
HAL Id: hal-02294608
https://hal.science/hal-02294608

Submitted on 23 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Family of Lightweight Twisted Edwards Curves for
the Internet of Things

Sankalp Ghatpande, Johann Grossschädl, Zhe Liu

To cite this version:
Sankalp Ghatpande, Johann Grossschädl, Zhe Liu. A Family of Lightweight Twisted Edwards Curves
for the Internet of Things. 12th IFIP International Conference on Information Security Theory and
Practice (WISTP), Dec 2018, Brussels, Belgium. pp.193-206, �10.1007/978-3-030-20074-9_14�. �hal-
02294608�

https://hal.science/hal-02294608
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Lightweight Public-Key Cryptography for the
Internet of Things

Sankalp Ghatpande1, Johann Großschädl1, and Zhe Liu2

1 Interdisciplinary Centre for Security, Reliability and Trust (SnT),
University of Luxembourg, Esch-sur-Alzette, Luxembourg
{sankalp.ghatpande,johann.groszschaedl}@uni.lu

2 College of Computer Science and Technology,
Nanjing University of Aeronautics and Astronautics, Nanjing, China

zhe.liu@nuaa.edu.cn

Abstract. We introduce a set of four twisted Edwards curves that sat-
isfy common security requirements and allow for fast implementations
of scalar multiplication on 8, 16, and 32-bit processors. Our curves are
defined by an equation of the form −x2 + y2 = 1 + dx2y2 over a prime
field Fp, where d is a small non-square modulo p. The underlying prime
fields are based on “pseudo-Mersenne” primes given by p = 2k − c and
have in common that p ≡ 5 mod 8, k is a multiple of 32 minus 1, and
c is at most eight bits long. Due to these common features, our primes
facilitate a parameterized implementation of the low-level arithmetic so
that one and the same arithmetic function is able to process operands
of different length. The four twisted Edwards curves we present in this
paper are all birationally equivalent to Montgomery curves of the form
−(A+ 2)y2 = x3 +Ax2 + x where 4/(A+ 2) is small. Even though this
contrasts with the usual practice of choosing (A+ 2)/4 to be small, we
show that the Montgomery form of our curves allows for an equally effi-
cient implementation of point doubling as Curve25519. The four curves
we put forward roughly match the common symmetric security levels
of 80, 96, 112, and 128 bits. Moreover, their Weierstraß representations
are isomorphic to curves of the form y2 = x3 − 3x+ b so as to facilitate
inter-operability with TinyECC and other legacy software.

1 Introduction

An elliptic curve E has to satisfy various security and efficiency requirements
to be suitable for cryptographic applications [6, 10, 16]. Most importantly, the
group of rational points on the curve must contain a (large) subgroup of prime
order since this order determines the computational cost of the Elliptic Curve
Discrete Logarithm Problem (ECDLP). However, determining whether a curve
has a near-prime cardinality requires one to count the number of points on the
curve, which is a complicated and computation-intensive endeavor [9]. There-
fore, it is common practice to use “standardized” curves that were generated to
meet certain security requirements. A multitude of national and international
standardization bodies, including the U.S. National Institute of Standards and



2 S. Ghatpande et al.

Technology (NIST), have published a set of recommended domain parameters
for elliptic curves of different cryptographic strength, in most cases comparable
to that of 128, 192, and 256-bit AES [14, 25]. The so-called NIST curves were
allegedly generated by Jerry Solinas in the late 1990s, who was working for the
National Security Agency (NSA) at that time [7]. Five of the NIST curves are
defined over prime fields and given by a Weierstraß equation of the form

EW : y2 = x3 + a4x+ a6 (1)

with a4 fixed to −3 for efficiency reasons [20]. However, the Weierstraß form is,
in terms of performance, not state-of-the-art anymore since alternative curve
models or special families of curves allow for faster execution times. For example,
the addition law of twisted Edwards curves is much more efficient than that
of normal Weierstraß curves and has the further advantage of completeness if
certain conditions are met [3, 21]. On the other hand, the so-called GLV curves
feature an efficiently-computable endomorphism, which can be utilized to speed
up variable-base scalar multiplication [17, 20].

In this paper, we present a set of four twisted Edwards curves over pseudo-
Mersenne prime fields that we generated in a transparent and verifiable way to
meet common security and efficiency requirements. These four curves, which we
call LiTE curves (an abbreviation for Lightweight Twisted Edwards), provide
security levels of about 80, 96, 112, and 128 bits, respectively, and are suitable
for IoT applications running on restricted devices. Using curves that offer less
than 128 bits of security allows for large savings in execution time and makes
particular sense for applications with low or medium security requirements. The
four twisted Edwards curves we present in this paper differ from the Edwards
curves introduced by Aranha et al. in [1] in three important aspects. First, we
chose the prime fields and generated the curves with the goal of having consis-
tency across security levels, which means they share many basic properties like
the group structure. Most notably, all our curves are defined over prime fields
with p = 2k − c elements and have in common that k is a multiple of 32 minus
1 (i.e. k = 159, 191, 223, or 255) and c has a length of at most eight bits. This
consistency facilitates a parameterized implementation3 of the field-arithmetic
operations, which minimizes the code size when different security levels are to
be supported and has some other benefits like reduced development cost. The
second difference is that we aimed for curves capable to reach top performance
with the twisted Edwards representation and the birationally-equivalent Mont-
gomery representation. Aranha et al. [1], on the other hand, specified two sets
of curves, namely Montgomery curves with a small parameter A and Edwards
curves with a small parameter d; in both cases the rationale was to improve the
arithmetic performance. The four twisted Edwards curves we put forward have
a small parameter d and a fixed to −1, which implies the parameter A of the
3 A parameterized implementation of a field-arithmetic operation can support fields
of different order (i.e. fields of different bit length), typically in steps of 32 bits. The
parameters include besides the operands (or pointers to operands held in RAM) an
additional parameter that specifies the length of the operands.



Lightweight Public-Key Cryptography for the Internet of Things 3

birationally-equivalent Montgomery curves has the property that 4/(A− 2) is
small. While this contrasts with the usual choice of (A− 2)/4 being small, it is
possible to perform a point doubling equally fast as on e.g. Curve25519 thanks
to a simple modification of the doubling formula. Finally, the third difference
between our curves and those from [1] is that we took potential vulnerabilities
to side-channel attacks [18] into account when we chose the base point (i.e. the
generator of a prime-order subgroup). In particular, we excluded points whose
coordinates have an extraordinary low Hamming weight.

2 Preliminaries

In 1987, Peter Montgomery introduced a new model for elliptic curves and de-
monstrated its practical use by speeding up algorithms for integer factorization
[24]. Formally, a so-called Montgomery curve over a non-binary field Fq can be
described through the equation

EM : By2 = x3 +Ax2 + x (2)

where A,B ∈ Fq and A 6= ±2, B 6= 0 (or, equivalently, B(A2 − 4) 6= 0). Curves
of such form allow a full scalar multiplication k · P to be carried out using the
x coordinate only, which is clearly more efficient than when both the x and the
y coordinate are involved in the point arithmetic. A point P ∈ EM (Fq) given in
projective coordinates of the form (X : Z) can be doubled with only three mul-
tiplications (3M) and two squarings (2S) in the underlying finite field. On the
other hand, a differential addition of two points (i.e. the calculation of the sum
P +Q of two points P,Q ∈ EM (Fq) whose difference P −Q is known) requires
two multiplications (2M), two squarings (2S), as well as a multiplication by the
constant (A+ 2)/4. The so-called Montgomery ladder for scalar multiplication
has a total computational cost of roughly 5n multiplications and 4n squarings
for an n-bit scalar, i.e. 5M+ 4S per bit [2].

Exactly 20 years after Montgomery’s discovery, Harold Edwards introduced
a normal form to describe certain elliptic curves, which have become known as
Edwards curves in recent years [15]. Bernstein and Lange showed that curves in
Edwards form have good cryptographic properties with respect to performance
and protection against side-channel attacks [5]. Twisted Edwards curves (in the
following abbreviated as “TE curves”) were presented in [3] as a generalization
of Edwards curves with similarly good implementation properties. A TE curve
over a non-binary field Fq is defined by the equation

ET : ax2 + y2 = 1 + dx2y2 (3)

where a and d are distinct elements of F∗q . The additive group ET (Fq) contains
a neutral element O, namely the point (0, 1), which, under some conditions, can
be used as an input to the addition formula specified in [3]. More precisely, the
addition law from [3] is complete when a is a square and d a non-square in the
underlying field Fq. Here, completeness refers to the property that the addition



4 S. Ghatpande et al.

formula produces the correct result for any pair P, Q ∈ ET (Fq), including the
corner cases P = O, Q = O, and P = Q. Hişil et al. introduced in [21] extended
projective coordinates for TE curves, the currently fastest means of performing
a (non-differential) point addition on an elliptic curve. When using a TE curve
with a = −1, two points can be added by executing only seven multiplications
(7M) in the underlying field, while the point doubling operation requires three
multiplications (3M) and four squarings (4S) [12, 19].

Montgomery curves and TE curves are closely related due to the fortunate
fact that every Montgomery curve over Fq is birationally equivalent over Fq to
a TE curve and vice versa [3]. More concretely, when a, d are distinct non-zero
elements of Fp, the TE curve ET given by Eq. (3) is birationally equivalent over
Fp to the Montgomery curve EM given by Eq. (2) with the parameters

A =
2(a+ d)

a− d
and B =

4

a− d
. (4)

An affine point (xt, yt) on a TE-form elliptic curve ET can be converted to the
corresponding point (xm, ym) on the birationally-equivalent Montgomery curve
EM using the following map, which is from [3].

φ : (xt, yt) 7→ (xm, ym) =

(
1 + yt
1− yt

,
1 + yt

(1− yt)xt

)
(5)

Bernstein et al. demonstrated in [3] not only that every TE curve is bira-
tionally equivalent to a Montgomery curve, but also that the converse holds. In
concrete terms, when A ∈ Fp\{−2, 2} and B ∈ F∗p, then the Montgomery curve
EM given by Eq. (2) is birationally equivalent over Fp to the TE curve given
by Eq. (3) with the parameters

a =
A+ 2

B
and d =

A− 2

B
. (6)

This curve always exists since A 6= ±2 and B 6= 0. Given a point (xm, ym) on
the Montgomery curve EM , one can compute the corresponding point on the
birationally-equivalent TE curve ET via the map

ψ : (xm, ym) 7→ (xt, yt) =

(
xm
ym

,
xm − 1

xm + 1

)
. (7)

3 LiTE Curves

An elliptic curve E over a prime field Fp is completely specified by the prime
p and the two coefficients of its defining equation, which can, depending on the
curve model, be e.g. Eq. (1), Eq. (2), or Eq. (3). However, one coefficient is, in
practice, often fixed to a specific value for reasons of simplicity or performance
[13]. As already mentioned in Sect. 1, the NIST curves (and many other curves
in Weierstraß form) use a4 = −3 because this choice allows one to minimize the



Lightweight Public-Key Cryptography for the Internet of Things 5

computational cost of point doubling in projective coordinates [11, 20]. On the
other hand, when generating TE curves, it is common practice to fix a to −1 so
that implementers can exploit the full potential of the “extended” coordinates
proposed in [21] and perform a mixed addition with only seven multiplications
in Fp. Also the four LiTE curves we put forward follow this approach and have
the coefficient a set to −1, which means the curve-generation process consists
of finding a suitable prime p and coefficient d.

3.1 Selection of Prime Fields

An analysis of recent proposals for new elliptic curves shows that the underlying
fields are based on three main categories of primes: generalized-Mersenne primes,
pseudo-Mersenne primes, and primes for which Montgomery reduction can be
optimized, i.e. “Montgomery-friendly” primes [13]. Taking various efficiency and
(side-channel) security aspects to into account, pseudo-Mersenne primes seem to
be particularly attractive because they were used in the majority of proposals
for new elliptic curves, including [1, 2, 4, 8, 10, 26]. Formally, a pseudo-Mersenne
prime has the form p = 2k− c where c is small in relation to 2k. The reduction of
a 2k-bit integer x modulo p = 2k − c requires just a multiplication of the upper
half of x (i.e. the k most significant bits of x) by c, followed by an addition of
the product to the lower half of x (see e.g. [10] for more details). Besides high
arithmetic efficiency, pseudo-Mersenne primes have the virtue of minimizing the
surface for side-channel attacks since the reduction can be easily implemented
to have constant execution time, irrespective of the actual value of x [2, 10].

Now that the basic form of the primes is fixed to p = 2k − c, the next
step is to determine the actual values for the exponent k and constant c. Since
we aim for elliptic curves providing security levels of (approximately) 80, 96,
112, and 128 bits, their cardinalities need to contain a large prime factor of
magnitude 2160, 2192, 2224, and 2256, respectively, which requires due to Hasse’s
theorem [20] that the underlying prime fields have about the same order. This
suggests to use k = 160, 192, 224, and 256, yielding primes whose bit-lengths are
a multiple of 32, similar to the NIST primes. However, choosing the values for k
in this way does not necessarily lead to the maximum arithmetic performance
in software. Namely, as demonstrated in [2], it can be beneficial to use primes
with a bit-length that is a tad below the “nominal” bit-length for the targeted
security level, e.g. a 255-bit prime instead of a 256-bit prime. Having one bit
of “headroom” simplifies the implementation of the field arithmetic when one
aims for both high performance and resistance to side-channel attacks through
constant (i.e. operand-independent) execution time [10]. Therefore, we decided
to fix the exponents to k = 159, 191, 223, and 255.

The final step in the process of selecting a pseudo-Mersenne prime is to
determine the constant c, which is commonly chosen as the smallest integer so
that p = 2k − c is prime. An additional criterion often taken into consideration
when choosing c is the congruence class of p modulo 4, i.e. whether p ≡ 3 mod 4
or p ≡ 5 mod 8 (which implies p ≡ 1 mod 4). In the former case, it is possible to
find a TE curve such that both the curve and its quadratic twist have a minimal



6 S. Ghatpande et al.

co-factor of 4 [22]. Unfortunately, −1 is always a non-square modulo such a
prime and, therefore, the fast addition formulae for TE curves specified in [21]
are not guaranteed to be complete. On the other hand, if p ≡ 5 mod 8, then
−1 is always a square modulo p and the fast point-addition formulae from [21]
are complete (i.e. produce the correct result for any pair of Fp-rational points),
provided the curve parameter d is a non-square.

Taking all the above into consideration, we opted to choose the four values
for the constant c as the smallest positive integers that yield pseudo-Mersenne
primes congruent to 5 modulo 8. The four primes we obtained in this way are
2159 − 91, 2191 − 19, 2223 − 235, and 2255 − 19. As p ≡ 5 mod 8 always implies
p ≡ 1 mod 4, it is guaranteed that −1 is a square in Fp. A TE curve over these
four prime fields can safely use Hisil et al’s highly-optimized addition formulae
for a = −1 without compromising completeness [21]. The four pseudo-Mersenne
primes we put forward share the following three basic features, which facilitate
a “parameterized” implementation of the field arithmetic: (i) the exponent k is
a multiple of 32 minus 1, (ii) the constant c is at most eight bits long, (iii) p is
congruent to 5 modulo 8 and, consequently, −1 is a square modulo p.

3.2 Requirements and Formal Definition

In this subsection, we first explain our preference for TE curves rather than
Montgomery curves and then discuss the objectives of the curve generation
process, namely to obtain curves that are secure, arithmetically efficient, consis-
tent across security levels, and compatible with with various curve models and
coordinate systems for point representation. Then, we give a formal definition of
LiTE curves and describe the requirements a LiTE curve has to satisfy.

New elliptic curves for cryptographic purposes should be generated in an
open, transparent, and reproducible way to increase their prospects of finding
widespread acceptance in the cryptographic community and general public. The
foundation of such a curve-generation process is a set of well-explained and
properly-specified requirements that the curves have to meet. Before describing
these requirements for our LiTE curves, we outline the objectives we aimed for
with our curve-generation process. First and foremost, the curves shall be secure
in the sense of not having a weakness that would allow an adversary to compute
discrete logarithms in less than the 0.886

√
n steps needed by Pollard’s rho method

[6]. The second requirement is to enable high-speed implementations and facilitate
state-of-the-art optimization techniques for both the field and group arithmetic.
In particular, we aim for curves that achieve peak performance not only with
the TE model, but also when using the birationally-equivalent Montgomery
representation. Our third requirement is consistency among security levels, which
means the curves should share certain properties regarding the structure of the
elliptic-curve groups (co-factor, twist-security, etc.) and the underlying fields.
This consistency enables a “parameterized” software implementation of the group
arithmetic (e.g. point addition, point doubling) and scalar multiplication so that
one and the same arithmetic function can be used for groups of different order,
which significantly reduces the code size compared to an implementation with



Lightweight Public-Key Cryptography for the Internet of Things 7

separate functions for each curve. Finally, the fourth requirement is compatibility
with various other curve models, which includes the flexibility to support different
coordinate systems.

Our fourth requirement includes the flexibility to support efficient conver-
sions between different representations of points, not only between TE and
Montgomery form, but also between TE or Montgomery form and Weierstraß
form. There are several scenarios where the latter conversion can be useful. One
such scenario is discussed in [27] and concerns the instantiation of widely-used
cryptosystems like ECDSA with a TE or Montgomery curve that is expressed
through its Weierstraß form. Many elliptic-curve schemes standardized by inter-
national organizations such as the NIST, IEEE, ISO, and ANSI require curve
points to be represented in Weierstraß coordinates. However, this does not rule
out TE or Montgomery curves since every elliptic curve admits to a Weierstraß
equation and most standards also tolerate small co-factors. Therefore, it is pos-
sible to instantiate e.g. ECDSA with Wei25519 (a Weierstraß representation
of Curve25519, see [27]), which would allow one to use the efficient Edwards
addition law for the point arithmetic and scalar multiplication. On the other
hand, there exist also situations where using Montgomery or TE coordinates as
“wire format” and Weierstraß coordinates for the computation can be necessary.
This situation occurs if one wants to implement a state-of-the-art cryptosystem
like Curve25519-based key exchange [2] or the EdDSA signature system, but
is forced to use a legacy hardware component or software library for the point
arithmetic and scalar multiplication that supports only the Weierstraß model.
A well-known example for such a legacy software is TinyECC [23], a lightweight
ECC library originally developed for wireless sensor networks that continues to
be widely used today. However, TinyECC, like most other legacy ECC software,
only supports the Weierstraß model for the point arithmetic, which requires
conversions between TE/Montgomery and Weierstrass coordinates.

Since we have already chosen the prime fields for the LiTE curves and fixed
the coefficient a to −1, the curve-generation process boils down to finding a
coefficient d that satisfies all security and efficiency requirements explained above.
In fact, all these requirements can be condensed to five conditions on d, which
are summarized in the following formal definition of LiTE curves.

Definition 1. Let Fp be a prime field with p ≡ 5 mod 8. A LiTE elliptic curve
is a twisted Edwards curve over Fp given by the equation

ET : −x2 + y2 = 1 + dx2y2 (8)

where d is the smallest element of Fp\ {−1, 0} so that the following five condi-
tions are met

1. d is a non-square in Fp

2. ET has a co-factor of 8 and negative trace (i.e. #ET (Fp) = 8n > p), while
its quadratic twist E′T has a co-factor of 4 and positive trace

3. ET and E′T have a large embedding degree as recommended in [14]
4. ET has a large CM field discriminant as recommended in [6]



8 S. Ghatpande et al.

5. the Weierstraß representation of ET is isomorphic to a curve defined by an
equation of the form y3 = x3 − 3x+ b where b is a non-square in Fp

The first condition entails that the TE addition law is complete, which is an
efficiency requirement for our curves. On the other hand, the second condi-
tion fulfills a security requirement since it guarantees that both the curve and
its quadratic twist contain a cyclic subgroup of large order; consequently, the
curve is twist-secure. Also the third and fourth condition are linked to security
requirements since they ensure that there exist no additive or multiplicative
transfers that would allow an adversary to take a “shortcut” when solving the
ECDLP. All these security requirements are fairly common and have already
been considered in many other curve-generation efforts, most notably [6]. Finally,
the fifth condition implies that a LiTE curve can be expressed through a short
Weierstraß equation with efficient coefficients as discussed above.

We used the computer algebra system Magma to obtain the coefficient d for
each of the four security levels we consider in this paper. More concretely, we
wrote a Magma script that essentially consists of a loop that checks in each
iteration whether d meets the five conditions defined above and increments d
by 1 if it is not the case. This script generated the following coefficients, which
define our four LiTE curves:

−x2 + y2 = 1 + 49445x2y2 mod 2159 − 91

−x2 + y2 = 1 + 141087x2y2 mod 2191 − 19

−x2 + y2 = 1 + 987514x2y2 mod 2223 − 235

−x2 + y2 = 1 + 4998299x2y2 mod 2255 − 19

Birationally-Equivalent Montgomery Curves. For a TE curve with a =
−1, the coefficients A and B of the birationally-equivalent Montgomery curve
are as follows

A =
2(a+ d)

a− d
=

2(1− d)
1 + d

(9)

B =
4

a− d
= − 4

1 + d
= −2(1− d) + 2(1 + d)

1 + d
= −(A+ 2) (10)

Unfortunately, these coefficients do not meet the usual efficiency criteria for
Montgomery curves since, when d is small, one can not expect that A is small
and congruent to 2 modulo 4. However, we found that the the reciprocal of
(A + 2)/4, namely 4/(A + 2) is small when a = −1 and d is small. More
concretely, due to Eq. (10) we have 4/(1 + d) = A+ 2 and 4/(A+ 2) = d+ 1,
which means 4/(A+ 2) is small when d is small.

4XnZn = (Xn + Zn)
2 − (Xn − Zn)

2 (11)
X2n = (Xn + Zn)

2(Xn − Zn)
2 (12)

Z2n = (4XnZn)
[
(Xn − Zn)

2 + ((A+ 2)/4) (4XnZn)
]

(13)

Montgomery provided in his seminal paper [24] the above formulae for the
doubling of a point given in projective (X : Z) coordinates. The computation



Lightweight Public-Key Cryptography for the Internet of Things 9

of 4XnZn requires two squarings (2S) in Fp, and then the computation of X2n

and Z2n takes one multiplication (1M) each, which means the overall cost of
the point doubling amounts to 2M + 2S. Furthermore, a multiplication by the
constant (A + 2)/4 is required, which can be performed much faster than a
conventional multiplication in Fp when A is small and congruent to 2 modulo 4.
Fortunately, these formulae can be easily modified to make them more amenable
for the Montgomery representations of our LiTE curves, which have the property
that 4/(A + 2) is small. Namely, by simply multiplying both X2n and Z2n by
4/(A+ 2), we get the modified doubling formulae below, which do not contain
a multiplication by (A + 2)/4 anymore. Note that this modification does not
change the affine x-coordinate x2n = X2n/Z2n and, thus, we can safely use these
formulae for the computation of a scalar multiplication based on the Montgomery
ladder. Similar as with the original doubling formulae, 4XnZn is computed first
and then the product of (Xn−Zn)

2 and 4/(A+2) is formed. This product serves
then as input for the computation of X2n and Z2n, respectively, which means
the overall cost amounts to 2M + 2S and a multiplication by the small constant
4/(A+ 2). Apart from that, two additions and two subtractions in Fp have to
be carried out, exactly as with the original formulae. In summary, performing a
scalar multiplication on the Montgomery curves that are birationally-equivalent
to our LiTE curves requires exactly the same number of Fp-operations as when a
Montgomery curves with a small coefficient A and B = 1 is used, e.g. Curve25519.

X2n = (Xn + Zn)
2(Xn − Zn)

2 (4/(A+ 2)) (14)
Z2n = (4XnZn)

[
(Xn − Zn)

2 + ((A+ 2)/4) (4XnZn)
]
(4/(A+ 2))

= (4XnZn)
[
(Xn − Zn)

2 (4/(A+ 2)) + (4XnZn)
]

(15)

Base Points. Besides the coefficients of the curve equation and the underlying
finite field, domain parameters for ECC also specify a base point P ∈ E(Fp) that
serves as generator of a cyclic (sub)group. From a theoretical point of view, P has
to satisfy only a single requirement, namely to have prime order. It is common
practice to choose the point with the smallest x-coordinate as base point; for
example the base points of the TE curves specified in [8] were determined in this
way. Unfortunately, this practice is problematic from a side-channel perspective,
especially when a software implementation of the so-called comb method [20]
for fixed-base scalar multiplication is executed on a microcontroller with an
early-terminating integer multiplier, e.g. ARM Cortex-M3. Namely, as shown in
[18], the so-called early-termination effect (which makes the latency of multiply
instructions operand-dependent) can introduce vulnerabilities to timing analysis
and Simple Power Analysis (SPA) attacks, even if the field arithmetic has been
implemented with the goal of having constant execution time. In order to avoid
this “side-channel pitfall,” we chose the base points of the LiTE curves in such a
way that the early-termination mechanism can not be triggered when a point
addition by P (or a small multiple of P ) is carried out. This ensures the execution
time of the comb method does not leak any information about the scalar.



10 S. Ghatpande et al.

References

1. D. F. Aranha, P. S. Barreto, G. C. Pereira, and J. E. Ricardini. A note on
high-security general-purpose elliptic curves. Cryptology ePrint Archive, Report
2013/647, 2013. Available for download at http://eprint.iacr.org.

2. D. J. Bernstein. Curve25519: New Diffie-Hellman speed records. In M. Yung,
Y. Dodis, A. Kiayias, and T. Malkin, editors, Public Key Cryptography — PKC
2006, volume 3958 of Lecture Notes in Computer Science, pages 207–228. Springer
Verlag, 2006.

3. D. J. Bernstein, P. Birkner, M. Joye, T. Lange, and C. Peters. Twisted Edwards
curves. In S. Vaudenay, editor, Progress in Cryptology — AFRICACRYPT 2008,
volume 5023 of Lecture Notes in Computer Science, pages 389–405. Springer Verlag,
2008.

4. D. J. Bernstein, C. Chuengsatiansup, and T. Lange. Curve41417: Karatsuba
revisited. In L. Batina and M. Robshaw, editors, Cryptographic Hardware and
Embedded Systems — CHES 2014, volume 8731 of Lecture Notes in Computer
Science, pages 316–334. Springer Verlag, 2014.

5. D. J. Bernstein and T. Lange. Faster addition and doubling on elliptic curves. In
K. Kurosawa, editor, Advances in Cryptology — ASIACRYPT 2007, volume 4833
of Lecture Notes in Computer Science, pages 29–50. Springer Verlag, 2007.

6. D. J. Bernstein and T. Lange. SafeCurves: Choosing safe curves for elliptic-curve
cryptography. Avialable online at http://safecurves.cr.yp.to, 2013.

7. D. J. Bernstein and T. Lange. Security dangers of the NIST curves. Presentation
given at the 3rd Workshop on International View of the State-of-the-Art of Cryp-
tography and Security and its Use in Practice, May 30–31, 2013, Athens, Greece.
Slide deck available online at http://www.hyperelliptic.org/tanja/vortraege/
20130531.pdf, 2013.

8. B. Black, J. W. Bos, C. Costello, P. Longa, and M. Naehrig. Elliptic curve
cryptography (ECC) nothing up my sleeve (NUMS) curves and curve generation.
Internet Engineering Task Force, Network Working Group, Internet draft draft-
black-numscurves-02 (work in progress), Feb. 2015.

9. I. F. Blake, G. Seroussi, and N. P. Smart. Elliptic Curves in Cryptography, volume
265 of London Mathematical Society Lecture Notes Series. Cambridge University
Press, 1999.

10. J. W. Bos, C. Costello, P. Longa, and M. Naehrig. Selecting elliptic curves for
cryptography: An efficiency and security analysis. Journal of Cryptographic Engi-
neering, 6(4):259–286, Nov. 2016.

11. E. Brier and M. Joye. Fast point multiplication on elliptic curves through isogenies.
In M. P. Fossorier, T. Høholdt, and A. Poli, editors, Applied Algebra, Algebraic
Algorithms and Error-Correcting Codes — AAECC 2003, volume 2643 of Lecture
Notes in Computer Science, pages 43–50. Springer Verlag, 2003.

12. D. Chu, J. Großschädl, Z. Liu, V. Müller, and Y. Zhang. Twisted Edwards-form
elliptic curve cryptography for 8-bit AVR-based sensor nodes. In S. Xu and Y. Zhao,
editors, Proceedings of the 1st ACM Workshop on Asia Public-Key Cryptography
(AsiaPKC 2013), pages 39–44. ACM Press, 2013.

13. C. Costello, P. Longa, and M. Naehrig. A brief discussion on selecting new
elliptic curves. Technical Report MSR-TR-2015-46, Microsoft Research, June
2015. Available for download at http://research.microsoft.com/apps/pubs/
default.aspx?id=246915.



Lightweight Public-Key Cryptography for the Internet of Things 11

14. ECC Brainpool Consortium. ECC Brainpool standard curves and curve generation.
Avialable for download at http://www.ecc-brainpool.org/download/Domain-
parameters.pdf, 2005.

15. H. M. Edwards. A normal form for elliptic curves. Bulletin of the American
Mathematical Society, 44(3):393–422, July 2007.

16. J.-P. Flori, J. Plût, J.-R. Reinhard, and M. Ekerå. Diversity and transparency for
ECC. Cryptology ePrint Archive, Report 2015/659, 2015. Available for download
at http://eprint.iacr.org.

17. R. P. Gallant, R. J. Lambert, and S. A. Vanstone. Faster point multiplication
on elliptic curves with efficient endomorphism. In J. Kilian, editor, Advances in
Cryptology — CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science,
pages 190–200. Springer Verlag, 2001.

18. J. Großschädl, E. Oswald, D. Page, and M. Tunstall. Side-channel analysis of
cryptographic software via early-terminating multiplications. In D. Lee and S. Hong,
editors, Information Security and Cryptology — ICISC 2009, volume 5984 of Lecture
Notes in Computer Science, pages 176–192. Springer Verlag, 2010.

19. M. Hamburg. Fast and compact elliptic-curve cryptography. Cryptology ePrint
Archive, Report 2012/309, 2012. Available for download at http://eprint.iacr.
org.

20. D. R. Hankerson, A. J. Menezes, and S. A. Vanstone. Guide to Elliptic Curve
Cryptography. Springer Verlag, 2004.

21. H. Hişil, K. K.-H. Wong, G. Carter, and E. Dawson. Twisted Edwards curves
revisited. In J. Pieprzyk, editor, Advances in Cryptology — ASIACRYPT 2008,
volume 5350 of Lecture Notes in Computer Science, pages 326–343. Springer Verlag,
2008.

22. A. Langley, M. Hamburg, and S. Turner. Elliptic curves for security. Internet
Engineering Task Force, Internet Research Task Force, RFC 7748, Jan. 2016.

23. A. Liu and P. Ning. TinyECC: A configurable library for elliptic curve cryptography
in wireless sensor networks. In Proceedings of the 7th International Conference on
Information Processing in Sensor Networks (IPSN 2008), pages 245–256. IEEE
Computer Society Press, 2008.

24. P. L. Montgomery. Speeding the Pollard and elliptic curve methods of factorization.
Mathematics of Computation, 48(177):243–264, Jan. 1987.

25. National Institute of Standards and Technology (NIST). Recommended Elliptic
Curves for Federal Government Use. White paper, available for download at
http://csrc.nist.gov/encryption/dss/ecdsa/NISTReCur.pdf, July 1999.

26. M. Scott. Ed3363 (HighFive) – An alternative elliptic curve. Cryptology ePrint
Archive, Report 2015/991, 2015. Available for download at http://eprint.iacr.
org.

27. R. Struik. Alternative elliptic curve representations. Internet Engineering Task
Force, Light-Weight Implementation Guidance (LWIG) Working Group, Internet
draft draft-struik-lwip-curve-representations-00 (work in progress), Oct. 2017.


