pin base size and height changed (Fig. 5). On the other hand, the shape of the tips was dependent on the etching bath conditions, in particular on the freshness of the KOH solution. Aging of the solution favored the formation of flat pyramid bases, consistent with previous observations [START_REF] Wilke | The evolution from convex corner undercut towards microneedle formation: theory and experimental verification[END_REF] . Addition of ethanol, Triton X-100 or IPA also favored the formation of pyramids without sharp tips, formed by only their bases. Figure 7 shows successive SEM images of the pyramids etched at a temperature of 63 • C in 45% KOH solution saturated with IPA. The images in Fig. 7 a-d correspond to etching times of 25, 50, 75 and 100 minutes, respectively. The addition of IPA stabilizes the etching process and pyramid surfaces are very smooth without defects. The crystal planes forming these pyramids correspond, however, to the pyramid bases and they are the same as observed in [START_REF] Wilke | The evolution from convex corner undercut towards microneedle formation: theory and experimental verification[END_REF] .

On the basis of these results, for subsequent etchings, we used only fresh aqueous KOH solution baths for each series of samples to obtain the optimal shape of the pyramidal pins and to diminish the base development. We also increased the etching temperature because higher temperatures allowed us to decrease the etching time which was otherwise inconveniently long for the arrays with initial sizes of 100 and 300 µm. For 75 µm arrays the typical etching time was about 45 minutes for standard etching temperatures of 70-72 • . In Fig. 8A we show a pyramid obtained after 44 minutes of KOH etching at 70 • C. One can clearly see the pyramid covered by the remaining SiO 2 protection layer, with a more extensive fine, electron-transparent SiO 2 "veil". The octagonal shape of the pyramid tip is also very clearly visible. Fig. 8B) shows a pyramid obtained after 45 minutes of etching. The pyramid tip is much sharper than the previous one. The fine electron-transparent oxide layer lost its mechanical stability and was removed during the rinsing and drying of the sample. In order to sharpen the tips we returned the same sample to the KOH etching solution for 3 supplementary minutes (Fig. 8C). The sharp pyramids were rapidly attacked by KOH and when over-etched, only the more resistant crystalline planes close to the base remained (Fig. 8C). The height as well as width of pyramids diminished very rapidly in KOH solution when the SiO 2 protection was gone. We obtained similar results for 3/11 a sample etched for 47 minutes in one run without removal from the solution (Fig. 8D). This instability made the etching process very time-sensitive. We therefore etched samples in KOH for a time slightly inferior to that expected for complete SiO 2 removal, then examined the features using SEM. On the basis of the extent of etching, if necessary we then returned the sample to the KOH solution to finish the process. Because of the consumption of all the silicon under the SiO 2 mask, the "hat" part is completely removed and washed out by KOH solution or while the wafer is rinsed under a flow of deionized water after the etching process has finished. When the pyramid tip size approached 2-5 µm, it was also possible to finish the fabrication by mechanical breaking of the remaining "hat" in a pure water ultrasound bath. In both cases, the remaining pyramids have very sharp tips.

Efficient wounding of C. elegans One of the consequences of wounding or fungal infection of the C. elegans epidermis is the rapid induction of antimicrobial peptide (AMP) gene expression. This can be monitored through the use of transgenic worms carrying fluorescent reporter genes. The most extensively characterised strain, IG274, carries the integrated transgene frIs7, with 2 reporter genes, dsRed and GFP under the control of a constitutive epidermal promoter, col-12, and the infection-inducible nlp-29 promoter, respectively. In the absence of pathogens or injury, IG274 worms appear red, but express GFP strongly when wounded or infected. These changes can be monitored visually or quantified using the COPAS Biosort 1 . In a first series of experiments, we compared the induction of nlp-29p::GFP provoked by wounding by hand with a glass needle or with the silicon pin arrays. Arrays were adhered to a short plastic rod for ease of handling and brought down gently onto a population of worms on an agar plate. The array was lifted, moved and brought down again. The light pattern of indentations left on the surface of the agar was used to ensure complete coverage of the population. As expected, manual wounding with a microinjection needle caused a substantial increase in average GFP expression, and this was almost completely abrogated in a sta-2 mutant, consistent with previous observations [START_REF] Dierking | Unusual regulation of a stat protein by an slc6 family transporter in C. elegans epidermal innate immunity[END_REF] . There was an even more marked increase when worms, whether at a lower or higher density on the culture plate, were wounded with a silicon array. Again, this response was dependent upon sta-2, consistent with both methods activating AMP gene expression by the same canonical signal transduction pathway (Figure 9A). Importantly, in addition to producing equivalent results as the standard needle method, the use of the array simplified and accelerated the procedure substantially. An experienced researcher with good manual dexterity can reasonably wound one worm every 2-4 seconds. With the arrays, no training was required and the speed of wounding was increased at least 10 fold, as hundreds of worms could be wounded in less than 30 seconds. We found that we could use the arrays multiple times. After repeated use, in some cases, we observed a slight abrasion of the pin apex, presumably because of strong mechanical pressure of the tips against the agar support (Fig. 10). To demonstrate that the arrays truly pierced the worms, we made use of the fact that C. elegans is surrounded by a collagen-rich cuticle that renders it impermeable to most compounds [START_REF] Loer | Cuticle integrity and biogenic amine synthesis in Caenorhabditis elegans require the cofactor tetrahydrobiopterin (bh4)[END_REF] . Under normal culture conditions, in non-molting animals, the cell membrane permeable Hoechst 33258 dye can only stain the nuclei of intestinal cells. Mutants with a compromised epithelial barrier on the other hand display staining of epidermal nuclei [START_REF] Partridge | elegans glycosyltransferase bus-8 has two distinct and essential roles in epidermal morphogenesis[END_REF] . In clear contrast to control worms, we observed Hoechst staining of epidermal nuclei in the population of wounded worms (Figure 9B). Having established the potential utility of the arrays, we went on to evaluate the efficiency of wounding using pins of different sizes, spacing and geometries. While the average fluorescence ratio was greater when the pins were longer, the geometry did not appear to be critical (Figure 11).

Discussion

Using an alkaline etching technique, we produced arrays of silicon pyramidal pins. Contrary to the fabrication of concave features on Si (100) which is usually self-limiting when the slowly etched (111) surfaces are reached, the fabrication of convex features on Si (100) by alkaline etching is more challenging [START_REF] Fruhauf | Shape and Functional Elements of the Bulk Silicon Microtechnique[END_REF] . Two processes occur at the same time: etching of the (100) crystalline surface directed towards the wafer depth in the areas that are not protected by a mask and undercutting of silicon features in a lateral direction under the mask despite the protection. The final shape of the obtained features depends on the difference in the rates of these two processes [START_REF] Liu | Etching of self-sharpening (338) tips in (100) silicon[END_REF] . For example, the etching rate for (111) silicon crystalline planes is more than 100 times slower than for the other planes such as (100) [START_REF] Schroder | Convex corner undercutting of 100 silicon in anisotropic koh etching: the new step-flow model of 3-d structuring and first simulation results[END_REF][START_REF] Shikida | A model explaining mask-corner undercut phenomena in anisotropic silicon etching: a saddle point in the etching-rate diagram[END_REF] , and it is possible to obtain sharp features with a pyramidal shape both for (100) and (111) oriented wafers [START_REF] Tang | Sharp silicon tips with different aspect ratios in wet etching/drie and surfactantmodified tmah etching[END_REF] . Numerous models have been proposed to explain the convex corner undercutting [START_REF] Schroder | Convex corner undercutting of 100 silicon in anisotropic koh etching: the new step-flow model of 3-d structuring and first simulation results[END_REF] and its compensation [START_REF] Shikida | A model explaining mask-corner undercut phenomena in anisotropic silicon etching: a saddle point in the etching-rate diagram[END_REF] and, more generally, anisotropic etching of silicon [START_REF] Gosálvez | An atomistic introduction to anisotropic etching[END_REF] . The main complexity in the description of experimental procedures arises from the fact that multiple parameters have been reported to affect the undercutting rate: the solution temperature [START_REF] Fruhauf | Shape and Functional Elements of the Bulk Silicon Microtechnique[END_REF] , KOH or TMAH concentration, freshness of the alkaline solution [START_REF] Wilke | The evolution from convex corner undercut towards microneedle formation: theory and experimental verification[END_REF] as well as the introduction of different chemical additives to the solutions such as I 2 /KI 28 , the surfactant Triton-X-100 [START_REF] Tang | Sharp silicon tips with different aspect ratios in wet etching/drie and surfactantmodified tmah etching[END_REF][START_REF] Tanaka | 110) etching properties in 5, 15, 30 and 48 wt%KOH aqueous solution containing Triton-X-100[END_REF] or IPA [START_REF] Fruhauf | Shape and Functional Elements of the Bulk Silicon Microtechnique[END_REF] . In our fabrication process, we used only fresh aqueous KOH solution baths for each sample series and we optimized the shape of the pyramidal pins to be suitable for biological experiments. Only etching in pure KOH solutions allowed us to obtain sharp pyramids. Addition of ethyl or isopropyl alcohol or Triton to aqueous KOH solutions favoured the formation of crystal planes forming flat pyramids. We developed a series of sample holders for the wafers of different sizes from 1cm 2 up to 100 mm (4 inches) resistant to KOH and alcohol solutions up to the temperatures of more than 80 • C necessary to ensure homogeneous etching over large surfaces. Very sharp pyramidal needles were organized into arrays with a pitch of 100 -133 µm, dense enough to wound young adult 4/11 C. elegans hermaphrodites that are around 1 mm in length. In the original publication, piercing structures similar to the ones described here were claimed to have been used to transform the entomopathogenic nematode Heterorhabditis bacteriophora in an extremely rapid and efficient manner 2 . Despite the obvious attraction for such a simple method, no other publication has ever reported the successful replication of this work. Parasitic nematodes are notoriously difficult to transform, compared to C. elegans for which micro-injection-based transformation is a standard laboratory technique. In our hands, despite numerous attempts, we were unable to obtain any evidence for transformation of C. elegans using our silicon pin arrays (JB and CC, unpublished). Thus, unfortunately, it appears that their utility for making transgenic nematodes is limited at best. On the other hand, these arrays enormously accelerate and simplify the generation of large populations of wounded C. elegans. This opens up the potential for generating samples in a sufficient volume to allow transciptomic, proteomic or metabolomic analyses of the response to wounding, further strengthening the utility of C. elegans in this domain [START_REF] Chisholm | The Caenorhabditis elegans epidermis as a model skin. ii: differentiation and physiological roles[END_REF] . 
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 1 Figure 1. Design of the pattern on the photolithography mask. The round features correspond to the dark (chromium coated) areas on the mask. A) 100 µm hexagonal array; B) 75 µm hexagonal array.
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 2113 Figure 2. Drawing of a sample holder used for homogeneous KOH etching of multiple one-inch wafers (Autodesk 123 Design software). A) Main support with magnets; B) Arms for easy removal from etching solution; C) One-inch (2.54 cm) diameter wafer to be etched
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 411567118 Figure 4. Large array of homogeneous pins at the end of the etching period. Of the 342 pins in this electron photomicrograph, 130 retain the "hat" that is subsequently removed in a pure water ultrasound bath. Manufacturing parameters: 75 µm array; 750 ml fresh 45 % KOH; T=72C • ; 100 rpm
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 91110 Figure 9. Efficient wounding of C. elegans with a silicon array. A. Quantification of the change of reporter gene expression provoked by wounding with a needle (5 left-hand columns), or arrays, worms carrying frIs7 in the wild-type or sta-2 mutant background (circles and triangles, respectively). The fluorescence ratio (Green/TOF in arbitrary but constant units) is shown for the indicated number of worms for each condition (n). The bars indicate the means. B. Representative images of control (top) and wounded (bottom) adult wild-type worms stained with Hoechst 33258. In the control animals, only staining of the intestinal nuclei is apparent (arrows), while in the array-wounded worms nuclei in the epidermis (arrows) are also stained.

Figure 11 .

 11 Figure 11. Wounding of C. elegans with different silicon arrays. A. Top row shows SEM images of 3 different arrays (left to right: H75-42, H100-9, H75-46). Note that, as indicated, the magnification is not the same for all 3, hence the scale bars are different too. The other 2 rows are GFP (middle row) or mixed GFP/dsRed fluorescence signals for representative groups of worms carrying frIs7 picked because they appeared to have a normal morphology (i.e. were not badly wounded) after treatment with the indicated array, compared to non-wounded controls (left-hand column). B. Quantification of the change of reporter gene expression provoked by wounding with the 3 arrays, in the same order as in A, in worms carrying frIs7. Details are as in the previous figure.
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