
HAL Id: hal-02294637
https://hal.science/hal-02294637v2

Preprint submitted on 25 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Surrogate model uncertainty in wind turbine reliability
assessment

R M M Slot, J D Sørensen, B. Sudret, L Svenningsen, M L Thøgersen

To cite this version:
R M M Slot, J D Sørensen, B. Sudret, L Svenningsen, M L Thøgersen. Surrogate model uncertainty
in wind turbine reliability assessment. 2019. �hal-02294637v2�

https://hal.science/hal-02294637v2
https://hal.archives-ouvertes.fr


SURROGATE MODEL UNCERTAINTY IN WIND TURBINE

RELIABILITY ASSESSMENT

R.M.M. Slot, J. D. Sørensen, B. Sudret, L. Svenningsen, M.L. Thøgersen

CHAIR OF RISK, SAFETY AND UNCERTAINTY QUANTIFICATION

STEFANO-FRANSCINI-PLATZ 5
CH-8093 ZÜRICH
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Abstract. Lowering the cost of wind energy entails the optimization of wind turbine material 

consumption without compromising structural safety. Traditionally, wind turbines are designed 

by the partial safety factor method, which is calibrated by probabilistic models and presented 

in the IEC 61400-1 design standard. This approach significantly reduces the amount of aero-

elastic simulations required to assess the fatigue limit state of wind turbines, but it may lead to 

inconsistent reliability levels across wind farm projects. To avoid this, wind turbines may be 

designed by probabilistic methods using surrogate models to approximate fatigue load effects. 

In this approach, it is important to quantify and model all relevant uncertainties including that 

of the surrogate model itself. Here we quantify this uncertainty according to Eurocode 1990 for 

polynomial chaos expansion (PCE) and Kriging using wind data from 99 real sites and the 

5MW reference turbine designed by NREL. We investigate a wide range of simulation efforts 

to train the surrogate models. Our results show that Kriging yields a higher accuracy per 

invested simulation compared to PCE. This improved understanding of utilizing PCE and 

Kriging in fatigue reliability assessment may significantly benefit decision support in 

probabilistic design of wind turbines.  

 

Key words: Wind turbine, Fatigue loads, Structural reliability, Surrogate models, Model 

uncertainty 

1. Introduction 

To lower the cost of wind energy it is important to utilize wind turbines to their full load bearing 

capacity, but without compromising structural safety. A typical design approach is to use the 

partial safety factor method, calibrated by fully probabilistic models and presented in 

standardized codes as the IEC 61400-1 design standard for wind turbines [1]. This semi-

probabilistic approach accounts for variability and uncertainty in strength and load parameters 

via characteristic values defined by quantiles. A final design equation is then adjusted by partial 

safety factors in order to meet a target structural reliability level, which is defined with 

consideration of economic loss and risk of human lives to optimize material consumption from 

a societal point of view [2]. This simplified framework provides a direct advantage in 

computational requirements to assess whether a given wind turbine class is suited for a 

particular site and park layout. However, it may lead to inconsistent reliability levels as the 

simple characteristic input cannot fully explain the variation of the load response across all load 
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bearing components [3,4]. Partial safety factors are, therefore, typically calibrated based on 

conservative assumptions. As a result, it can be expected that wind turbines on average are 

over-designed, thereby leading to a higher cost of wind energy than necessary. To avoid this 

excessive use of materials, site-specific assessment of wind turbines can be based directly on 

probabilistic methods as described in the recent 4th edition of the IEC 61400-1 design standard 

[1]. 

The main challenge in probabilistic design of wind turbines compared to the traditional 

approach is that significantly more load evaluations are required. In particular, fatigue analysis 

during normal operation (design load case 1.2 [1]) involves an unfeasibly large amount of load 

simulations as fatigue damage accumulates during the entire lifetime of the turbine. It is 

therefore necessary to assess the integrated fatigue load across the full joint wind climate 

distribution. For onshore wind turbines this includes at least: wind direction (𝜃), wind speed 

(𝑈), turbulence (𝜎𝑈), vertical wind shear (𝛼), air density (𝜌) and flow inclination (𝜑) [5]. 

Consequently, the sheer amount of aero-elastic simulations required to fully evaluate the 

lifetime fatigue load imposes a computational barrier to probabilistic design [6]. To circumvent 

this barrier a shortcut from wind climate to wind turbine fatigue loads is needed. Various 

methods have been proposed to simplify wind turbine fatigue load assessment via surrogate 

models, also referred to as meta-models, response surfaces or proxies. This motivated Dimitrov 

et al. [7] to benchmark the accuracy of several surrogate techniques, with emphasis towards 

prediction of lifetime fatigue loads. Their study included importance sampling, quadratic 

regression, nearest-neighbour interpolation, polynomial chaos expansion (PCE) and Kriging. 

In conclusion, Kriging and PCE were superior with Kriging being the most accurate model, but 

its computational time also exceeds that of PCE when used as a predictor.  

Surrogate models make fully probabilistic design of wind turbines viable. Toft et al. [8] used a 

quadratic response surface for reliability analysis of onshore wind turbines to model the 

uncertainties in wind climate assessment, aleatory as well as epistemic, and quantified their 

importance. Morató et al. [9] established a Kriging model to capture Von Mises stresses and 

thereby assess the structural reliability of offshore wind turbines in the ultimate limit state. In 

addition, they investigated the influence of the computational effort (number of samples and 

seeds) used to calibrate the surrogate model. With focus on offshore wind turbine fatigue loads 

Teixeira et al. [10] used a Kriging model to analyse the importance of different wind and wave 

climate parameters. Murcia et al. [11] used the uncertainty propagation properties of PCE to 

analyse the sensitivity of the wind climate on the power output and structural response of an 

onshore turbine. Focussing on blade design, Hu et al. [12] proposed a reliability-based design 

optimization which relied on multiple Kriging models to predict fatigue loads at critical 

structural hotspots. They included wind climate uncertainty, spatial as well as temporal, while 

also considering manufacturing uncertainties of the composite laminate.  

A common goal of existing literature on wind turbine fatigue reliability is to establish novel 

reliability models and quantify the long chain of uncertainties from wind climate assessment to 

wind turbine load effects. In this context, an important uncertainty is still missing in the 

literature, namely the use of a surrogate model to approximate fatigue loads instead of direct 

aero-elastic simulations. The scope of this paper is to study this uncertainty by using wind 

measurements from 99 real wind turbine sites, which constitutes a solid base to quantify a 

general uncertainty model for future applications. In this work PCE and Kriging are considered 
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due to their very promising capabilities in terms of capturing fatigue loads, propagating 

uncertainty and carrying out sensitivity analyses, whilst minimising computational 

requirements. The chosen techniques also represent two main approaches to predict a model 

output viz. regression (PCE) and interpolation (Kriging). 

2. Wind Measurements 

High quality 10 min. measurements of wind direction, windspeed, turbulence and wind shear 

from 99 real wind turbine sites are used in this study. All measurement campaigns are from 

meteorological masts or from wind power projects and reflect typical setups used for load 

calculations in practice. Collectively, the masts represent a wide geographical spread with 

varying terrain complexity and roughness fetches. The measurements were also used by Slot et 

al. [3] where a detailed description of the data can be found. 

2.1. Ambient joint wind climate 

The site-specific joint distributions of wind direction, windspeed, turbulence and wind shear 

are described in terms of conditional distributions as summarized in Table 1. Measurements 

leading to air density were unavailable at most sites, so for consistency air density time series 

are estimated from a meso-scale model. Flow inclination measurements were also missing, and 

for simplicity these are modelled as a fixed value dependent on the site-specific orography, see 

Table 2. It is noted that air density as well as flow inclination have very limited influence on 

fatigue loads when compared to wind speed, turbulence and wind shear [3,4,13], hence, the 

applied simplifications are not expected to significantly affect the results in this paper. 

Table 1: Joint wind climate distribution 

Wind climate parameter Notation Description 

Wind direction 𝑃𝜃(𝜃) Discrete distribution [5] 

Wind speed 𝑓𝑈(𝑈|𝜃) Weibull distribution [5,14] 

Turbulencea 𝑓𝜎𝑈(𝜎𝑈|𝑈, 𝜃) Lognormal distribution [5] 

Wind shear 𝑓𝛼(𝛼|𝜎𝑈 , 𝑈, 𝜃) Normal distribution [4,13] 

Air density 𝑓𝜌(𝜌) Normal distribution [4] 

Flow inclination 𝜑 Fixed value 

The conditional distributions of wind speed are derived by binning the wind direction into 

twelve sectors covering 30° each as recommended in the IEC 61400-1 standard [5], and the 

 

a A Weibull distribution may also be considered as recommended in the IEC 61400-1 ed. 4 design standard. 
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conditional distributions of turbulence are determined by further binning wind speed by 1 m/s. 

To model wind shear dependent on direction, wind speed, and turbulence the procedure 

described by Dimitrov et al. [13] is adopted. In each wind speed and directional bin, the 

available turbulence samples are ranked and divided into five equally sized intervals, each 

assumed to represent a width of 20% of the turbulence cumulative distribution function. Then, 

in each of the turbulence intervals a normal distribution is fitted to the available wind shear 

data.  

The first and second moment of the turbulence and wind shear data are required in each defined 

bin to estimate the conditional distributions. To ensure robust estimates of the moments only 

direction and wind speed bins with 50 or more samples are considered. In bins with less than 

50 samples the distribution parameters are extrapolated in order to have a complete description 

of the joint wind climate across the entire range of normal turbine operation. Following the IEC 

61400-1 standard [1], the mean value (𝜇𝜎𝑈) and standard deviation (𝜎𝜎𝑈) of the turbulence 

distributions are extrapolated by using linear models. This is outlined by Eqs. (1) and (2), where 

𝑎 and 𝑏 are calibrated to obtain the best least square fit to the data in accepted bins. 

 𝜇𝜎𝑈(𝑈|𝜃) = 𝑎𝜇(𝜃) ∙ 𝑈 + 𝑏𝜇(𝜃) (1) 

 𝜎𝜎𝑈(𝑈|𝜃) = 𝑎𝜎(𝜃) ∙ 𝑈 + 𝑏𝜎(𝜃) (2) 

To extrapolate the mean value of the wind shear distribution (𝜇𝛼) it is approximated by the 

median of 𝜇𝛼 over the three highest accepted wind speed bins given direction and turbulence. 

This imitates how atmospheric stability turns towards neutral conditions at medium to high 

wind speeds where the mean wind shear becomes almost constant [15]. Finally, the standard 

deviation of the wind shear distribution is extrapolated. This is inversely proportional to wind 

speed as shown in Eq. (3), where 𝑐 is calibrated by the available data [16]. 

 

σ𝛼(𝑈|𝜃, 𝜎𝑈) =
𝑐𝛼(𝜃, 𝜎𝑈)

𝑈
 (3) 

Table 2: Flow inclination model 

Site-specific orography Flat terrain Hilly terrain Steep terrain 

Fixed flow inclination 0° 6° 12° 

Number of sites 62 27 10 

2.2. Wake added turbulence 

All the included measurements represent ambient climates. This does not mirror the reality of 

most turbines, where wakes are present in certain directions. Wake added turbulence is, 

therefore, considered by assuming a rectangular grid layout where a neighbouring turbine is 

placed 5 rotor diameters (𝑅𝐷 ) up- and downwind in the main wind direction, and 3 𝑅𝐷 
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perpendicular to that. The wake added turbulence (𝜎𝑈,𝑤𝑎𝑘𝑒) is modelled according to the IEC 

61400-1 standard [1] as outlined in Eq. (4), where 𝐶𝑇 is the thrust coefficient.  

 

𝜎𝑈,𝑤𝑎𝑘𝑒(𝑈, 𝜃) =
𝑈

1.5 +
0.8 𝑅𝐷(𝜃)

√𝐶𝑇(𝑈)

 
(4) 

To significantly reduce the computations required in this paper, but without loss of generality, 

the wakes are assumed to perfectly align with the defined sectors regardless of the distance 

between the two turbines. This is a simplification, but the main purpose of introducing the 

wakes is to reproduce a real case representative range of turbulence values. The ambient and 

wake added turbulence are combined to create the total turbulence that is experienced by the 

turbine (𝜎𝑈,𝑇) by Eq. (5).  

 

𝜎𝑈,𝑇(𝑈, 𝜃) = √𝜎𝑈(𝑈, 𝜃)
2 + 𝜎𝑈,𝑤𝑎𝑘𝑒(𝑈, 𝜃)

2 (5) 

3. Probabilistic Model for Fatigue Failure 

The key objective in probabilistic design is to assess the structural reliability of a given failure 

mode and check if it meets the target reliability level. This requires a representative limit state 

equation (LSE) to quantify the failure probability by modelling relevant uncertainties on 

strengths and loads. In this section a simple yet representative LSE for wind turbine fatigue 

failure is presented. 

3.1. Wind turbine simulation and fatigue loads 

First, it is relevant to discuss how fatigue loads are calculated. In this paper the framework of 

“damage equivalent loads” (𝐷𝐸𝐿) is adopted, which implicitly assumes that fatigue strength of 

materials can be modelled by a linear 𝑆𝑁-curve, and that Miner’s rule [17] may be used to 

accumulate fatigue damage from varying load effect amplitudes. All fatigue loads are based on 

10 min. effectiveb simulations of the 5MW reference wind turbine designed by NREL [18]. The 

turbine’s baseline controller is considered, which represents a simple version of typical 

commercial solutions by using optimal torque control between cut-in and rated wind speed, and 

collective pitch control between rated and cut-out wind speed [18,19]. The turbine is simulated 

in the aero-servo-elastic software FAST [20], and each realized wind field is computed in 

TurbSIM [21] using the Kaimal spectrum [22]. The output of the simulations are time-series of 

load effects for various sensors on the main components of the turbine, which are reduced to a 

spectrum of load effect amplitudes (Δ𝐹𝑖 ) and a corresponding number of cycles (𝑛𝑖 ) by 

Rainflow counting [23]. This is then further condensed to a single scalar, the 𝐷𝐸𝐿, which 

represents the load effect range that produces the same fatigue damage as the entire spectrum. 

The 𝐷𝐸𝐿  is outlined in Eq. (6) where the wind climate parameters, except turbulence, are 

 

b The term “effective” is used to indicate that transient start-up behaviour is removed from the output.  
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gathered in the vector 𝐶̅ = [𝑈, 𝛼, 𝜌, 𝜑] to ease notation. Note that the equivalent number of 

cycles, 𝑁𝑒𝑞, is used as a reference value and may be selected arbitrarily if it is kept the same 

when comparing different 𝐷𝐸𝐿s. 

 

𝐷𝐸𝐿(𝐶̅, 𝜎𝑈,𝑇) = (
1

𝑁𝑒𝑞
∑𝑛𝑖𝛥𝐹𝑖

𝑚

𝑖

)

1/𝑚 

 (6) 

The combined site-specific equivalent fatigue load (𝐹𝑒𝑞) with a one year reference period (𝑇𝑟𝑒𝑓) 

is assessed by Eq. (7), where 𝑓𝑆𝑖𝑡𝑒 models the joint wind climate distribution and 𝑇𝑠𝑖𝑚 is the 

simulation time. 

 

𝐹𝑒𝑞,𝑑𝑖𝑟𝑒𝑐𝑡 = (
𝑇𝑟𝑒𝑓

𝑇𝑠𝑖𝑚
 ∑𝑃𝜃(𝜃)

𝜃

∫ ∫ 𝑓𝑆𝑖𝑡𝑒(𝐶̅, 𝜎𝑈|𝜃)𝐷𝐸𝐿(𝐶̅, 𝜎𝑈,𝑇)
𝑚
 𝑑𝐶̅𝑑𝜎𝑈

𝐶̅∈ℝ4𝜎𝑈

)

1/𝑚

 (7) 

To limit the amount of results shown in this paper only the six main sensors listed in Table 3 

are considered. The sensors represent varying sensitivities to the wind climate parameters and 

controller actions, and collectively they reflect the overall path of the wind loads from acting 

on the blades until being reacted by the foundation. The fatigue strength of each component is 

modelled by typical Wöhler exponents used throughout the literature [4,11,13,24]. 

Table 3: Wind turbine sensors 

Component Sensor description Notation Unit Wöhler 

exponent 

Blade Blade root flap-wise bending RootMyb1 kNm 10  

Blade Blade root edge-wise bending RootMxb1 kNm 10 

Main shaft Low speed shaft torque LSSGagMxa kNm 6    

Tower (top) Yaw bearing tilt YawBrMyp kNm 4   

Tower (top) Yaw bearing yaw YawBrMzp kNm 4 

Tower (bottom) Tower bottom fore-aft bending TwrBsMyt kNm 4 

3.2. Limit state equation 

By assessing fatigue loads via direct aero-elastic simulation a LSE for fatigue failure (𝑔𝑑𝑖𝑟𝑒𝑐𝑡) 
is defined as shown in Eq. (8), where the design parameter, 𝑧, relates load effects to stresses 

and 𝑡 is time in years [24,25].  
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𝑔𝑑𝑖𝑟𝑒𝑐𝑡(𝑧, 𝑡) = 𝜟 −
𝑁𝑒𝑞𝑡

𝑲
(𝑿𝐿𝑜𝑎𝑑𝑿𝑆𝐶𝐹

𝐹𝑒𝑞,𝑑𝑖𝑟𝑒𝑐𝑡

𝑧
)
𝑚

 (8) 

Bold font indicates if a variable is stochastic. This includes the model uncertainties 𝚫 and 𝑲 to 

account for Miner’s rule and the 𝑆𝑁-approach, respectively, and 𝑿𝐿𝑜𝑎𝑑 and 𝑿𝑆𝐶𝐹 to model the 

uncertainty on wind load effects and stress concentration factorsc. Typical examples of the 

uncertainties are presented in Table 4 [8,24,25]. 

Table 4. Stochastic models 

Variable Distribution Expected value Standard deviation 

m=4 m=6 m=10 

𝚫 Normal 1 0.30 0.40 0.50 

𝑿𝐿𝑜𝑎𝑑 Lognormal 1 0.15 0.15 0.15 

𝑿𝑆𝐶𝐹 Lognormal 1 0.10 0.15 0.15 

log𝑲 Normal -  0.20 0.15 0.25 

The accumulated failure probability (𝑃𝑓) and associated reliability index (𝛽) of the considered 

component is estimated by Eq. (9), where 𝛷  models the cumulative standard normal 

distribution.  

 𝑃𝑓 = 𝛷(−𝛽) = 𝑃(𝑔(𝑧, 𝑡) ≤ 0) (9) 

To evaluate the failure probability, the integrated fatigue load across the entire joint wind 

climate has to be estimated. Direct aero-elastic simulation for this application is extremely 

computationally demanding, and in nearly all cases practically unfeasible. This barrier may be 

overcome by the use of surrogate models as discussed in the introduction. To reiterate, surrogate 

models aim to accelerate the evaluation of site-specific fatigue loads (𝐹𝑒𝑞,𝑝𝑟𝑜𝑥𝑦), but with a 

reduced accuracy compared to direct simulation. This should be properly accounted for in the 

LSE by introducing an additional model uncertainty related to the surrogate model itself 

(𝑿𝑝𝑟𝑜𝑥𝑦). The uncertainty is related directly to the load effect, similar to 𝑿𝐿𝑜𝑎𝑑 and 𝑿𝑆𝐶𝐹, and 

is applied alongside these as shown in Eq. (10).  

 

𝑔𝑝𝑟𝑜𝑥𝑦(𝑧, 𝑡) = 𝜟 −
𝑁𝑒𝑞𝑡

𝑲
(𝑿𝐿𝑜𝑎𝑑𝑿𝑆𝐶𝐹𝑿𝑝𝑟𝑜𝑥𝑦

𝐹𝑒𝑞,𝑝𝑟𝑜𝑥𝑦

𝑧
)
𝑚

 (10) 

4. Surrogate Models for Fatigue Load Prediction 

The surrogate model uncertainty depends on the surrogate model type and how many 

simulations that are invested to train it [7]. Two surrogate techniques are included in this work, 

specifically Kriging and PCE, and both are implemented in the general purpose uncertainty 

quantification framework UQLab [26]. This section outlines the input domain and the 

 

c The linear relationship between load effects and stresses is based on simple beam theory. To account for non-

linear effects a “stress concentration factor” is typically applied. 
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experimental design used to train the models, followed by a brief summary of each surrogate 

technique with emphasis on their configuration in this particular work. For a more general 

explanation of the details and theory behind Kriging we refer to Santner et al. [27] and for PCE 

we refer to Sudret [28]. 

4.1. Input domain and experimental design 

Regardless of the surrogate model technique it is necessary to sample an experimental design. 

On the one hand, this requires an input domain that covers the joint wind climate distributions 

across all 99 sites to avoid extrapolation by the surrogate models which may lead to erratic 

results. On the other hand, the input domain should also encompass physically realistic wind 

climate combinations to ensure validity of the aero-elastic simulations used to estimate the 

output fatigue loads. An input domain that meets these two key objectives was defined by 

Dimitrov et al. [7], partly based on theoretical considerations of atmospheric stability. In this 

work, we have chosen to tailor the input domain explicitly to the 99 available sites by using all 

data including wakes. This is illustrated in Figure 1 for turbulence intensityd (i.e. 10 min. wind 

speed coefficient of variation) and wind shear as function of wind speed. The bounds (blue 

lines) are based on approximations to the extreme quantiles of all data (red lines) with a slight 

conservative offset.  

 

Figure 1: Turbulence bound (left) and wind shear bounds (right) as function of wind speed based on all available 

measurements. The pronounced clear lines inside the turbulence samples at 0.2 and 0.3 correspond to the wake added 

turbulence at 3 RD and 5 RD. The smaller clear lines are a product of the decimal truncation when the wind 

measurements are logged. 

The bounds on air density are based on the meso-scale modelled data as shown in Figure 2, and 

the bounds on flow inclination are based on engineering judgement in the interval from -16° to 

16°. 

 

 

d Turbulence intensity is used such that the slight offset of the bound accounts for the increasing scale of turbulence 

with increasing wind speed. 
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Figure 2: Air density bounds based on all available measurements. 

Together, the defined bounds enclose a hyper-volume in the 5-dimensional space of the 

considered wind climate parameters. An experimental design consisting of 625 samples is 

drawn uniformly inside this hyper-volume using a quasi-random Halton sequence. This ensures 

a good space-filling for the entire experimental design, and also when only a subset of the 

experimental design is utilized. To avoid clear patterns in the Halton sequence, which may 

compromise the accuracy of the surrogate models, a reverse-radix scrambling is performed as 

described by Kocis and Whiten [29]. The experimental design is shown in Figure 3. Each of 

the corresponding 𝐷𝐸𝐿s is estimated using 100 seeds, resulting in a total of 62,500 aero-elastic 

simulations.

 

Figure 3: Experimental design with 625 samples drawn uniformly inside the bounded hyper-volume of the wind climate 

parameters. 
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4.2. Polynomial chaos expansion 

In this work the Wiener-Askey generalized PCE is considered [30]. Generally, it may be used 

to approximate a function (Y) of a random vector (𝑿̅) in dimension D (𝑿̅ ∈ ℝ𝐷) by an infinite 

expansion of a multivariate orthonormal polynomial basis ( Ψ̅ ) with respect to the joint 

probability density function of the input. This is outlined in Eq. (11) where 𝑗 is a multi-index 

of the components of the multivariate polynomials. 

 
Y(𝑿̅) = ∑ 𝑐𝑗Ψ𝑗(𝑿̅)

𝑗∈ℕ𝐷

 (11) 

The polynomial basis is built from a set (family) of univariate orthonormal polynomials with 

respect to each input variable, and classical families have been developed which cover common 

input distributions [30]. For simplicity, the experimental design is transformed into the standard 

uniform space by Rosenblatt transformation [31]. Accordingly, only the Legendre family of 

orthonormal polynomials is required to build the PCE.  

For practical application, the infinite sum of polynomials in Eq. (11) is truncated using a hybrid 

least angle regression algorithm to penalize higher order terms combined with a hyperbolic 

truncation scheme to disregard insignificant interactive terms, details of which are shown in 

Blatman and Sudret [32]. By considering polynomial degrees up to 20, the PCE which 

minimizes the “leave one out” cross-validation error ( 𝜖𝐿𝑂𝑂 ) is selected following the 

implementation in UQLab [33]. Note that the 𝜖𝐿𝑂𝑂  is chosen as the optimization metric to 

increase robustness towards over-fitting of the PCE when high-order polynomials are 

considered. 

4.3. Kriging 

Kriging, also refered to as Gaussian process regression, is a stochastic interpolation technique 

which assumes the model output (Y) to be a realization of a deterministic mean defined by a 

regression model (𝛽̅𝐾𝑅𝐺𝑓𝐾̅𝑅𝐺
𝑇 ) and a correlated stochastic process (𝒁), see Eq. (12) [27]. 

 𝑌(𝑋̅) = 𝛽̅𝐾𝑅𝐺𝑓𝐾̅𝑅𝐺
𝑇 (𝑋̅) + 𝒁(𝑋̅) (12) 

The first term models the trend (mean) of the output by a set of basis functions 𝑓𝐾̅𝑅𝐺(𝑋̅) =
[𝑓1(𝑋̅),… , 𝑓𝑛(𝑋̅)] and associated regression coefficients 𝛽̅𝐾𝑅𝐺 = [𝛽1, … , 𝛽𝑛]. The second term 

is interpolating the known residuals at the experimental design by a stationary zero mean 

Gaussian process fully described by its covariance (cov): 

 cov(𝑋̅, 𝑋̅′) = 𝜎𝐾𝑅𝐺
2 𝑅(𝑋̅, 𝑋̅′, 𝜃̅𝑅) (13) 

Here 𝜎𝐾𝑅𝐺
2  is the overall process variance (assumed constant) and R models the correlation 

between 𝒁(𝑋̅) and 𝒁(𝑋̅′) by their inter-distance and a correlation function defined by the hyper 

parameters 𝜃̅𝑅. Once a suitable basis of functions and a correlation model are chosen 𝛽̅𝐾𝑅𝐺, 

𝜎𝐾𝑅𝐺
2 , and 𝜃̅𝑅 may be estimated by maximizing the likelihood of observing the output at the 

experimental design [34].   
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A priori it is known that the sensitivity between fatigue loads and the different wind climate 

parameters varies significantly. An anisotropic separable correlation formulation is therefore 

considered as outlined by Eq. (14). 

 

𝑅(𝑋̅, 𝑋̅′, 𝜃̅𝑅) =∏𝑅(𝑋𝑖, 𝑋𝑖
′, 𝜃𝑅,𝑖

𝐷

𝑖=1

) (14) 

A main challenge when calibrating an accurate Kriging model is to select an appropriate trend 

and correlation function. By a combinatorial approach similar to Morató et al. [9] we found that 

universal Kriging with a quadratic trend and the Matérn 3/2 correlation function yielded the 

best results overall. 

5. Method for Assessment of Surrogate Model Uncertainty 

The surrogate model uncertainties of PCE and Kriging are estimated according to EN 1990, 

Annex D [35]. This section briefly outlines the method followed by an in-depth description of 

the numerical integration scheme that is used to assess the site-specific fatigue loads. 

5.1. EN 1990 method 

The model uncertainty, 𝑿𝑝𝑟𝑜𝑥𝑦, is estimated by rewriting it in terms of a unit mean lognormal 

error (𝑿𝑝𝑟𝑜𝑥𝑦,𝐸𝑁)  and a mean value correction factor to account for the model bias (𝑏𝑝𝑟𝑜𝑥𝑦), 

see Eq. (15). 

 𝐹𝑒𝑞,𝑑𝑖𝑟𝑒𝑐𝑡 = 𝑏𝑝𝑟𝑜𝑥𝑦𝑿𝑝𝑟𝑜𝑥𝑦,𝐸𝑁𝐹𝑒𝑞,𝑝𝑟𝑜𝑥𝑦 (15) 

Given the available set of 99 statistically independente joint wind climates the bias is estimated 

by a least squares approach as shown in Eq. (16). 

 

𝑏𝑝𝑟𝑜𝑥𝑦 =
∑ 𝐹𝑒𝑞,𝑑𝑖𝑟𝑒𝑐𝑡,𝑖
99
𝑖=1 𝐹𝑒𝑞,𝑝𝑟𝑜𝑥𝑦,𝑖

∑ 𝐹𝑒𝑞,𝑝𝑟𝑜𝑥𝑦,𝑖
299

𝑖=1

 (16) 

Next, the logarithm of the residuals at each site (𝛿𝐸𝑁,𝑖) is estimated by Eq. (17).  

 

𝛿𝐸𝑁,𝑖 = ln (
𝐹𝑒𝑞,𝑑𝑖𝑟𝑒𝑐𝑡,𝑖

𝑏𝑝𝑟𝑜𝑥𝑦𝐹𝑒𝑞,𝑑𝑖𝑟𝑒𝑐𝑡,𝑖
) (17) 

The standard deviation of the residuals (𝜎𝛿,𝐸𝑁) is then assessed by Eq. (18) where 𝛿𝐸𝑁,𝜇 is the 

mean value of all error realizations. 

 

e The diversity of the included sites in terms of complexity and geographical spread validates the assumption of 

independence. 
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𝜎𝛿,𝐸𝑁 = √
1

99 − 1
∑(𝛿𝐸𝑁,𝑖 − 𝛿𝐸𝑁,𝜇)

2
99

𝑖=1

 (18) 

Finally, the coefficient of variation of the lognormal surrogate model uncertainty (𝑉𝑝𝑟𝑜𝑥𝑦) is 

calculated by Eq. (19). 

  
𝑉𝑝𝑟𝑜𝑥𝑦 = √𝑒

𝜎𝛿,𝐸𝑁
2

− 1 (19) 

5.2. Numerical fatigue load integration 

To evaluate the surrogate model uncertainty, it is necessary to assess 𝐹𝑒𝑞 by direct simulation. 

This is not trivial and involves hundreds of thousands of aero-elastic simulations, hence, it is 

relevant to discuss the applied method to integrate the fatigue load in detail. 

With flow inclination being fixed (𝜑𝑓𝑖𝑥) the dimension of the integration problem in Eq. (7) is 

reduced as shown in Eq. (20). Here, the 12 discrete directions are directly introduced and 𝐶𝑅̅ =
[𝑈, 𝛼, 𝜌] contain the remaining set of wind climate parameters of wind speed, wind shear and 

air density. 

𝐹𝑒𝑞(𝜑𝑓𝑖𝑥)

=

(

  
 𝑇𝑟𝑒𝑓

𝑇𝑠𝑖𝑚
∑𝑃𝜃(𝜃𝑘)

12

𝑘=1

∫ ∫ 𝑓𝑆𝑖𝑡𝑒(𝐶𝑅̅, 𝜎𝑈| 𝜃𝑘)𝐷𝐸𝐿(𝐶𝑅̅ , 𝜎𝑈,𝑇 , 𝜑𝑓𝑖𝑥)
𝑚
𝑑𝐶𝑅̅

𝐶̅𝑅∈ℝ3

𝑑𝜎𝑈
𝜎𝑈⏟                                  

𝐹𝑒𝑞,𝑠𝑒𝑐𝑡,𝑘
𝑚 )

  
 

1
𝑚

 
(20) 

To find an optimal numerical integration scheme it is sufficient to consider the sector wise 

fatigue loads (𝐹𝑒𝑞,𝑠𝑒𝑐𝑡,𝑘), which mathematically is the mth order weighted Hölder mean of 𝐷𝐸𝐿 

with respect to 𝑓𝑆𝑖𝑡𝑒. In turn, 𝐹𝑒𝑞,𝑠𝑒𝑐𝑡,𝑘
𝑚  is the expected value of 𝐷𝐸𝐿𝑚 which may be estimated 

approximatively by Monte-Carlo ( 𝑀𝐶 ) sampling, and thereby avoid the “curse of 

dimensionality” associated to traditional grid-based integration [6]. The 𝑀𝐶 -integration is 

outlined in Eq. (21), where 𝑁 is the number of samples and ℎ𝑀𝐶  models the probability of 

generating sample 𝑖 in terms of ambient turbulence. 

 

𝐹𝑒𝑞,𝑠𝑒𝑐𝑡,𝑘
𝑚 (𝜑𝑓𝑖𝑥) ≈

1

𝑁
∑

𝑓𝑆𝑖𝑡𝑒(𝐶𝑅̅,𝑖, 𝜎𝑈,𝑖| 𝜃𝑘)𝐷𝐸𝐿(𝐶𝑅̅,𝑖, 𝜎𝑈,𝑇,𝑖, 𝜑𝑓𝑖𝑥)
𝑚

ℎ𝑀𝐶(𝐶𝑅̅,𝑖, 𝜎𝑈,𝑖)

𝑁

𝑖=1

 (21) 
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The convergence of Eq. (21) depends on the choice of the 𝑀𝐶 -sampling distribution. In 

principle, convergence is obtained more quickly if it resembles the product of 𝐷𝐸𝐿𝑚 and 𝑓𝑆𝑖𝑡𝑒 

to concentrate samples in the region which contributes most to the integral (i.e. importance 

sampling). This leads to the following key considerations for ℎ𝑀𝐶: 

1. Since 𝐷𝐸𝐿s are raised to the power of 𝑚 it is important to sample high fatigue load 

events with a low probability of occurrence. 

2. To capture the majority of the wind turbine’s lifetime it is necessary to sample wind 

climate combinations with a high probability of occurrence. 

The consequence of point one was clearly demonstrated by Graf et al. [6] who benchmarked 

𝑀𝐶-integration by sampling from the joint wind climate distribution (i.e. ℎ𝑀𝐶 = 𝑓𝑆𝑖𝑡𝑒) which 

lead to very slow convergence rates for components with high Wöhler exponents.  

Optimizing ℎ𝑀𝐶  with respect to point one is sensor-specific but generally it requires unlikely 

wind climates to be sampled (e.g. very high turbulence or wind shear). By contrast, optimization 

of ℎ𝑀𝐶  with respect to point two is site-specific and requires likely wind climates to be sampled. 

To cover all 99 sites, and all considered sensors, a straight-forward compromise is to sample 

with equal density across the entire input domain defined in Section 4 (i.e. ℎ𝑀𝐶  uniformly 

distributed). As this sampling strategy is completely independent of 𝑓𝑆𝑖𝑡𝑒  it also holds the 

advantage that the same 𝑀𝐶-samples can be used across all sites, and thereby significantly 

reducing the required 𝐷𝐸𝐿 evaluations. It is noted that to reuse 𝐷𝐸𝐿s across all sectors at a 

given site, ambient as well as wake-affected, the sampled turbulence has to be interpreted as 

total turbulence. To account for this, a Rosenblatt transformation is used to derive the total 

turbulence sample distribution given wind speed in wake-affected sectors (which is uniform for 

the defined input domain). The change-of-variable technique is then used to assess ℎ𝑀𝐶  in terms 

of ambient turbulence by applying the inverse of the transformation in Eq. (5) where 𝜃 and 𝑈 

are fixed. A downside of this procedure is that all 𝑀𝐶-samples with turbulence values less than 

𝜎𝑈,𝑤𝑎𝑘𝑒  become invalid in wake-affected sectors as they correspond to imaginary ambient 

turbulence. In turn, wake-affected sectors are effectively evaluated by fewer samples than 

ambient sectors, which is properly accounted for in all proceeding calculations. 

Several techniques can be used to sample from ℎ𝑀𝐶  but in low dimensions (less than six) 

Morokoff and Catflisch [36] showed that quasi-random numbers from low-discrepancy 

sequences provide fast convergence. Instead of a convergence ratio ∝ 𝑁−0.5 for crude 𝑀𝐶-

integration, a Halton sequence obtains a convergence ratio ∝ 𝑁−𝜆  where 0.5 ≤ 𝜆 ≤ 1 with 

𝜆 → 1 as dimensions reduce. The main question to answer is how many samples are required 

to accurately assess 𝐹𝑒𝑞  in the current setup. Based on the results of Graf et al. [6] and a 

preliminary convergence study using a surrogate model to predict 𝐷𝐸𝐿𝑠  it was found 

reasonable to evaluate the integral by 25,000 samplesf. This resulted in an accuracy within 

approximately 1% of the converged value obtained at one million samples for all considered 

sensors and across all sites. Given that the surrogate model uncertainty is obtained by a relative 

 

f When a neighbouring turbine is 5 𝑅𝐷 away this corresponds to an effective number of approximately 16,000 

samples. For 3 𝑅𝐷 it corresponds to approximately 12,500 samples. 
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comparison of 𝐹𝑒𝑞,𝑑𝑖𝑟𝑒𝑐𝑡  and 𝐹𝑒𝑞,𝑝𝑟𝑜𝑥𝑦 , both estimated by the same set of 𝑀𝐶-samples, the 

small error is assumed to be insignificant. Finally, it is noted that each sample in the 𝑀𝐶-

integration corresponds to one specific flow inclination so three databases of fatigue loads were 

simulated to cover all 99 sites. Using 100 seeds to estimate each 𝐷𝐸𝐿 this resulted in a total of 

7.5 million 10 min. simulations to accurately assess 𝐹𝑒𝑞,𝑑𝑖𝑟𝑒𝑐𝑡. 

6. Quantification of the Surrogate Model Uncertainty 

This section presents a quantification of the surrogate model uncertainty. First, an example is 

shown step-by-step for the blade root flap-wise bending moment to clearly outline the 

procedure. Thereafter, the surrogate model uncertainty is quantified for all considered sensors. 

It is noted that only the worst-case uncertainty and bias across the sensors will be highlighted 

as it is impractical to differentiate the surrogate model uncertainty for each sensorg. 

6.1. Blade root bending moment example 

Using the full experimental design, a Kriging and a PCE model is trained to capture fatigue 

loads of the blades. Both surrogate models are then used to estimate the site-specific integrated 

fatigue loads at all 99 sites by Eq. (20), which is compared to direct simulation as illustrated in 

Figure 4. 

 

Figure 4: Normalized site-specific fatigue loads on the blades predicted by Kriging and PCE and compared to direct 

simulation. The dashed lines indicate the perfect model where 𝑭𝒆𝒒,𝒑𝒓𝒐𝒙𝒚 = 𝑭𝒆𝒒,𝒅𝒊𝒓𝒆𝒄𝒕 

Based on this comparison the surrogate model uncertainty is estimated by Eqs. (16) and (19). 

The results are presented in Table 5. Given the typical scale of the other relevant uncertainties 

on fatigue strength and load effects listed in Table 4, the surrogate model uncertainties are 

insignificant in this present case and may be neglected. 

 

 

g This representation of the surrogate model uncertainty is in line with the model uncertainty for wind load effects 

being identical across all considered sensors. 
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Table 5: Surrogate model uncertainty for blade flap-wise bending. 

Surrogate model Bias [-] Coefficient of variation [-] 

PCE 1.001 0.004 

Kriging 1.004 0.004 

Next, we investigate how the results change with the simulation effort used to train the surrogate 

models. This is illustrated in Figure 5 where the coefficient of variation is plotted as function 

of the number of samples in the experimental design and how many seeds that are used to 

evaluate each corresponding 𝐷𝐸𝐿. Similarly, the model bias is shown as function of simulation 

effort in Figure 6. The number of samples starts at 100 as both surrogate models exhibit 

considerable inaccuracy for smaller experimental designs. The apparent noise in the PCE results 

is explained by the adaptive scheme used to select the optimal polynomial degree which may 

change for each combination of samples/seeds in order to minimize 𝜖𝐿𝑂𝑂. 

 

 

Figure 5: Coefficient of variation of the surrogate model uncertainty for the blades using Kriging and PCE shown as 

function of the number of samples used to train the models and the number of seeds used to evaluate the DEL at each 

sample. 
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Figure 6: Surrogate model bias for the blades using Kriging and PCE shown as function of the number of samples used 

to train the models and the number of seeds used to evaluate the DEL at each sample. The apparent “valley” in the 

Kriging results at approximately 200 samples is due to the oscillating convergence behaviour of the bias across samples. 

This is clearly seen when less than 100 samples are considered, but to keep the figures consistent and clean this is not 

included here. 

6.2. Surrogate model uncertainty across all sensors 

Following the procedure described for the blade flap-wise bending moment the surrogate model 

uncertainties have been evaluated for all sensors in Table 3. The maximum coefficient of 

variation across the sensors is plotted in Figure 7, demonstrating how relatively few samples 

and seeds are required for both surrogate models to converge at approximately ~0.5%. 

 

 

Figure 7: Surrogate model uncertainty coefficient of variations across all considered sensors shown as function of the 

number of samples used to train the models and the number of seeds used to evaluate the DEL at each sample. 

To analyse the surrogate model bias it is necessary to consider the minimum and maximum 

values across all sensors as illustrated in Figure 8 and Figure 9, respectively. This shows that 

for sparse designs (low number of samples) PCE tends to be non-conservative while Kriging 

seems to be almost exclusively conservative across all sensors. 
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Figure 8: Minimum surrogate model bias across all considered sensors shown as function of the number of samples 

used to train the models and the number of seeds used to evaluate the DEL at each sample. 

 

 

Figure 9: Maximum surrogate model bias across all considered sensors shown as function of the number of samples 

used to train the models and the number of seeds used to evaluate the DEL at each sample. The PCE model bias at 100-

150 samples is missing due to a sharp increase to 1.10 which would otherwise distort the figure. 

7. Sensitivity Analysis and Recommendations 

In this section a sensitivity analysis is conducted to assess how the surrogate model uncertainty 

affects the reliability level of the considered components. This is used to define three levels of 

accuracy followed by a set of recommendations by the authors on training PCE and Kriging for 

fatigue reliability analysis of wind turbines. 

7.1. Reliability sensitivity analysis 

To estimate the reliability sensitivity towards the surrogate model uncertainty a reference design 

(𝑧𝑟𝑒𝑓) is established by assuming that each component is designed to the limit using direct aero-
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elastic simulation (i.e. using the LSE in Eq. (8)). This implies that the reliability index at the 

last year of service is exactly the target of Δ𝛽𝑡(𝑧𝑟𝑒𝑓 , 𝑇𝑙𝑖𝑓𝑒) = 3.3 [1], where 𝑇𝑙𝑖𝑓𝑒 is the assumed 

turbine lifetime of 20 years. The annual probability of failure is approximated as Δ𝑃𝑓,20 ≅

𝑃𝑓,20 − 𝑃𝑓,19 where 𝑃𝑓,20 and 𝑃𝑓,19 represent the accumulated failure probabilities at years 19 

and 20, respectively, and all the uncertainties are modelled according to Table 4. Using the 

reference design for each component the reliability index at the final year of service (Δ𝛽) is 

calculated by the LSE in Eq. (10), where 𝑏𝑝𝑟𝑜𝑥𝑦  and 𝑉𝑝𝑟𝑜𝑥𝑦  are varied individually. 

Subsequently, the sensitivity towards the surrogate model uncertainty is quantified as the ratio 

Δ𝛽/Δ𝛽𝑡. In Figure 10 (left) this is shown for a representative range of 𝑉𝑝𝑟𝑜𝑥𝑦, demonstrating 

that the relative change of the reliability index is less than 0.5%. Figure 10 (right) shows the 

results of varying 𝑏𝑝𝑟𝑜𝑥𝑦, which reveals the important relationship that Δ𝛽/Δ𝛽𝑡 ≅ 𝑏𝑝𝑟𝑜𝑥𝑦 for 

all components considered.  

 

Figure 10: Reliability index sensitivity towards the surrogate model uncertainty coefficient of variation. The dashed line 

on the plot to the right indicates 𝚫𝜷/𝚫𝜷𝒕 = 𝒃𝒑𝒓𝒐𝒙𝒚. 

7.2. Surrogate model accuracy 

Typically, the target reliability index is specified with one decimal in standards and codes, 

thereby suggesting that less than 1% change of the reliability index at the limit is negligible. 

𝑉𝑝𝑟𝑜𝑥𝑦 may, therefore, be ignored in reliability analysis of wind turbines for both Kriging and 

PCE when at least 100 samples are considered in the experimental design. The change in 

reliability is approximately proportional to 𝑏𝑝𝑟𝑜𝑥𝑦, thereby making the bias significant when it 

is outside the range of 0.99 to 1.01. This is also clearly shown in Table 6 which is used to define 

three accuracy classes in the following. 

Table 6: Absolute reliability for varying surrogate model bias. 

𝑏𝑝𝑟𝑜𝑥𝑦 0.95 0.96 0.97 0.98 0.99 1.00 1.01 1.02 1.03 1.04 1.05 

Δ𝛽 3.1 3.2 3.2 3.2 3.3 3.3 3.3 3.4 3.4 3.4 3.5 
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High accuracy is obtained when 0.99 ≤  𝑏𝑝𝑟𝑜𝑥𝑦 ≤ 1.01 where the estimated reliability index is 

unchanged on the first decimal. Medium accuracy is obtained when 0.96 ≤  𝑏𝑝𝑟𝑜𝑥𝑦 ≤ 1.04 

leading to a slight change of ±0.1 for the estimated reliability index. If  0.96 >
𝑏𝑝𝑟𝑜𝑥𝑦 𝑜𝑟 𝑏𝑝𝑟𝑜𝑥𝑦 > 1.04 low accuracy is obtained which potentially changes the estimated 

reliability index drastically by more than ±0.2. The accuracy classes are pictured for each 

surrogate model in Figure 11. 

  

Figure 11: Surrogate model bias divided into three accuracy classes. Notice the clear pattern of increasing accuracy 

with the number of seeds for Kriging and the increased accuracy with the number of samples for PCE. 

For Kriging the accuracy depends highly on the number of seeds that are used. The upper right 

corner confirms a converged plateau of high accuracy which requires an experimental design 

with more than 350 samples using at least 50 seeds to assess each 𝐷𝐸𝐿. If a medium accuracy 

is acceptable it is only required to use more than 100 samples and at least 4 seeds.  

For PCE the accuracy depends on the density of the experimental design.  A high accuracy may 

be obtained, but even when the full design is used the accuracy is not fully consistent with an 

increase in seeds. This indicates that the PCE coefficients may not have converged fully in the 

investigated range of simulation effort. If more than 175 samples are considered the PCE model 

reaches a medium accuracy, and low accuracy is obtained for experimental designs with less 

than ~175 samples. 

7.3. Recommendations 

The results of the optimization analysis are summarized in Tables 7 and 8 as a set of 

recommendations to train Kriging and PCE for fatigue reliability analysis of onshore wind 

turbines. Since only a subset of load-bearing components is considered the recommendations 

are deliberately conservative compared to the results shown in Figure 11. 

It is important to recognise that the recommendations are tied to the current setup of using the 

5MW reference turbine designed by NREL together with the experimental design described in 

Section 4. The minimum samples and seeds are also dependent on the size of the input domain, 

which directly relates to the sample density. If a similar experimental design is used together 
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with a smaller or larger input domain emphasis should be on the recommended maximum 

“leave one out” error. Since the proposed experimental design is uniformly distributed without 

any emphasis on the turbine specific 𝐷𝐸𝐿  response it is expected that the recommended 

maximum “leave one out” error can be used as tentative guidance for other turbines of similar 

architecture. 

Table 7: Kriging recommendations 

Accuracy Minimum samples 

in DoE [-] 

Minimum seeds to 

assess DEL [-] 

Total amount of 10 

min. simulations [-] 

Maximum 

𝝐𝑳𝑶𝑶 [%] 

High 400 75 30,000 0.60 

Medium 100 10 1,000 2.00 

Low 100 4 400 3.25 

Table 8: PCE recommendations 

Accuracy Minimum samples 

in DoE [-] 

Minimum seeds to 

assess DEL [-] 

Total amount of 10 

min. simulations [-] 

Maximum 

𝝐𝑳𝑶𝑶 [%] 

High >625 50 >31,250 0.35 

Medium 200 10 2,000 1.35 

Low 100 4 400 2.20 

8. Comparison and Discussion of PCE and Kriging 

Overall, Kriging obtains a higher accuracy than PCE per aero-elastic simulation, but it also 

requires more computations to predict new samples [7]. However, as stressed previously ℎ𝑀𝐶  

is completely independent of the joint wind climate distribution and the load response function 

in the proposed numerical integration. A direct advantage of this is that the 𝐷𝐸𝐿 of each 𝑀𝐶-

sample has to be evaluated only once per fixed flow inclination to cover all 99 sites. In practice, 

this strategy therefore neglects the difference in computational time between PCE and Kriging, 

when compared to the simulation time invested into training the models. 

To increase the accuracy of PCE it requires more samples while Kriging requires more seeds. 

This observation is in line with the underlying fundamentals of the surrogate techniques of 

regression and interpolation, respectively. If few seeds are used to evaluate the 𝐷𝐸𝐿s it can be 

interpreted as noise which Kriging is forced to capture when interpolating the residuals. By 

contrast, PCE levels out the noise in a mean sense, but a relatively large number of samples are 

needed to reliably fit the coefficients of the expansion. Although not shown in this paper, this 

encouraged an investigation of using Polynomial Chaos Kriging [37] (PCK) as implemented in 

UQLab [38]. This method combines the two surrogate models by using the PCE as basis 

functions (trend) for the universal Kriging model. In the best-case scenario this would lead to a 
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superior surrogate model which is accurate for small experimental designs (as Kriging) using 

just a few seeds to estimate 𝐷𝐸𝐿s (as PCE). However, the results of using PCK mostly resemble 

those obtained using PCE, and it is therefore not preferred over traditional universal Kriging. 

The reason is probably that the residuals used to estimate 𝜎𝐾𝑅𝐺
2  and 𝜃̅𝑅 in PCK appear without 

any significant correlation, and to a large degree they just represent the noise from using few 

seeds. In turn, the Kriging interpolation only influences predictions at the very vicinity of the 

experimental design, which was also observed by Dimitrov et al. [7]. 

Another possibility to increase the accuracy of Kriging is to introduce a so-called “nugget”. The 

nugget models a set of values that are added to the diagonal of  𝑅(𝑋̅, 𝑋̅′, 𝜃̅𝑅), thereby allowing 

a non-zero uncertainty bound around the experimental design. A well-optimized nugget could 

therefore potentially make the Kriging model more robust against the apparent noise that is 

introduced when a small number of seeds is considered [39]. However, this approach was not 

pursued further in this work and is as such open for continued research. 

9. Summary and Conclusions 

The model uncertainty related to approximating lifetime fatigue loads by Kriging and PCE has 

been quantified using wind data from 99 international sites and based on aero-elastic 

simulations of NREL’s 5MW reference turbine. The main components of the turbine were 

considered, namely the blades, the drivetrain, the yaw bearing and the tower.  

An experimental design to train the surrogate models in terms of wind speed, turbulence, wind 

shear exponent, air density and flow inclination was defined by all the available data. Using up 

to 625 samples, and up to 100 seeds to evaluate fatigue loads at each sample, both surrogate 

models were calibrated in the software UQLab. For Kriging, a combinatorial approach was used 

to conclude that universal Kriging with a second order trend, in conjunction with the Matérn 

3/2 correlation model, is optimal to predict fatigue loads. 

The model uncertainty of both surrogate techniques across all sensors was estimated by the 

recommended approach in Eurocode 1990, Annex D. This revealed that the surrogate model 

uncertainty coefficient of variation is less than 2.5%. Based on a sensitivity study it was shown 

how the model uncertainty coefficient of variation changes the structural reliability index less 

than 0.5%, which is practically negligible compared to the target reliability index of 3.3.  In 

contrast, the model bias varied significantly for the two surrogate models between 0.95 to 1.05, 

and the sensitivity study demonstrated that the relative change in reliability index is 

approximately equal to the model bias. It is, therefore, critical to avoid significantly biased 

surrogate models in site-specific fatigue reliability assessments of wind turbines.  

Three accuracy classes were introduced based on the surrogate model bias, namely low (bias 

larger than 4%), medium (bias less than 4% but more than 1%), and high (bias less than 1%). 

Compared to direct simulation, a surrogate model with a high accuracy estimated reliability 

indices within ±0.05, for medium accuracy the error is within ±0.15, and for low accuracy the 

error is ≥0.15. 

It was documented that Kriging yields a high accuracy for the considered 5MW reference 

turbine when more than 30,000 aero-elastic simulations are invested to train the surrogate 

model. In comparison, PCE did not consistently obtain a high accuracy in the investigated range 
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of 625 samples and 100 seeds, but by using more than 200 samples and 10 seeds PCE achieved 

a medium accuracy. Altogether, this makes Kriging the preferred method for fatigue reliability 

analysis of onshore wind turbines when using the methods proposed by this paper. 
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