N

N

A Generic Lightweight and Scalable Access Control
Framework for IoT Gateways

Juan D. Parra Rodriguez

» To cite this version:

Juan D. Parra Rodriguez. A Generic Lightweight and Scalable Access Control Framework for IToT
Gateways. 12th IFIP International Conference on Information Security Theory and Practice (WISTP),
Dec 2018, Brussels, Belgium. pp.207-222, 10.1007/978-3-030-20074-9__15 . hal-02294606

HAL Id: hal-02294606
https://hal.science/hal-02294606
Submitted on 23 Sep 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://hal.science/hal-02294606
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A Generic Lightweight and Scalable Access
Control Framework for IoT Gateways *

Juan D. Parra Rodriguez

IT-Security Group
University of Passau, Passau, Germany
dp@sec.uni-passau.de

Abstract. Gateways prevail in IoT (Internet of Things) set-ups for
connectivity, privacy, and other reasons; however, there has not been
a generic and open-source framework offering authentication, identity
management, policy administration and policy evaluation as a service
for such a scenario. Meanwhile, cloud-based security solutions are avail-
able, but they use too much memory and CPU to be deployed in low-cost
hardware typically used for IoT gateways such as the Raspberry Pi.

In our work, we identified critical requirements for a generic security
framework that could be deployed to low-cost hardware used for IoT
gateways. From this point on, we implemented the security framework,
and modified a Content Management System (CMS) to rely on the frame-
work for authentication and policy evaluations.

We evaluated our component’s runtime performance and computational
resource consumption in comparison to a popular attribute-based se-
curity framework written in Java. We measured the CPU, memory, and
network usage for each security framework, their databases, and the CMS
across three different hardware platforms. To ensure our results are not
biased towards a particular hardware set-up, we chose hardware with
two different processor architectures, different capabilities and vendors.
Our results indicate that our framework not only requires less time to
complete requests but also makes less intensive use of the processor and
the memory, i.e., the most critical capabilities for IoT gateways today.

Keywords: Access Control - IoT Gateway - Identity Management

1 Introduction

Affordable single-board computer hardware equipped with WiFi, Bluetooth, I/O
pins, among other features lets developers and makers create applications to
obtain information from sensors easilyﬂ Also, the increasing privacy awareness

* This research has been supported by the EU under the H2020 AGILE (Adaptive
Gateways for dIverse muLtiple Environments), grant agreement number H2020-
688088. Also, the authors would like to thank Eduard Brehm for the WordPress
integration and various updates in the agile-security code-base.

! Single-board computers such as the Raspberry Pi, the Beaglebone board or the
UPBoards are computers (ARM- or Intel-based) available from 30 to 60 USD.

2 Juan D. Parra Rodriguez

has influenced users to store sensor data locally instead of delivering it directly
to IoT clouds and servicesﬂ when possible.

Keeping data locally is undoubtedly one step towards data privacy; how-
ever, in scenarios where gateways need to offer multi-tenant support, there is
an additional need to enforce security policies on data stored in the gateway
and other services running in the same environment. To support this, we have
developed a prototypical implementation of a security framework, called agile-
securityﬂ Agile-security allows applications running inside or outside the gate-
way to rely on authentication, identity management, policy administration and
authorization as a service. In this way, access to sensors, application APIs, or
other security-sensitive assets can be managed centrally by the security frame-
work hosted in the gateway. Agile-security supports a generic attribute-based
identity and access control model to remain as flexible as possible.

Despite considerable research towards IoT application security, there has not
been an open-source solution to handle the security requirements for gateway-
based scenarios in a generic, lightweight and scalable manner. On the one hand,
researchers have previously argued for a capability-based approach whereby a
certificate referencing a subject, i.e., user, and its access rights is presented to
the service provider, i.e., a device [Q15]. However, this requires Certification
Authorities (CA)s to sign certificates and assumes that users interact directly
with devices. Closer to our research, there have been efforts towards enforcing
security policies for brokers or gateways using MQTT, HTTP and CoAP bro-
kers [6/T25]; however, these integrations with specific protocols fail to provide a
generic framework to build security solutions.

From a different perspective, cloud systems rely on centralized components
offering authentication, attribute-based authorization and policy management
as a service. There are commercially available implementations from Oracle [2],
Microsoft [I], and IBM [14], as well as an open-source implementation called
WSO2 Balana [3]. However, cloud-based security components require compu-
tational resources beyond the capabilities of affordable single-board computers
commonly used to host IoT gateways. Instead, our solution can be deployed in
smaller single-board computers, and uses less resources than WSO2 and scalesﬁ
to medium cloud-based set-ups with some configuration adjustments.

Our contributions can be summarized as follows: 1) we outline require-
ments and challenges faced while developing of a generic, lightweight, and scal-
able attribute-based security framework. 2) we explain how we addressed such
challenges during the implementation of our security framework. 3) we perform
a quantitative comparison between our framework and the WSO2 server in a
realistic scenario. To this end, we use automated Ul-testing to visit a modified
CMS using one of the two security frameworks to assess the runtime performance
as well as the usage of computational resources.

2 There are several IoT specific clouds, sich as Xively, Amazon IoT or Thingspeak

3 Available at: https://github.com/agile-iot/agile-security

4 Scalability means the agile-security can be configured differently depending on the
hardware available, e.g., to use more resources and provide responses faster

A Generic Lightweight and Scalable AC Framework for IoT Gateways 3

This paper is structured as follows: We introduce basic terminology used
across the paper in Section [2] Afterward, we describe the requirements and
provide an overview of the security framework in Section [3] Section [4] shows an
example of how agile-security can implement role-based access control policies.
After concluding the conceptual description of the framework, we evaluate it
in comparison to WSO2 in Section |5} Finally, we present related work and our
conclusions in Sections [6] and [7] respectively.

2 Attribute-Based Access Control Definitions

For clarity, we describe our work using well-established terminology presented
in the attribute-based concepts provided by NIST from Hu et al., which states:

“A logical object -sometimes referred to as a resource- is an entity to be
protected from unauthorized use.

The term subject is used to denote a human or non-person-entity requesting
access to an object.

Privileges represent the authorized behavior of a subject; they are defined by
an authority and embodied in policy or rules.

Digital Policy (DP): Access control rules that compile directly into ma-
chine executable codes or signals. Subject/object attributes, operations, and envi-
ronment conditions are the fundamental elements of Digital Policies, the building
blocks of Digital Policies rules, which are enforced by an access control mecha-
nism.

Meta Policies (MP): A policy about policies, or policy for managing poli-
cies, such as the assignment of priorities and resolution of conflicts between
Digital Policies or other Meta Policies.” [10]

3 Overview of the Security Framework

We start by listing the requirements addressed by our security framework. Then,
we explain conceptually how generic Digital and Meta Policies can be achieved,
followed by a description of the policy evaluation process, the identity model and
the support for authentication mechanisms. We have used Node JS, a server-side
JavaScript runtime, for the development of the agile-security framework.

3.1 Requirements
The security framework must:

R1 Allow users to define entities, i.e., objects and subjects, and security poli-
cies with the highest flexibility possible.

R2 Be usable from different kinds of applications (web, mobile, cron-jobs,
command line programs, and other applications) and regardless of their lo-
cation and operating system (running on the gateway or in a server).

4 Juan D. Parra Rodriguez

R3 Perform efficiently in affordable single-board computer hardware, as well
as more expensive servers (cloud).

R4 Be modular and extensible, so developers can add or disable functionality
easily to fulfill their particular needs.

R5 Be easy to integrate for developers through libraries, standard interfaces,
or rapid prototyping tools used in IoT environments.

3.2 Generic Digital Policies and Meta Policies

To address [RT] developers must be able to define their own security policies
with the highest flexibility possible. Thus, we need to provide a generic entity
model that allows developers to define subjects and objects freely. Agile-security
tackles this by letting developers specify entities to represent subjects and objects
in the same way. Also, there are two key considerations. First, the framework
must allow developers to define Digital Policies on the attributes and actions
corresponding to entities. Second, the model needs to provide means to specify
who is the authority for each attribute, i.e., a Meta Policy, generically.

A policy evaluation mechanism is the main building block for a framework
for managing identities and access control rules. To represent how we leverage
the policy evaluation mechanism across agile-security, Figure [I] illustrates the
relationship between the policy evaluation mechanism, Digital Policies, Meta
Policies and the representation of entities in the identity model. First of all,
Figure|l|shows the mechanisms to evaluate and manage Digital and Meta Policies
in grey. They are shown in the same color because they use the same policy
evaluation mechanism described in Section [3.3] Digital Policies enforce access to
attributes and actions that can be performed by, or on, entities. Furthermore,
the picture illustrates different levels of customization that may be required by
specific applications.

The first level, on the left-hand side of Figure [} shows a mechanism with
enough flexibility to evaluate Digital Policies on attributes and actions of entities.
However, in the first level, such a model would not allow users to define who
can update Digital Policies. As a result, policies can only be applied to every
kind of entity in the same way without giving users the possibility to update
policies. This kind of mechanism is commonly referred to as Mandatory Access
Control (MAC) because users cannot choose to override security mechanisms
applied system-wide.

On the second level, the security model can be extended with the capability
to evaluate Meta Policies, i.e., policies enforcing access to Digital Policies. Hav-
ing fixed Meta Policies creates the opportunity for users to update the Digital
Policies. In other words, models implemented with 2 levels or more allow for Dis-
cretionary Access Control (DAC), as users can update Digital Policies according
to Meta Policies. Similarly, three levels allow to update the Meta Policies.

The result of our work implements a security framework that can evaluate
policy hierarchies of level n . Notwithstanding, we do not foresee the need of
using any level higher than 3, as this would increase the complexity of the system
significantly and make it prone to human errors.

A Generic Lightweight and Scalable AC Framework for IoT Gateways 5

Level 1 Level 2 Level 3

Enforcement: - ___y
i DP: Digital Policy '

« oA & T « oA

MP: Meta Policy

Entity Entity Entity Entity Entity Entity
Attributes Actions Attributes Actions Attributes Actions

Fig. 1: Policy interactions to realize the security model

3.3 Policy Evaluation Framework

We used the UPFROnt policy evaluation frameworkﬂ UPFROnt defines policies
as a collection of blocks specifying restrictions on reading or writing operations.
Users can execute read, or write, operations as long as there is at least one read,
or write, block allowing this. Figure[2a]shows an example where a read operation
would be allowed, while write operations would be denied. Besides, within each
block, there can be zero or more locks where each one evaluates to a boolean
value. All locks must evaluate to true to allow a block of the policy, i.e., white
read block in Figure Thus, the evaluation of a block is calculated by joining
the boolean value returned by every lock with an and operator. Figure [2b[shows
two locks: the read block on the left is allowed, while the read block on the right
is not allowed. More to the point, in the case of Figure[2D] the read action would
still be allowed overall, as the requirement is to have at least one block allowing
the operation. The composition of locks and blocks in this way creates a boolean
formula in Disjunctive Normal Form (DNF).

The approach followed by UPFROnt is an extension to the parametrized
locks proposed by Broberg and Sands [4]. During policy evaluations, locks receive
attributes for both entities, i.e., subject and object, and additional parameters
specified in the policy. For example, an attributeEquals lock would receive two
arguments: the attribute name, and the expected value. In this way, this lock
can be used to assert that a user has an admin role by specifying a policy with a
block, which contains the attributeEquals lock with the arguments “role” and
“admin”. Similarly, the isOwner lock verifying if a subject owns an object does
not take any arguments, but compares the “id” attribute of the subject with the
“owner” attribute of the object.

A flexibility aspect of the UPFROnt component is that developers can plug
in their code to evaluate locks. These locks are executed within the policy frame-
work and can have a state; moreover, the lock implementation can use any API
offered by the Node JS framework which contributes to the generic approach

5 UPFROnt has been developed by Daniel Schreckling and is available at
https://github.com/SEDARI/UPFROnt

6 Juan D. Parra Rodriguez

Q‘,::ow % read read
Example policy [Lock [Lock | Lock |||["tock | Lock][Lock]
N N Lock open:
| read || read || read || write || wrltel Lock closed:
(a) Policy blocks (b) Locks within a block

Fig. 2: Policy components

and modularity . Initially, UPFROnt includes the attributeEquals
and the isOwner lock. We have developed new locks to support logging of actions
and management of groups.

As shown by Figure [I] the evaluation mechanism described in this section
applies to Digital Policies governing write and read access to attributes and
actions that can be performed on entities. Moreover, the policy evaluation based
on locks is also used to evaluate Meta Policies enforcing access to Digital Policies.

3.4 Identity Model

Based on the policy evaluation already presented, the identity management com-
ponent within agile-security lets developers define the entity format, i.e., which
fields are required for each type of entity through a JSON schema specification
loaded from a configuration file. For example, a developer can specify that he
requires a kind of entity called “sensor” with the possible attributes “location”,
and “dataType”. Also, developers can specify which attributes are allowed, their
type, and whether they are mandatory. If developers choose so, they can even
restrict possible values an attribute can take.

The identity management has privileged attribute names that cannot be used
by developers; these are “id”, “owner”, “entity_type” and “auth_type”. We do
this to ensure that the identity management system assigns an “id”, an “owner”,
and an “entity type” for every entity during its creation. The owner’s identifier
is set to match the identifier of the entity’s creator except for users. Users own
themselves as they are the root of the ownership hierarchy. Further, as agile-
security supports several authentication mechanisms, the identity management
ensures that users always have the “auth_type” to determine which authentica-
tion mechanism must be used.

Identity management handles entities and performs access control on at-
tributes. To achieve this, identity management validates whether the user send-
ing a request can perform the action, e.g., update attribute. If this check is suc-
cessful, the relevant read or write Digital Policies for each attribute are evaluated.
Subsequently, if a user can read an entity but the Digital Policies disallow access
to a particular attribute, then the identity management framework removes the
attribute from the response. This allows for a simple declassification mechanism
and grants access to attributes selectively based on the user’s Digital Policies.

Like with the definition of entities, the configuration file for agile-security
includes default Digital Policies enforcing access to each attribute. This allows

A Generic Lightweight and Scalable AC Framework for IoT Gateways 7

developers to set-up a security model based on their needs. The definition of
Digital Policies on attributes specify who is the authority, according to the NIST
definitions, to update or read the attribute. In addition, the configuration file
also specifies the level of Meta Policies supported according to Figure [I| and
default MetaPolicies applied to each Digital Policy. As a result, developers can
decide whether they need Meta Policies, how many levels, and how they should
rule the access to Digital Policies. Last but not least, we solve the bootstrapping
problem by including information in the configuration file to create entities to
be created in the first boot, e.g., first administrator of the system.

3.5 Wide Support for Authentication Mechanisms

Applications can rely on agile-security as an OAuth2 Identity Provider (IdP).
On the one hand, this tackles ease of integration requirement because many
libraries are implementing OAuth2 clients in many programming languages and
operating systems. On the other hand, by implementing every token grant speci-
fied by OAuth2 in agile-security, we ensure that all sorts of applications running
inside or outside the gateway can rely on agile-security as an IdP. Par-
ticularly, as we implemented all the authorization flow grants from OAuth2,
we ensure that not only Web applications are supported. Also, command line or
even cron-jobs can rely on agile-security. In addition to offering standard OAuth2
interfaces, we developed a JavaScript library encapsulating the authentication,
identity management, policy administration, and policy decision for ease of in-
tegration . We also provide extensions for Node-RED, a visual development
environment used for IoT applications, connecting the policy framework too.

For ease of integration into existing applications that already rely on other
IdPs, e.g., Google, agile-security addresses the extensibility requirement by
letting developers define passport source files (a Node Js authentication frame-
work) to add new authentication mechanisms besides local users handled by
agile-security. To exemplify this, agile-security already contains strategies to rely
on authentication from Google, Dropbox, PAM (Linux Pluggable Authentication
Modules) and WebID.

4 Digital Policies Example (Role-Based Access Control)

This section illustrates an instance where the security model is used to represent
a simple role-based access control model using identity definitions and policies.
Even though passwords are not needed when developers rely on external au-
thentication mechanisms, e.g., Google, we show an example of role-based access
control where users do have a password attribute. First, the entity schema needs
to specify the “role” and “password” attributes.

The policies represented by Figure [3| rely on the attributeEquals and
isOwner locks from Section [3.3] to define the role-based access control modelf]

5 In addition to these policies, a policy allowing everyone to execute an action may
also be needed. To this end, a block without any locks lets the user access everything.

8 Juan D. Parra Rodriguez

The left-hand side shows a policy allowing only users who own an entity to per-
form an action the attribute, Digital Policy or Meta Policy. Similarly, the figure
on the right-hand shows a policy where only administrators are allowed.

E Block (read/write) isOwner Policy E E Block (read/write) isAdmin Policy

Lock: Lock: , Lock: Lock:
Attribute Equals isOwn‘er : Atribute Equals Artribute Equals
(‘entityType"', 'user’) [(entityType, 'user’) (role','admin’)

Fig. 3: Policy Samples

In addition to the evaluation process presented in Section UPFROnt
has a hierarchical way of evaluating policies for simplicity and efficiency. In
particular, entities are objects containing attributes that can be strings, numbers,
but also objects. As a result, entities can have nested attributes. To avoid forcing
users to set a policy for each nested property, UPFROnt uses the concept of a
top-level policy. The top-level policy from any point in the object hierarchy
applies to child nodes of a given attribute.

Figure [4] shows a possible agile-security configuration implementing a simple
role-based access control model using the policies introduced in Figure (3| and
the top-level concept. To ensure that only administrators can create users, the
top level policy for the user entity is set to allow everyone to read, but ensure
that only owners or administrators can write to attributes within the entity
(unless elements below in the hierarchy override them). As the creation of a user
implies writing the attributes of the newly created user to set them, agile-security
prevents non-admin users from creating users in this setting.

For clarity, we show light grey policies in front of the attributes when they
have been inherited by a top-level policy above them, i.e., id and owner. In ad-
dition to this, we show an entity model where only administrators can set the
attribute role. This ensures that users cannot upgrade their privileges on their
own because there is no writeOwner policy for the role attribute. Conversely,
the password attribute can be set by the owner and administrators; however,
administrators cannot read the password. The previous example shows how to
achieve interesting properties to handle the password and role attribute to bal-
ance the authority for a role attribute (set role), and the user’s privacy (read
password).

In more complex scenarios where Meta Policies are involved, agile-security
links them using the tree structure presented in Figure[I] In this way, the security
framework traverses the tree, starting from the entity or action, to validate
whether a particular Digital Policy or Meta Policy can be changed. If there is
no parent for a Digital or Meta Policy, this means it cannot be updated.

A Generic Lightweight and Scalable AC Framework for IoT Gateways 9

Entity’s Attributes Policies
[readAll , writeOwner, writeAdmin] <& Top Level Policy for Entity
e Id e Id: [readAll,, writeOwner, writeAdmin]
e Owner e Owner : [readAll , writeOwner, writeAdmin]
e Role e Role : [readAll, writeAdmin]
e Password e Password: [readOwner, writeOwner, writeAdmin]

Fig. 4: Role-based access control model example

5 Evaluation

Every system faces a trade-off between using computational resources and pro-
viding a good response time. For example, loading all data in memory instead
of placing it in a hard drive decreases the response time but may starve other
processes of memory. To validate how well our security framework can execute in
single-board computers, as well as bigger setups , we perform an extensive
quantitative evaluation. This is critical to obtain all aspects related to trade-offs
between resource consumption and efficiency.

5.1 Scenario

To obtain a realistic scenario, we modified the most popular CMSD currently,
i.e., WordPress, to outsource authentication and authorization to an external
security framework. We created two branches of WordPress version 4.9.5 over-
riding security functions validating whether users are allowed to see a particular
page or open the administrative dashboard. One branch of WordPress uses the
Balana WSO2is server version 5.3.0, and the other one uses agile-security.

A factor motivating us to use WordPress as an example is that it evaluates
more than 70 capabilities (mapped to each security framework) while actions are
taken by a user; more to the point, each capability is evaluated separately. This
sub-optimal setting is not desirable for a production environment because it trig-
gers a separate network request with headers or XML content from WordPress
to the security framework. However, this sub-optimal environment provides us a
worst-case scenario where an application makes intensive use of the APIs from
the security frameworks under evaluation. What is more, if we can establish that
our security framework works for this environment, the runtime performance and
resource use can only improve after optimizations are applied.

Concerning the software set-up, we always had a modified WordPress rely-
ing on one of the two security frameworks (WSO2 or agile-security). However,
agile-security can be executed in two ways: either using an external database
(MongoDB) or using a database running in the same process (LevelDB). This
helps agile-security to remain flexible to the requirements of a given applica-
tion and execute in less or more resource-constrained environments. Thus, we

" As of October 2018, WordPress has 59.9% of the CMS market share:
https://websitesetup.org/popular-cms/

10 Juan D. Parra Rodriguez

evaluate the performance of WSO2 connected to an external MySQL database,
agile-security connected to an external MongoDB database, or agile-security us-
ing LevelDB (same process as the security framework).

To isolate resource consumption per component, we have deployed Word-
Press, the security frameworks and their databases (when they are separate
processes) in separate containers. In turn, this allows us to use docker APIs to
monitor the amount of memory, network, and CPU used by each component.
Also, to ascertain properties for the security frameworks used without relying on
a particular hardware implementation, and to obtain a big picture on the perfor-
mance of the security frameworks, we executed the evaluation on three different
hardware devices shown in Table [Il All our experiments use 64-bit processors
and use the two most prominent processor architectures.

Property [Raspberry Pi 3(B)|Upboard(UP-CHTO01)| Lenovo T470S
Memory 1 GB 2 GB 16 GB
CPU Quad Core 1.2GHz | Quad Core 64 1.92GHz |Quad Core 2.70GHz
Storage SD card size 16GB 500 GB (Solid state)
Architecture ARMvT x86-64 x86-64

Table 1: Hardware configurations

Also, we created an automated web test to interact with the WordPress
interface to log in a user, open the dashboard, log out and visit the public site,
using Cypress (a Web Ul automation framework). Figure [5| shows the use of
the docker containers, the security frameworks, and the UI testing framework.
We recorded resource consumption continuously, while 100 interactions were
performed automatically by the UI testing framework. Each interaction from
the Ul framework had two actions. First, an admin user logged in and then
WordPress would forward him to the administrative dashboard page. Afterward,
the user would log out and therefore load the public site. We recorded the time
to load the dashboard and the public page, i.e., login and log out.

Docker

(security-container) (database-container :
) Securit :
\ Security P Y !

wordpress-container

| WordPress
: Securty € . 1 Framework
! override J L ramewor J Database :
| A
Browser I
Computational
- Resource
Monitoring
Ul Testing

Fig. 5: Evaluation set-up

A Generic Lightweight and Scalable AC Framework for IoT Gateways 11

In the following measurements, there are no results for WSOZ2 on the Rasp-
berry Pi 8 because WSOZ2 requires the hardware to have at least 2GB of RAM
to execute. On the contrary, we show that agile-security can be executed in the
Raspberry Pi 3, and therefore imposes much less restrictive requirements on the
hardware level than WSO2.

5.2 Runtime

We calculated the mean of 100 WordPress interactions, and their standard de-
viations to assess the response time of WordPress while relying on WSO2 or
agile-security to evaluate the policies associated with the capabilities required
to render the dashboard or log out the user. Figures [6a] and [6b] show the results
measured in seconds to load each page. The amount of time measured during
the page load is higher than the actual time due to the execution of the automa-
tion framework to interact with the UI. Still, this quantitative measure helps to
compare the performance of each setting. To represent the results intuitively, we
sort the hardware, in ascending order, from less to more powerful.

=} agile-leveldb 124 =F- agile-leveldb
agile-mongodb agile-mongodb
-]+ wso2is-mysql -|-+ wso2is-mysql

-

10

o

w

0.8

w

seconds until page load
IS

seconds until page load
/
/

~
T

1 | 04

Raspberry pi 3 Upboard Lenovo Raspberry pi 3 Upboard Lenovo

(a) Login and loading of dashboard (b) Logout and loading of public stie

Fig. 6: Mean and standard deviation of loading time for 100 visits

From both figures, it can be observed that agile-security has a setting, either
with level DB or MongoDB, that offers better speed than WSO2. Also, in the
case of agile-security it is better to use LevelDB, i.e., running the database code
within the same process as the security framework, than executing a separate
database, i.e., MongoDB, for small single-board computers, e.g., the Raspberry
Pi. Notwithstanding, as more hardware is available for the external database, it
is more efficient to separate the security business logic from the database to take
advantage of the computational resources and achieve a better response. For both
actions, login, and log out, the point where one should divide the database from

12 Juan D. Parra Rodriguez

agile-security lies somewhere between the resources available in the Upboard and
the Lenovo laptop. The standard deviations represented for both figures show
that measurements have stable values across the 100 experiments.

Figure [6a also shows that agile-security provides the same loading time on a
Raspberry Pi 3 than the time achieved in the Lenovo laptop for WSO2. Besides,
agile-security provides better loading time for the dashboard (log in) than WSO2
for all our experiments. We must also clarify that, although the deviations seem
bigger in Figure [6B] this is a visual effect due to the change of scale, i.e., all
logout actions lie below 1.2 seconds.

5.3 Resource Consumption

It is clear that agile-security provides better runtime performance than WSO2.
However, this section assesses the computational resource consumption to vali-
date whether the performance improvement is sustainable in terms of hardware.

We obtained the number of bytes used in memory, the number of bytes sent
through the network, and the number of processor ticks used by each component.
Even though counting ticks does not have an intuitive meaning, it provides a way
to compare the use of computational power in each scenario. We opted for this
approach instead of showing percentage of use of CPU, as the latter is inherently
biased by the underlying hardware, i.e., 10% of use in the Lenovo laptop is not
comparable to 10% of use the Raspberry.

Docker provides one event every second with statistics on resource consump-
tion. Thus, we calculate the average consumption value per second for every
resource and then plot it in Table 2} Moreover, we use the same ordering as
Section to improve readability. On top, we represent values in the table as
a heat-map showing higher numbers with a darker background. The values are
only compared vertically; that is to say, there are separate scales for memory, net-
work and CPU ticks. Also, the agile-leveldb set-up does not contain a database
measurement because LevelDB is executed in the same memory space as the
agile-security framework and therefore does not require a separate process.

By considering the results of the runtime evaluation, agile-security should
be used without the database in both single-board computers because agile-
security requires more processing power, network and memory than LevelDB.
On the contrary, it is sensible to use agile-security with MongoDB for the Lenovo
taptop, where there is a runtime improvement in comparison to LevelDB.

Following this reasoning, the table shows that agile-security and its database
make intensive use of the network; especially, if this compared to the network
consumption between WSO2 and MySQL. This is clearly due to the transport
protocols used, i.e. MySQL is binary and MongoDB uses HTTP. Luckily, in-
tensive use of network between agile-security and its database is not an issue
when users deploy the security framework and the database in the same device.
Even though communications between agile-security and its database are classi-
fied as networking in our experiment, this traffic is routed through the loopback
interface, without requiring actual network transmissions.

A Generic Lightweight and Scalable AC Framework for IoT Gateways 13

hardware setup container memory (MB) |network (KB/s) |cpu (Mtics/s
framework 75.73

agile-mongo wordpress 63.66 50.24 62.20
Raspberry-pi3 database 73.41 19.29
framework 41.46 8.86 270.31
wordpress 64.32 118.85 73.85
framework 90.04
agile-mongo wordpress 77.33 39.47 58.59
database
framework
wordpress
framework
wso2is-mysq|l wordpress
database
framework
agile-mongo wordpress
database
framework
wordpress
framework
wso2is-mysq|l wordpress
database

Table 2: Memory, network and CPU consumption per component

agile-leveldb

Upboard agile-leveldb

Lenovo-t430 agile-leveldb

On the other hand, WSO2 uses more networking between the security frame-
work and WordPress. Unlike in the case of agile-security and its database, WSO2
(or agile-security) and WordPress are more likely to be deployed in separate hard-
ware as WordPress is a relying party decoupled from the security framework.
Also, WSO2 makes intensive use of memory and processor in both scenarios
where it can be executed, i.e., Upboard and Lenovo. These are resources that
are critical to ensuring that additional applications can be deployed in an IoT
gateway.

Even though we already established that WSO2 has lesser runtime perfor-
mance than agile-security for all the hardware we tested, it is particularly prob-
lematic to use WSO2 for deployments where the IoT gateway has limited memory
capacity. In particular, Table 2] shows that WSO2 consumes 1.6 GB out of 2 GB
available to the whole system in the Upboard. Also, the overhead of the eXten-
sible Access Control Markup Language (XACML) policies can be observed by
an increase in the amount of memory and processor required by WordPress in
comparison to the settings where agile-security was used in the same hardware.

5.4 Limitations

We performed precise measurements regarding resource consumption and inter-
actions involving the system modified to use the security frameworks, i.e., Word-
Press. However, we were able to run experiments only to the point equivalent to
a medium-sized server, i.e., 16 GB of RAM. So, even though we conclude that
our framework is better for IoT gateways and medium-sized set-ups, we do not

14 Juan D. Parra Rodriguez

assert that agile-security replaces the niche where WSO2 is currently used, i.e.,
bigger cloud set-ups. In this sense, Java technologies are deployable in enterprise
servers to form clusters, which lie beyond the capabilities of agile-security.

6 Related Work

Fysarakis et al. described an instance where a centralized ABAC system was
used to enforce policies in a Smart Home environment based on the Sun Java
implementation of XACML. Although their approach focuses on attribute-based
access control, like ours, their contribution is on an architectural level [§]. Also,
The approach from Fysarakis et al. requires capabilities beyond affordable single-
board computers, i.e., at least 4GB of RAM to execute the policy decision point.

Colombo et al. [6] and Niesse et al. [I2] propose the integration of poli-
cies for the IoT directly within MQTT brokers. Although this approach shares
the gateway-centric perspective, it goes into details regarding each protocol.
Instead, we provide a security component usable from internal and external ap-
plications. Hao et al. proposed JACPolL: a simple access control policy language
in JSON [1I]. Their approach is to provide an attribute-based language more
lightweight than XACML. Their evaluation was done using 16 GB memory and
a 2.6 GHz and considered only the time required to reply to policy requests.
Although we also use a JSON-based policy language, we based our approach
on parametrized locks [4] which allows developers to integrate code for the pol-
icy evaluation. Also, our evaluation is more concerned with a realistic scenario
and provides a better overview of computational resource consumption.There is
an analysis of gateway-centric scenarios sharing data with third parties [13] by
Parra et al., but their focus considers only architectural aspects and technologies
useful to provide access control towards some parties involved. Also, there have
been extensions to provide an OAuth2-based architecture for the IoT [5] and to
extend the WSO2 server to use flows authenticate devices [7].

7 Conclusion

XACML-based access control is used for enterprise large-scale applications, where
there is trained personnel to configure XACML policies, and policy decision
points. However, the knowledge required to specify policies and the nuances re-
lated to its configuration are baffling to most developers dealing with smaller
set-ups. On top, the resource consumption of XACML servers, e.g., WSO2, is
prohibitively high for an IoT set-up. Thus, we close the gap where develop-
ers need authentication and attribute-based policies deployed in a single-board
computer.

To save resources while offering flexibility for the policy definition and eval-
uation, agile-security loads an entity specification along with default policies
applied to new entities of each type such as users, OAuth2 clients, devices, or
any other entity defined by developers. Also, agile-security can allow the update
of Digital Policies used to enforce access to attributes and other read or write

A Generic Lightweight and Scalable AC Framework for IoT Gateways 15

actions on entities. This is achieved through a generic, hierarchical, structure of
policies that yield Meta Policies. For clarity, we show a simple scenario where
agile-security is used to implement a role-based access control model. In this
model, the role attribute is protected from unauthorized writes, yet keeping the
user’s password secret even from administrators.

The policy framework lowers the entry barrier for developers to use a security
framework, in comparison to XACML servers. In particular, agile-security allows
the definition of policies based on atomic and simple building blocks, i.e., locks,
computed for the policy evaluation. At the same time, security experts and
developers can plug-in custom logic in locks achieving extensibility. From the
authentication perspective, agile-security can be used as an IdP from a vast set
of applications ranging from batch jobs to mobile or web applications because it
supports all authorization codes specified in the OAuth2 protocol.

Aside from showing the way to achieve flexibility, extensibility, and ease of
deployment, we evaluate the resource consumption and response time of agile-
security in comparison to WSO2, a popular open-source Java XACML solution.
We establish that our approach saves resources and provides a lightweight frame-
work. Also, our solution scales as more hardware is available after changing the
configuration settings and using an external database.

After executing experiments with 100 visits to a modified WordPress in-
stance, we conclude that our framework offers better runtime performance than
WSO2 in all scenarios. More to the point, computational resource consumption
is also lower as our solution uses more networking in the loopback interface than
the WSO2 server, but saves memory and CPU: the most limited resources in an
IoT gateway. Still, we clarify that our analysis in the scope of the paper does
not claim that agile-security outperforms WSO2 in all set-ups. We believe there
is a clear need for services like WSO2; however, such services should not be used
for IoT gateways due to their high resource consumption.

References

1. Microsoft Claim-based Identity Model (2018), https://docs.microsoft.com/
en-us/dotnet/framework/security/claims-based-identity-model, accessed:
2018-10-03

2. Oracle Identity Mgmt. Fine Grained Authorization: Technical Insights for us-
ing Oracle Entitlements Server (2018), http://www.oracle.com/technetwork/
middleware/oes/oes-product-white-paper-405854.pdf, accessed: 2018-10-03

3. WSO2 Balana Implementation (2018), https://github.com/wso2/balanal ac-
cessed: 2018-10-03

4. Broberg, N., Sands, D.: Paralocks: Role-based information flow control and beyond.
In: Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages. pp. 431-444. POPL ’10, ACM, New York, NY,
USA (2010). https://doi.org/10.1145/1706299.1706349, http://doi.acm.org/10.
1145/1706299.1706349

5. Cirani, S., Picone, M., Gonizzi, P., Veltri, L., Ferrari, G.: Iot-oas: An oauth-based
authorization service architecture for secure services in iot scenarios. IEEE Sensors
Journal 15(2), 1224-1234 (Feb 2015). https://doi.org/10.1109/JSEN.2014.2361406

https://docs.microsoft.com/en-us/dotnet/framework/security/claims-based-identity-model
https://docs.microsoft.com/en-us/dotnet/framework/security/claims-based-identity-model
http://www.oracle.com/technetwork/middleware/oes/oes-product-white-paper-405854.pdf
http://www.oracle.com/technetwork/middleware/oes/oes-product-white-paper-405854.pdf
https://github.com/wso2/balana
https://doi.org/10.1145/1706299.1706349
http://doi.acm.org/10.1145/1706299.1706349
http://doi.acm.org/10.1145/1706299.1706349
https://doi.org/10.1109/JSEN.2014.2361406

16

10.

11.

12.

13.

14.

15.

Juan D. Parra Rodriguez

Colombo, P., Ferrari, E.: Access control enforcement within mqtt-based internet
of things ecosystems. In: Proceedings of the 23Nd ACM on Symposium on Ac-
cess Control Models and Technologies. pp. 223-234. SACMAT 18, ACM, New
York, NY, USA (2018). https://doi.org/10.1145/3205977.3205986, http://doi.
acm.org/10.1145/3205977 .3205986

Fremantle, P., Aziz, B., Kopeck, J., Scott, P.: Federated identity and access man-
agement for the internet of things. In: 2014 International Workshop on Secure
Internet of Things. pp. 10-17 (Sept 2014). |https://doi.org/10.1109/SI0T.2014.8
Fysarakis, K., Konstantourakis, C., Rantos, K., Manifavas, C., Papaefstathiou, I.:
Wsacd - a usable access control framework for smart home devices. In: Akram,
R.N,, Jajodia, S. (eds.) Information Security Theory and Practice. pp. 120-133.
Springer International Publishing, Cham (2015)

Gusmeroli, S., Piccione, S., Rotondi, D.: Iot access control issues: A capabil-
ity based approach. In: 2012 Sixth International Conference on Innovative Mo-
bile and Internet Services in Ubiquitous Computing. pp. 787-792 (July 2012).
https://doi.org/10.1109/IMIS.2012.38

Hu, V.C., Ferraiolo, D., Kuhn, R., Friedman, A.R., J., L.A., Cogdell,
M.M., Schnitzer, A., Sandlin, K., Miller, R., Scarfone, K.: Guide to At-
tribute Based Access Control (ABAC) Definition and Considerations (2014).
https://doi.org/http://dx.doi.org/10.6028 /NIST.SP.800-162

Jiang, H., Bouabdallah, A.: Jacpol: A simple but expressive json-based access con-
trol policy language. In: Hancke, G.P., Damiani, E. (eds.) Information Security
Theory and Practice. pp. 56-72. Springer International Publishing, Cham (2018)
Neisse, R., Steri, G., Baldini, G.: Enforcement of security policy rules for the
Internet of Things. In: 2014 IEEE 10th International Conference on Wireless and
Mobile Computing, Networking and Communications (WiMob). pp. 165-172 (Oct
2014). https://doi.org/10.1109/WiMOB.2014.6962166

Rodriguez, J.D.P., Schreckling, D., Posegga, J.: Addressing Data-Centric
Security Requirements for IoT-Based Systems. In: 2016 International
Workshop on Secure Internet of Things (SIoT). pp. 1-10 (Sept 2016).
https://doi.org/10.1109/SIoT.2016.007

Schefenacker, S.: Portal Access Control Attribute Based Security
for WCM Content (2018), https://www.ibm.com/developerworks/
community/groups/service/html/communityview?communitylUuid=
8f2bc166-3bdc-4a9d-bad4-3620dbb3ed6c#fullpageWidget Id=Wcbd73787a343_
444e_ab78_049379d722764f11e=d898a782-82e5-43a1-86£1-4d983b342256,
accessed: 2018-10-03

Tandon, L., Fong, P.W.L., Safavi-Naini, R.: Hcap: A history-based capability sys-
tem for iot devices. In: Proceedings of the 23Nd ACM on Symposium on Ac-
cess Control Models and Technologies. pp. 247-258. SACMAT ’18, ACM, New
York, NY, USA (2018). https://doi.org/10.1145/3205977.3205978, http://doi.
acm.org/10.1145/3205977.3205978

https://doi.org/10.1145/3205977.3205986
http://doi.acm.org/10.1145/3205977.3205986
http://doi.acm.org/10.1145/3205977.3205986
https://doi.org/10.1109/SIoT.2014.8
https://doi.org/10.1109/IMIS.2012.38
https://doi.org/http://dx.doi.org/10.6028/NIST.SP.800-162
https://doi.org/10.1109/WiMOB.2014.6962166
https://doi.org/10.1109/SIoT.2016.007
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=8f2bc166-3bdc-4a9d-bad4-3620dbb3e46c#fullpageWidgetId=Wc5d73787a343_444e_a578_049379d72276&file=d898a782-82e5-43a1-86f1-4d983b342256
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=8f2bc166-3bdc-4a9d-bad4-3620dbb3e46c#fullpageWidgetId=Wc5d73787a343_444e_a578_049379d72276&file=d898a782-82e5-43a1-86f1-4d983b342256
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=8f2bc166-3bdc-4a9d-bad4-3620dbb3e46c#fullpageWidgetId=Wc5d73787a343_444e_a578_049379d72276&file=d898a782-82e5-43a1-86f1-4d983b342256
https://www.ibm.com/developerworks/community/groups/service/html/communityview?communityUuid=8f2bc166-3bdc-4a9d-bad4-3620dbb3e46c#fullpageWidgetId=Wc5d73787a343_444e_a578_049379d72276&file=d898a782-82e5-43a1-86f1-4d983b342256
https://doi.org/10.1145/3205977.3205978
http://doi.acm.org/10.1145/3205977.3205978
http://doi.acm.org/10.1145/3205977.3205978

	A Generic Lightweight and Scalable Access Control Framework for IoT Gateways

