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Lightweight Public-Key Cryptography for the Internet of Things

We introduce a set of four twisted Edwards curves that satisfy common security requirements and allow for fast implementations of scalar multiplication on 8, 16, and 32-bit processors. Our curves are defined by an equation of the form -x 2 + y 2 = 1 + dx 2 y 2 over a prime field Fp, where d is a small non-square modulo p. The underlying prime fields are based on "pseudo-Mersenne" primes given by p = 2 k -c and have in common that p ≡ 5 mod 8, k is a multiple of 32 minus 1, and c is at most eight bits long. Due to these common features, our primes facilitate a parameterized implementation of the low-level arithmetic so that one and the same arithmetic function is able to process operands of different length. The four twisted Edwards curves we present in this paper are all birationally equivalent to Montgomery curves of the form -(A + 2)y 2 = x 3 + Ax 2 + x where 4/(A + 2) is small. Even though this contrasts with the usual practice of choosing (A + 2)/4 to be small, we show that the Montgomery form of our curves allows for an equally efficient implementation of point doubling as Curve25519. The four curves we put forward roughly match the common symmetric security levels of 80, 96, 112, and 128 bits. Moreover, their Weierstraß representations are isomorphic to curves of the form y 2 = x 3 -3x + b so as to facilitate inter-operability with TinyECC and other legacy software.

Introduction

An elliptic curve E has to satisfy various security and efficiency requirements to be suitable for cryptographic applications [START_REF] Bernstein | SafeCurves: Choosing safe curves for elliptic-curve cryptography[END_REF][START_REF] Bos | Selecting elliptic curves for cryptography: An efficiency and security analysis[END_REF][START_REF] Flori | Diversity and transparency for ECC[END_REF]. Most importantly, the group of rational points on the curve must contain a (large) subgroup of prime order since this order determines the computational cost of the Elliptic Curve Discrete Logarithm Problem (ECDLP). However, determining whether a curve has a near-prime cardinality requires one to count the number of points on the curve, which is a complicated and computation-intensive endeavor [START_REF] Blake | Elliptic Curves in Cryptography[END_REF]. Therefore, it is common practice to use "standardized" curves that were generated to meet certain security requirements. A multitude of national and international standardization bodies, including the U.S. National Institute of Standards and Technology (NIST), have published a set of recommended domain parameters for elliptic curves of different cryptographic strength, in most cases comparable to that of 128, 192, and 256-bit AES [START_REF]ECC Brainpool standard curves and curve generation[END_REF][START_REF]Recommended Elliptic Curves for Federal Government Use[END_REF]. The so-called NIST curves were allegedly generated by Jerry Solinas in the late 1990s, who was working for the National Security Agency (NSA) at that time [START_REF] Bernstein | Security dangers of the NIST curves[END_REF]. Five of the NIST curves are defined over prime fields and given by a Weierstraß equation of the form E W : y 2 = x3 + a 4 x + a 6 [START_REF] Aranha | A note on high-security general-purpose elliptic curves[END_REF] with a 4 fixed to -3 for efficiency reasons [START_REF] Hankerson | Guide to Elliptic Curve Cryptography[END_REF]. However, the Weierstraß form is, in terms of performance, not state-of-the-art anymore since alternative curve models or special families of curves allow for faster execution times. For example, the addition law of twisted Edwards curves is much more efficient than that of normal Weierstraß curves and has the further advantage of completeness if certain conditions are met [START_REF] Bernstein | Twisted Edwards curves[END_REF][START_REF] Hişil | Twisted Edwards curves revisited[END_REF]. On the other hand, the so-called GLV curves feature an efficiently-computable endomorphism, which can be utilized to speed up variable-base scalar multiplication [START_REF] Gallant | Faster point multiplication on elliptic curves with efficient endomorphism[END_REF][START_REF] Hankerson | Guide to Elliptic Curve Cryptography[END_REF].

In this paper, we present a set of four twisted Edwards curves over pseudo-Mersenne prime fields that we generated in a transparent and verifiable way to meet common security and efficiency requirements. These four curves, which we call LiTE curves (an abbreviation for Lightweight Twisted Edwards), provide security levels of about 80, 96, 112, and 128 bits, respectively, and are suitable for IoT applications running on restricted devices. Using curves that offer less than 128 bits of security allows for large savings in execution time and makes particular sense for applications with low or medium security requirements. The four twisted Edwards curves we present in this paper differ from the Edwards curves introduced by Aranha et al. in [START_REF] Aranha | A note on high-security general-purpose elliptic curves[END_REF] in three important aspects. First, we chose the prime fields and generated the curves with the goal of having consistency across security levels, which means they share many basic properties like the group structure. Most notably, all our curves are defined over prime fields with p = 2 k -c elements and have in common that k is a multiple of 32 minus 1 (i.e. k = 159, 191, 223, or 255) and c has a length of at most eight bits. This consistency facilitates a parameterized implementation 3 of the field-arithmetic operations, which minimizes the code size when different security levels are to be supported and has some other benefits like reduced development cost. The second difference is that we aimed for curves capable to reach top performance with the twisted Edwards representation and the birationally-equivalent Montgomery representation. Aranha et al. [START_REF] Aranha | A note on high-security general-purpose elliptic curves[END_REF], on the other hand, specified two sets of curves, namely Montgomery curves with a small parameter A and Edwards curves with a small parameter d; in both cases the rationale was to improve the arithmetic performance. The four twisted Edwards curves we put forward have a small parameter d and a fixed to -1, which implies the parameter A of the birationally-equivalent Montgomery curves has the property that 4/(A -2) is small. While this contrasts with the usual choice of (A -2)/4 being small, it is possible to perform a point doubling equally fast as on e.g. Curve25519 thanks to a simple modification of the doubling formula. Finally, the third difference between our curves and those from [START_REF] Aranha | A note on high-security general-purpose elliptic curves[END_REF] is that we took potential vulnerabilities to side-channel attacks [START_REF] Großschädl | Side-channel analysis of cryptographic software via early-terminating multiplications[END_REF] into account when we chose the base point (i.e. the generator of a prime-order subgroup). In particular, we excluded points whose coordinates have an extraordinary low Hamming weight.

Preliminaries

In 1987, Peter Montgomery introduced a new model for elliptic curves and demonstrated its practical use by speeding up algorithms for integer factorization [START_REF] Montgomery | Speeding the Pollard and elliptic curve methods of factorization[END_REF]. Formally, a so-called Montgomery curve over a non-binary field F q can be described through the equation

E M : By 2 = x 3 + Ax 2 + x (2) 
where A, B ∈ F q and A = ±2, B = 0 (or, equivalently, B(A 2 -4) = 0). Curves of such form allow a full scalar multiplication k • P to be carried out using the x coordinate only, which is clearly more efficient than when both the x and the y coordinate are involved in the point arithmetic. A point P ∈ E M (F q ) given in projective coordinates of the form (X : Z) can be doubled with only three multiplications (3M) and two squarings (2S) in the underlying finite field. On the other hand, a differential addition of two points (i.e. the calculation of the sum P + Q of two points P, Q ∈ E M (F q ) whose difference P -Q is known) requires two multiplications (2M), two squarings (2S), as well as a multiplication by the constant (A + 2)/4. The so-called Montgomery ladder for scalar multiplication has a total computational cost of roughly 5n multiplications and 4n squarings for an n-bit scalar, i.e. 5M + 4S per bit [START_REF] Bernstein | Curve25519: New Diffie-Hellman speed records[END_REF]. Exactly 20 years after Montgomery's discovery, Harold Edwards introduced a normal form to describe certain elliptic curves, which have become known as Edwards curves in recent years [START_REF] Edwards | A normal form for elliptic curves[END_REF]. Bernstein and Lange showed that curves in Edwards form have good cryptographic properties with respect to performance and protection against side-channel attacks [START_REF] Bernstein | Faster addition and doubling on elliptic curves[END_REF]. Twisted Edwards curves (in the following abbreviated as "TE curves") were presented in [START_REF] Bernstein | Twisted Edwards curves[END_REF] as a generalization of Edwards curves with similarly good implementation properties. A TE curve over a non-binary field F q is defined by the equation

E T : ax 2 + y 2 = 1 + dx 2 y 2 (3) 
where a and d are distinct elements of F * q . The additive group E T (F q ) contains a neutral element O, namely the point (0, 1), which, under some conditions, can be used as an input to the addition formula specified in [START_REF] Bernstein | Twisted Edwards curves[END_REF]. More precisely, the addition law from [START_REF] Bernstein | Twisted Edwards curves[END_REF] is complete when a is a square and d a non-square in the underlying field F q . Here, completeness refers to the property that the addition formula produces the correct result for any pair P, Q ∈ E T (F q ), including the corner cases P = O, Q = O, and P = Q. Hişil et al. introduced in [START_REF] Hişil | Twisted Edwards curves revisited[END_REF] extended projective coordinates for TE curves, the currently fastest means of performing a (non-differential) point addition on an elliptic curve. When using a TE curve with a = -1, two points can be added by executing only seven multiplications (7M) in the underlying field, while the point doubling operation requires three multiplications (3M) and four squarings (4S) [START_REF] Chu | Twisted Edwards-form elliptic curve cryptography for 8-bit AVR-based sensor nodes[END_REF][START_REF] Hamburg | Fast and compact elliptic-curve cryptography[END_REF].

Montgomery curves and TE curves are closely related due to the fortunate fact that every Montgomery curve over F q is birationally equivalent over F q to a TE curve and vice versa [START_REF] Bernstein | Twisted Edwards curves[END_REF]. More concretely, when a, d are distinct non-zero elements of F p , the TE curve E T given by Eq. ( 3) is birationally equivalent over F p to the Montgomery curve E M given by Eq. ( 2) with the parameters

A = 2(a + d) a -d and B = 4 a -d . ( 4 
)
An affine point (x t , y t ) on a TE-form elliptic curve E T can be converted to the corresponding point (x m , y m ) on the birationally-equivalent Montgomery curve E M using the following map, which is from [START_REF] Bernstein | Twisted Edwards curves[END_REF].

φ : (x t , y t ) → (x m , y m ) = 1 + y t 1 -y t , 1 + y t (1 -y t )x t (5) 
Bernstein et al. demonstrated in [START_REF] Bernstein | Twisted Edwards curves[END_REF] not only that every TE curve is birationally equivalent to a Montgomery curve, but also that the converse holds. In concrete terms, when A ∈ F p \ {-2, 2} and B ∈ F * p , then the Montgomery curve E M given by Eq. ( 2) is birationally equivalent over F p to the TE curve given by Eq. ( 3) with the parameters

a = A + 2 B and d = A -2 B . ( 6 
)
This curve always exists since A = ±2 and B = 0. Given a point (x m , y m ) on the Montgomery curve E M , one can compute the corresponding point on the birationally-equivalent TE curve E T via the map

ψ : (x m , y m ) → (x t , y t ) = x m y m , x m -1 x m + 1 . ( 7 
)

LiTE Curves

An elliptic curve E over a prime field F p is completely specified by the prime p and the two coefficients of its defining equation, which can, depending on the curve model, be e.g. Eq. ( 1), Eq. ( 2), or Eq. ( 3). However, one coefficient is, in practice, often fixed to a specific value for reasons of simplicity or performance [START_REF] Costello | A brief discussion on selecting new elliptic curves[END_REF]. As already mentioned in Sect. 1, the NIST curves (and many other curves in Weierstraß form) use a 4 = -3 because this choice allows one to minimize the computational cost of point doubling in projective coordinates [START_REF] Brier | Fast point multiplication on elliptic curves through isogenies[END_REF][START_REF] Hankerson | Guide to Elliptic Curve Cryptography[END_REF]. On the other hand, when generating TE curves, it is common practice to fix a to -1 so that implementers can exploit the full potential of the "extended" coordinates proposed in [START_REF] Hişil | Twisted Edwards curves revisited[END_REF] and perform a mixed addition with only seven multiplications in F p . Also the four LiTE curves we put forward follow this approach and have the coefficient a set to -1, which means the curve-generation process consists of finding a suitable prime p and coefficient d.

Selection of Prime Fields

An analysis of recent proposals for new elliptic curves shows that the underlying fields are based on three main categories of primes: generalized-Mersenne primes, pseudo-Mersenne primes, and primes for which Montgomery reduction can be optimized, i.e. "Montgomery-friendly" primes [START_REF] Costello | A brief discussion on selecting new elliptic curves[END_REF]. Taking various efficiency and (side-channel) security aspects to into account, pseudo-Mersenne primes seem to be particularly attractive because they were used in the majority of proposals for new elliptic curves, including [START_REF] Aranha | A note on high-security general-purpose elliptic curves[END_REF][START_REF] Bernstein | Curve25519: New Diffie-Hellman speed records[END_REF][START_REF] Bernstein | Curve41417: Karatsuba revisited[END_REF][START_REF] Black | Elliptic curve cryptography (ECC) nothing up my sleeve (NUMS) curves and curve generation[END_REF][START_REF] Bos | Selecting elliptic curves for cryptography: An efficiency and security analysis[END_REF][START_REF] Scott | HighFive) -An alternative elliptic curve[END_REF]. Formally, a pseudo-Mersenne prime has the form p = 2 k -c where c is small in relation to 2 k . The reduction of a 2k-bit integer x modulo p = 2 k -c requires just a multiplication of the upper half of x (i.e. the k most significant bits of x) by c, followed by an addition of the product to the lower half of x (see e.g. [START_REF] Bos | Selecting elliptic curves for cryptography: An efficiency and security analysis[END_REF] for more details). Besides high arithmetic efficiency, pseudo-Mersenne primes have the virtue of minimizing the surface for side-channel attacks since the reduction can be easily implemented to have constant execution time, irrespective of the actual value of x [START_REF] Bernstein | Curve25519: New Diffie-Hellman speed records[END_REF][START_REF] Bos | Selecting elliptic curves for cryptography: An efficiency and security analysis[END_REF]. Now that the basic form of the primes is fixed to p = 2 k -c, the next step is to determine the actual values for the exponent k and constant c. Since we aim for elliptic curves providing security levels of (approximately) 80, 96, 112, and 128 bits, their cardinalities need to contain a large prime factor of magnitude 2 160 , 2 192 , 2 224 , and 2 256 , respectively, which requires due to Hasse's theorem [START_REF] Hankerson | Guide to Elliptic Curve Cryptography[END_REF] that the underlying prime fields have about the same order. This suggests to use k = 160, 192, 224, and 256, yielding primes whose bit-lengths are a multiple of 32, similar to the NIST primes. However, choosing the values for k in this way does not necessarily lead to the maximum arithmetic performance in software. Namely, as demonstrated in [START_REF] Bernstein | Curve25519: New Diffie-Hellman speed records[END_REF], it can be beneficial to use primes with a bit-length that is a tad below the "nominal" bit-length for the targeted security level, e.g. a 255-bit prime instead of a 256-bit prime. Having one bit of "headroom" simplifies the implementation of the field arithmetic when one aims for both high performance and resistance to side-channel attacks through constant (i.e. operand-independent) execution time [START_REF] Bos | Selecting elliptic curves for cryptography: An efficiency and security analysis[END_REF]. Therefore, we decided to fix the exponents to k = 159, 191, 223, and 255.

The final step in the process of selecting a pseudo-Mersenne prime is to determine the constant c, which is commonly chosen as the smallest integer so that p = 2 k -c is prime. An additional criterion often taken into consideration when choosing c is the congruence class of p modulo 4, i.e. whether p ≡ 3 mod 4 or p ≡ 5 mod 8 (which implies p ≡ 1 mod 4). In the former case, it is possible to find a TE curve such that both the curve and its quadratic twist have a minimal co-factor of 4 [START_REF] Langley | Elliptic curves for security[END_REF]. Unfortunately, -1 is always a non-square modulo such a prime and, therefore, the fast addition formulae for TE curves specified in [START_REF] Hişil | Twisted Edwards curves revisited[END_REF] are not guaranteed to be complete. On the other hand, if p ≡ 5 mod 8, then -1 is always a square modulo p and the fast point-addition formulae from [START_REF] Hişil | Twisted Edwards curves revisited[END_REF] are complete (i.e. produce the correct result for any pair of F p -rational points), provided the curve parameter d is a non-square.

Taking all the above into consideration, we opted to choose the four values for the constant c as the smallest positive integers that yield pseudo-Mersenne primes congruent to 5 modulo 8. The four primes we obtained in this way are 2 159 -91, 2 191 -19, 2 223 -235, and 2 255 -19. As p ≡ 5 mod 8 always implies p ≡ 1 mod 4, it is guaranteed that -1 is a square in F p . A TE curve over these four prime fields can safely use Hisil et al's highly-optimized addition formulae for a = -1 without compromising completeness [START_REF] Hişil | Twisted Edwards curves revisited[END_REF]. The four pseudo-Mersenne primes we put forward share the following three basic features, which facilitate a "parameterized" implementation of the field arithmetic: (i) the exponent k is a multiple of 32 minus 1, (ii) the constant c is at most eight bits long, (iii) p is congruent to 5 modulo 8 and, consequently, -1 is a square modulo p.

Requirements and Formal Definition

In this subsection, we first explain our preference for TE curves rather than Montgomery curves and then discuss the objectives of the curve generation process, namely to obtain curves that are secure, arithmetically efficient, consistent across security levels, and compatible with with various curve models and coordinate systems for point representation. Then, we give a formal definition of LiTE curves and describe the requirements a LiTE curve has to satisfy.

New elliptic curves for cryptographic purposes should be generated in an open, transparent, and reproducible way to increase their prospects of finding widespread acceptance in the cryptographic community and general public. The foundation of such a curve-generation process is a set of well-explained and properly-specified requirements that the curves have to meet. Before describing these requirements for our LiTE curves, we outline the objectives we aimed for with our curve-generation process. First and foremost, the curves shall be secure in the sense of not having a weakness that would allow an adversary to compute discrete logarithms in less than the 0.886 √ n steps needed by Pollard's rho method [START_REF] Bernstein | SafeCurves: Choosing safe curves for elliptic-curve cryptography[END_REF]. The second requirement is to enable high-speed implementations and facilitate state-of-the-art optimization techniques for both the field and group arithmetic. In particular, we aim for curves that achieve peak performance not only with the TE model, but also when using the birationally-equivalent Montgomery representation. Our third requirement is consistency among security levels, which means the curves should share certain properties regarding the structure of the elliptic-curve groups (co-factor, twist-security, etc.) and the underlying fields. This consistency enables a "parameterized" software implementation of the group arithmetic (e.g. point addition, point doubling) and scalar multiplication so that one and the same arithmetic function can be used for groups of different order, which significantly reduces the code size compared to an implementation with separate functions for each curve. Finally, the fourth requirement is compatibility with various other curve models, which includes the flexibility to support different coordinate systems.

Our fourth requirement includes the flexibility to support efficient conversions between different representations of points, not only between TE and Montgomery form, but also between TE or Montgomery form and Weierstraß form. There are several scenarios where the latter conversion can be useful. One such scenario is discussed in [START_REF] Struik | Alternative elliptic curve representations[END_REF] and concerns the instantiation of widely-used cryptosystems like ECDSA with a TE or Montgomery curve that is expressed through its Weierstraß form. Many elliptic-curve schemes standardized by international organizations such as the NIST, IEEE, ISO, and ANSI require curve points to be represented in Weierstraß coordinates. However, this does not rule out TE or Montgomery curves since every elliptic curve admits to a Weierstraß equation and most standards also tolerate small co-factors. Therefore, it is possible to instantiate e.g. ECDSA with Wei25519 (a Weierstraß representation of Curve25519, see [START_REF] Struik | Alternative elliptic curve representations[END_REF]), which would allow one to use the efficient Edwards addition law for the point arithmetic and scalar multiplication. On the other hand, there exist also situations where using Montgomery or TE coordinates as "wire format" and Weierstraß coordinates for the computation can be necessary. This situation occurs if one wants to implement a state-of-the-art cryptosystem like Curve25519-based key exchange [START_REF] Bernstein | Curve25519: New Diffie-Hellman speed records[END_REF] or the EdDSA signature system, but is forced to use a legacy hardware component or software library for the point arithmetic and scalar multiplication that supports only the Weierstraß model. A well-known example for such a legacy software is TinyECC [START_REF] Liu | TinyECC: A configurable library for elliptic curve cryptography in wireless sensor networks[END_REF], a lightweight ECC library originally developed for wireless sensor networks that continues to be widely used today. However, TinyECC, like most other legacy ECC software, only supports the Weierstraß model for the point arithmetic, which requires conversions between TE/Montgomery and Weierstrass coordinates.

Since we have already chosen the prime fields for the LiTE curves and fixed the coefficient a to -1, the curve-generation process boils down to finding a coefficient d that satisfies all security and efficiency requirements explained above. In fact, all these requirements can be condensed to five conditions on d, which are summarized in the following formal definition of LiTE curves. Definition 1. Let F p be a prime field with p ≡ 5 mod 8. A LiTE elliptic curve is a twisted Edwards curve over F p given by the equation

E T : -x 2 + y 2 = 1 + dx 2 y 2 (8) 
where d is the smallest element of F p \ {-1, 0} so that the following five conditions are met 1. d is a non-square in F p 2. E T has a co-factor of 8 and negative trace (i.e. #E T (F p ) = 8n > p), while its quadratic twist E T has a co-factor of 4 and positive trace 3. E T and E T have a large embedding degree as recommended in [START_REF]ECC Brainpool standard curves and curve generation[END_REF] 4. E T has a large CM field discriminant as recommended in [START_REF] Bernstein | SafeCurves: Choosing safe curves for elliptic-curve cryptography[END_REF] 5. the Weierstraß representation of E T is isomorphic to a curve defined by an equation of the form y 3 = x 3 -3x + b where b is a non-square in F p

The first condition entails that the TE addition law is complete, which is an efficiency requirement for our curves. On the other hand, the second condition fulfills a security requirement since it guarantees that both the curve and its quadratic twist contain a cyclic subgroup of large order; consequently, the curve is twist-secure. Also the third and fourth condition are linked to security requirements since they ensure that there exist no additive or multiplicative transfers that would allow an adversary to take a "shortcut" when solving the ECDLP. All these security requirements are fairly common and have already been considered in many other curve-generation efforts, most notably [START_REF] Bernstein | SafeCurves: Choosing safe curves for elliptic-curve cryptography[END_REF]. Finally, the fifth condition implies that a LiTE curve can be expressed through a short Weierstraß equation with efficient coefficients as discussed above. We used the computer algebra system Magma to obtain the coefficient d for each of the four security levels we consider in this paper. More concretely, we wrote a Magma script that essentially consists of a loop that checks in each iteration whether d meets the five conditions defined above and increments d by 1 if it is not the case. This script generated the following coefficients, which define our four LiTE curves:

-x 2 + y 2 = 1 + 49445x 2 y 2 mod 2 159 -91 -x 2 + y 2 = 1 + 141087x 2 y 2 mod 2 191 -19 -x 2 + y 2 = 1 + 987514x 2 y 2 mod 2 223 -235 -x 2 + y 2 = 1 + 4998299x 2 y 2 mod 2 255 -19
Birationally-Equivalent Montgomery Curves. For a TE curve with a = -1, the coefficients A and B of the birationally-equivalent Montgomery curve are as follows

A = 2(a + d) a -d = 2(1 -d) 1 + d (9) B = 4 a -d = - 4 1 + d = - 2(1 -d) + 2(1 + d) 1 + d = -(A + 2) (10) 
Unfortunately, these coefficients do not meet the usual efficiency criteria for Montgomery curves since, when d is small, one can not expect that A is small and congruent to 2 modulo 4. However, we found that the the reciprocal of (A + 2)/4, namely 4/(A + 2) is small when a = -1 and d is small. More concretely, due to Eq. ( 10) we have 4/(1 + d) = A + 2 and 4/(A + 2) = d + 1, which means 4/(A + 2) is small when d is small.

4X n Z n = (X n + Z n ) 2 -(X n -Z n ) 2 (11) 
X 2n = (X n + Z n ) 2 (X n -Z n ) 2 (12) 
Z 2n = (4X n Z n ) (X n -Z n ) 2 + ((A + 2)/4) (4X n Z n ) (13) 
Montgomery provided in his seminal paper [START_REF] Montgomery | Speeding the Pollard and elliptic curve methods of factorization[END_REF] the above formulae for the doubling of a point given in projective (X : Z) coordinates. The computation of 4X n Z n requires two squarings (2S) in F p , and then the computation of X 2n and Z 2n takes one multiplication (1M) each, which means the overall cost of the point doubling amounts to 2M + 2S. Furthermore, a multiplication by the constant (A + 2)/4 is required, which can be performed much faster than a conventional multiplication in F p when A is small and congruent to 2 modulo 4.

Fortunately, these formulae can be easily modified to make them more amenable for the Montgomery representations of our LiTE curves, which have the property that 4/(A + 2) is small. Namely, by simply multiplying both X 2n and Z 2n by 4/(A + 2), we get the modified doubling formulae below, which do not contain a multiplication by (A + 2)/4 anymore. Note that this modification does not change the affine x-coordinate x 2n = X 2n /Z 2n and, thus, we can safely use these formulae for the computation of a scalar multiplication based on the Montgomery ladder. Similar as with the original doubling formulae, 4X n Z n is computed first and then the product of (X n -Z n ) 2 and 4/(A + 2) is formed. This product serves then as input for the computation of X 2n and Z 2n , respectively, which means the overall cost amounts to 2M + 2S and a multiplication by the small constant 4/(A + 2). Apart from that, two additions and two subtractions in F p have to be carried out, exactly as with the original formulae. In summary, performing a scalar multiplication on the Montgomery curves that are birationally-equivalent to our LiTE curves requires exactly the same number of F p -operations as when a Montgomery curves with a small coefficient A and B = 1 is used, e.g. Curve25519.

X 2n = (X n + Z n ) 2 (X n -Z n ) 2 (4/(A + 2)) (14) 
Z 2n = (4X n Z n ) (X n -Z n ) 2 + ((A + 2)/4) (4X n Z n ) (4/(A + 2)) = (4X n Z n ) (X n -Z n ) 2 (4/(A + 2)) + (4X n Z n ) (15) 
Base Points. Besides the coefficients of the curve equation and the underlying finite field, domain parameters for ECC also specify a base point P ∈ E(F p ) that serves as generator of a cyclic (sub)group. From a theoretical point of view, P has to satisfy only a single requirement, namely to have prime order. It is common practice to choose the point with the smallest x-coordinate as base point; for example the base points of the TE curves specified in [START_REF] Black | Elliptic curve cryptography (ECC) nothing up my sleeve (NUMS) curves and curve generation[END_REF] were determined in this way. Unfortunately, this practice is problematic from a side-channel perspective, especially when a software implementation of the so-called comb method [START_REF] Hankerson | Guide to Elliptic Curve Cryptography[END_REF] for fixed-base scalar multiplication is executed on a microcontroller with an early-terminating integer multiplier, e.g. ARM Cortex-M3. Namely, as shown in [START_REF] Großschädl | Side-channel analysis of cryptographic software via early-terminating multiplications[END_REF], the so-called early-termination effect (which makes the latency of multiply instructions operand-dependent) can introduce vulnerabilities to timing analysis and Simple Power Analysis (SPA) attacks, even if the field arithmetic has been implemented with the goal of having constant execution time. In order to avoid this "side-channel pitfall," we chose the base points of the LiTE curves in such a way that the early-termination mechanism can not be triggered when a point addition by P (or a small multiple of P ) is carried out. This ensures the execution time of the comb method does not leak any information about the scalar.

A parameterized implementation of a field-arithmetic operation can support fields of different order (i.e. fields of different bit length), typically in steps of 32 bits. The parameters include besides the operands (or pointers to operands held in RAM) an additional parameter that specifies the length of the operands.