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Risk, Safety &
Uncertainty Quantification



Data Sheet

Journal:

Report Ref.: RSUQ-2019-005

Arxiv Ref.:

DOI: -

Date submitted: June 25, 2019

Date accepted: -



Surrogate Model Uncertainty in Wind Turbine Reliability 

Assessment 

René M. M. Slot1,3, John D. Sørensen1, Bruno Sudret2, Lasse Svenningsen3, and Morten L. 

Thøgersen3 

1Department of Civil Engineering, University of Aalborg, Aalborg, 9220, Denmark 
2Chair of Risk, Safety and Uncertainty quantification, ETH, Zürich, Switzerland 
3EMD International A/S, Aalborg, 9220, Denmark  

Correspondence to: René M. M. Slot (rmms@civil.aau.dk) 

Abstract. Lowering the cost of wind energy entails an optimization of material consumption 

of wind turbine components without compromising structural safety. Typically, wind turbines 

are designed by the partial safety factor method which is calibrated by full probabilistic models 

and presented in the IEC 61400-1 design standard. This approach significantly reduces the 

amount of aero-elastic simulations required to assess the fatigue limit state of wind turbines, 

but it may lead to inconsistent reliability levels across wind farm projects. To avoid this, wind 

turbines may be designed by full probabilistic methods using surrogate models to approximate 

fatigue load effects. Doing so, it is important to quantify and model all relevant uncertainties 

including that of the surrogate model itself. Here we quantify this uncertainty according to 

Eurocode 1990 for polynomial chaos expansion (PCE) and Kriging using wind data from 99 

real sites and the 5MW reference turbine by NREL. We investigate a wide range of simulation 

efforts used to train the surrogates and our results show that Kriging yields a higher accuracy 

per invested simulation compared to PCE. This improved understanding of using PCE and 

Kriging in fatigue reliability assessment may significantly benefit decision support in full 

probabilistic design of wind turbines.  

 

Key words: Wind turbine, Fatigue loads, Structural reliability, Surrogate models, Model 

uncertainty 

1. Introduction 

To lower the cost of wind energy it is important to utilize wind turbines to their full load bearing 

capacity but without compromising structural safety. A typical design approach is to follow the 

partial safety factor method, calibrated by full probabilistic models and presented in 

standardized codes as the IEC 61400-1 design standard for wind turbines1. This semi-

probabilistic approach accounts for variability and uncertainty in strength and load parameters 

by using characteristic values defined by quantiles. A final design equation is then adjusted by 

partial safety factors to meet a target structural reliability level which is defined with 

consideration of economic loss and risk of human lives to optimize material consumption from 

a societal point of view.2 This simplified framework provides a direct advantage in 

computational requirements to assess whether a given wind turbine class is suited for a 

particular site and park layout; However, it may lead to inconsistent reliability levels as the 

simple characteristic input cannot fully explain the variation of the load response.3,4 To cover 
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all relevant structural components partial safety factors are therefore typically calibrated based 

on conservative assumptions. As a result, it can be expected that wind turbines in general are 

over-designed thereby leading to a higher cost of wind energy than necessary. To avoid this 

excess use of materials site-specific assessment of wind turbines may be directly based on a full 

probabilistic analysis as described in the recent 4th edition of the IEC 61400-1 design standard1. 

The main challenge in full probabilistic analysis of wind turbines is the need for significantly 

more load evaluations than the safety factor approach. In particular, fatigue analysis during 

normal operation (Design load case 1.21) involves an infeasible amount of load simulations as 

fatigue damage accumulates during the whole lifetime of the turbine. It is therefore necessary 

to assess the integrated fatigue load across the entire joint wind climate distribution. For onshore 

wind turbines this includes at least wind direction (𝜃), wind speed (𝑈), turbulence (𝜎𝑈), vertical 

wind shear exponent (𝛼), air density (𝜌), and flow inclination (𝜑).5 Consequently, the sheer 

amount of aero-elastic simulations that needs to be carried out to fully evaluate the lifetime 

fatigue load imposes a computational barrier to probabilistic design.6 To circumvent this barrier 

a shortcut from wind climate to wind turbine fatigue loads is required.  

Various methods have been proposed to simplify wind turbine fatigue load assessment using 

surrogate models, also referred to as meta-models, response surfaces or proxies. This motivated 

Dimitrov et al.7 to benchmark the accuracy of several surrogate techniques against each other. 

Their emphasis was prediction of lifetime fatigue loads by importance sampling, quadratic 

regression, nearest-neighbour interpolation, polynomial chaos expansion (PCE) and Kriging. 

Overall, they found Kriging and PCE to be superior, with Kriging having the highest accuracy 

overall, but also an increased computational time compared to PCE when predicting new 

samples.  

Surrogate models make it feasible to carry out full probabilistic design of wind turbines. In Toft 

et al.8 a quadratic response surface was used for reliability analysis of onshore wind turbines 

with focus on modelling wind climate uncertainties. Morató et al.9 established a Kriging 

surrogate model to capture Von Mises stresses in a reliability analysis of offshore wind turbines 

in the ultimate limit state. In addition, they investigated the influence of the number of samples 

and seeds that were used to calibrate the model. With focus on offshore wind turbine fatigue 

loads Teixeira et al.10 used a Kriging model to analyse the importance of different wind and 

wave climate parameters. In Murcia et al.11 the uncertainty propagation properties of PCE was 

used to analyse the sensitivity of the wind climate on the power output and structural response 

of an onshore turbine. Focussing on blade design Hu et al.12 proposed a reliability based design 

optimization which relied on multiple Kriging surrogate models to predict fatigue loads in 

critical structural hotspots. They included wind climate uncertainty, both spatial and temporal, 

while also considering manufacturing uncertainties of the composite laminate. 

A common goal of the previous literature on wind turbine fatigue reliability is to establish novel 

reliability models and quantify the long chain of uncertainties from wind climate to wind turbine 

load effects. In this context, an important uncertainty is still missing in the literature; namely 

that of using a surrogate model to approximate fatigue loads instead of performing direct aero-

elastic simulations. The scope of this paper is to study this uncertainty using wind 

measurements from 99 real wind turbine sites. This provides a solid basis to quantify a general 

uncertainty model for future applications. In this work PCE and Kriging are considered due to 
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their very promising capability in terms of capturing fatigue loads, propagating uncertainty and 

carrying out sensitivity analyses. The two techniques also represent two main approaches to 

predict a model output, namely regression (PCE) and interpolation (Kriging). 

2. Wind Measurements 

High quality measurements of wind direction, windspeed, turbulence, and wind shear from 99 

real wind turbine sites are used in this study. All measurements are from meteorological masts 

or from wind power projects and represent a wide spread in geographical location and terrain 

complexity with and without nearby forestry. The measurements were also used by Slot et. al.3 

where a detailed description of the data may be found. 

2.1. Ambient joint wind climate 

The site-specific joint distribution of wind direction, windspeed, turbulence, and wind shear is 

described in terms of conditional distributions as summarized in Table 1. Measurements leading 

to air density and flow inclination were unavailable at most sites. Instead air density time series 

have been estimated from a meso-scale model while flow inclination is modelled as a fixed 

value dependent on the site-specific orography, see Table 2. These simplifications are not 

expected to have a significant effect given the low importance of both air density and flow 

inclination on site-specific fatigue loads compared to wind speed, turbulence and wind 

shear.3,4,13 

Table 1: Joint wind climate distribution 

Wind climate parameter Notation Description 

Wind direction 𝑃𝜃(𝜃) Discrete distribution5 

Wind speed 𝑓𝑈(𝑈|𝜃) Weibull distribution5 

Turbulencea 𝑓𝜎𝑈(𝜎𝑈|𝑈, 𝜃) Lognormal distribution5 

Wind shear 𝑓𝛼(𝛼|𝜎𝑈 , 𝑈, 𝜃) Normal distribution4,13 

Air density 𝑓𝜌(𝜌) Normal distribution4 

Flow inclination 𝜑 Fixed value 

To define the conditional distributions of wind speed the wind direction is binned into 12 sectors 

covering 30° each as recommended in the IEC 61400-1 standard5. The conditional distributions 

of turbulence are determined by further binning wind speed by 1 m/s. To model wind shear 

dependent on direction, wind speed and turbulence the procedure described in Dimitrov et al.13 

 

a A Weibull distribution may also be considered as recommended in the IEC 61400-1 ed. 4 design standard. 
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is adopted. In each wind speed and direction bin all turbulence samples are ranked and divided 

into five equally sized bins, each assumed to represent a width of 0.2 of the turbulence 

cumulative distribution function. Subsequently a wind shear distribution is fitted to the shear 

values in each of the turbulence bins.  

To define the turbulence and wind shear distributions the first and second moments of the 

available data are required. To obtain robust estimates only direction and wind speed bins with 

50 or more samples are considered. For bins with less than 50 samples the distribution 

parameters are extrapolated in order to get a full description of the joint wind climate. Following 

the IEC 61400-1 standard1 the mean value (𝜇𝜎𝑈) and standard deviation (𝜎𝜎𝑈) of the turbulence 

distribution are extrapolated by linear models as described by Eqs. (1) and (2).  

 𝜇𝜎𝑈(𝑈|𝜃) = 𝑎𝜇𝜎(𝜃) ∙ 𝑈 + 𝑏𝜇𝜎(𝜃) (1) 

 𝜎𝜎𝑈(𝑈|𝜃) = 𝑎𝜎𝜎(𝜃) ∙ 𝑈 + 𝑏𝜎𝜎(𝜃) (2) 

The mean value of the wind shear distribution (𝜇𝛼) is approximated as the median of 𝜇𝛼 at the 

three highest accepted wind speed bins given direction and turbulence. This imitates that 

atmospheric stability typically turn towards neutral conditions at medium to high wind speeds 

where the mean wind shear becomes constant.14 Finally, the standard deviation of the wind 

shear distribution is extrapolated inversely proportional to wind speed as shown in Eq. (3).15 

All model parameters 𝑎, 𝑏, and 𝑐 in are fitted based on the available data in accepted bins. 

 

σ𝛼(𝑈|𝜃, 𝜎𝑈) =
𝑐𝛼(𝜃, 𝜎𝑈)

𝑈
 (3) 

Table 2: Flow inclination model 

Site-specific orography Flat terrain Hilly terrain Steep terrain 

Fixed flow inclination 0° 6° 12° 

Number of sites 62 27 10 

2.2. Wake added turbulence 

All the included measurements represent ambient climates. This does not reflect the reality of 

most turbines, where wakes are present in some directions. Wake added turbulence is therefore 

considered by assuming a rectangular grid layout where a neighbouring turbine is placed 5 rotor 

diameters (𝑅𝐷) up- and downwind in the main wind direction, and 3 𝑅𝐷 perpendicular to that. 

The wake added turbulence (𝜎𝑈,𝑤𝑎𝑘𝑒) is modelled according to the IEC 61400-1 standard1 as 

outlined in Eq. (4), where 𝐶𝑇 is the thrust coefficient.  
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𝜎𝑈,𝑤𝑎𝑘𝑒(𝑈, 𝜃) =
𝑈

1.5 +
0.8 𝑅𝐷(𝜃)

√𝐶𝑇(𝑈)

 
(4) 

To significantly limit the required computations in this paper without loss of generality the 

wakes are assumed to perfectly align with the defined sectors regardless of the distance between 

the two turbines. This is a simplification but the main purpose of introducing the wakes is to 

reflect a real case representative range of turbulence values. The ambient and wake added 

turbulence may be combined to the total turbulence that is experienced by the turbine (𝜎𝑈,𝑇) by 

Eq. (5).  

 

𝜎𝑈,𝑇(𝑈, 𝜃) = √𝜎𝑈(𝑈, 𝜃)2 + 𝜎𝑈,𝑤𝑎𝑘𝑒(𝑈, 𝜃)2 (5) 

3. Probabilistic Model for Fatigue Failure 

The main objective of a probabilistic design approach is to assess the structural reliability of a 

given failure mode and check if it meets the target reliability level. This requires a representative 

limit state equation (LSE) to calculate the failure probability which cover relevant uncertainties 

on strengths and loads. In this section a simple yet representative LSE for wind turbine fatigue 

failure is presented. 

3.1. Wind turbine simulation and fatigue loads 

To define a representative LSE it is relevant to discuss how fatigue loads are calculated. In this 

paper the framework of “damage equivalent loads” (𝐷𝐸𝐿) is adopted. It is therefore implicitly 

assumed that fatigue strength of materials is modelled by a linear 𝑆𝑁-curve and that Miner’s 

rule16 may be used to accumulate fatigue damage from varying load effect amplitudes.  

All fatigue loads are based on 10 min effectiveb simulations of the 5MW reference wind turbine 

by NREL17 using its baseline controller. The turbine is simulated in the aero-servo-elastic 

software FAST18 and each realized wind field is computed in TurbSIM19 using the Kaimal 

spectrum20. The output of the simulations are timeseries of load effects for various sensors on 

the main components of the turbine, which are reduced to a spectrum of load effect amplitudes 

(Δ𝐹𝑖) and a corresponding number of cycles (𝑛𝑖) by Rainflow counting.21 This is then further 

condensed to a single scalar, the 𝐷𝐸𝐿, which represents the load effect range that produces the 

same fatigue damage as the entire spectrum. The 𝐷𝐸𝐿 is outlined in Eq. (6) where the wind 

climate parameters except turbulence are gathered in the vector 𝑪 = [𝑈, 𝛼, 𝜌, 𝜑]  to ease 

notation. The equivalent number of cycles, 𝑁𝑒𝑞, is used as a reference value and may be selected 

arbitrarily if it is kept the same when comparing different 𝐷𝐸𝐿s. 

 

b The term “effective” is used to indicate that transient start-up behaviour is removed.  
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𝐷𝐸𝐿(𝑪, 𝜎𝑈,𝑇) = (
1

𝑁𝑒𝑞
∑𝑛𝑖𝛥𝐹𝑖

𝑚

𝑖

)

1/𝑚 

 (6) 

The combined site-specific equivalent fatigue load (𝐹𝑒𝑞) with a one year reference period may 

be assessed by Eq. (7) where 𝑓𝑆𝑖𝑡𝑒 models the joint wind climate distribution and 𝑐𝑠𝑖𝑚 =
1𝑦𝑒𝑎𝑟

𝑇𝑠𝑖𝑚
 

is a correction factor accounting for the simulation time (𝑇𝑠𝑖𝑚). 

 

𝐹𝑒𝑞,𝑑𝑖𝑟𝑒𝑐𝑡 = (𝑐𝑠𝑖𝑚∑𝑃𝜃(𝜃)

𝜃

∫ ∫ 𝑓𝑆𝑖𝑡𝑒(𝑪, 𝜎𝑈|𝜃)𝐷𝐸𝐿(𝑪, 𝜎𝑈,𝑇)
𝑚
 𝑑𝑪𝑑𝜎𝑈

𝑪∈ℝ4𝜎𝑈

)

1/𝑚

 (7) 

To limit the amount of results that are shown in this paper only the six main sensors listed in 

Table 3 are considered. The sensors represent varying sensitivities to the wind climate 

parameters and controller actions and reflect the overall path of the wind loads from acting on 

the blades until being reacted by the soil. The fatigue strength of each component is modelled 

by typical Wöhler exponents used in the literature.4,11,13,22 

Table 3: Wind turbine sensors 

Component Sensor description Notation Unit Wöhler 

exponent 

Blade Blade root flap-wise bending RootMyb1 kNm 10  

Blade Blade root edge-wise bending RootMxb1 kNm 10 

Main shaft Low speed shaft torque LSSGagMxa kNm 6    

Tower (top) Yaw bearing tilt YawBrMyp kNm 4   

Tower (top) Yaw bearing yaw YawBrMzp kNm 4 

Tower (bottom) Tower bottom fore-aft bending TwrBsMyt kNm 4 

3.2. Limit state equation 

Following the described approach of evaluating fatigue loads directly by aero-elastic 

simulations a LSE for fatigue failure (g𝑑𝑖𝑟𝑒𝑐𝑡)  is defined as shown in Eq. (8).22,23  

 

g𝑑𝑖𝑟𝑒𝑐𝑡(𝑧, 𝑡) = 𝛥 −
𝑁𝑒𝑞𝑡

𝐾
(𝑋𝐿𝑜𝑎𝑑𝑋𝑆𝐶𝐹

𝐹𝑒𝑞,𝑑𝑖𝑟𝑒𝑐𝑡

𝑧
)
𝑚

 (8) 

Here 𝑧 is the design parameter relating load effects to stresses and 𝑡 is time in years. The model 

uncertainties Δ and 𝐾 account for Miner’s rule and the 𝑆𝑁-approach respectively, and 𝑋𝐿𝑜𝑎𝑑 
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and 𝑋𝑆𝐶𝐹 models the uncertainty on wind load effects and stress concentration factorsc. Typical 

examples of the model uncertainties are presented in Table 4.8,22,23 

Table 4. Stochastic models 

Variable Distribution Expected value Standard deviation 

m=4 m=6 m=10 

Δ Normal 1 0.30 0.40 0.50 

𝑋𝐿𝑜𝑎𝑑 Lognormal 1 0.15 0.15 0.15 

𝑋SCF Lognormal 1 0.10 0.15 0.15 

log𝐾 Normal -  0.20 0.15 0.25 

Based on the LSE the accumulated failure probability (𝑃𝑓) and associated reliability index (𝛽) 

of the considered component may be estimated by Eq. (9), where Φ is the cumulative standard 

normal distribution.  

 𝑃𝑓 = Φ(−β) = 𝑃(g𝑑𝑖𝑟𝑒𝑐𝑡(𝑧, 𝑡) ≤ 0) (9) 

To evaluate the failure probability the accumulated fatigue damage across the entire joint wind 

climate has to be estimated. Direct aero-elastic simulation for this application is extremely 

computationally demanding, and in most cases unfeasible. This barrier may be overcome by 

accurate surrogate models to predict 𝐷𝐸𝐿s as discussed in the introduction. Surrogates makes 

it possible to evaluate the site-specific fatigue loads but with a reduced accuracy compared to 

direct simulation (𝐹𝑒𝑞,𝑝𝑟𝑜𝑥𝑦). This should be properly accounted for in the LSE by introducing 

an additional model uncertainty related to the surrogate model itself (𝑋𝑃𝑟𝑜𝑥𝑦). The model 

uncertainty is related to the load effect, similar to 𝑋𝐿𝑜𝑎𝑑 and 𝑋𝑆𝐶𝐹, and is applied alongside 

these as shown in Eq. (10).  

 

g𝑃𝑟𝑜𝑥𝑦(z, t) = Δ −
𝑁eq𝑡

𝐾
(𝑋𝐿𝑜𝑎𝑑𝑋𝑆𝐶𝐹𝑋𝑃𝑟𝑜𝑥𝑦

𝐹𝑒𝑞,𝑝𝑟𝑜𝑥𝑦

𝑧
)
𝑚

 (10) 

4. Surrogate Models for Fatigue Load Prediction 

The surrogate model uncertainty will depend on the surrogate model type and how many 

simulations that have been invested in training it.7 Two surrogate techniques are included in 

this work namely Kriging and PCE, and both are implemented in the general purpose 

uncertainty quantification framework UQLab24. This section outlines the input domain and the 

experimental design that is used for training the models followed by a brief summary of each 

surrogate technique with emphasis on how they are configured in this specific work. For a more 

general explanation of the details and theory behind Kriging we refer to Santner et al.25 and for 

PCE we refer to Sudret26. 

 

c The linear relationship between load effects and stresses is based on simple beam theory. To account for non-

linear effects a “stress concentration factor” is typically applied. 
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4.1. Input domain and experimental design 

Regardless of the choice of surrogate model it is necessary to sample an experimental design. 

This requires an input domain that covers the joint wind climate distributions across all 99 sites 

as to avoid extrapolation by the surrogates which may lead to very unpredictable results. 

Meanwhile, the input domain should also encompass “physically realistic” wind climate 

combinations to ensure validity of the aero-elastic simulations used to estimate the output 

𝐷𝐸𝐿s. An input domain that meets these two objectives was defined by Dimitrov et al.7 partly 

based on theoretical considerations of atmospheric stability. In this work it is chosen to tailor 

the input domain specifically to the 99 available sites by using all data including wake added 

turbulence. This is illustrated in Figure 1 for turbulence intensityd (i.e. 10min wind speed 

coefficient of variation) and wind shear as function of wind speed. The bounds (blue lines) are 

based on approximations to the extreme quantiles of all data (red lines) with a slight 

conservative offset.  

 

Figure 1: Turbulence bound (left) and wind shear bounds (right) as function of wind speed based on all available 

measurements. The pronounced clear lines inside the turbulence samples at 0.2 and 0.3 correspond to the wake added 

turbulence at 3 RD and 5 RD. The smaller clear lines are a product of the decimal truncation when the wind 

measurements are logged. 

The bounds on air density are based on the meso-scale modelled data as shown in Figure 2, and 

the bounds on flow inclination are based on engineering judgement in the interval from -16° to 

16°. 

 

 

d Turbulence intensity is used such that the slight offset of the bound account for the increasing scale of turbulence 

with increasing wind speed. 
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Figure 2: Air density bounds based on all available measurements. 

Together, the defined bounds enclose a hyper-volume in the 5-dimensional space of the 

considered wind climate parameters. An experimental design consisting of 625 is sampled 

uniformly inside this hyper-volume using a quasi-random Halton sequence. This ensure a good 

space-filling both for the entire experimental design but also when only a subset of the 

experimental design is considered. To avoid any clear patterns in the Halton sequence, which 

may compromise the accuracy of the surrogates, a reverse-radix scrambling is performed as 

described by Kocis and Whiten27. The experimental design is shown in Figure 3. Each of the 

corresponding 𝐷𝐸𝐿s are estimated using 100 seeds, resulting in a total of 62,500 aero-elastic 

simulations. 

 

Figure 3: Experimental design with 625 samples drawn uniformly inside the bounded hyper-volume of the wind climate 

parameters. 
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4.2. Polynomial chaos expansion 

In this work the Wiener-Askey generalized PCE is considered.28 Generally, it may be used to 

approximate a function (Y) of a random vector (𝑿) in dimension D (𝑿 ∈ ℝ𝐷) by an infinite 

expansion of a multivariate orthonormal polynomial basis (Ψ ) with respect to the joint 

probability density function of the input. This is outlined in Eq. (11) where 𝑗 is a multi-index 

of the components of the multivariate polynomials. 

 
Y(𝑿) = ∑ 𝑐𝑗Ψ𝑗(𝑿)

𝑗∈ℕ𝐷

 (11) 

The polynomial basis is built from a set (family) of univariate orthonormal polynomials with 

respect to each input variable, and classical families have been developed which cover common 

input distributions.28 For simplicity, the experimental design is therefore transformed into the 

standard uniform space by Rosenblatt transformation29. Consequently, only the Legendre 

family of orthonormal polynomials is required to build the PCE.  

For practical application the infinite sum of polynomials in Eq. (11) is truncated using a hybrid 

least angle regression algorithm to penalize higher order terms together with a hyperbolic 

truncation scheme to disregard insignificant interactive terms, see details in Blatman and 

Sudret30. By considering polynomial degrees up to 20 the PCE which minimize the leave one 

out cross-validation error (𝜖𝐿𝑂𝑂) is selected following the implementation in UQLab31. The 

𝜖𝐿𝑂𝑂 is chosen as optimization metric to increase robustness towards over-fitting of the PCE 

when high order polynomials are considered. 

4.3. Kriging 

Kriging is a stochastic interpolation technique which assumes the model output (Y) to be a 

realization of a deterministic mean defined by a regression model (𝛃𝐾𝑅𝐺𝒇𝐾𝑅𝐺
T ) and a correlated 

stochastic process (𝑍), see Eq. (12).25 

 Y(𝑿) = 𝛃𝐾𝑅𝐺𝒇𝐾𝑅𝐺
T (𝑿) + 𝑍(𝑿) (12) 

The first term models the trend (mean) of the output by a set of basis functions 𝒇𝐾𝑅𝐺(𝑿) =
[𝑓1(𝑿), … , 𝑓𝑛(𝑿)] and associated regression coefficients 𝜷𝐾𝑅𝐺 = [𝛽1, … , 𝛽𝑛]. The second term 

is interpolating the known residuals at the experimental design by a stationary zero mean 

Gaussian process (𝑍) fully described by its covariance (𝑐𝑜𝑣): 

 𝑐𝑜𝑣(𝑿, 𝑿′) = 𝜎𝐾𝑅𝐺
2 𝑅(𝑿, 𝑿′, 𝜽𝑹) (13) 

Here 𝜎𝐾𝑅𝐺
2  is the overall process variance (assumed constant) and R models the correlation 

between 𝑍(𝑿) and 𝑍(𝑿′) by their inter-distance and a correlation function defined by the hyper 

parameters 𝜽𝑹. Once a suitable basis of functions and a correlation model is chosen 𝜷𝐾𝑅𝐺 , 

𝜎𝐾𝑅𝐺
2 , and 𝜽𝑹 may be estimated by maximizing the likelihood of observing the output at the 

experimental design.32   
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A priori it is known that the sensitivity between fatigue loads and the different wind climate 

parameters vary significantly. Therefore, an anisotropic separable correlation formulation is 

considered as shown in Eq. (14). 

 

𝑅(𝑿, 𝑿′, 𝜽𝑹) =∏𝑅(𝑋𝑖, 𝑋𝑖
′, 𝜃𝑅,𝑖

𝐷

𝑖=1

) (14) 

A main challenge when calibrating an accurate Kriging model is to select an appropriate trend 

and correlation function. By a combinatorial approach similar to Morató et al.9 we found 

universal Kriging with a quadratic trend and the Matérn 3/2 correlation function to yield the 

best results overall. 

5. Method for Assessment of Surrogate Model Uncertainty 

The surrogate model uncertainties of PCE and Kriging are estimated according to EN 199033. 

In this section the method is briefly outlined followed by a description of the numerical 

integration scheme that is used to assess the site-specific fatigue loads. 

5.1. EN 1990 method 

The model uncertainty 𝑋𝑝𝑟𝑜𝑥𝑦 is estimated by rewriting it in terms of a unit mean lognormal 

error term (𝑋𝑝𝑟𝑜𝑥𝑦,𝐸𝑁 )  and a mean value correction factor to account for the model bias 

(𝑏𝑝𝑟𝑜𝑥𝑦), see Eq. (15). 

 𝐹𝑒𝑞,𝑑𝑖𝑟𝑒𝑐𝑡 = 𝑏𝑝𝑟𝑜𝑥𝑦𝑋𝑝𝑟𝑜𝑥𝑦,𝐸𝑁𝐹𝑒𝑞,𝑝𝑟𝑜𝑥𝑦 (15) 

Given the available set of 99 statistically independente joint wind climates the bias may be 

estimated using a least squares approach as shown in Eq. (16). 

 

𝑏𝑝𝑟𝑜𝑥𝑦 =
∑ 𝐹𝑒𝑞,𝑑𝑖𝑟𝑒𝑐𝑡,𝑖
99
𝑖=1 𝐹𝑒𝑞,𝑝𝑟𝑜𝑥𝑦,𝑖

∑ 𝐹𝑒𝑞,𝑝𝑟𝑜𝑥𝑦,𝑖
299

𝑖=1

 (16) 

Next, the logarithm of the residuals at each site is estimated by Eq. (17).  

 

𝛿𝐸𝑁,𝑖 = ln(
𝐹𝑒𝑞,𝑑𝑖𝑟𝑒𝑐𝑡,𝑖

𝑏𝑝𝑟𝑜𝑥𝑦,𝐸𝑁𝐹𝑒𝑞,𝑑𝑖𝑟𝑒𝑐𝑡,𝑖
) (17) 

An estimate of the standard deviation of the residuals (𝜎𝛿,𝐸𝑁) is then assessed by Eq. (18) where 

𝛿𝐸𝑁,𝜇 is the mean value of all error realizations. 

 

e The diversity of the included sites in terms of complexity and geographical spread validate the assumption of 

independence. 
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𝜎𝛿,𝐸𝑁 = √
1

99 − 1
∑(𝛿𝐸𝑁,𝑖 − 𝛿𝐸𝑁,𝜇)

2
99

𝑖=1

 (18) 

The coefficient of variation of the lognormal surrogate model uncertainty (𝑉𝑝𝑟𝑜𝑥𝑦) is then 

obtained by Eq. (19). 

 

𝑉𝑝𝑟𝑜𝑥𝑦 = √𝑒
𝜎𝛿,𝐸𝑁
2

− 1 (19) 

5.2. Numerical fatigue load integration 

To estimate the surrogate model uncertainty, it is required to assess 𝐹𝑒𝑞 by direct simulation. 

This is not trivial and involves hundreds of thousands of aero-elastic simulations. It is therefore 

relevant to discuss the applied method for integrating the fatigue load in detail in the following. 

With flow inclination being fixed (𝜑𝑓𝑖𝑥) the dimension of the integration problem in Eq. (7) is 

reduced as shown in Eq. (20). Here the 12 discrete directions are directly introduced and 𝑪𝑅 =
[𝑈, 𝛼, 𝜌] contain the reduced set of wind climate parameters of wind speed, wind shear and air 

density. 

 𝐹𝑒𝑞(𝜑𝑓𝑖𝑥)

=

(

  
 
𝑐𝑠𝑖𝑚∑𝑝𝜃(𝜃𝑘)

12

𝑘=1

∫ ∫ 𝑓𝑆𝑖𝑡𝑒(𝑪𝑅 , 𝜎𝑈| 𝜃𝑘)𝐷𝐸𝐿(𝑪𝑅 , 𝜎𝑈,𝑇 , 𝜑𝑓𝑖𝑥 , 𝑚)
𝑚
𝑑𝑪𝑅

𝑪𝑅∈𝑅3

𝑑𝜎𝑈
𝜎𝑈⏟                                      

𝐹𝑒𝑞,𝑠𝑒𝑐𝑡,𝑘
𝑚 )

  
 

1
𝑚

 (20) 

To find an optimal numerical integration scheme it is sufficient to consider the sector wise 

fatigue loads (𝐹𝑒𝑞,𝑠𝑒𝑐𝑡,𝑘), which mathematically is the m’th order weighted Hölder mean of 𝐷𝐸𝐿 

with respect to 𝑓𝑆𝑖𝑡𝑒. In turn, 𝐹𝑒𝑞,𝑠𝑒𝑐𝑡,𝑘
𝑚  is the expected value of 𝐷𝐸𝐿𝑚 and may be estimated 

approximatively by Monte-Carlo (𝑀𝐶) sampling, which avoids the “curse of dimensionality” 

associated to traditional grid-based integration.6 The 𝑀𝐶-integration is outlined in Eq. (21) 

where 𝑁 is the number of samples and 𝑝 models the probability of generating sample 𝑖 in terms 

of ambient turbulence. 

 

𝐹𝑒𝑞,𝑠𝑒𝑐𝑡,𝑘
𝑚 (𝜑𝑓𝑖𝑥) ≈

1

𝑁
∑

𝑓𝑆𝑖𝑡𝑒(𝑪𝑅,𝑖, 𝜎𝑈,𝑖| 𝜃𝑘)𝐷𝐸𝐿(𝑪𝑅,𝑖, 𝜎𝑈,𝑇,𝑖, 𝜑𝑓𝑖𝑥 ,𝑚)
𝑚

𝑝(𝑪𝑅,𝑖, 𝜎𝑈,𝑖)

𝑁

𝑖=1

 (21) 
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The convergence behaviour depends on the choice of the 𝑀𝐶-sampling distribution (ℎ𝑀𝐶). In 

principle convergence is obtained faster if it resembles the product of 𝐷𝐸𝐿𝑚  and 𝑓𝑆𝑖𝑡𝑒  to 

concentrate samples in the region which contributes most to the integral (i.e. importance 

sampling). This leads to the following main considerations for ℎ𝑀𝐶: 

1. Since 𝐷𝐸𝐿s are raised to the power of 𝑚 it is important to sample high fatigue load 

events with a low probability of occurrence. 

2. Wind climate combinations with a high probability of occurrence have to be sampled to 

capture the majority of the wind turbines lifetime. 

The importance of point 1 was clearly shown by Graf et al.6 where 𝑀𝐶 -integration was 

benchmarked by sampling from the joint wind climate distribution (i.e. ℎ𝑀𝐶 = 𝑓𝑆𝑖𝑡𝑒) which lead 

to very slow convergence rates for components with high Wöhler exponents.  

Optimizing ℎ𝑀𝐶  with respect to point 1 is sensor-specific but in general it requires unlikely 

wind climates to be sampled (e.g. very high turbulence or wind shear). On the other hand, 

optimization of ℎ𝑀𝐶  with respect to point 2 is site-specific and requires likely wind climates to 

be sampled. To cover all 99 sites and all considered sensors a straight-forward compromise is 

then to sample equally dense across the entire input domain defined in Section 4 (i.e. ℎ𝑀𝐶  

uniformly distributed). 

Several techniques can be used to sample from ℎ𝑀𝐶  but in low dimensions (lower than 6) it was 

shown by Morokoff and Catflisch34 that quasi-random numbers from low-discrepancy 

sequences provide fast convergence. Instead of a convergence ratio ∝ 𝑁−0.5 for crude 𝑀𝐶 a 

Halton sequence obtain a convergence ratio ∝ 𝑁−𝜆  where 0.5 ≤ 𝜆 ≤ 1 with 𝜆 → 1 for low 

dimensions. 

A main question to answer is how many samples that are needed to assess 𝐹𝑒𝑞. Based on the 

results of Graf et al.6 and a preliminary convergence study using a surrogate it was found 

reasonable to evaluate the integral by 25,000 𝐷𝐸𝐿 s. This results in an accuracy within 

approximately 1% of the converged value obtained at one million samples for all considered 

sensors. Given that the surrogate model uncertainty is obtained by a relative comparison of 

𝐹𝑒𝑞,𝑑𝑖𝑟𝑒𝑐𝑡 and 𝐹𝑒𝑞,𝑝𝑟𝑜𝑥𝑦, both estimated by the same 𝑀𝐶-samples, the small error is assumed to 

be insignificant. 

Finally, it is noted that each sample in the 𝑀𝐶-integration correspond to one specific flow 

inclination so three databases of fatigue loads were simulated to cover all 99 sites. Using 100 

seeds to estimate each 𝐷𝐸𝐿 this resulted in a total of 7.5 million simulations to accurately assess 

𝐹𝑒𝑞,𝑑𝑖𝑟𝑒𝑐𝑡. 

6. Quantification of the Surrogate Model Uncertainty 

Using the presented methods, the surrogate model uncertainty across all considered sensors is 

quantified. First an example is shown for the blade root flap-wise bending moment to clearly 

outline how the results are obtained step-by-step. Then the surrogate model uncertainty is 
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quantified for all considered sensors and presented as the worst case across the sensors as it is 

impractical to differentiate the surrogate model uncertainty for each sensorf. 

6.1. Blade root bending moment example 

Using the full experimental design, a Kriging and PCE model is trained to capture fatigue loads 

of the blades. Both surrogates are then used to estimate the site-specific fatigue loads across all 

99 sites by Eq. (20) which is compared to direct simulation as shown in Figure 4.

 

Figure 4: Normalized site-specific fatigue loads on the blades predicted by Kriging and PCE and compared to direct 

simulation. The dashed lines indicate the perfect model where 𝑭𝒆𝒒,𝒑𝒓𝒐𝒙𝒚 = 𝑭𝒆𝒒,𝒅𝒊𝒓𝒆𝒄𝒕 

Based on this comparison the surrogate model uncertainty is estimated by Eqs. (16) and (19). 

The results are presented in Table 5. 

Table 5: Surrogate model uncertainty for blade flap-wise bending. 

Surrogate model Bias [-] Coefficient of variation [-] 

PCE 1.001 0.004 

Kriging 1.004 0.004 

Given the typical scale of the other uncertainties in the LSE listed in Table 4 the resulting 

surrogate model uncertainties of both PCE and Kriging are insignificant and may be neglected. 

 

f This representation of the surrogate model uncertainty is in line with the model uncertainty for wind load effects 

being identical across all considered sensors. 
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Next, it is investigated how the results change with the amount of simulations that are invested 

in training the surrogate models. This is illustrated in Figure 5 where the coefficient of variation 

is plotted as function of the number of samples in the experimental design and how many seeds 

that are used to evaluate the 𝐷𝐸𝐿s. Similarly, the model bias is shown as function of invested 

simulations in Figure 6. The number of samples starts at 100 as both models become 

significantly inaccurate for smaller experimental designs. The noise in the PCE results is 

explained by the adaptive scheme to select the optimal polynomial degree which may change 

for each combination of samples/seeds in order to minimize 𝜖𝐿𝑂𝑂. 

 

Figure 5: Coefficient of variation of the surrogate model uncertainty for blades using Kriging and PCE shown as 

function of the number of samples used for training and number of seeds used to evaluate DELs at each sample. 

 

Figure 6: Surrogate model bias for blades using Kriging and PCE shown as function of the number of samples used for 

training and number of seeds used to evaluate DELs at each sample. The apparent “valley” in the Kriging results at 

approximately 200 samples is due to the oscillating convergence behaviour of the bias across samples. This is clearly 

seen when less than 100 samples are considered, but to keep the figures consistent and clean this is not included here. 

6.2. Surrogate model uncertainty across all sensors 

Following the described procedure for the blade flap-wise bending the surrogate model 

uncertainty has been computed for all sensors in Table 3. The maximum model uncertainty 

across the sensors is plotted in Figure 7 for both surrogates. 
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Figure 7: Surrogate model uncertainty coefficient of variations across all considered sensors shown as function of the 

number of samples used for training and number of seeds used to evaluate DELs at each sample. 

Relatively few samples and seeds are required for the surrogate models to obtain a converged 

model uncertainty of ~0.5%. 

To analyse the surrogate model bias it is necessary to consider both the minimum and maximum 

across all sensors as illustrated in Figure 8 and Figure 9, respectively. This show that for sparse 

designs (low number of samples) PCE tends to be non-conservative while Kriging seems to be 

almost exclusively conservative across all sensors. 

 

Figure 8: Minimum surrogate model bias across all considered sensors shown as function of the number of samples 

used for training and number of seeds used to evaluate DELs at each sample. 
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Figure 9: Maximum surrogate model bias across all considered sensors shown as function of the number of samples 

used for training and number of seeds used to evaluate DELs at each sample. The PCE model bias at 100-150 samples 

is missing due to a sharp increase to 1.10 which would otherwise distort the figure. 

7. Sensitivity Analysis and General Recommendations 

Both Kriging and PCE can be trained to accurately predict fatigue loads with a relatively small 

computational investment. In this section a sensitivity analysis is conducted to assess how the 

surrogate model uncertainty affects the reliability level of the considered components. This is 

used to define three levels of accuracy followed by a set of recommendations by the authors on 

training PCE and Kriging for fatigue reliability analysis of wind turbines. 

7.1. Reliability sensitivity analysis 

To estimate the sensitivity of the surrogate model uncertainty a reference design is established 

by assuming that each component is designed to the limit using direct aero-elastic simulation. 

This implies that the reliability index at the last year of service is exactly the target of Δ𝛽𝑡 =
3.3 1, where a lifetime of 20 years is assumed. Here the yearly probability of failure is 

approximated as Δ𝑃𝑓,20 ≅ 𝑃𝑓,20 − 𝑃𝑓,19 where 𝑃𝑓,20 and 𝑃𝑓,19 represent the failure probability 

at years 19 and 20, respectively. The failure probabilities are estimated by the LSE presented 

in Eq. (8) where the uncertainties are modelled according to Table 4. 

Using the reference design of each component the reliability index at the last year of service 

(Δ𝛽) is calculated by the LSE in Eq. (10) where 𝑏𝑝𝑟𝑜𝑥𝑦 and 𝑉𝑝𝑟𝑜𝑥𝑦 are varied individually. The 

sensitivity of the surrogate model uncertainty is then quantified as the ratio of the reliability 

index with respect to the target reliability (Δ𝛽/Δ𝛽𝑡 ). In Figure 10 this is shown for a 

representative range of 𝑉𝑝𝑟𝑜𝑥𝑦  for both PCE and Kriging where the relative change of the 

reliability is less than 0.5%. Figure 11 shows the results of varying 𝑏𝑝𝑟𝑜𝑥𝑦  within a 

representative range, demonstrating that Δ𝛽/Δ𝛽𝑡 ≅ 𝑏𝑝𝑟𝑜𝑥𝑦 for all components considered.  
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Figure 10: Reliability index sensitivity to the surrogate 

model uncertainty coefficient of variation. 

 

Figure 11: Reliability index sensitivity to surrogate 

model bias. The dashed line indicates 𝚫𝜷/𝚫𝜷𝒕 = 𝒃𝒑𝒓𝒐𝒙𝒚. 

7.2. Surrogate model accuracy 

Typically, the target reliability index is specified with one decimal suggesting that a change of 

less than 1% of the reliability index at the limit is negligible. 𝑉𝑝𝑟𝑜𝑥𝑦 may therefore be ignored 

in reliability analysis of wind turbines for both Kriging and PCE when at least 100 samples are 

considered in the experimental design. 

The change in reliability is roughly proportional to 𝑏𝑝𝑟𝑜𝑥𝑦 which makes the bias significant 

when it is outside the range of 0.99 to 1.01. This is made clear by Table 6, which leads to the 

definition of three accuracy classes. 

Table 6: Absolute reliability for varying surrogate model bias. 

𝑏𝑝𝑟𝑜𝑥𝑦 0.95 0.96 0.97 0.98 0.99 1.00 1.01 1.02 1.03 1.04 1.05 

Δ𝛽 3.1 3.2 3.2 3.2 3.3 3.3 3.3 3.4 3.4 3.4 3.5 

High accuracy is obtained when 0.99 ≤  𝑏𝑝𝑟𝑜𝑥𝑦 ≤ 1.01 where the estimated reliability index  

is unchanged on the first decimal. Medium accuracy is obtained when 0.96 ≤  𝑏𝑝𝑟𝑜𝑥𝑦,𝐸𝑁 ≤

1.04 leading to a slight change of ±0.1 of the estimated reliability index. If  0.96 > 𝑏𝑝𝑟𝑜𝑥𝑦,𝐸𝑁 >

1.04  low accuracy is obtained which potentially changes the estimated reliability index 

significantly with more than ±0.2. The accuracy classes are illustrated for both PCE and Kriging 

in Figure 12. 
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Figure 12: Surrogate model bias divided by three accuracy classes. Notice the clear pattern of increasing accuracy with 

the number of seeds for Kriging and the increased accuracy with number of samples for PCE. 

For Kriging it is seen that the accuracy depends mostly on the number of seeds that are used. 

The upper right corner confirms a converged plateau of high accuracy which require an 

experimental design with more than 350 samples using at least 50 seeds to assess each 𝐷𝐸𝐿. If 

a medium accuracy is acceptable it is only required to use more than 100 samples and at least 

4 seeds.  

For PCE the accuracy depends on the density of the experimental design.  A high accuracy may 

be obtained, but even when the full design is used the accuracy is not fully consistent with an 

increase in seeds. This indicates that the PCE coefficients may not have converged in the 

investigated range of samples and seeds. If more than 175 samples are considered the PCE 

model reach a medium accuracy, and a low accuracy is obtained for experimental designs with 

less than ~175 samples. 

7.3. Recommendations 

The results of the optimization analysis are summarized in Tables 7 and 8 as a set of 

recommendations towards training Kriging and PCE for fatigue reliability analysis. Since only 

a subset of load-bearing wind turbine components are considered the recommendations are 

slightly conservative compared to the results shown in Figure 12. 

It is important to note that the recommendations are tied to the current setup of using the 5MW 

reference turbine by NREL together with the experimental design described in section 4. The 

minimum samples and seeds are also dependent on the size of the input domain which directly 

relates to the sample density. If a similar experimental design is used together with a smaller or 

larger input domain emphasis should therefore be put on the recommended maximum leave one 

out error. Because the proposed experimental design is uniformly distributed without any 

emphasis on the specific turbine response it is also expected that the recommended maximum 

leave one out error can be used as tentative guidance for other (similar) turbines. 
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Table 7: Kriging recommendations 

Accuracy Minimum samples 

in DoE [-] 

Minimum seeds to 

assess DEL [-] 

Total amount of 10-

min simulations [-] 

Maximum 

𝝐𝑳𝑶𝑶 [%] 

High 400 75 30.000 0.60 

Medium 100 10 1.000 2.00 

Low 100 4 400 3.25 

Table 8: PCE recommendations 

Accuracy Minimum samples 

in DoE [-] 

Minimum seeds to 

assess DEL [-] 

Total amount of 10-

min simulations [-] 

Maximum 

𝝐𝑳𝑶𝑶 [%] 

High >625 50 >31.250 0.35 

Medium 200 10 2.000 1.35 

Low 100 4 400 2.20 

8. Comparison and Discussion of PCE and Kriging 

Overall Kriging obtains a better accuracy than PCE per simulation, but it also requires more 

computational power to predict new samples compared to PCE.7 However, it is noted that ℎ𝑀𝐶  

in the presented numerical integration is completely independent of the sector-wise joint wind 

climate distributions. A direct advantage of this is that the 𝐷𝐸𝐿  of each 𝑀𝐶-sample has to be 

evaluated only once per fixed flow inclination to cover all 99 sites. This neglects the difference 

in computational time between PCE and Kriging when predicting 𝐷𝐸𝐿 s compared to the 

simulations invested in training the surrogates. 

To increase the accuracy of PCE it requires more samples while Kriging requires more seeds. 

This observation is in line with the fundamentals of the surrogates of regression and 

interpolation, respectively. If few seeds are used to evaluate the 𝐷𝐸𝐿s it can be interpreted as 

noise which Kriging is forced to capture when interpolating the residuals. On the other hand, 

PCE levels out the noise in a mean sense, but a relatively large number of samples are needed 

to reliably fit the coefficients of the expansion. 

While not shown in this paper, this encouraged an analysis of using Polynomial Chaos Kriging35 

(PCK) as implemented in UQLab36. This method combines the two surrogate models by using 

the PCE as basis functions (trend) for the universal Kriging model. In a best-case scenario this 

could lead to a surrogate model which is accurate for a small experimental design (as Kriging) 

using just a few seeds to estimate 𝐷𝐸𝐿s (as PCE). However, the results of using PCK mostly 

resembles that of using PCE, and it is therefore not preferred over universal Kriging. The reason 

is probably that the residuals used to estimate 𝜎𝐾𝑅𝐺
2  and 𝜽𝑹  appear without any significant 
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correlation as they mostly just represent the noise from using few seeds. In turn, the 

interpolation only influences predictions at the very vicinity of the experimental design, which 

was also observed by Dimitrov et al.7 

Another possibility to increase the accuracy of Kriging is to introduce a so-called “nugget”. The 

nugget models a set of values that are added to the diagonal of  𝑅(𝑿, 𝑿′, 𝜃𝑅), thereby allowing 

a non-zero uncertainty bound around the experimental design. A well optimized nugget could 

therefore potentially make the Kriging model more robust to the noise from using a small 

number of seeds.37 To the best of the authors knowledge a general framework to include and 

optimize a nugget in universal Kriging is not yet developed, and therefore this approach was 

not pursued further. 

9. Summary and Conclusions 

Using wind data from 99 international sites the model uncertainty related to approximating 

lifetime fatigue loads by Kriging and PCE has been quantified based on aero-elastic simulations 

of the 5MW reference turbine by NREL. The main components of the turbine were considered 

namely; blades, low speed shaft, yaw bearing, and tower.  

All available data was used to define an experimental design to train the surrogates in terms of 

wind speed, turbulence, wind shear exponent, air density and flow inclination. Using up to 625 

samples, with up to 100 seeds to evaluate fatigue loads at each sample, both surrogate models 

were calibrated using UQLab. For Kriging, a combinatorial approach was used to conclude that 

universal Kriging with a second order trend and the Matérn 3/2 correlation is optimal to predict 

fatigue loads. 

The model uncertainty of both surrogates across all sensors was estimated by the recommended 

approach in Eurocode 1990, Annex D. This showed that the model uncertainty coefficient of 

variation is less than 2.5%. In contrast, the model bias varied significantly for the two surrogate 

models between 0.95 to 1.05. 

Based on a sensitivity study it was shown that the model uncertainty coefficient of variation 

changes the structural reliability index less than 0.5% which is negligible compared to the target 

reliability of 3.3. In addition, the sensitivity study showed that the relative change in reliability 

index is approximately equal to the model bias across all considered components. 

Three accuracy classes were introduced based on the bias of the surrogate models namely high, 

medium, and low accuracy. Compared to direct simulation a surrogate model with a high 

accuracy estimate reliability indices within ±0.05, for medium accuracy the error is within 

±0.15 and for low accuracy the error on the first decimal is ≥0.15. 

It was documented that Kriging obtains a high accuracy for the 5MW turbine when more than 

30.000 aero-elastic simulations are performed. In comparison, PCE did not consistently obtain 

a high accuracy in the investigated range of 625 samples and 100 seeds. However, using more 

than 200 samples and 10 seeds PCE obtain a medium accuracy. 

Overall, Kriging obtains a higher accuracy per invested simulation compared to PCE. Kriging 

is therefore the preferred method over PCE for reliability analysis of onshore wind turbines, 

when using the methods described in this paper. 



 

 

 

22 

 

Acknowledgements 

The authors wish to thank the data providers: KNMI, ICDC, CliSAP/KlimaCampus, University 

of Hamburg, DTU, Vattenfall and VENTUS INGENIERÍA. The work presented in this paper 

is part of the PhD project “From wind climate to wind turbine loads – efficient and accurate 

decision support and risk analysis” co-funded by EMD International A/S, Aalborg University 

and the Innovationfund Denmark case number 5189-00022B. Their financial support is highly 

appreciated.  

References 

1.  IEC. International Standard IEC 61400-1 ed. 4, “Wind Turbines - Part 1 Design 

Requirements”. 2019. 

2.  ISO. International Standard ISO 2394:2015, “General principles on reliability for 

structures.” 2015. 

3.  Slot RMM, Svenningsen L, Sørensen JD, Thøgersen ML. Importance of Shear in Site 

Assessment of Wind Turbine Fatigue Loads. J Sol Energ. 2018;140(4):041012. 

doi:10.1115/1.4039748 

4.  Stensgaard Toft H, Svenningsen L, Moser W, Dalsgaard Sørensen J, Lybech Thøgersen 

M. Wind Climate Parameters for Wind Turbine Fatigue Load Assessment. J Sol Energ. 

2016;138(3). doi:10.1115/1.4033111 

5.  IEC. International Standard IEC 61400-1 ed. 3, “Wind Turbines - Part 1 Design 

Requirements”. 2010. 

6.  Graf PA, Stewart G, Lackner M, Dykes K, Veers P. High-throughput computation and 

the applicability of Monte Carlo integration in fatigue load estimation of floating 

offshore wind turbines. Wind Energy. 2016;19:861-872. doi:110.1002/we.1870 

7.  Dimitrov N, Kelly M, Vignaroli A, Berg J. From wind to loads: wind turbine site-specific 

load estimation using databases with high-fidelity load simulations. Wind Energy Sci. 

2018;3:767-790. doi:10.5194/wes-2018-18 

8.  Toft HS, Svenningsen L, Sørensen JD, Moser W, Thøgersen ML. Uncertainty in wind 

climate parameters and their influence on wind turbine fatigue loads. Renew Energy. 

2016;90:352-361. doi:10.1016/j.renene.2016.01.010 

9.  Morató A, Sriramula S, Krishnan N. Kriging models for aero-elastic simulations and 

reliability analysis of offshore wind turbine support structures. Ships Offshore Struct. 

2018;0(0):1-14. doi:10.1080/17445302.2018.1522738 

10.  Teixeira R, O’Connor A, Nogal M, Krishnan N, Nichols J. Analysis of the design of 

experiments of offshore wind turbine fatigue reliability design with Kriging surfaces. 

Procedia Struct Integr. 2017;5:951-958. doi:10.1016/j.prostr.2017.07.132 

11.  Murcia JP, Réthoré P, Dimitrov N, et al. Uncertainty propagation through an aeroelastic 

wind turbine model using polynomial surrogates. Renew Energy. 2017;119:910-922. 

doi:10.1016/j.renene.2017.07.070 



 

 

 

23 

 

12.  Hu W, Choi KK, Cho H. Reliability-based design optimization of wind turbine blades 

for fatigue life under dynamic wind load uncertainty. Struct Multidiscip Optim. 

2016;54(4):953-970. doi:10.1007/s00158-016-1462-x 

13.  Dimitrov N, Natarajan A, Kelly M. Model of wind shear conditional on turbulence and 

its impact on wind turbine loads. Wind Energy. 2015;18(11):1917-1931. 

doi:10.1002/we.1797 

14.  Svenningsen L, Slot RMM, Thøgersen ML. A novel method to quantify atmospheric 

stability. J Phys Conf Ser. 2018;1102. doi:10.1088/1742-6596/1102/1/012009 

15.  Kelly M, Larsen G, Dimitrov NK, Natarajan A. Probabilistic Meteorological 

Characterization for Turbine Loads. J Phys Conf Ser. 2014;524:012076. 

doi:10.1088/1742-6596/524/1/012076 

16.  Miner MA. Cumulative damage in fatigue. J Appl Mech. 1945;12:159-164. 

17.  Jonkman JM, Butterfield S, Musial W, Scott G. Definition of a 5-MW Reference Wind 

Turbine for Offshore System Development. National Renewable Energy Laboratory; 

2009. 

18.  Jonkman J. FAST An aeroelastic computer-aided engineering (CAE) tool for horizontal 

axis wind turbines. https://nwtc.nrel.gov/FAST [Accessed 2019-06-18]. Published 2015. 

Accessed April 3, 2017. 

19.  B. Jonkman NK. TurbSim A stochastic, full-field, turbulence simulator primarialy for 

use with InflowWind/AeroDyn-based simulation tools. https://nwtc.nrel.gov/TurbSim. 

Published 2016. Accessed April 3, 2017. 

20.  Standard. IEC 61400-1 ed. 3, 2005, International Electrotechnical Commission, Wind 

turbines, Part 1: Design requirements, Edition 3 (2005) incl. Amendment 1 (2010). 2010. 

21.  ASTM. ASTM No. E1049-85, “Standard Practice for Cycle Counting in Fatigue 

Analysis”. 2011. 

22.  Sørensen JD, Frandsen S, Tarp-Johansen NJ. Effective turbulence models and fatigue 

reliability in wind farms. Probabilistic Eng Mech. 2008;23(4):531-538. 

doi:10.1016/j.probengmech.2008.01.009 

23.  IEC 61400-1. Safety Factors - IEC 61400-1 ed. 4 - background document. 2014. 

24.  Marelli S, Sudret B. UQLab: A Framework for Uncertainty Quantification in Matlab. In: 

Vulnerability, Uncertainty, and Risk. Reston, VA: American Society of Civil Engineers; 

2014:2554-2563. doi:10.1061/9780784413609.257 

25.  Santner TJ, Williams BJ, Notz WI. The Design and Analysis of Computer Experiments. 

New York, NY: Springer New York; 2018. doi:10.1007/978-1-4939-8847-1 

26.  Sudret B. Polynomial chaos expansions and stochastic finite element methods. In: Phoon 

KK, Ching J, eds. Risk and Reliability in Geotechnical Engineering. Taylor and Francis; 

2015:265-300. 

27.  Kocis L, Whiten WJ. Computational investigations of low-discrepancy sequences. ACM 

Trans Math Softw. 1997;23(2):266-294. doi:10.1145/264029.264064 



 

 

 

24 

 

28.  Xiu D, Karniadakis GE. The Wiener--Askey Polynomial Chaos for Stochastic 

Differential Equations. SIAM J Sci Comput. 2002;24(2):619-644. 

doi:10.1137/S1064827501387826 

29.  Rosenblatt M. Remarks on a Multivariate Transformation. Ann Math Stat. 

1952;23(3):470-472. 

30.  Blatman G, Sudret B. Adaptive sparse polynomial chaos expansion based on least angle 

regression. J Comput Phys. 2011;230:2345-2367. doi:10.1016/j.jcp.2010.12.021 

31.  Marelli S, Sudret B. UQLab User Manual - Polynomial Chaos Expansions. ETH Zurich: 

Report UQLab-V1.0-105; 2017. 

32.  Lataniotis C, Marelli S, Sudret B. The Gaussian process modelling module in UQLab. 

September 2017. 

33.  CEN. EN 1990, Eurocode - Basis of structural design. 2002. 

34.  Morokoff WJ, Caflisch RE. Quasi-Monte Carlo Integration. J Comput Phys. 1995:218-

230. 

35.  Schöbi R, Sudret B, Wiart J. Polynomial-chaos-based Kriging. Int J Uncertain Quantif. 

2015;5(2):171-193. 

36.  Marelli S, Sudret B. UQLab User Manual - PC-Kriging. ETH Zurich: Report UQLab-

V1.0-105; 2017. 

37.  Andrianakis I, Challenor PG. The effect of the nugget on Gaussian process emulators of 

computer models. Comput Stat Data Anal. 2012;56(12):4215-4228. 

doi:10.1016/j.csda.2012.04.020 

 

 

 

 

 

 


