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Abstract. In this paper, we present a practical approach to generate
the constraint engine for an effective constraint-based intrusion detection
system (IDS). The IDS framework was designed for safety-sensitive net-
works that involve limited-access closed networks such as the networks
for the command and control systems or the Air Traffic Control (ATC)
systems. The constraint engine generated by the framework supports
real-time performance while ensuring the intended, normal behaviour of
its target networks. We present the IDS framework in terms of its in-
ternal DSL representation as well as its transformation mechanisms to
generate the constraint engine code. Comparing the autogenerated ver-
sion against a manually implemented, optimized version of the constraint
engine indicates no significant difference in terms of their performance.

Keywords: Intrusion Detection · Domain-Specific Language · Network
Security · Real-Time Systems · Source Code Generation

1 Introduction

As part of a cybersecurity project, we designed an effective framework to gener-
ate a robust constraint-based Intrusion Detection System (IDS) [9] for limited-
access closed networks. The IDS was designed to support real-time detection
of intrusions for safety-sensitive networks while keeping the intended, normal
behaviour of the networks intact for its authentic systems and agents. The IDS
framework is envisaged to generate efficient executable code for all of its com-
ponents, including the constraint engine, from a single specification document.
The framework, therefore, supports practical usability for its constraint engine,
allowing only limited human interventions for its code maintenance and change
management. The key strength of the IDS framework is its realization of three
levels of abstractions as follows:

1. The high-level description of the network protocols along with their con-
straints that can be written by the IDS users like Network Engineers;

2. The mid-level specification of the constraints represented in an internal DSL
that can be transformed from the high-level description;

3. The low-level abstraction representing the executable constraint engine code
that can be autogenerated from the internal DSL.
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In this paper, we present the current state of our IDS framework in terms of
its internal DSL representation that corresponds to the mid-level abstraction
above. We also present the transformation mechanism of the internal DSL that
we have implemented to generate the low-level, executable code for the constraint
engine. The DSL allows expressing different protocol-specific constraints in terms
of their internal data structures and other computational details. Essentially,
the DSL was designed to ensure optimal memory management and real-time
performance for the constraint engine code. Extending based on our previous
work [9], the DSL presented in this paper allows generalizing its mechanism
to accommodate complex constraints that involve multiple valid sequences of
packets with arbitrary order and length.

Prior to proposing the original DSL, we have also presented an optimization
approach for the constraint engine which was manually implemented in C with
promising results [9]. The manual version of the constraint engine code was used
as a guide for our automatic code generation framework presented in this paper.
Evaluating the generated constraint engine on a set of test cases with different
constraints validates the correctness of the autogenerated code. Comparing the
performance of the autogenerated constraint engine against the manually im-
plemented version shows that there is no significant performance penalty to our
autogenerated code.

The focus of our constraint engine is to achieve real-time performance when
inspecting the network packets against a set of constraints and successfully de-
tect any intrusion. The subsequent response to a detected intrusion, however,
is outside the scope of our current research. We are currently working on im-
plementing the high-level language to specify different constraints which will be
used to autogenerate the internal DSL code discussed in this paper. We will
present the high-level language along with its transformation mechanism in our
next article.

2 Background

The scope of our research is an anomaly-based IDS for limited-access, closed
networks such as industrial control networks or command and control systems
such as the Air Traffic Control (ATC) systems. A key feature of these systems
is that they all involve a limited number of known protocols with restrictive
operations. The network traffic of these systems therefore involve much less
variability than that of a conventional network. The queries, responses, and
commands involved in these networks tend to have regular patterns that can be
predefined and specified as a set of logical constraints. These constraints can then
be used to characterize the traffic in terms of their normal, predefined patterns.
The IDS can detect potential intrusions based on traffic that deviates from the
specified constraints.

The IDS Framework. Figure 1 presents the high-level architecture of our
IDS framework. The two main components of the framework are the packet
parser and the constraint engine. Both of these components are automatically
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Fig. 1: The IDS Framework.

generated from the protocol specification document at the top. The specifica-
tion document is meant to be written by the Network Engineers in a language
called SCL [13] using their familiar ASN.1-based notations. SCL allows modular
description of multiple protocols in terms of the syntax and semantics of their
network traffic packets. The generated parser [6] reads the network packets and
converts them into an internal structure for the constraint engine to use. In the
process, the parser also validates the internal structure of the packets [6].

The main task of the constraint engine is to validate different constraints
among the network packets. The engine is responsible for storing constraint-
specific information from the incoming packets that can be used to check the
validity of the later packets. The engine also supports the mechanism of auto-
matically deleting the stored information when no longer needed. The interface
between the parser and the constraint engine consists of dedicated callback en-
tries for each of the protocol-specific packet type recognized by the parser.

As presented in Figure 1 our IDS framework only requires minimal human
intervention for its change management and code maintenance. Any changes to
the network such as the addition of new systems or protocols simply require
updating the protocol specification at the top. The underlying framework of the
IDS will then take care of generating the new executable code for the parser and
the constraint engine based on the updated specification.

The Evaluation Framework. While our IDS framework was designed to
support any kind of network protocol, in order to demonstrate our approach
we consider the Real Time Publish and Subscribe (RTPS) protocol [16] along
with the Internet Group Message Protocol (IGMP) [3] as part of our evalua-
tion framework. The RTPS protocol is a real-time implementation of the Data
Distribution Service (DDS) framework [15], where some systems publish data
(e.g. radar tracks) while the other systems subscribe to the data (e.g., air traffic
control terminal, flight service station). RTPS protocol has been used in many
critical domains and real-time applications such as NASA’s Launch Control Net-
works and the Canadian Automated Air Traffic Management System [1]. One of
the key concepts in DDS is that of a topic which refers to a particular message
type and a quality of service. An example might be a radar track, or flight plan
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information. RTPS is a UDP protocol which uses both multicast and unicast
messages. Multicast messages allow a publisher to send a single message that
can be received by all subscribers. However, to track which systems are listening
to multicast packets means we must also analyze the IGMP protocol, which is
used to manage multicast UDP messages. Our IDS framework is being extended
to support other UDP protocols such as the NTP [14], TFTP [21], and NFS [4].

The Threat Model. Our threat model is that the attacker has compromised
one or more nodes of the network through an alternate channel such as USB and
is looking to infect another node or to compromise the network function at some
point in the future. In our case, the IDS must treat each of the incoming network
packets as a suspicious entity. The contents of an incoming packet as well as its
arriving sequence must be evaluated against a set of protocol-specific constraints
in order to validate the packet’s right to exist in the network traffic as a safe
entity. The constraint engine for the anomaly-based IDS, therefore, requires a
set of constraints for each of the protocol-specific packet types that collectively
specify the normal behaviour of its target network.

There are three types of constraints that we are interested in. The first type
involves the constraints specified by the protocol parser to validate the well-
formedness of the network packets. The second type involves describing the
constraints between the incoming packets and the network environment. For
example, radar data and ADS-B [2] data may only originate from a specific set of
systems. Finally, the third type of constraints involves describing the constraints
among multiple packets along with their valid sequences. Three examples of
constraints for the RTPS protocol are: RTPS packets have the correct format and
structure, application data packets originate from the correct source addresses,
and that an intruder has not introduced a new topic in order to suborn the DDS
framework to provide communication between malware components.

3 Generating Constraint Engine Code

Each of the packet types within a network stream must have a set of associated
constraints. A packet type refers to the protocol-specific type of the packet such
as the RTPS DATA message packet. In our approach, the constraints are consid-
ered to be independent from each other. Each of the multipacket constraints
must specify a set of Packet Types, P = {Po, P1, .., Pn, Pt, Pf} that must exist in
a particular order; where, Po is the type of the Initial Packet of the sequence,
P1, .., Pn are the types of the Intermediate Packets leading up to the Target

Packet type, Pt, and the Final Packet type Pf after the Pt marks the closure
of the packet sequence relevant to the constraint.

Each instance of the network constraints corresponds to a tree data structure,
which is referred to as the constraint tree in this paper. Such a tree gradually
collects data for its nodes from the stream of network packets. A constraint tree
can be expressed using the prefix notation: AND(OP(a, b),OP(c, d)); where,
AND refers to the logical conjunction, OP is a logical operator such as equality
(EQ) or non-equality (NEQ), and a, b, c, and d represent the leaf node data from
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Fig. 2: Sequence of Packets with Constraint Tree Phases.

different packets that must be evaluated. Hasan et al. [9] proposes a life-cycle
model for the constraint trees with four consecutive phases: Instantiate (I), Bind
(B), Evaluate (E) and Destroy (D). It is the life-cycle model of the constraint
trees that dictates the overall memory management and the optimization of the
constrain engine in order to achieve the real-time performance of our IDS.

3.1 The Constraint Tree Life-Cycle Model

Based on its corresponding constraint specification, each phase of the constraint
tree is triggered by the arrival of a particular packet type within a stream of net-
work packets. Figure 2 illustrates a generic scenario of a constraint that involves
different packet types with a particular arriving sequence. In between the initial
packet, Po and the final packet, Pf , there could be many intermediate packets
of different types; however, within those packets, the constraint is specific about
the existence of three particular types of packets, Px, Py, and the target packet
Pt, that must arrive in the specified order. The constraint tree phases along with
their internal memory management processes are described below.

Instantiate is the first phase of a constraint tree instance which is triggered
by the arrival of the initial packet type, Po from a predefined sequence. In this
phase, a memory space is allocated for the constraint tree and a reference to the
tree is cached in a hash table that can be used by the later phases. The common
values between the initial packet and the consecutive packet(s) are used as the
keys for the hash table. Any data needed from the initial packet to evaluate the
constraint are stored in the tree instance.

Bind is the second phase of a multi-packet constraint that has more than
two packets. This phase involves the following tasks: validate the sequence of the
arriving packets and fill out the empty leaves in the constraint tree. While our
original approach [9] only allowed a single bind phase, the approach currently
allows multiple bind phases to be defined for a constraint. Figure 2 illustrates
that scenario by multiple intermediate packet types between the initial and the
target packet types. In the first bind phase, the constraint engine retrieves the
tree from the instantiate hash table. In the case of more than one bind phases,
the constraint tree will be passed from one bind phase to the next through one
or more hash tables.
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Evaluate is the phase in which the validity of the target packet Pt is eval-
uated. The triggering packet type Pt of this phase should provide the data for
any remaining leaf nodes of the constraint tree. A security violation occurs if
the evaluate phase fails to retrieve the tree from the hash table of the previous
phase or the tree evaluates to a false value. The evaluate phase for the same tree
instance can be executed every time a triggering packet arrives.

Destroy is the final phase of the life cycle which is triggered by the arrival of
the final packet, Pf in the predefined packet sequence. As a result of this phase,
the constraint tree is deleted from all the hash tables to free up memory.

3.2 The DSL Representation of Network Constraints

It should be noted that for the single-packet constraints, the life-cycle model
only involves the evaluate phase for the Pt contents against a known set of en-
vironmental values. For two-packet constraints, the model simply involves the
instantiate phase for the Po and the evaluate phase for the Pt. The life-cycle
model presented above is particularly useful for those constraints that involve
more than two packets in a sequence with multiple alternative valid orders. In
this section, we describe the internal DSL representation using two such con-
straints namely the C5 and C11. Figure 3 illustrates the possible sequences of
packets involved in these two constraints in terms of their constraint tree phases.

Constraint C5. All subscribers and publishers must be valid members of an
IGMP multicast group. These participants must send their membership reports
to specific group addresses before showing their interests in a topic.

Constraint C11. The data of a certain topic is considered valid if it is produced

from a valid publisher and consumed by a valid subscriber.

As reflected in Figure 3, the target packet type to evaluate constraint C5 is
RTPS.DATA(W) (the publisher) or RTPS.DATA(R) (the subscriber) submessage
of an RTPS packet. The previous packet types, in order, are an RTPS packet
containing a participant submessage, RTPS.DATA(P), and an IGMP membership
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report packet. The IDS parser that we implemented can parse callbacks not
only for the entire packets but also for the meaningful parts of the packets such
as the RTPS submessages. Therefore, the constraint engine can use the RTPS
submessage as a trigger for its phase logic.

1 CONSTRAINT C5 /* Constraint ID */
2 /* Constraint Tree Expression for C5 */
3 V(AND(EQ(SrcIPAddressNewJoin , SrcIPParticipant),
4 EQ(GroupDestIPToBeJoined , DestIPParticipant)))
5 INSTANTIATE
6 IGMP Packet.Type is V2Report
7 if not SEARCH Packet.srcIP , IGMP.groupaddr :Hash=hashIC5
8 Tree.SrcIPAddressNewJoin = Packet.srcIP
9 Tree.GroupDestIPToBeJoined = IGMP.groupaddr

10 Key = Packet.srcIP , IGMP.groupaddr
11 HashInstantiate = hashIC5
12 endif
13 BIND
14 RTPS FULL_RTPS.Type is DATAPSUB
15 REPEAT
16 HashInstantiate = hashIC5
17 KeyInstantiate = Packet.srcIP , Packet.dstIP
18 Tree.SrcIPParticipant = Packet.srcIP
19 Tree.DestIPParticipant = Packet.dstIP
20 Key = Packet.srcIP
21 HashBind = hashBC5
22 EVALUATE
23 RTPS FULL_RTPS.Type is DATARSUB Or FULL_RTPS.Type is DATAWSUB
24 HashBind = hashBC5
25 if SEARCH Packet.srcIP :Hash=hashBC5
26 EVAL Packet.srcIP
27 endif
28 DESTROY
29 IGMP Packet.Type is V2Leave
30 if SEARCH Packet.srcIP:Hash=hashBC5
31 HashBind = hashBC5
32 Key = Packet.srcIP
33 endif
34 END

Listing 1.1: The DSL Code for Constraint C5

Listing 1.1 shows the DSL representation for the constraint C5. The first line of
the code specifies the constraint ID (line 1). The constraint ID is a unique identi-
fier value that is used as a suffix in the generated code for each constraint. Next,
in line 3-4, we have the constraint tree expression in prefix notation. The key-
words INSTANTIATE, BIND, EVALUATE, and DESTROY correspond to the life-cycle
phases of the constraint tree, each followed by a triggering packet type as spec-
ified in Figure 3. For instance, the instantiate phase is triggered when reporting
the multi-cast group address of a network; i.e., arrival of the IGMP Member-
ship Report packet. The V2REPORT in line 6 refers to the Membership Report
packet from the IGMP version 2 specification. The packet type DATAPSUB in line
14 refers to an RTPS participant submessage, RTPS.DATA(P) which triggers the
bind phase. The packet types DATARSUB and DATAWSUB in lines 23 correspond to
the RTPS subscriber and publisher submessages. In line 29, the V2Leave packet
type corresponds to the leave submessage from the IGMP version 2 specification.

Tree Instance Hashing. The DSL proposed by Hasan et al. [9] had two
implicit hash tables to hold the constraint tree between the instantiate and
bind phase, and between the bind and evaluate phase. In our DSL, each of the



8 M. S. Rakha et al.

instantiate and bind phase can have an unlimited number of defined hash tables.
In listing 1.1, line 10 shows an example of assigning key fields from the packet
while line 11 defines the hash table name hashIC5. During the bind phase, the
constraint engine should be able to find the constraint tree in the instantiate
hash table. The constraint engine uses key fields from the triggering packet to
lookup the constraint tree instance created in the instantiate phase. In listing 1.1,
the hash table name for the instantiate is defined in line 16 while the necessary
key fields are defined in line 17.

The bind phase updates the constraint tree by filling the empty leaves with
the appropriate packet fields as in lines 18-19 of listing 1.1. The bind phase
stores the updated constraint tree in the bind hash table. In listing 1.1, the hash
table name and key fields for bind phase are defined in lines 20-21. The hash
table name and key fields used by the evaluate phase are defined in lines 24 and
26. Finally, the destroy phase deallocates the constraint tree from the defined
hash tables. Based on the constraint specification, the autogenerated constraint
engine may have an unlimited number of hard-coded definitions of hash tables
for the instantiate and bind phases.

Hash Table Naming. In our current DSL, each hash table should have a
unique name throughout the constraint engine code. In listing 1.1, the variable
HashInstantiate holds the hash table name for the instantiate phase of con-
straint C5. While the variable HashBind holds the hash table name for the bind
phase. The constraint phases should access any of the hash tables by their unique
names. For example, the bind phase should be able to find the constraint tree
allocated previously at the instantiate phase. Therefore, the HashInstantiate

is specified twice in the DSL of listing 1.1 - first in the instantiate clause and the
next in the bind clause. The DSL grammar allows the naming of multiple hash
tables when the phase clause holds multiple cases. Listing 1.2 shows an example
of multiple hash tables within the same phase clause for constraint C11. In C11
example, the instantiate phase has two hash tables: hashIC11 DATARSUB and
hashIC11 DATAWSUB. Each one of these hash tables is accessed at different cases
based on the logical sequence.

Hash Table Management. Figure 4 summarizes the hashing mechanism
among the four phases of a constraint tree. During the instantiate phase, the con-
straint engine instantiates a tree for the constraint Cx and inserts its reference
to a hash table. The location of the tree reference in the hash table is deter-
mined by the hash key value. The packet fields used to calculate the key value
should be specified in the DSL. For example, listing 1.1 for C5 defines srcIP and
groupaddr as the key fields for its hash table hashIC5. Based on these two fields,
a reference to constraint tree is located in the hash table hashIC5. In some cases,
the calculated key value may point to an already existing hashing slot causing
a collision [23]. In such a case of collision, the old tree is deleted and the hash
slot is updated with a new tree instance. At the bind phase, the instantiate tree
reference is copied from the instantiate hash table into the bind hash table. In
C5 example, the bind hash table is hashBC5. At the end of the bind phase, the
copied tree reference is deleted from the instantiate hash table to free up space.
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However, the DSL allows disabling this deletion by adding the keyword SPLIT

in the bind clause. In case of collision, the tree update can be ignored by adding
the keyword REPEAT. For example, listing 1.1 for C5 has the keyword REPEAT

at line 15. During the evaluate phase, the constraint tree is retrieved from the
hash table specified by the name in variable HashBind, if available. Otherwise,
the constraint engine should report a security violation. The evaluate phase does
not change the content of the hash tables. In our approach, the generated hashing
uses the linear probing algorithm with a relatively prime step size [7]. However,
other hashing algorithms that support deletion can be used.

Constraint Generalization. The automatic generation approach takes into
consideration the generality of constraint specifications. One of the challenging
generalizations is the cross scenarios handling. The cross scenarios happen when
the constraint specification permits the same triggering packets for more than
one phase. For instance, the constraint C11 in listing 1.2. The target of the
constraint determines if a data message of a given RTPS topic is produced by
a valid publisher and consumed by a valid subscriber. Both the instantiate and
bind phases can be triggered by a DATA(W) or a DATA(R) as depicted in Figure 3.
For such a case, the generated constraint engine must conform to the accurate
scenario by checking if the other packet has already arrived. We use the SEARCH

function (in Line 8 and Line 24) to check if the other packet has arrived by the
availability of constraint tree in hash table.

In listing 1.2, we added the if condition at the start of each phase case to
handle the cross scenario generalization. Another example of generalization is
the multiple triggering packets for the same phase. We can observe that C11
specification handles such a case by applying a switch block. Each packet type
in such case will represent a triggering packet type. The same approach can be
applied to extend the C5 specifications. In C5 instantiate and destroy phases,
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we add switch statements to handle older versions of IGMP Report packets.
Listing 1.3 shows the two phases after generalization.

1 CONSTRAINT C11
2 V(AND(EQ(SrcIPPublisher , DesIPfromSubscriber), EQ(PublisherSrtPort),
3 EQ(entityIDPublisher), EQ(SrcIPSubscriber)))
4 INSTANTIATE
5 RTPS FULL_RTPS.Type is DATAWSUB Or FULL_RTPS.Type is DATARSUB
6 switch (FULL_RTPS.Type)
7 case DATAWSUB:
8 if not SEARCH HashKey (. pidtopicname_rtps.topicname.name
9 IN Protoco~serializeddata~topicdata:type ,

10 PIDTOPICNAME_RTPS_VAL), Packet.srcIP , Packet.dstIP
11 :Hash=hashIC11_DATARSUB
12 endif
13 case DATARSUB:
14 if not SEARCH HashKey (. pidtopicname_rtps.topicname.name
15 IN Protocol~serializeddata~topicdata:type ,
16 PIDTOPICNAME_RTPS_VAL), Packet.dstIP , Packet.srcIP
17 :Hash=hashIC11_DATAWSUB
18 endif
19 endswitch
20 BIND
21 RTPS FULL_RTPS.Type is DATAWSUB Or FULL_RTPS.Type is DATARSUB
22 switch (FULL_RTPS.Type)
23 case DATARSUB: /* Case Logic */
24 if SEARCH HashKey (. pidtopicname_rtps.topicname.name IN Protocol~

serializeddata~topicdata:type ,PIDTOPICNAME_RTPS_VAL), Packet.dstIP ,
Packet.srcIP :Hash=hashIC11_DATAWSUB

25 endif
26 case DATAWSUB: /* Case Logic */
27 if SEARCH HashKey (. pidtopicname_rtps.topicname.name IN Protocol~

serializeddata~topicdata:type ,PIDTOPICNAME_RTPS_VAL), Packet.srcIP ,
Packet.dstIP:Hash=hashIC11_DATARSUB

28 endif
29 endswitch

Listing 1.2: The DSL Code for Constraint C11

1 INSTANTIATE
2 IGMP Packet.Type is V2Report Or Packet.Type is V3Report
3 switch (Packet.Type)
4 case V2Report: /* Case Logic */
5 if not SEARCH Packet.srcIP , IGMP.groupaddr :Hash=hashIC5
6 endif
7 case V3Report: /* Case Logic */
8 loop for groupaddr in IGMP.grouprecordinfo
9 if not SEARCH Packet.srcIP , Iterator.groupaddr :Hash=hashIC5

10 endif
11 endloop
12 endswitch
13 /* The Bind phase followed by the Evaluate phase [Same as Listing 1] */
14 DESTROY
15 IGMP Packet.Type is V2Leave Or Packet.Type is V3Leave
16 switch (Packet.Type)
17 case V2Leave: /* Case Logic */
18 if SEARCH Packet.srcIP:Hash=hashBC5
19 endif
20 case V3Leave: /* Case Logic */
21 if SEARCH Packet.srcIP:Hash=hashBC5
22 endif
23 endswitch
24 END

Listing 1.3: DSL Code for Generalized Constraint C5
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3.3 Implementation

An overview of our implemented autogeneration framework for the constraint
engine code is presented in Figure 5. Based on the constraints specified in the
DSL input, the framework requires three kinds of transformations to generate
the necessary C files for the constraint engine. These include the transformations
for the hashing, the constraint tree phases, and the parser callbacks, as depicted
in the figure. We used the TXL [5] as the transformation language between the
DSL and the constraint engine code. After the transformations, all the generated
C files of the IDS are compiled to build a binary executable file. The binary file
includes the parser and the autogenerated constraint engine.

Four snippets of the generated code for constraint C5 are presented in this
section. First is the example of hash.h file in listing 1.4 that includes the function
prototypes of the generated hashing operations for the C5 constraint tree. Next,
in listing 1.5, we have the generated code for constraint.h which includes
the function prototypes of the constraint tree phases. Notice how the function
parameters correspond to the C5 DSL in listing 1.1. For example, the function
instantiateC5 V2Report(..) in Line 1 requires a pair of key fields, followed
by a pair of leaf node values based on lines 8-10 of the instantiate clause in
C5 DSL 1.1. Listing 1.6 presents the generated implementation of the C5 bind
function for the constraint.c file. The bind implementation calls different hash
functions to retrieve and update each tree instance.

1 typedef struct {
2 uint32_t SrcIPAddressNewJoin;
3 uint32_t SrcIPParticipant;
4 uint32_t GroupDestIPToBeJoined;
5 uint32_t DestIPParticipant;
6 } treeHashC5;
7 int insertIValueC5V2Report (uint32_t key1 , uint32_t key2 , uint32_t

SrcIPAddressNewJoin , uint32_t GroupDestIPToBeJoined);
8 int deleteValueIhashIC5 (uint32_t key1 , uint32_t key2);
9 treeHashC5* GetValuefromfhashIC5 (uint32_t key1 , uint32_t key2);

10 int insertIValueC5V3Report (uint32_t key1 , uint32_t key2 , uint32_t
SrcIPAddressNewJoin , uint32_t GroupDestIPToBeJoined);

11 int insertBValueC5hashBC5 (uint32_t key1 , uint32_t SrcIPParticipant ,
uint32_t DestIPParticipant , treeHashC5* treeInst);

12 int deleteValueBhashBC5 (uint32_t key1);
13 treeHashC5* GetValuefromfhashBC5 (uint32_t key1);
14 void clearC5 ();

Listing 1.4: Generated Code in hash.h for C5.
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1 int instantiateC5_V2Report (uint32_t key1 , uint32_t key2 , uint32_t
SrcIPAddressNewJoin , uint32_t GroupDestIPToBeJoined , unsigned long
pktCount);

2 int instantiateC5_V3Report (uint32_t key1 , uint32_t key2 , uint32_t
SrcIPAddressNewJoin , uint32_t GroupDestIPToBeJoined , unsigned long
pktCount);

3 int bind1C5 (uint32_t instatiate_key1 , uint32_t instatiate_key2 , uint32_t
key1 , uint32_t SrcIPParticipant , uint32_t DestIPParticipant , unsigned
long pktCount);

4 int evaluateC5 (uint32_t key1 , unsigned long pktCount);
5 int destroyC5_V2Leave (uint32_t key1 , unsigned long pktCount);
6 int destroyC5_V3Leave (uint32_t key1 , unsigned long pktCount);

Listing 1.5: Generated Code in constraint.h for C5.

1 int bind1C5 (uint32_t instantiate_key1 , uint32_t instantiate_key2 , uint32_t
key1 , uint32_t SrcIPParticipant , uint32_t DestIPParticipant , unsigned
long pktCount){

2 if (true){
3 treeHashC5* insTree=GetValuefromfhashIC5(instantiate_key1 ,

instantiate_key2);
4 if (insTree ==NULL){iC5f ++; iC5bindf ++; return -1;}
5 else {}
6 treeHashC5* bindTree=GetValuefromfhashBC5(key1);
7 bool noRepeat=false;
8 if (bindTree !=NULL){if (! noRepeat) return 1;}
9 bool split=false;

10 if (split){
11 treeHashC5* splitedTree=malloc(sizeof(treeHashC5));
12 memcpy (splitedTree , insTree , sizeof(treeHashC5));
13 bindTree=splitedTree ;}
14 else if (! noRepeat){
15 treeHashC5* splitedTree=malloc(sizeof(treeHashC5));
16 memcpy (splitedTree , insTree , sizeof(treeHashC5));
17 bindTree=splitedTree ;}
18 else {bindTree=insTree ;}
19 if (insertBValueC5hashBC5 (key1 , SrcIPParticipant , DestIPParticipant ,

bindTree) == -1)
20 {iC5f ++; iC5bindf ++; return -1;}
21 if (noRepeat){if (!split){if (deleteValueIhashIC5 (instantiate_key1 ,

instantiate_key2) == -1){
22 iC5f ++; iC5bindf ++; return -1;}}}
23 iC5bind ++; return 1;}
24 else return 1;}

Listing 1.6: Snippet of Generated Code in constraint.c for C5

1 void V2Report_IGMP_callback(V2Report_IGMP *v2report_igmp , PDU *thePDU){
2 struct HeaderInfo *Packet = thePDU ->header;
3 instantiateC5_V2Report (Packet ->srcIP ,
4 v2report_igmp ->groupaddr , Packet ->srcIP ,
5 v2report_igmp ->groupaddr , Packet ->pktCount);}

Listing 1.7: IGMP V2Report with a trigger call to C5 Instantiate Phase.

Finally, Listing 1.7 shows an example of triggering the C5 instantiate phase
within the generated callback function of IGMP V2Report based on the instan-
tiate phase of the C5 DSL in Listing 1.1. The callback function headers are
predefined in the parser and used as inputs for the callback transformation. The
callback functions passes the triggering packets defined in the constraint specifi-
cations and fills the required parameters of the tree phases. The transformation
keeps appending the callback functions into the callback.c file for different
triggering packets based on the constraint tree phases.
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4 Results and Evaluation

The generated IDS has been tested against four different constraints with the
test cases listed in Table 1. Each of the cases in the table was intentionally
induced in separate packet capture (pcap) files. As shown in Table 1, each of
the four constraints has a normal scenario where the IDS should pass with no
violations, along with a set of abnormal cases with anomalous packets. The
violation checks reported by the generated constraint engine are consistent with
the test case expectations, proving the correctness of the constraint engine code.

Table 1: Test Cases with Four Constraints.

C5 Tests C8 Tests

3 Normal Normal
7 Missing IGMP Packet in the Sequence Wrong Topic Name in DATA(W)

7 Wrong Group Address in IGMP Report -

C11 Tests C12 Tests

3 Normal Normal
7 Wrong SrcIP in IGMP DATA(W) Wrong SrcIP in IGMP DATA(W)

7 Wrong DestIP in IGMP DATA(W) Wrong SrcIP in IGMP DATA

Figure 6 shows the performance results on the run-time averages of the two
IDS versions on three pcap files. For our evaluation, we used the same set of
pcap files used by Hasan et al. [9] against the same three constraints: C5, C11
and C8. We run each IDS 10 times for each pcap file. Each of the IDS was ran
on an Ubantu Linux 64-bit VM with Intel core i7 processor using 2 GB of RAM.
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Fig. 6: Performance Comparison between the Constraint Engines.

As we can observe in Figure 6, the autogenerated IDS is slower with a maxi-
mum drop of less than 6%. The results indicate that there is a slight drop in the
performance for the autogenerated IDS in contrast to the manually implemented
version. However, the performance difference is insignificant. These results high-
light that the automatic generation of the constraint engine presented in this
paper does not lead to a significant performance penalty.
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5 Related Work and Discussion

While there exist various approaches to develop an IDS [12], the premise of our
approach is an anomaly-based IDS [8] for limited-access closed-networks which
involve a limited number of protocols. Various anomaly-based approaches have
been studied that apply Machine Learning (ML) techniques [22] to identify sus-
picious patterns in the network traffic. However, the ML-based approaches are
typically useful for conventional public networks that involve a broad variety
of protocols with variable traffic patterns that are hard to prognosticate. Since
the target networks of our IDS solely involve a limited number of protocols with
restrictive operational patterns, we did not consider any ML-based technique for
our approach. Our approach is based on the idea of inspecting each of the net-
work packets against a finite set of protocol-specific constraints that are already
known. We considered achieving real-time performance and automatic genera-
tion of our constraint-based IDS [9] to be the key challenges for our approach.

Satisfying network constraints can be considered similar to finding frequent
patterns in the data stream. Various tree-based approaches have been consid-
ered in literature for different applications [11, 18, 20]. A key limitation of these
approaches is that they require maintaining large constraint trees to express
their desired patterns. Against streaming data in large scale, even with effi-
cient pruning algorithms, traversing and updating such constraint trees would
require continuous memory operation which is bound to cause major bottlenecks
in performance. In our approach, using the constraint tree life-cycle model we
instantiate a simple tree for each of the individual constraints with optimized
memory management. Using the hashing mechanism presented in this paper, our
approach allows accessing the required tree nodes in the memory or removing a
tree from memory, both in constant time.

Open source tools such as SNORT [17] support rule-based intrusion detection
techniques. The SNORT rules [10] can be used to express similar concerns com-
parable to the single-packet environmental constraints in our approach. However,
when it comes to multi-packet constraints involving a set of valid sequence of
packets, expressing them using SNORT-based rules are not feasible. Writing such
rules would require specifying the exact time frames for the expected arrival of
related packets. In contrast, our approach allows defining the partial-order pat-
terns on the required set of packets without the need to specify any time window.
In a related effort of using a DSL to express network constraints, Salgueiro et al.
[19] present a DSL to describe common attacks on TCP/IP protocols that can
generate solution code. However, the DSL was not designed to handle the kind
of multi-packet constraints that we needed for the DDS networks.

Generating automated code has been used in various Model-Driven Engineer-
ing projects. These projects usually involve generating operational code from a
model specifying the system to be created. Our code generation approach is dis-
tinct that we are generating the code to validate the network data against the
models. The generated constraint engine code by our IDS framework checks the
validity of the traffic data against a set of protocol-specific behavioural models
of the target networks.
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6 Conclusion and Future Work

In this paper, we have presented an effective approach to autogenerate a con-
straint engine through a practical IDS framework. The approach implements
and extends our earlier DSL proposed by Hasan et al. [9] and generalizes its
representation to accommodate any kind of complex multi-packet constraints
that involve alternative sequences of packets with arbitrary length and order.
We have successfully implemented a mechanism to transform the internal DSL
into executable constraint engine code using TXL.

Comparing the performance of the autogenerated constraint engine against
the manually implemented version displays no significant performance overhead.
The correctness of the generated constraint engine was evaluated based on four
different test cases. For our next evaluation, we plan to involve a third-party
Red team to incorporate a comprehensive collection of malicious activities on
our simulation environment for an ATC network.

We are currently working on generating the internal DSL from an SCL-based
high-level constraint specification language suitable for the Network Engineers
to use. The SCL language, already being used to generate the parser for our IDS
framework, is modular, which allows easy specification of multiple protocols for
a given network. Finally, since the IDS framework only allows autogenerating its
constraint engine from a high-level specification, the approach requires minimum
human interventions. The intricate implementation details of the constraint en-
gine are not needed to be coded or managed by humans which eliminates the
possibility of having human-induced errors and heavy maintenance overhead
when adapting a new set of protocols and systems for the IDS.
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