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ABSTRACT
The Independent Component Analysis (ICA) has been re-

cently introduced as a reliable alternative to identify canoni-
cal scattering mechanisms within PolSAR images. This pa-
per addresses an important aspect for applying such meth-
ods on real data, namely statistical classification with ICA.
A novel algorithm is proposed by adjusting the iterative seg-
mentation from [1, 2] to the particular nature of the Touzi’s
polarimetric decomposition [3]. This algorithm is tested us-
ing P-band airborne PolSAR data acquired for the ESA cam-
paign TropiSAR campaign.

Index Terms— Independent Component Analysis, Pol-
SAR, classification

1. INTRODUCTION

With Synthetic Aperture Radar (SAR) sensors being able to
emit or receive two orthogonal polarizations, the Polarimetric
target decompositions are PolSAR image interpretation tech-
niques relying on the study of the interaction between the tar-
geted area and the transmitted waveform [4, 5]. In this con-
text, the Incoherent Target Decomposition (ICTD) theory as-
sumes that the scattering process is a combination of coherent
speckle [6] and random vector scattering effects [7, 8].

In [9], a novel strategy to polarimetric ICTD was in-
troduced by selecting the Independent Component Analysis
(ICA) to identify the canonical scattering mechanisms within
an image cell. The proposed ICA was able to retrieve non-
orthogonal scatterer types [10, 11]. By applying the MMSE
filter [12] on each of the ICA derived rotation invariant scat-
tering vectors, we have shown in [13] that spatial resolution
can be better preserved with respect to the conventional Pol-
SAR boxcar speckle filter.

For example, the Cloude and Pottier H/α feature space
[14] is one of the most employed methods for unsupervised
PolSAR data classification based on ICTD. The association
of the coherence matrix eigenvectors to the most dominant
scatters introduces unfeasible regions in the H/α plane. It has
been shown in [11] that the ICA provides additional informa-
tion: unconstrained by the orthogonality condition between
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the estimated scattering mechanisms that compose the Pol-
SAR clutter under analysis, ICA is not subject to the unfeasi-
ble region in the H/α plane, increasing the range of possible
natural phenomenons depicted in this feature space.

The paper is structured as follows. Section 2 illustrates in
several points the PolSAR classification algorithm proposed
in the framework of the ICA ICTD, while Section 3 presents
some qualitative and quantitative performance assessment.
Section 4 concludes the paper.

2. ICA-ICTD STATISTICAL CLASSIFICATION

Polarimetric SAR images can be used for several applications,
for example for land cover classification. The ICA based
ICTD decomposition is based on the estimation of the mixing
matrix A (Eq. 1). There are several criteria for determining
the elements of A in order to ensure the mutual independence
of the sources in s. The common factor for all the applied
methods is the assumption that at most one of the sources is
Gaussian.
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The selected Complex Fast-ICA algorithm is based on a
bottom-up approach: emphasizing the non-gaussanity of the
sources by maximizing an arbitrary nonlinear contrast func-
tion (Eq. 2) whose extrema coincides with the independent
component.

JG(w) = E{G(|wHx|2)} (2)

The performances of the algorithm depend strongly on the
choice of the nonlinear function G(y), which is supposed to
be suited to the particular application. Therefore, here we
have used the kurtosis criterion in deriving independent target
vectors:

G1(y) =
1

2
y2. (3)

In this case, the contrast functions becomes essentially a mea-
sure of the fourth statistical moment of the source. As its
value in case of the Gaussian variable equals zero, by max-
imizing the kurtosis of each of the sources, we ensure their
independence.



The result of the incoherent target decomposition is the set
of target vectors representing elementary scatterers and a set
of scalars, providing their proportion in the total scattering. In
our case, the target vectors of the independent scatterers are
the columns of the estimated mixing matrix A = WH. The
contribution to the total backscattering (m) is computed as a
square root of the maximal eigenvalue of the derived Graves
matrix.

Being based on Kennaugh-Huynen condiagonalization
projected onto the Pauli basis, the TSVM [3] allows parametriza-
tion of the target vector in terms of rotation angle (ψ), maxi-
mum amplitude (m), target helicity (τm), symmetric scatter-
ing type magnitude (αs) and symmetric scattering type phase
(Φαs ), among which the last four are roll-invariant:

k = m|k|mejΦs

1 0 0
0 cos 2ψ − sin 2ψ
0 sin 2ψ cos 2ψ

 cosαs cos 2τm
sinαsejΦαs

−j cosαs sin 2τm

 . (4)

Using these parameters, it is eventually possible to rep-
resent the obtained independent target vectors on either sym-
metric or non-symmetric target Poincaré sphere. In our case,
they do not necessarily form an orthogonal basis.

In this paper, we propose an extension of the statistical
classification algorithm presented in [1] for direct application
to ICA based ICTD.

One possibility would be to employ directly the mixing
matrices from [9] and compute the local barycenter. How-
ever, the derived theory from [1] is valid with positive definite
matrices, only. This does not hold for the ICA mixing matri-
ces, which are not necessarily positive definite. The proposed
solution consists in employing each ICA derived dominant
scattering mechanism and form either three 3×1 or one 9×1
input complex random vectors.

The only restriction would be that the use of the ICA scat-
tering mechanisms are not directly rotational invariant. As
presented in [13], we propose once again to use the rotation
invariant scattering vectors of the following form [3]:

−→v orient−inv = µ

 cosαs cos(2τm)
sinαse

jΦαs

−j cosαs sin(2τm)

 . (5)

As described in [3], −→v orient−inv is obtained by con-
structing the Graves power matrix and performing the con-
diagonalization from [15] followed by the Huynen desying.

3. POLSAR EXPERIMENTAL RESULTS

The PolSAR dataset was acquired by the French Aerospace
Lab (ONERA), in 2009, over the French Guiana, in the frame
of the ESA campaign TropiSAR. Fig. 1 shows the initial and
the LLMSE filtered span image in decibels.

After speckle filtering, the K-Means type iterative seg-
mentation is applied using the Riemannian mean [2]. The
maximum number of iterations has been set to N = 10. Fig.

Fig. 1. Paracou P-band airborne dataset, span image in dB:
(left) initial and (right) filtered.

2 shows the rotation invariant scattering vectors in the Pauli
basis corresponding to the first, second and third ICA scatter-
ing mechanisms.

Fig. 3 illustrates the Chernoff bond and the percentage of
pixels moving to another class at each iteration. Both indica-
tors are revealing that the optimal number of iteration for the
proposed classification algorithm is 5.

One can observe, in Fig. 4-(a),(b),(c), the barycenter evo-
lution in the H/α plane for the three ICA scattering mecha-
nisms: the entropy is considerably decreasing with the num-
ber of iterations indicating a better statistical clustering, while
the α angle is moving from anisotropic particle to dipole scat-
tering (which corresponds to forested areas at P band).

Finally, the final statistical classification result is pre-
sented in Fig. 5.

4. CONCLUSION

This paper presented an iterative statistical classification algo-
rithm particularly adapted to PolSAR data processing when
the ICA ICTD is applied. It has been tested using P band
airborne PolSAR data over forested areas.

At this stage, further developments are required in order to
evolve the proposed algorithm towards an user friendly more
intuitive application.



Fig. 2. Paracou P-band airborne dataset, Pauli color compo-
sition in dB: (left) first component, (middle) second compo-
nent, (right) third component.

(a)

(b)

Fig. 3. Paracou P-band airborne dataset: (a) Chernoff bound
and (b) percentage of pixels moving to another class at each
iteration.
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Fig. 4. Paracou P-band airborne dataset: H/α plane moving
centers: (a) first component, (b) second component, (c) third
component.



Fig. 5. Paracou P-band airborne dataset: (a) statistical classi-
fication map and (b) number of pixels moving to another class
at each iteration.
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