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ABSTRACT

Aims. The purpose of the present paper is to provide methods of statistical analysis of the physical properties of galaxy pairs. We
perform this study to apply it later to catalogs of isolated pairs of galaxies, especially two new catalogs we recently constructed that
contain ≈1000 and ≈13 000 pairs, respectively. We are particularly interested by the dynamics of those pairs, including the determina-
tion of their masses.
Methods. We could not compute the dynamical parameters directly since the necessary data are incomplete. Indeed, we only have at
our disposal one component of the intervelocity between the members, namely along the line of sight, and two components of their
interdistance, i.e., the projection on the sky-plane. Moreover, we know only one point of each galaxy orbit. Hence we need statistical
methods to find the probability distribution of 3D interdistances and 3D intervelocities from their projections; we designed those meth-
ods under the term deprojection.
Results. We proceed in two steps to determine and use the deprojection methods. First we derive the probability distributions expected
for the various relevant projected quantities, namely intervelocity vz, interdistance rp, their ratio, and the product rpv

2
z , which is involved

in mass determination. In a second step, we propose various methods of deprojection of those parameters based on the previous analy-
sis. We start from a histogram of the projected data and we apply inversion formulae to obtain the deprojected distributions; lastly, we
test the methods by numerical simulations, which also allow us to determine the uncertainties involved.

Key words. methods: data analysis – methods: statistical – catalogs – galaxies: groups: general

1. Introduction

With the aim of using an improved method to study the dynam-
ics of galaxy pairs, we constructed two new pair catalogs using
well-defined criteria and improved observational data. The first
is a catalog of ≈1000 pairs with high accuracy radial velocities
(Chamaraux & Nottale 2016) extracted from Nilson’s Uppsala
Galaxy Catalog (UGC; Nilson 1973), which has the advantage
that it is complete in apparent diameter. The second is a cat-
alog of ≈13 000 pairs (Nottale & Chamaraux 2018, the largest
presently available to our knowledge), which makes use of the
huge recent increase in astronomical data. We used the Hyper-
LEDA database (2016, Makarov et al. 2014) to identify galaxy
pairs and extract their parameters from the large surveys (e.g.,
SDSS; Alam et al. 2015 and 2MASS).

To improve our understanding of physics at extragalactic
scales, the goal of this paper is to elaborate better methods of sta-
tistical analysis of galaxy pair data (which can also be applied to
any type of pairs of astronomical objects). This is the goal of the
present paper. We need to obtain statistical information on the
physical characteristics of these pairs, particularly their masses
through Kepler’s third law and the possible existence of anoma-
lous dynamics in these pairs. Such a new dynamics is, according
to various proposals, attributed to missing mass or dark matter
(Bergstrom 2000), to modification of gravity (Sanders 2002), or
to a new dark potential (Nottale 2011; Chavanis 2017a,b).

In order to compute those physical quantities, we have to
know the 3D velocity difference between the pair members and

their 3D interdistances. But we have at our disposal only one
component of the velocity difference (along the line of sight)
and two components of the interdistance (projection on the sky-
plane). Therefore one has to find statistical methods to obtain
those 3D quantities from the projected quantities. We call these
methods statistical deprojection. Moreover, we note that for each
galaxy pair we can determine the various 3D parameters for only
one point of each galaxy orbit and only one instant.

Because of these limitations, various methods of analysis
have been devised (Chengalur et al. 1996; Peterson 1979; Faber
& Gallagher 1979). However, as shown by Faber & Gallagher
(1979), these methods remain unsatisfactory from a mathemat-
ical viewpoint. In particular, recovering the mass remains very
uncertain. For these reasons, we propose new methods of depro-
jection, which we show here to yield more precise results for
recovering the 3D unprojected parameters.

The paper is organized as follows. In Sect. 2 we first ana-
lyze the statistical projection process and derive the probability
distributions expected for the various relevant projected quanti-
ties, namely, intervelocity, vz; interdistance, rp; their ratio, rp/vz,
which can be used as signature of circular orbits; and the product,
rpv

2
z , which is involved in mass determination.
In Sect. 3, we develop statistical methods of deprojection of

these parameters, that is, intervelocity, interdistance, and mass,
based on the previous analysis. We start from a histogram of
the projected data organized in various ways, i.e., constant bins,
moving bins, and variable moving bins. Then we apply inver-
sion formulae, which amount in some cases to matrix inversion,
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Fig. 1. Theoretical expectation vs. numerical simulation of the statisti-
cal distribution of vz/v, where vz is the radial velocity difference between
galaxies in randomly oriented pairs and v the true velocity difference.
The number of simulated pairs is here N ≈ 10 000. Apart from sta-
tistical fluctuations, the obtained probability distribution of the radial
velocity is constant in the range [0, v], in agreement with the theoretical
expectation (given by the constant red line).

to obtain the deprojected distributions. Finally we test these
methods using numerical simulations, which also allow us to
determine the uncertainties involved.

2. Statistical analysis

Let us use a cylindrical coordinate system whose axis z is ori-
ented from the observer to the galaxy pair. In this case the (x, y)
plane is the plane of the sky. The position vector r is defined as

x = rp cosϕ, y = rp sinϕ, z, (1)

while the velocity vector u is defined as

vx = vp cosϕv, vy = vp sinϕv, vz. (2)

The measured quantities are the position vector projected on the
plane of the sky, rp = (x, y), and the radial velocity vz. Then rp,
vz, and ϕ are known while z, vp, and ϕv are unknown variables.

2.1. Probability distribution of radial velocity

Consider a randomly oriented 3D vector (x, y, z) of fixed length
r. Let us determine the probability distribution of any of its pro-
jections, say z. The part of the sphere of radius r which projects
between z and z + dz has a surface

dS = −2πrpr dθ = −2πr2 sin θ dθ =
dS
dz

dz. (3)

Since z = r cos θ, then dz = −r sin θ dθ, and we finally find that
dS/dz = 2πr. The probability distribution of the projection on
any axis of a randomly oriented 3D vector of length r can then
be derived

dP =
1

S 0

dS
dz

dz =
1

4πr2 × 2πr dz =
1
2r

dz, (4)

and it is therefore constant when r is constant. Since z can vary
from −r to +r, we verify that this probability distribution is
correctly normalized.

This can be easily applied to the velocity vector. Given a
fixed pair configuration (r, u) with random orientation, the prob-
ability distribution of the values of the radial velocity differences
between the pair members is

p(vz) =
1
v

(0 < vz < v), p(vz) = 0 (vz > v). (5)

We note that here no member of the pair is priviledged, such that
we consider only positive differences, which then vary between
0 and v.

We performed a numerical simulation of this projection of a
given pair with random orientation. The obtained distribution of
vz confirms this expectation (Fig. 1).

2.2. Probability distribution of projected distance

We consider a pair of objects, the 3D interdistance between
which is r, fixed. Let rp =

√
x2 + y2 be the distance between the

pair members projected on the plane of the sky. The part of the
sphere corresponding to projected distances lying in the interval
[rp, rp + drp] is made of two rings of width rdθ and radius rp.
Therefore its surface is dS = 4πrprdθ. Now, since rp = r sin θ,
we find

dθ =
drp√
r2 − r2

p

. (6)

The differential probability distribution of rp is dP = dS/(4πr2).
Then the normalized probability density of rp values p(rp),
projected from a given r value, is written as

p(rp) =
dP(rp)

drp
=

rp√
r2 − r2

p

. (7)

We performed a numerical simulation of such a projec-
tion. The obtained distribution is in fair agreement with this
theoretical expectation (Fig. 2).

More generally, we consider now a set of pairs whose dis-
tances between their members are distributed with a probability
Pr(r) when r lies in the interval [r1, r2]. When the pair orien-
tation is random, the expected probability distribution of the
projected distances on the plane of the sky is now given by

p(rp) =

∫ r2

r1

Pr(r) rp dr

r
√

r2 − r2
p

. (8)

2.3. Probability distribution of ratio ζ = rp/vz

This ratio can be used as signature of circular orbits. We give in
Appendix A the probability distribution of a product and of the
ratio of two variables, of which the individual probability dis-
tributions are known, and also that of the inverse of a variable.
From these basic formulae, one can infer the probability distri-
bution functions (PDFs) of various combinations of the variables
observed for pairs [vz and (x, y), involving rp].

Since p(rp) = rp/
√

1 − r2
p with 0 < rp < 1 (for r = 1) and

p(vz) = 1 with 0 < vz < 1 (for v = 1), we obtain for the ratio
ζ = rp/vz [more generally, ζ = (rp/r)/(vz/v)]

pζ(ζ) =

∫ 1

0
pvz (vz) prp (ζvz) vz dvz, (9)
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Fig. 2. Numerical simulation of the probability density distribution of
rp/r, where rp is the projection on the plane of the sky of the dis-
tance r between members of randomly oriented pairs (for a fixed 3D
r value). The number of simulated pairs is N ≈ 10 000. Apart from sta-
tistical fluctuations, the obtained probability distribution agrees with the
theoretical expectation (continuous red line, see text).

which is written as

pζ(ζ) =

∫ 1

0

v2
z dvz√

(1/ζ2) − v2
z

. (10)

Two cases must now be considered. When ζ > 1, the integration
interval is reduced to [0, 1/ζ]. One finds

pζ(ζ) =

∫ 1/ζ

0

v2
z dvz√

(1/ζ2) − v2
z

=
π

4ζ2 (ζ > 1). (11)

When ζ < 1, the integration interval is again [0, 1] and one
finds

pζ(ζ) =
1
2

 1
ζ2 arctan

 ζ√
1 − ζ2

 − √
1 − ζ2

ζ

 (ζ < 1). (12)

We performed a numerical simulation of randomly oriented pairs
with uncorrelated randomly oriented velocity differences. As can
be seen in Fig. 3, the theoretically expected distribution agrees
very well with the simulation.

In the case of circular orbits, once rp is given, the possible
values of vz, instead of being uniformly distributed between 0
and v, are constrained to be smaller than v × (rp/r). As a conse-
quence, the left part of the PDF of ζ = (rp/r)/(vz/v) below ζ = 1
is expected to be empty, which achieves a possible statistical
signature of circular orbits.

The probability distribution of the reverse function, χ = vz/rp
is easy to derive from these expressions and from Eq. (A.3). We
find

pχ(χ) =
π

4
(χ < 1), (13)

pχ(χ) =
1
2

arctan

 1√
χ2 − 1

 − √
χ2 − 1
χ2

 (χ > 1). (14)

It is therefore constant up to χ = 1, after which it decreases
quickly toward 0. In the case of circular orbits, only the con-
stant part of the PDF remains (0 < χ < 1), which means that the
projection of vz/rp becomes similar to that of vz.

Fig. 3. Numerical simulation of the density distribution of the ratio
rp/vz, where rp is the distance between pair members projected on the
plane of the sky and vz is their radial velocity difference (here with r = 1
and v = 1). The number of simulated pairs is N = 4000. Within statis-
tical fluctuations, the obtained probability distribution agrees well with
the theoretical expectation (red continuous line, Eqs. (11) and (12)). In
the case of circular orbits, the velocity and radial vectors are orthogonal,
which implies rp/vz ≥ r/v (see text), i.e., rp/vz ≥ 1 in this figure. That
achieves a clear signature of circular orbits, for which the left part of the
figure (rp/vz < 1) below the sharp peak of the rp/vz PDF is expected to
be empty.

2.4. Probability distribution of product η = rpv
2
z

This product is involved in mass determination. Indeed, the
orbits of isolated galaxy pairs are subjected to Kepler’s third law,

4π2a3 = GM T 2, (15)

where M = M1 + M2 , a is the semimajor axis of the orbit and
T the period. Defining a characteristic velocity V = 2πa/T , it
yields the total mass of the system

GM = a V2. (16)

The perimeter of an ellipse varies between 4a (radial free fall)
and 2πa (circular orbit). This perimeter is given by elliptic
integrals, which can be approximated by a power series

L = V T = 2πa
(
1 −

1
4

e2 −
3

64
e4 − · · ·

)
, (17)

where e is the eccentricity of the ellipse, and therefore the
average velocity V is such that (2/π)V < V < V .

When the orbit is circular, r = a and v = V , such that in this
case the total mass is given by

GM = r v2. (18)

Instead of r we have only access to rp, and, instead of v, to vz.
This leads us to look for the probability distribution of η = rpv

2
z .

Let us set U = v2
z , then pU(U) = 1/(2

√
U), while we recall

that p(rp) = rp/
√

1 − r2
p when the radius is normalized to r = 1.

In the case of uncorrelated values of r and v, the general for-
mula for the probability distribution of a product Eq. (A.1) then
yields

pη(η) =
η

2

∫ 1

η

dU

U3/2
√

U2 − η2
. (19)
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Fig. 4. Analytical formula (see text) vs. numerical simulation of the den-
sity distribution of the product rpv

2
z , where rp is the distance between

pair members projected on the plane of the sky and vz is their radial
velocity difference. This combination of variable is essential for the
statistical determination of the total mass of the pair. The product is
plotted here for r = 1 and v = 1, i.e., the plotted variable is actually
(rp/r)(vz/v)2. The number of simulated pairs is N ≈ 10 000. Within
statistical fluctuations, the obtained probability distribution agrees well
with the theoretical expectation (red line, Eq. (20)).

The integration limits are determined by the fact that 0 < vz < 1
(for a normalized velocity v = 1) and hence U < 1; U2 − η2 must
be >0 due to the square root such that U > η. This integral can be
integrated in terms of the hypergeometric function 2F1(a, b; c; z)
as follows:

pη(η) =
Γ(3/4)
Γ(1/4)

√
π

η
−
η

3 2F1

(
1
2
,

3
4
,

7
4
, η2

)
. (20)

This formula is in excellent agreement with the result of a
numerical simulation of the projections of r to rp and v to vz
(Fig. 4).

3. Methods of statistical deprojection

The knowledge of the expected statistical distribution of the var-
ious variables or of their combination allows one to construct
methods of deprojection from the observed subset of variables.

3.1. Deprojection of x, y, and vz

3.1.1. Theoretical deprojection of vz

The simplest method of deprojection deals with the value of a
vector projected on a single axis. This is the case in particular
for vz (radial velocity difference). The various methods described
in this work are also valid for deprojection of the individual
observed variables x and y (projections of r on the plane of the
sky along right ascension and declination).

We have seen that, in this case, the expected probabil-
ity distribution for a random orientation and a given value of
the unprojected variable is constant. Therefore, if Pv(v) is the
probability distribution of the 3D velocity v, the probability
distribution of vz is given by Nottale (2011)

Pvz (vz) =

∫ ∞

vz

Pv(v)
v

dv. (21)

This distribution can be easily inverted. One obtains a deprojec-
tion formula, that is,

Pv(v) = −v

[
dPvz (vz)

dvz

]
v

, (22)

Fig. 5. Illustration of the deprojection method for radial velocity (or any
1D variable projected from a 3D vector). For a bin (Vi−1, Vi) of width
δV , where Vi = i × δV , Ni is the number of values contained in this bin
in the histogram of the projected quantity. The number of objects that
have a deprojected value v = Vi is given by the area of the rectangle of
height (Ni − Ni+1) and of extent [0, Vi].

and similar formulae for x and y separately; the deprojection
of their combination in rp =

√
x2 + y2 is considered in the

following.

3.1.2. General algorithm of deprojection of vz

The simplest way to achieve statistical deprojection of a single
variable, such as the radial velocity vz, consists of directly imple-
menting Eq. (22). This formula means that if Nv pairs have a
true velocity difference v, their radial velocities are uniformly
distributed between 0 and v. The existence of these Nv objects at
velocity v creates a jump δN = Nv in the observed distribution
of vz, N(vz) = NtotP(vz). Therefore, the contribution of a particu-
lar true intervelocity v to the observed PDF of vz is given by the
surface of the rectangle of sides v × δN (see Fig. 5).

3.1.3. Various methods of deprojection of vz

Differences on adjacent constant bins. The simplest way to
implement Eq. (22) consists of
(1) constructing the histogram N p

i of radial (projected) velocities
Vr in bins [Vi−1, Vi] of given width δV;

(2) computing the differences (N p
i − N p

i−1) between the numbers
in successive bins;

(3) multiplying by the rank i = Vi/δV of the bin.
We obtained in this way the deprojected numbers,
N = V(δN p/δV), i.e., in terms of the elements of the histogram,
Ni = i × (N p

i − N p
i−1). This number should be assigned to a bin

of width δV and of mean deprojected velocity V = (i + 1
2 ) δV .

Indeed, the projected velocity Vi = i δV is the limit between
the bins of ranks i and i + 1 in the projected histogram, and the
resulting Ni should be assigned to this velocity Vi in the mean,
i.e., to a bin centered on this velocity and therefore shifted by
δV/2 with respect to the initial histogram.

We performed a numerical simulation in which we calcu-
lated the mean and standard deviations of 100 realizations of the
deprojection (see Fig. 6). We recovered in these simulations the
overall shape of the initial distribution (chosen to be a Gaussian
of mean 190 km s−1 and standard deviation 90 km s−1). In partic-
ular the existence and position of the main peak is recovered in a
satisfactory way. We can see in Fig. 6 the improvement obtained
when going from a catalog of ≈1000 pairs to ≈10 000, regarding
the decrease of both the optimal bin width and dispersion of the
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Fig. 6. Numerical simulation of the intervelocity deprojection of a sample of 1200 pairs (left figure) and 13 000 pairs (right figure). The original
3D velocities have a Gaussian distribution of standard deviation σv = 90 km s−1 and peak velocity 190 km s−1 (cutoff on V = 0) [red curve]. We
randomly project a random realization of this Gaussian distribution, then deproject it using the constant bin method with a bin of width 30 km s−1

(left figure) and 20 km s−1 (right figure, see text). The blue histogram is the mean result of 100 realizations of such a projection/deprojection and
the black lines are the ±1σ lines.

Fig. 7. Various realizations of the numerical simulation of the intervelocity deprojection (sample of 13 000 pairs). Left figure: an example of a
single realization. The original 3D velocities have a Gaussian distribution of standard deviation σv = 90 km s−1 and peak velocity 190 km s−1

(cutoff on V = 0) [red curve]. We randomly projected a random realization of this Gaussian distribution, then deprojected it using the constant
bin method with a bin width 20 km s−1 (see text). The blue broken line is the obtained deprojection, compared with the ±1σ lines estimated from
100 realizations (see Fig. 6). Right figure: various realizations using differences on non-adjacent bins (N p

i+1 − N p
i−1), for the same original velocity

PDF. We randomly projected random realizations of this Gaussian distribution, then deprojected it using the constant bin method (blue histograms)
with a bin width 20 km s−1 (see text). The dashed orange lines show the ±1σ lines estimated from 100 realizations. The quality of the deprojection
is improved by a factor of ≈2 with respect to the adjacent bin method.

various PDFs. A given realization of a catalog deprojection is
expected to be contained (with a high probability) between the
two ±1σ lines, as supported by an example given in Fig. 7 (left
part) .

However, Eq. (22) presupposes a strictly monotonic decreas-
ing distribution. Otherwise it may lead to obtaining negative
numbers. The problem is that there are fluctuations that may
locally break this expected monotony.

For large enough bin sizes, it is clear that the monotony is
preserved. Therefore, a possible way to solve this difficulty with-
out losing too much resolution in the deprojection is to choose
the smallest of these large enough bins. This value depends on
the total number of pairs. In our numerical simulations, the opti-
mal bin width was found to be ≈30 km s−1 for ≈1000 pairs and
≈20 km s−1 for ≈10 000 pairs.

Another possible method consists of correcting the negative
numbers by substracting these numbers to the adjacent bins. This
method is possible only for small deviations and reveals to be
equivalent to the previous method.

Differences between constant intervals separated by two
bins. Actually, the previous method where the difference is
taken between two adjacent bins is not optimized and it can

therefore be improved. It is more efficient (as in finite dif-
ference methods) to take differences between two intervals
separated by one bin, N p

i+1 − N p
i−1. This improvement is based

on the fact that f (x + dx) − f (x) = f ′(x)dx + O(dx2), while
( f (x + dx) − f (x − dx))/2 = f ′(x)dx + O(dx3).

We checked the method by a numerical simulation (see
right Fig. 7). We find that the ±1σ standard deviation on the
PDF is half that obtained with the previous method (differences
N p

i − N p
i−1), thus achieving a significant improvement.

Differences on constant moving bins. The method that uses
constant bins has drawbacks: the result is digitalized too much,
has low resolution, and is too dependent on limits between
bins.

Then we devised another method that deals with more infor-
mation about the original radial velocity PDF and is more
continuous. It amounts to performing a histogram of the pro-
jected velocities on a large enough moving bin wbin shifted by
a low value, e.g., δv = 1 km s−1. We obtain a function that is
both monotonous and quasi-continuous. An example of such a
function is given in Fig. 8: it is obtained from the projection
of ≈12 000 velocities having a Gaussian distribution of mean
150 km s−1 and standard deviation 50 km s−1.

A45, page 5 of 10

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201832707&pdf_id=0
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201832707&pdf_id=0


A&A 614, A45 (2018)

0 50 100 150 200 250 300
0

200

400

600

800

1000

Radial velocity

N
um

be
r

km s

Fig. 8. Histogram of the projected velocities (from an initial Gaussian
distribution of mean 150 km s−1 and standard deviation 50 km s−1)
on a moving bin wbin shifted by differences between bin positions
δv = 1 km s−1.

Then we applied on this function the deprojection formula
Pv dvr = −VdPvr (Eq. (22)), but with the small shift dvr = δv.
Then we performed a moving average of the resulting distribu-
tion using the original bin width wbin.

Numerical simulations were achieved to validate the method.
We first defined a given PDF of the 3D velocity v, performed
a random realization of this PDF on Nv values vi, randomly
projected them to vri, and then we deprojected the distribu-
tion obtained using the moving bins method. The process was
repeated Ns times to obtain the convenient statistics of the
method.

We give in Fig. 9 the results obtained for an initial v distribu-
tion showing one unique peak described by a Gaussian for two
different peak widths. The quality of the result depends on the
width of the initial peak: for a large enough peak (left Fig. 9 and
Fig. 10), the position, amplitude, and width of the peak are cor-
rectly recovered. When the peak is narrower (right Fig. 9), its
position is correctly recovered by the deprojection, but its ampli-
tude is slightly too low and correspondingly its width becomes
too large (but only within one sigma).

Differences on varying moving bins. In order to account for
this bias, we devised another more accurate method. The prob-
lem is that, when there is a peak in the PDF of the 3D true
velocity v, it manifests as a high value of the slope in the PDF of
the radial (projected) velocity vr. If the binwidth is too large, this
slope is decreased by the smoothing out effect of the binning. As
a consequence, the amplitude of the deprojected peak is too low.
Thus we corrected this bias by using a moving bin of variable
width, decreasing when the slope increases. A balance should be
found for the variation of the binwidth, since a smaller bin also
increases the fluctuations and therefore the final dispersion. This
method gives very good results, since it allows us to recover mul-
tiple peaks present in the initial 3D distribution, as can be seen
in Fig. 11.

3.2. Deprojection of rp

3.2.1. Theoretical deprojection

Although one can obtain the probability distribution of r from x
and y separately, more information is contained in their combina-
tion rp =

√
x2 + y2, from which a better deprojection is expected

to be achieved. This expectation is confirmed by the distribution
of rp for a given value of r, which shows a strong peak at rp = r
(Fig. 2). Assuming a probability distribution Pr(r) of the unpro-
jected variable r, one expects for rp a probability distribution,

i.e.,

Prp (rp) = rp

∫ ∞

rp

Pr(r) dr

r
√

r2 − r2
p

. (23)

For example, if the unprojected probability distribution is
constant between 0 and r0, the projected distribution is given by
(see Fig. 12)

Prp (rp) = arccos
(

rp

r0

)
. (24)

It does not seem possible to invert this formula analytically.
However, it is very possible to construct an algorithm to perform
this inversion numerically.

3.2.2. Deprojection method for rp

Let imax be the total number of bins in the histogram of rp values.
We denote N p

i the observed number of projected values rp in the
bin of rank i. This number is the sum of contributions of 3D
values r ≥ rp from bins of rank j ≥ i – we assume a same number
of bins for the r and rp histograms (see Fig. 12).

Let us derive the probability law for the various contribu-
tions. The probability distribution of rp for a given r value has
been shown (Sect. 2.2) to be

p(x) =
x

√
1 − x2

, (25)

for x = rp/r. We assume, as an approximation valid for a small
enough bin width (i.e., a large enough number of bins), that the
probability distribution of r remains constant in any bin. Then
the probability density of given r values projected in the bin of
rank i and relative width b is written as

pbi =

∫ b i

b(i−1)

x
√

1 − x2
dx =

√
1 − b2(i − 1)2 −

√
1 − b2 i2. (26)

Concerning the r values pertaining to the bin of rank j, the nor-
malized x values (i.e., rp ≤ r) belong to only a total number of j
bins, such that the relative bin width (normalized to a total range
x = 0 to 1) is b = 1/ j.

Let us now show that the probability law of the contributions
of the various r values (given by index j) can be recovered from
that of the projected values rp (given by index i).

Indeed, let us introduce the matrix

πi j =

√
1 −

(
i − 1

j

)2

−

√
1 −

(
i
j

)2

, (27)

for i ≤ j. The other elements of this matrix (i > j) are zero. Let
Pi j be the transpose of this matrix, i.e., P = πT .

If the column vector N p
i represents the various projected

numbers in the bin of rank i, they are obtained from the initial
3D column vector Nr

j by the matrix product

N p
i = Pi j Nr

j . (28)

Therefore the initial unprojected probability distribution is
recovered from a mere matrix inversion, i.e.,

Nr
j = P−1

ji N p
i . (29)
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Fig. 9. Deprojections by constant moving bins method of several realizations of a sample projected from an initial Gaussian distribution (Nv ≈ 1200
points, Ns = 25 realizations). We show the mean deprojected distribution (black curve) and the ±1σ limits (green curves) compared with the initial
distribution (red curve). In the left figure, the peak position is 150 km s−1 and its standard deviation 50 km s−1. The deprojection shows no bias with
such a velocity peak width. In the right figure, the peak position is 150 km s−1 and the standard deviation 20 km s−1. The deprojection shows a bias
with such a narrow velocity peak width. The deprojected velocity peak is too low by ≈12% and too wide by ≈20%, although the peak position is
precisely recovered to within ≈1%.

Fig. 10. Deprojections by the constant moving bins method of several
realizations of a sample projected from an initial Gaussian distribu-
tion with peak position 150 km s−1 and standard deviation 50 km s−1

(Nv ≈ 12 000 points, Ns = 25 realizations). We show the mean depro-
jected distribution (black curve) and the ±1σ limits (green curves)
compared with the initial distribution (red curve). The quality of the
deprojection is clearly improved compared to the 1200 points case, in
particular concerning the peak amplitude (Fig. 9).

For example, for three bins the relation between the proba-
bility distributions is written as

N p
1 = 1.000 Nr

1 + 0.134 Nr
2 + 0.057 Nr

3, (30a)

N p
2 = 0.000 Nr

1 + 0.866 Nr
2 + 0.197 Nr

3, (30b)

N p
3 = 0.000 Nr

1 + 0.000 Nr
2 + 0.745 Nr

3. (30c)

The deprojected reverse relation is, in this case,

Nr
1 = 1.000 N p

1 − 0.155 N p
2 − 0.036 N p

3 , (31a)

Nr
2 = 0.000 N p

1 + 1.155 N p
2 − 0.306 N p

3 , (31b)

Nr
3 = 0.000 N p

1 + 0.000 N p
2 + 1.342 N p

3 . (31c)

This method is illustrated in Fig. 13, where we deproject
a projected distribution Np = arccos rp, which is the expected
function for a constant initial distribution Nr = cst (in the null
bin width limit). The deprojected distribution is constant as
expected, except for a small bias mainly involving the first and
last bins (which is therefore easy to correct and disappears when
the number of bins is increased). Another example is given in

Fig. 11. Deprojection by a varying moving bin. The bin width varies
between 20 and 40 km s−1 depending on the slope. The obtained distri-
bution is finally smoothed out by a bin width 20 km s−1. We performed
several realizations of a sample projected from an initial two-Gaussian
peaks distribution with respective peak positions 70 and 150 km s−1

and standard deviations 15 and 20 km s−1 (Nv ≈ 12 000 points, Ns = 25
realizations). We show the initial distribution as a red continuous curve.
Despite the narrowness of the peaks, the quality of the deprojection is
very good since the two peaks and the intermediate hollow are clearly
identified at their true positions.

the numerical simulation of Fig. 14, where the initial 3D distri-
bution is randomly drawn from a Gaussian probability density
(10 000 points). This distribution is nicely recovered from the
matrix inversion method. In this case the bias involving the
extreme points is unobservable, since these values are almost
vanishing.

3.3. Deprojection of mass

3.3.1. Theoretical deprojection

The total mass M = M1 + M2 of a pair of objects in relative
Keplerian motion is given by

GM = 4π2 a3

T 2 = aV2, (32)

where G is Newton’s constant of gravitation, a is the semimajor
axis of the orbit of one object around the other, and T is the
period and V = 2πa/T .
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Fig. 12. Illustration of the method of deprojection of rp, for 10 bins
and an initial distribution Pr(r) = constant between 0 and r0. We show
how the initial unprojected number density in each given bin (this initial
density is chosen to be constant = 1) is distributed among the original
bin and those at smaller distances (areas contained between the broken
lines). The red dashed line is the expected distribution [arccos(rp)] in
the limit of vanishing bin width (infinite number of bins). Conversely,
one can recover the initial unprojected distribution from the projected
distribution by inverting such a decomposition (see text). There is just a
small bias on the first and last bins.

Fig. 13. Example of statistical deprojection of rp for a constant PDF of
r. We start from a projected distribution Np = arccos(rp) (inclined blue
points) for 20 bins (see text). The deprojected probability distribution is
shown as almost horizontal magenta points.

Fig. 14. Example of deprojection of rp for a projected distribution Np
obtained from a 3D (unprojected) initial Gaussian distribution Nr (black
histogram, total 10 000 points) for 10 bins. The deprojected probabil-
ity distribution (magenta points) is in good agreement with the initial
probability distribution.

Fig. 15. Example of deprojection (points) of a projected distribution
rpv

2
z (decreasing blue curve) obtained from a 3D (unprojected) initial

distribution r v2 (red curve), for 10 bins. The initial distribution is built
from a Gaussian velocity distribution of mean 200 km s−1 and disper-
sion 50 km s−1 and a Gaussian distance distribution of mean 0.3 Mpc
and dispersion 0.05 Mpc.

However, there are two drawbacks that deteriorate the avail-
able information on mass, since we have no direct access to a
and V: first, we deal only with instantaneous interdistance r and
velocity v; and second these 3D values are themselves projected
to rp and vz, i.e., aV2 → rv2 → rpv

2
z . The first drawback vanishes

for circular orbits, but it can lead to some additional uncertainty
in the elliptical case, since the relation between M and rv2 is
written as

rv2 = GM(1 + e cos ξ), (33)

where e is the eccentricity and ξ the parameter of the orbit,
which is such that r = a(1 − e cos ξ) and t = (T/2π)(ξ − e sin ξ).
The value of rv2/GM fluctuates between 1 − e and 1 + e while
its time average varies from 1 to 0.5 when e varies from
0 to 1, respectively; it can be approximated by the relation
〈rv2〉/GM = cos2(πe/4) up to some percents.

The mass distribution should therefore be statistically depro-
jected from the observed products rpv

2
z . We established in

Sect. 2.4 the expected PDF of the projection of a given value
of rv2 (see Eq. (20) and Fig. 4).

From this formula, one can theoretically deproject any dis-
tribution of rp v

2
z . Its analytical integration does not seem to

be possible, but, as in the case of the deprojection of rp, it is
very possible to construct an algorithm to perform this inversion
numerically. However, this deprojection is expected to be dif-
ficult, since the individual projection function vanishes for the
original unprojected value rv2 (see Fig. 4), while it is constant
for vz (easier deprojection) and shows a divergent peak for rp
(best deprojection).

3.3.2. Deprojection method for rpv
2
z

As in the deprojection method for rp, let us introduce a pro-
jection matrix constructed from the projection function pη(η)
given in Eq. (20) and Fig. 4. We divide the η range into
N bins. The projection matrix is written as (for its non-null
coefficients)

A ji =

∫ i/(N+1− j)

(i−1)/(N+1− j)
pη(η)dη, (34)
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Fig. 16. Simulation of 100 random projections of an initial distribution
(given by the red curve, see Fig. 15), followed by their respective depro-
jections (individual points) using a 10 bin deprojection matrix (see text).
This simulation allows us to establish the uncertainty of the deprojection
method (dashed curves = ±1σ).

where j = 1 to N and i = 1 to N + 1 − j (and A ji = 0 for the
remaining coefficients).

Then the deprojection matrix is obtained from this matrix by
the following transformation:

B = Reverse[Inverse[Transpose[A]]. (35)

For example, for N = 3, the projection matrix is written as

A =

0.673 0.227 0.100
0.804 0.196 0

1 0 0

 , (36)

and the resulting deprojection matrix is written as

B =

1 −4.111 2.604
0 5.111 −11.608
0 0 10.004

 . (37)

We tested the method by numerical simulations in which
we built a probability distribution for v and r (e.g., Gaussian
distributions, see Fig. 15), then we projected these to vz and
rp and computed the resulting rpv

2
z distribution. Whatever the

initial 3D distribution, the projected distribution is strongly
decreasing, as expected from the shape of the projection func-
tion pη(η) (see Fig. 4). This property is the reason why it is so
difficult to estimate the pair mass (Faber & Gallagher 1979).
However, despite this problem, our new method allows us to
recover the 3D PDF of rv2 with a fair accuracy (see Figs. 15
and 16).

This yields the total mass M of the system for circular orbits,
but in the general case, where r and v are instantaneous values
on elliptical orbits, there is, as previously specified, an additional
uncertainty to go from the rv2 distribution to the M distribution,
which may be estimated from an evaluation of the eccentricity
distribution. This will be studied in a forthcoming work.

4. Conclusions

In this paper, we developed statistical methods of deprojection of
the main physical parameters of pairs of astronomical objects (in
particular, galaxy pairs). These methods are needed since, in the
extragalactic domain, only one component of the intervelocity
and two components of the interdistance are available on only
one point of the orbit instead of the six (xk, vk) coordinates on
the full orbit.

We analytically determined the various PDFs of the pro-
jected variables: radial velocity vz, projected interdistance on the
sky-plane rp, their ratio rp/vz, which can be used as signature
of circular orbits, and rpv

2
z , which intervenes in the calculation

of the pair mass. These analytical solutions were validated by
numerical simulations.

Then we described in detail the deprojection methods
obtained by inversion of these projection functions. These meth-
ods were conceived in a digitalized way to deal with the real data
that will be available in the form of histograms.

In this paper, we prepared the application to effective extra-
galactic galaxy pair data, and in particular to the two galaxy
pair catalogs that we recently constructed, one of which contains
13 000 pairs (Nottale & Chamaraux 2018). These numerical sim-
ulations support the validity of our deprojection methods, and
they also allow us to determine their error bars.

In a forthcoming work, we will apply these deprojection
methods to the study of the physics of galaxy pairs, in partic-
ular to their dynamics. Such a study will then benefit from twin
improvements to catalogs (membership criteria, data quality, and
size) and to methods aiming at statistically recovering missing
information.
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Appendix A: Various probability distributions

A.1. Probability distribution of a product of two variables

Consider two random variables x and y whose probability dis-
tribution p(x, y) is known. The probability distribution of the
product η = xy is given by Rohatgi (1976) and Glen et al. (2004)

pη(η) =

∫ +∞

−∞

pxy

(
x,
η

x

) 1
|x|

dx. (A.1)

It becomes in the uncorrelated case, where we have
pxy(x, y) = px(x) py(y),

pη(η) =

∫ +∞

−∞

px(x) py
(
η

x

) 1
|x|

dx. (A.2)

A.2. Probability distribution of the inverse of a variable

Let x be a random variable of probability distribution px(x). The
probability distribution of its inverse X = 1/x is written as

pX(X) =
1

X2 px

(
1
X

)
. (A.3)

A.3. Probability distribution of the ratio of two variables

From these two relations we easily derive the probability
distribution of the ratio of two random variables, ζ = y/x.
We find

pζ(ζ) =

∫ +∞

−∞

pxy (x, ζx) x dx. (A.4)

Appendix B: Circular orbits

We give here a criterion for identifying circular orbits (and more
generally, all configurations when the vectors u and are per-
pendicular). We consider the scalar product of the position and
velocity vectors, i.e.,

xvx + yvy + zvz = rv cos φ, (B.1)

where φ is the angle between the two vectors. This relation is
written in cylindrical coordinates as

rpvp cos φp + zvz = rv cos φ, (B.2)

where φp is the angle between the projected vectors up and rp on
the plane of the sky. Since r2 = r2

p + z2 and v2 = v2
p + v2

z , the ratio
of the two observables vz and rp is written as

vz

rp
= −

vp

z
cos φp +

√
r2

p + z2

z rp

√
v2

p + v2
z cos φ. (B.3)

When the velocity vector v is perpendicular to the position
vector r, we have cos φ = 0 and therefore this formula takes the
simplified form

vz

rp
= −

vp

z
cos φp. (B.4)

The statistical distribution of the ratio vz/rp is therefore
expected to be very different between the orthogonal case and the
general case, providing us with a statistical signature for circular
orbits.

Let us establish the theoretical expectation of this distribu-
tion.

In the case when r and u are perpendicular, which corre-
sponds to circular orbits and to special positions on elliptic
orbits, the distributions of vz and rp become highly correlated.
In particular, let us show that, in this case, |vz|/v ≤ rp/r.

Let us set α = (xvy)/(yvx), we have (α − 1)2 ≥ 0, which may
be written as α + 1/α ≥ 2, i.e.,

1
2

(
x
y

vy

vx
+
y

x
vx

vy

)
≥ 1. (B.5)

The orthogonality of r and u writes xvx + yvy + zvz = 0, such that

z2v2
z = (xvx + yvy)2. (B.6)

Accounting for this relation, the inequality (B.5) becomes

v2
z (x2 + y2 + z2) ≤ (x2 + y2)(v2

x + v2
y + v2

z ), (B.7)

i.e., |vz| r ≤ rp v, QED.
This means that for given r, v and rp, the possible values

of vz are no more uniform between 0 and v, but are limited to
vz ≤ v rp/r.
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