Mohamed Sami Rakha
email: m.rakha@queensu.ca

Fahim T Imam
email: fahim.imam@queensu.ca

Thomas R Dean
email: tom.dean@queensu.ca

Generating a Real-Time Constraint Engine for Network Protocols

Keywords: Intrusion Detection, Domain-Specific Language, Network Security, Real-Time Systems, Source Code Generation

In this paper, we present a practical approach to generate the constraint engine for an effective constraint-based intrusion detection system (IDS). The IDS framework was designed for safety-sensitive networks that involve limited-access closed networks such as the networks for the command and control systems or the Air Traffic Control (ATC) systems. The constraint engine generated by the framework supports real-time performance while ensuring the intended, normal behaviour of its target networks. We present the IDS framework in terms of its internal DSL representation as well as its transformation mechanisms to generate the constraint engine code. Comparing the autogenerated version against a manually implemented, optimized version of the constraint engine indicates no significant difference in terms of their performance.

Introduction

As part of a cybersecurity project, we designed an effective framework to generate a robust constraint-based Intrusion Detection System (IDS) [START_REF] Hasan | A Constraint-based Intrusion Detection System[END_REF] for limitedaccess closed networks. The IDS was designed to support real-time detection of intrusions for safety-sensitive networks while keeping the intended, normal behaviour of the networks intact for its authentic systems and agents. The IDS framework is envisaged to generate efficient executable code for all of its components, including the constraint engine, from a single specification document. The framework, therefore, supports practical usability for its constraint engine, allowing only limited human interventions for its code maintenance and change management. The key strength of the IDS framework is its realization of three levels of abstractions as follows:

1. The high-level description of the network protocols along with their constraints that can be written by the IDS users like Network Engineers; 2. The mid-level specification of the constraints represented in an internal DSL that can be transformed from the high-level description; 3. The low-level abstraction representing the executable constraint engine code that can be autogenerated from the internal DSL.

In this paper, we present the current state of our IDS framework in terms of its internal DSL representation that corresponds to the mid-level abstraction above. We also present the transformation mechanism of the internal DSL that we have implemented to generate the low-level, executable code for the constraint engine. The DSL allows expressing different protocol-specific constraints in terms of their internal data structures and other computational details. Essentially, the DSL was designed to ensure optimal memory management and real-time performance for the constraint engine code. Extending based on our previous work [START_REF] Hasan | A Constraint-based Intrusion Detection System[END_REF], the DSL presented in this paper allows generalizing its mechanism to accommodate complex constraints that involve multiple valid sequences of packets with arbitrary order and length.

Prior to proposing the original DSL, we have also presented an optimization approach for the constraint engine which was manually implemented in C with promising results [START_REF] Hasan | A Constraint-based Intrusion Detection System[END_REF]. The manual version of the constraint engine code was used as a guide for our automatic code generation framework presented in this paper. Evaluating the generated constraint engine on a set of test cases with different constraints validates the correctness of the autogenerated code. Comparing the performance of the autogenerated constraint engine against the manually implemented version shows that there is no significant performance penalty to our autogenerated code.

The focus of our constraint engine is to achieve real-time performance when inspecting the network packets against a set of constraints and successfully detect any intrusion. The subsequent response to a detected intrusion, however, is outside the scope of our current research. We are currently working on implementing the high-level language to specify different constraints which will be used to autogenerate the internal DSL code discussed in this paper. We will present the high-level language along with its transformation mechanism in our next article.

Background

The scope of our research is an anomaly-based IDS for limited-access, closed networks such as industrial control networks or command and control systems such as the Air Traffic Control (ATC) systems. A key feature of these systems is that they all involve a limited number of known protocols with restrictive operations. The network traffic of these systems therefore involve much less variability than that of a conventional network. The queries, responses, and commands involved in these networks tend to have regular patterns that can be predefined and specified as a set of logical constraints. These constraints can then be used to characterize the traffic in terms of their normal, predefined patterns. The IDS can detect potential intrusions based on traffic that deviates from the specified constraints.

The IDS Framework. Figure 1 presents the high-level architecture of our IDS framework. The two main components of the framework are the packet parser and the constraint engine. Both of these components are automatically generated from the protocol specification document at the top. The specification document is meant to be written by the Network Engineers in a language called SCL [START_REF] Marquis | Scl: a language for security testing of network applications[END_REF] using their familiar ASN.1-based notations. SCL allows modular description of multiple protocols in terms of the syntax and semantics of their network traffic packets. The generated parser [START_REF] Elshakankiry | Context sensitive and secure parser generation for deep packet inspection of binary protocols[END_REF] reads the network packets and converts them into an internal structure for the constraint engine to use. In the process, the parser also validates the internal structure of the packets [START_REF] Elshakankiry | Context sensitive and secure parser generation for deep packet inspection of binary protocols[END_REF].

The main task of the constraint engine is to validate different constraints among the network packets. The engine is responsible for storing constraintspecific information from the incoming packets that can be used to check the validity of the later packets. The engine also supports the mechanism of automatically deleting the stored information when no longer needed. The interface between the parser and the constraint engine consists of dedicated callback entries for each of the protocol-specific packet type recognized by the parser.

As presented in Figure 1 our IDS framework only requires minimal human intervention for its change management and code maintenance. Any changes to the network such as the addition of new systems or protocols simply require updating the protocol specification at the top. The underlying framework of the IDS will then take care of generating the new executable code for the parser and the constraint engine based on the updated specification.

The Evaluation Framework. While our IDS framework was designed to support any kind of network protocol, in order to demonstrate our approach we consider the Real Time Publish and Subscribe (RTPS) protocol [START_REF] Pardo-Castellote | Real-time publish-subscribe system[END_REF] along with the Internet Group Message Protocol (IGMP) [START_REF] Cain | Internet group management protocol[END_REF] as part of our evaluation framework. The RTPS protocol is a real-time implementation of the Data Distribution Service (DDS) framework [START_REF] Pardo-Castellote | OMG data-distribution service: Architectural overview[END_REF], where some systems publish data (e.g. radar tracks) while the other systems subscribe to the data (e.g., air traffic control terminal, flight service station). RTPS protocol has been used in many critical domains and real-time applications such as NASA's Launch Control Networks and the Canadian Automated Air Traffic Management System [START_REF]The Canadian Automated Air Traffic System[END_REF]. One of the key concepts in DDS is that of a topic which refers to a particular message type and a quality of service. An example might be a radar track, or flight plan information. RTPS is a UDP protocol which uses both multicast and unicast messages. Multicast messages allow a publisher to send a single message that can be received by all subscribers. However, to track which systems are listening to multicast packets means we must also analyze the IGMP protocol, which is used to manage multicast UDP messages. Our IDS framework is being extended to support other UDP protocols such as the NTP [START_REF] Mills | Network time protocol version 4: Protocol and algorithms specification[END_REF], TFTP [START_REF] Sollins | The TFTP protocol (revision 2)[END_REF], and NFS [START_REF] Callaghan | NFS version 3 protocol specification[END_REF].

The Threat Model. Our threat model is that the attacker has compromised one or more nodes of the network through an alternate channel such as USB and is looking to infect another node or to compromise the network function at some point in the future. In our case, the IDS must treat each of the incoming network packets as a suspicious entity. The contents of an incoming packet as well as its arriving sequence must be evaluated against a set of protocol-specific constraints in order to validate the packet's right to exist in the network traffic as a safe entity. The constraint engine for the anomaly-based IDS, therefore, requires a set of constraints for each of the protocol-specific packet types that collectively specify the normal behaviour of its target network.

There are three types of constraints that we are interested in. The first type involves the constraints specified by the protocol parser to validate the wellformedness of the network packets. The second type involves describing the constraints between the incoming packets and the network environment. For example, radar data and ADS-B [START_REF] Baud | Radar/ads-b data fusion architecture for experimentation purpose[END_REF] data may only originate from a specific set of systems. Finally, the third type of constraints involves describing the constraints among multiple packets along with their valid sequences. Three examples of constraints for the RTPS protocol are: RTPS packets have the correct format and structure, application data packets originate from the correct source addresses, and that an intruder has not introduced a new topic in order to suborn the DDS framework to provide communication between malware components.

Generating Constraint Engine Code

Each of the packet types within a network stream must have a set of associated constraints. A packet type refers to the protocol-specific type of the packet such as the RTPS DATA message packet. In our approach, the constraints are considered to be independent from each other. Each of the multipacket constraints must specify a set of Packet Types, P = {P o , P 1 , .., P n , P t , P f } that must exist in a particular order; where, P o is the type of the Initial Packet of the sequence, P 1 , .., P n are the types of the Intermediate Packets leading up to the Target Packet type, P t , and the Final Packet type P f after the P t marks the closure of the packet sequence relevant to the constraint.

Each instance of the network constraints corresponds to a tree data structure, which is referred to as the constraint tree in this paper. Such a tree gradually collects data for its nodes from the stream of network packets. A constraint tree can be expressed using the prefix notation: AND(OP(a, b),OP(c, d)); where, AND refers to the logical conjunction, OP is a logical operator such as equality (EQ) or non-equality (NEQ), and a, b, c, and d represent the leaf node data from different packets that must be evaluated. Hasan et al. [START_REF] Hasan | A Constraint-based Intrusion Detection System[END_REF] proposes a life-cycle model for the constraint trees with four consecutive phases: Instantiate (I), Bind (B), Evaluate (E) and Destroy (D). It is the life-cycle model of the constraint trees that dictates the overall memory management and the optimization of the constrain engine in order to achieve the real-time performance of our IDS.

The Constraint Tree Life-Cycle Model

Based on its corresponding constraint specification, each phase of the constraint tree is triggered by the arrival of a particular packet type within a stream of network packets. Figure 2 illustrates a generic scenario of a constraint that involves different packet types with a particular arriving sequence. In between the initial packet, P o and the final packet, P f , there could be many intermediate packets of different types; however, within those packets, the constraint is specific about the existence of three particular types of packets, P x , P y , and the target packet P t , that must arrive in the specified order. The constraint tree phases along with their internal memory management processes are described below.

Instantiate is the first phase of a constraint tree instance which is triggered by the arrival of the initial packet type, P o from a predefined sequence. In this phase, a memory space is allocated for the constraint tree and a reference to the tree is cached in a hash table that can be used by the later phases. The common values between the initial packet and the consecutive packet(s) are used as the keys for the hash table. Any data needed from the initial packet to evaluate the constraint are stored in the tree instance.

Bind is the second phase of a multi-packet constraint that has more than two packets. This phase involves the following tasks: validate the sequence of the arriving packets and fill out the empty leaves in the constraint tree. While our original approach [START_REF] Hasan | A Constraint-based Intrusion Detection System[END_REF] only allowed a single bind phase, the approach currently allows multiple bind phases to be defined for a constraint. Figure 2 illustrates that scenario by multiple intermediate packet types between the initial and the target packet types. In the first bind phase, the constraint engine retrieves the tree from the instantiate hash table. In the case of more than one bind phases, the constraint tree will be passed from one bind phase to the next through one or more hash tables. Evaluate is the phase in which the validity of the target packet P t is evaluated. The triggering packet type P t of this phase should provide the data for any remaining leaf nodes of the constraint tree. A security violation occurs if the evaluate phase fails to retrieve the tree from the hash table of the previous phase or the tree evaluates to a false value. The evaluate phase for the same tree instance can be executed every time a triggering packet arrives.

Destroy is the final phase of the life cycle which is triggered by the arrival of the final packet, P f in the predefined packet sequence. As a result of this phase, the constraint tree is deleted from all the hash tables to free up memory.

The DSL Representation of Network Constraints

It should be noted that for the single-packet constraints, the life-cycle model only involves the evaluate phase for the P t contents against a known set of environmental values. For two-packet constraints, the model simply involves the instantiate phase for the P o and the evaluate phase for the P t . The life-cycle model presented above is particularly useful for those constraints that involve more than two packets in a sequence with multiple alternative valid orders. In this section, we describe the internal DSL representation using two such constraints namely the C5 and C11. Figure 3 illustrates the possible sequences of packets involved in these two constraints in terms of their constraint tree phases.

Constraint C5. All subscribers and publishers must be valid members of an IGMP multicast group. These participants must send their membership reports to specific group addresses before showing their interests in a topic.

Constraint C11. The data of a certain topic is considered valid if it is produced from a valid publisher and consumed by a valid subscriber.

As reflected in Figure 3, the target packet type to evaluate constraint C5 is RTPS.DATA(W) (the publisher) or RTPS.DATA(R) (the subscriber) submessage of an RTPS packet. The previous packet types, in order, are an RTPS packet containing a participant submessage, RTPS.DATA(P), and an IGMP membership report packet. The IDS parser that we implemented can parse callbacks not only for the entire packets but also for the meaningful parts of the packets such as the RTPS submessages. Therefore, the constraint engine can use the RTPS submessage as a trigger for its phase logic. Listing 1.1 shows the DSL representation for the constraint C5. The first line of the code specifies the constraint ID (line 1). The constraint ID is a unique identifier value that is used as a suffix in the generated code for each constraint. Next, in line 3-4, we have the constraint tree expression in prefix notation. The keywords INSTANTIATE, BIND, EVALUATE, and DESTROY correspond to the life-cycle phases of the constraint tree, each followed by a triggering packet type as specified in Figure 3. For instance, the instantiate phase is triggered when reporting the multi-cast group address of a network; i.e., arrival of the IGMP Membership Report packet. The V2REPORT in line 6 refers to the Membership Report packet from the IGMP version 2 specification. The packet type DATAPSUB in line 14 refers to an RTPS participant submessage, RTPS.DATA(P) which triggers the bind phase. The packet types DATARSUB and DATAWSUB in lines 23 correspond to the RTPS subscriber and publisher submessages. In line 29, the V2Leave packet type corresponds to the leave submessage from the IGMP version 2 specification.

Tree Instance Hashing. The DSL proposed by Hasan et al. [START_REF] Hasan | A Constraint-based Intrusion Detection System[END_REF] had two implicit hash tables to hold the constraint tree between the instantiate and bind phase, and between the bind and evaluate phase. In our DSL, each of the instantiate and bind phase can have an unlimited number of defined hash tables. In listing 1.1, line 10 shows an example of assigning key fields from the packet while line 11 defines the hash table name hashIC5. During the bind phase, the constraint engine should be able to find the constraint tree in the instantiate hash table. The constraint engine uses key fields from the triggering packet to lookup the constraint tree instance created in the instantiate phase. In listing 1.1, the hash table name for the instantiate is defined in line 16 while the necessary key fields are defined in line 17.

The bind phase updates the constraint tree by filling the empty leaves with the appropriate packet fields as in lines 18-19 of listing 1.1. The bind phase stores the updated constraint tree in the bind hash table. In listing 1.1, the hash table name and key fields for bind phase are defined in lines 20-21. The hash table name and key fields used by the evaluate phase are defined in lines 24 and 26. Finally, the destroy phase deallocates the constraint tree from the defined hash tables. Based on the constraint specification, the autogenerated constraint engine may have an unlimited number of hard-coded definitions of hash tables for the instantiate and bind phases.

Hash Table Naming. In our current DSL, each hash table should have a unique name throughout the constraint engine code. In listing 1.1, the variable HashInstantiate holds the hash table name for the instantiate phase of constraint C5. While the variable HashBind holds the hash table name for the bind phase. The constraint phases should access any of the hash tables by their unique names. For example, the bind phase should be able to find the constraint tree allocated previously at the instantiate phase. Therefore, the HashInstantiate is specified twice in the DSL of listing 1.1 -first in the instantiate clause and the next in the bind clause. The DSL grammar allows the naming of multiple hash tables when the phase clause holds multiple cases. Listing 1.2 shows an example of multiple hash tables within the same phase clause for constraint C11. In C11 example, the instantiate phase has two hash tables: hashIC11 DATARSUB and hashIC11 DATAWSUB. Each one of these hash tables is accessed at different cases based on the logical sequence. Management. Figure 4 summarizes the hashing mechanism among the four phases of a constraint tree. During the instantiate phase, the constraint engine instantiates a tree for the constraint C x and inserts its reference to a hash table. The location of the tree reference in the hash table is determined by the hash key value. The packet fields used to calculate the key value should be specified in the DSL. For example, listing 1.1 for C5 defines srcIP and groupaddr as the key fields for its hash table hashIC5. Based on these two fields, a reference to constraint tree is located in the hash table hashIC5. In some cases, the calculated key value may point to an already existing hashing slot causing a collision [START_REF] Wolper | Reliable hashing without collision detection[END_REF]. In such a case of collision, the old tree is deleted and the hash slot is updated with a new tree instance. At the bind phase, the instantiate tree reference is copied from the instantiate hash table into the bind hash table. In C5 example, the bind hash table is hashBC5. At the end of the bind phase, the copied tree reference is deleted from the instantiate hash table to free up space. However, the DSL allows disabling this deletion by adding the keyword SPLIT in the bind clause. In case of collision, the tree update can be ignored by adding the keyword REPEAT. For example, listing 1.1 for C5 has the keyword REPEAT at line 15. During the evaluate phase, the constraint tree is retrieved from the hash table specified by the name in variable HashBind, if available. Otherwise, the constraint engine should report a security violation. The evaluate phase does not change the content of the hash tables. In our approach, the generated hashing uses the linear probing algorithm with a relatively prime step size [START_REF] Flajolet | On the analysis of linear probing hashing[END_REF]. However, other hashing algorithms that support deletion can be used.

Hash Table

Constraint Generalization. The automatic generation approach takes into consideration the generality of constraint specifications. One of the challenging generalizations is the cross scenarios handling. The cross scenarios happen when the constraint specification permits the same triggering packets for more than one phase. For instance, the constraint C11 in listing 1.2. The target of the constraint determines if a data message of a given RTPS topic is produced by a valid publisher and consumed by a valid subscriber. Both the instantiate and bind phases can be triggered by a DATA(W) or a DATA(R) as depicted in Figure 3. For such a case, the generated constraint engine must conform to the accurate scenario by checking if the other packet has already arrived. We use the SEARCH function (in Line 8 and Line 24) to check if the other packet has arrived by the availability of constraint tree in hash table.

In listing 1.2, we added the if condition at the start of each phase case to handle the cross scenario generalization. Another example of generalization is the multiple triggering packets for the same phase. We can observe that C11 specification handles such a case by applying a switch block. Each packet type in such case will represent a triggering packet type. The same approach can be applied to extend the C5 specifications. In C5 instantiate and destroy phases, we add switch statements to handle older versions of IGMP Report packets. Listing 1.3 shows the two phases after generalization.

.c File

TXL Transformations Generated Files

Fig. 5: Automatic Generation of the Constraint Engine Code.

Implementation

An overview of our implemented autogeneration framework for the constraint engine code is presented in Figure 5. Based on the constraints specified in the DSL input, the framework requires three kinds of transformations to generate the necessary C files for the constraint engine. These include the transformations for the hashing, the constraint tree phases, and the parser callbacks, as depicted in the figure. We used the T XL [START_REF] Cordy | The TXL Source Transformation Language[END_REF] as the transformation language between the DSL and the constraint engine code. After the transformations, all the generated C files of the IDS are compiled to build a binary executable file. The binary file includes the parser and the autogenerated constraint engine. Four snippets of the generated code for constraint C5 are presented in this section. First is the example of hash.h file in listing 1.4 that includes the function prototypes of the generated hashing operations for the C5 constraint tree. Next, in listing 1.5, we have the generated code for constraint.h which includes the function prototypes of the constraint tree phases. Notice how the function parameters correspond to the C5 DSL in listing 1.1. For example, the function instantiateC5 V2Report(..) in Line 1 requires a pair of key fields, followed by a pair of leaf node values based on lines 8-10 of the instantiate clause in C5 DSL 1.1. Listing 1.6 presents the generated implementation of the C5 bind function for the constraint.c file. The bind implementation calls different hash functions to retrieve and update each tree instance. 1 int i n s t a n t i a t e C 5 _ V 2 R e p o r t (uint32_t key1 , uint32_t key2 , uint32_t

SrcIPAddressNewJoin , uint32_t GroupDestIPToBeJoined , unsigned long pktCount) ; 2 int i n s t a n t i a t e C 5 _ V 3 R e p o r t (uint32_t key1 , uint32_t key2 , uint32_t

SrcIPAddressNewJoin , uint32_t GroupDestIPToBeJoined , unsigned long pktCount) ; 3 int bind1C5 (uint32_t instatiate_key1 , uint32_t instatiate_key2 , uint32_t key1 , uint32_t SrcIPParticipant , uint32_t DestIPParticipant , unsigned long pktCount) ; 4 int evaluateC5 (uint32_t key1 , unsigned long pktCount) ;

Results and Evaluation

The generated IDS has been tested against four different constraints with the test cases listed in Table 1. Each of the cases in the table was intentionally induced in separate packet capture (pcap) files. As shown in Table 1, each of the four constraints has a normal scenario where the IDS should pass with no violations, along with a set of abnormal cases with anomalous packets. The violation checks reported by the generated constraint engine are consistent with the test case expectations, proving the correctness of the constraint engine code. Figure 6 shows the performance results on the run-time averages of the two IDS versions on three pcap files. For our evaluation, we used the same set of pcap files used by Hasan et al. [START_REF] Hasan | A Constraint-based Intrusion Detection System[END_REF] against the same three constraints: C5, C11 and C8. We run each IDS 10 times for each pcap file. Each of the IDS was ran on an Ubantu Linux 64-bit VM with Intel core i7 processor using 2 GB of RAM. As we can observe in Figure 6, the autogenerated IDS is slower with a maximum drop of less than 6%. The results indicate that there is a slight drop in the performance for the autogenerated IDS in contrast to the manually implemented version. However, the performance difference is insignificant. These results highlight that the automatic generation of the constraint engine presented in this paper does not lead to a significant performance penalty.

Related Work and Discussion

While there exist various approaches to develop an IDS [START_REF] Liao | Intrusion detection system: A comprehensive review[END_REF], the premise of our approach is an anomaly-based IDS [START_REF] Garcia-Teodoro | Anomalybased network intrusion detection: Techniques, systems and challenges[END_REF] for limited-access closed-networks which involve a limited number of protocols. Various anomaly-based approaches have been studied that apply Machine Learning (ML) techniques [START_REF] Tsai | Intrusion detection by machine learning: A review[END_REF] to identify suspicious patterns in the network traffic. However, the ML-based approaches are typically useful for conventional public networks that involve a broad variety of protocols with variable traffic patterns that are hard to prognosticate. Since the target networks of our IDS solely involve a limited number of protocols with restrictive operational patterns, we did not consider any ML-based technique for our approach. Our approach is based on the idea of inspecting each of the network packets against a finite set of protocol-specific constraints that are already known. We considered achieving real-time performance and automatic generation of our constraint-based IDS [START_REF] Hasan | A Constraint-based Intrusion Detection System[END_REF] to be the key challenges for our approach.

Satisfying network constraints can be considered similar to finding frequent patterns in the data stream. Various tree-based approaches have been considered in literature for different applications [START_REF] Kurien | Survey on Constrained based Data Stream Mining[END_REF][START_REF] Potharst | Classification Trees for Problems with Monotonicity Constraints[END_REF][START_REF] Silva | Pushing constraints into data streams[END_REF]. A key limitation of these approaches is that they require maintaining large constraint trees to express their desired patterns. Against streaming data in large scale, even with efficient pruning algorithms, traversing and updating such constraint trees would require continuous memory operation which is bound to cause major bottlenecks in performance. In our approach, using the constraint tree life-cycle model we instantiate a simple tree for each of the individual constraints with optimized memory management. Using the hashing mechanism presented in this paper, our approach allows accessing the required tree nodes in the memory or removing a tree from memory, both in constant time.

Open source tools such as SNORT [START_REF] Park | Performance comparison and detection analysis in SNORT and Suricata environment[END_REF] support rule-based intrusion detection techniques. The SNORT rules [START_REF] Khamphakdee | Improving intrusion detection system based on SNORT rules for network probe attack detection[END_REF] can be used to express similar concerns comparable to the single-packet environmental constraints in our approach. However, when it comes to multi-packet constraints involving a set of valid sequence of packets, expressing them using SNORT-based rules are not feasible. Writing such rules would require specifying the exact time frames for the expected arrival of related packets. In contrast, our approach allows defining the partial-order patterns on the required set of packets without the need to specify any time window. In a related effort of using a DSL to express network constraints, Salgueiro et al. [START_REF] Salgueiro | On using constraints for network intrusion detection[END_REF] present a DSL to describe common attacks on TCP/IP protocols that can generate solution code. However, the DSL was not designed to handle the kind of multi-packet constraints that we needed for the DDS networks.

Generating automated code has been used in various Model-Driven Engineering projects. These projects usually involve generating operational code from a model specifying the system to be created. Our code generation approach is distinct that we are generating the code to validate the network data against the models. The generated constraint engine code by our IDS framework checks the validity of the traffic data against a set of protocol-specific behavioural models of the target networks.

Conclusion and Future Work

In this paper, we have presented an effective approach to autogenerate a constraint engine through a practical IDS framework. The approach implements and extends our earlier DSL proposed by Hasan et al. [START_REF] Hasan | A Constraint-based Intrusion Detection System[END_REF] and generalizes its representation to accommodate any kind of complex multi-packet constraints that involve alternative sequences of packets with arbitrary length and order. We have successfully implemented a mechanism to transform the internal DSL into executable constraint engine code using TXL.

Comparing the performance of the autogenerated constraint engine against the manually implemented version displays no significant performance overhead. The correctness of the generated constraint engine was evaluated based on four different test cases. For our next evaluation, we plan to involve a third-party Red team to incorporate a comprehensive collection of malicious activities on our simulation environment for an ATC network.

We are currently working on generating the internal DSL from an SCL-based high-level constraint specification language suitable for the Network Engineers to use. The SCL language, already being used to generate the parser for our IDS framework, is modular, which allows easy specification of multiple protocols for a given network. Finally, since the IDS framework only allows autogenerating its constraint engine from a high-level specification, the approach requires minimum human interventions. The intricate implementation details of the constraint engine are not needed to be coded or managed by humans which eliminates the possibility of having human-induced errors and heavy maintenance overhead when adapting a new set of protocols and systems for the IDS.

Fig. 1 :

 1 Fig. 1: The IDS Framework.

Fig. 2 :

 2 Fig. 2: Sequence of Packets with Constraint Tree Phases.

Fig. 3 :

 3 Fig. 3: The Constraint Tree Phases in 2 Different Constraints.

Fig. 4 :

 4 Fig. 4: The Constraint Tree Phases and Hashing.

 AND (EQ (SrcIPPublisher , D e s I P f r o m S u b s c r i b e r) , EQ (P u b l i s h e r S r t P o r t) ,[START_REF] Cain | Internet group management protocol[END_REF] EQ (e n t i t y I D P u b l i s h e r) , EQ (S rc I PS ub sc r ib er))) 4 INSTANTIATE 5 RTPS FULL_RTPS . Type is DATAWSUB Or FULL_RTPS . Type is DATARSUB 6 switch (FULL_RTPS . Type) 7 case DATAWSUB : 8 if not SEARCH HashKey (. p i d t o p i c n a m e _ r t p s . topicname . name 9 IN Protoco ~serializ eddata ~topicdata : type , 10 P I D T O P I C N A M E _ R T P S _ V A L) , Packet . srcIP , Packet . dstIP 11 : Hash = h a s h I C 1 1 _ D A T A R S U B 12 endif 13 case DATARSUB : 14 if not SEARCH HashKey (. p i d t o p i c n a m e _ r t p s . topicname . name 15 IN Protocol ~serial izeddata ~topicdata : type , 16 P I D T O P I C N A M E _ R T P S _ V A L) , Packet . dstIP , Packet . srcIP 17 : Hash = h a s h I C 1 1 _ D A T A W S U B 18 endif 19 endswitch 20 BIND 21 RTPS FULL_RTPS . Type is DATAWSUB Or FULL_RTPS . Type is DATARSUB 22 switch (FULL_RTPS . Type) 23 case DATARSUB : /* Case Logic */ 24 if SEARCH HashKey (. p i d t o p i c n a m e _ r t p s . topicname . name IN Protocol seria lizeddata ~topicdata : type , P I D T O P I C N A M E _ R T P S _ V A L) , Packet . dstIP , Packet . srcIP : Hash = h a s h I C 1 1 _ D A T A W S U B 25 endif 26 case DATAWSUB : /* Case Logic */ 27 if SEARCH HashKey (. p i d t o p i c n a m e _ r t p s . topicname . name IN Protocol seria lizedda ta ~topicdata : type , P I D T O P I C N A M E _ R T P S _ V A L) , Packet . srcIP , Packet . dstIP : Hash = h a s h I C 1 1 _ D A T A R S U B 28 endif 29 endswitch Listing 1.2: The DSL Code for Constraint C11

 c I P A d d r e s s N e w J o i n ; 3 uint32_t S r c I P P a r t i c ip a n t ; 4 uint32_t G r o u p D e s t I P T o B e J o i n e d ; 5 uint32_t D e s t I P P a r t i c i p a n t ; 6 } treeHashC5 ; 7 int i n s e r t I V a l u e C 5 V 2 R e p o r t (uint32_t key1 , uint32_t key2 , uint32_t SrcIPAddressNewJoin , uint32_t G r o u p D e s t I P T o B e J o i n e d) ; 8 int d e l e t e V a l u e I h a s h I C 5 (uint32_t key1 , uint32_t key2) ; 9 treeHashC5 * G e t V a l u e f r o m f h a s h I C 5 (uint32_t key1 , uint32_t key2) ; 10 int i n s e r t I V a l u e C 5 V 3 R e p o r t (uint32_t key1 , uint32_t key2 , uint32_t SrcIPAddressNewJoin , uint32_t G r o u p D e s t I P T o B e J o i n e d) ; 11 int i n s e r t B V a l u e C 5 h a s h B C 5 (uint32_t key1 , uint32_t SrcIPParticipant , uint32_t DestIPParticipant , treeHashC5 * treeInst) ; 12 int d e l e t e V a l u e B h a s h B C 5 (uint32_t key1) ; 13 treeHashC5 * G e t V a l u e f r o m f h a s h B C 5 (uint32_t key1) ; 14 void clearC5 () ; Listing 1.4: Generated Code in hash.h for C5.

 5 int d e s t r o y C 5 _ V 2 L e a v e (uint32_t key1 , unsigned long pktCount) ; 6 int d e s t r o y C 5 _ V 3 L e a v e (uint32_t key1 , unsigned long pktCount) ; Listing 1.5: Generated Code in constraint.h for C5.

Listing 1 . 7 :

 17 1 void V 2 R e p o r t _ I G M P _ c a l l b a c k (V2Report_IGMP * v2report_igmp , PDU * thePDU) { 2 struct HeaderInfo * Packet = thePDU -> header ; 3 i n s t a n t i a t e C 5 _ V 2 R e p o r t (Packet -> srcIP , 4 v2report_igmp -> groupaddr , Packet -> srcIP , 5 v2report_igmp -> groupaddr , Packet -> pktCount) ;} IGMP V2Report with a trigger call to C5 Instantiate Phase. Finally, Listing 1.7 shows an example of triggering the C5 instantiate phase within the generated callback function of IGMP V2Report based on the instantiate phase of the C5 DSL in Listing 1.1. The callback function headers are predefined in the parser and used as inputs for the callback transformation. The callback functions passes the triggering packets defined in the constraint specifications and fills the required parameters of the tree phases. The transformation keeps appending the callback functions into the callback.c file for different triggering packets based on the constraint tree phases.

Fig. 6 :

 6 Fig. 6: Performance Comparison between the Constraint Engines.

 Listing 1.6: Snippet of Generated Code in constraint.c for C5

	1 int bind1C5 (uint32_t instantiate_key1 , uint32_t instantiate_key2 , uint32_t
		key1 , uint32_t SrcIPParticipant , uint32_t DestIPParticipant , unsigned
		long pktCount) {
	2 if (true) {
	3	treeHashC5 * insTree = G e t V a l u e f r o m f h a s h I C 5 (instantiate_key1 ,
		i n s t a n t i a t e _ k e y2) ;
	4	if (insTree == NULL) { iC5f ++; iC5bindf ++; return -1;}
	5	else {}
	6	treeHashC5 * bindTree = G e t V a l u e f r o m f h a s h B C 5 (key1) ;
	7	bool noRepeat = false ;
	8	if (bindTree != NULL) { if (! noRepeat) return 1;}
	9	bool split = false ;
	10	if (split) {
	11	treeHashC5 * splitedTree = malloc (sizeof (treeHashC5)) ;
	12	memcpy (splitedTree , insTree , sizeof (treeHashC5)) ;
	13	bindTree = splitedTree ;}
	14	else if (! noRepeat) {
	15	treeHashC5 * splitedTree = malloc (sizeof (treeHashC5)) ;
	16	memcpy (splitedTree , insTree , sizeof (treeHashC5)) ;
	17	bindTree = splitedTree ;}
	18	else { bindTree = insTree ;}
	19	if (i n s e r t B V a l u e C 5 h a s h B C 5 (key1 , SrcIPParticipant , DestIPParticipant ,
		bindTree) == -1)
	20	{ iC5f ++; iC5bindf ++; return -1;}
	21	if (noRepeat) { if (! split) { if (d e l e t e V a l u e I h a s h I C 5 (i n s t a n t i a t e _ k e y 1 ,
		i n s t a n t i a t e _ k e y2) == -1) {
	22	iC5f ++; iC5bindf ++; return -1;}}}
	23	iC5bind ++; return 1;}
	24 else return 1;}

Table 1 :

 1 Test Cases with Four Constraints.

	C5 Tests	C8 Tests
	Normal	Normal
	Missing IGMP Packet in the Sequence Wrong Topic Name in DATA(W)
	Wrong Group Address in IGMP Report	-
	C11 Tests	C12 Tests
	Normal	Normal
	Wrong SrcIP in IGMP DATA(W)	Wrong SrcIP in IGMP DATA(W)
	Wrong DestIP in IGMP DATA(W)	Wrong SrcIP in IGMP DATA

Acknowledgements

This research is supported by the Department of National Defence (DND), Canada, The Natural Sciences and Engineering Research Council of Canada (NSERC), and The Ontario Research Foundation (ORF), Canada.