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Abstract. Technology is shaping our lives in a multitude of ways. This
is fuelled by a technology infrastructure, both legacy and state of the art,
composed of a heterogeneous group of hardware, software, services, and
organisations. Such infrastructure faces a diverse range of challenges to
its operations that include security, privacy, resilience, and quality of ser-
vices. Among these, cybersecurity and privacy are taking the centre-stage,
especially since the General Data Protection Regulation (GDPR) came
into effect. Traditional security and privacy techniques are overstretched
and adversarial actors have evolved to design exploitation techniques that
circumvent protection. With the ever-increasing complexity of technology
infrastructure, security and privacy-preservation specialists have started
to look for adaptable and flexible protection methods that can evolve
(potentially autonomously) as the adversarial actor changes its techniques.
For this, Artificial Intelligence (AI), Machine Learning (ML), and Deep
Learning (DL) were put forward as saviours. In this paper, we look at
the promises of AI, ML, and DL stated in academic and industrial litera-
ture and evaluate how realistic they are. We also put forward potential
challenges a DL based security and privacy protection system has to
overcome. Finally, we conclude the paper with a discussion on what steps
the DL and the security and privacy-preservation community have to
take to ensure that DL is not just going to be hype, but an opportunity
to build a secure, reliable, and trusted technology infrastructure on which
we can rely on for so much in our lives.

Keywords: Security · Privacy · Machine Learning · Deep Learning ·
Application.

1 Introduction

Computing technology is an integral part of our lives and has many facets
ranging from supercomputing (used in weather prediction, cutting-edge research,
and business automation) to embedded devices (like smartphones, electronic
devices in a home, and intelligent transport systems). Among many, security and
privacy are considered to be two distinct and unique challenges. In the security
and privacy domain, any protection system has to match a constantly evolving
adversarial actor. According to the Symantec cybercrime report [1], the overall
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number of vulnerabilities has increased by 13% in 2018. Similarly, according to
Cybersecurity Ventures [2], zero-day exploits seen in the wild will grow from
one per week (in 2015) to one per day by 2021. It is practically impossible for a
human to keep pace with the sheer number of cybersecurity events (and related
activities) on a daily basis on top of an already daunting threat landscape [3].

In this paper, and as a matter of fact in any context, security and privacy
are relative terms. It is not discussed as an absolute state, but rather as a state
with potential and/ or accepted risks. The global cost of data breaches has
increased by 6.4% [4] and has the potential to severely damage an organisation’s
bottom-line, even without taking the potential penalties imposed by the General
Data Protection Regulation (GDPR) into account [5]. As per the GDPR, an
organisation can be fined up to e10 million or 2% of the firm’s global turnover
for a small offence (whichever is greater). For a serious offence, an organisation
can be fined up to e20 million or 4% of a firm’s global turnover (whichever is
greater) [5].

Furthermore, there is a crisis of skilled cybersecurity practitioners. According
to Ciccone, the cybersecurity job market will grow by approximately 6 million
USD globally by 2019 – with potential shortages of trained professionals up
to 25% [6]. Automation of decisions and actions based on network and system
generated alerts has the potential to help overcome the challenges related to
security and privacy – both in a technological and a business-operations (e.g.
labour shortages) dimension.

Artificial Intelligence (AI) is seen as a potential solution towards the cyberse-
curity automation challenge in some academic and industrial circles. Machine
Learning (ML) has been successfully deployed in a number of domains including
but not limited to: image classification [7], object detection and recognition [8],
language translation, and voice synthesis [9]. In many cases, Deep Learning
(DL), a type of Machine Learning (ML) method, does not require prior expert
knowledge for its learning (an obvious exception is Neuro-Fuzzy techniques).
Therefore, it generally needs less manually engineered feature extraction and
specialist knowledge [10]. DL can detect patterns in raw data by transforming
it into higher and more abstract level representations - a function that is very
interesting for cybersecurity zero-day vulnerability/ exploit detection. Similarly,
DL is used to abstract malware’s behavioural features and anomalous activities
and can then be used to detect its existence in a system [11, 12].

AI as a cybersecurity tool is expected to capture a large market and it is clear
that AI has the potential to impact the cybersecurity space [13]. Furthermore,
there is sufficient market interest in both commercial (financial incentives) and
academic research. In this paper, we discuss the challenges of deploying AI-based
techniques (ML/ DL) to security domains as a general security tool and highlight
the difference between the theory and practice. The discussed challenges come
from the technical development and exploration of DL methods in the context of
cybersecurity – showcasing the fact that DL techniques in themselves are not the
panacea but mearly a tool that requires a number of correct (and in some cases
trustworthy) features to be effective. It is understood that there is a potential
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to mislead an ML/ DL deployment as discussed in existing literature [14, 15],
which is not the focus of this paper.

The robustness of DL is stated in [14] as inversely proportional to the potential
of an attacker’s ability to find adversarial examples, which can impact the accuracy
of detection and classification of a threat. However, we argue that robustness, no
doubt an important feature, is not just dependent on the attacker’s ability to find
adversarial examples. It is also affected by the interdependent relationship of input
data, its accuracy and trustworthiness, its feature-richness, how representative the
data is of all possible case scenarios, and the potential of adversarial samples. We
will discuss these features in further detail throughout the paper. Furthermore, we
examine ML/ DL not only from the view of theoretical and feature/ ability specific
limitations but also from the view of practical challenges related to implementation
and deployment. For the most part, existing papers focus on discussing a specific
model’s success rate and implementation/ deployment challenges. They do not
include discussions on the general challenges related to ML/ DL deployed as
security and privacy mechanisms.

1.1 Structure of the Paper

Section 2 elaborates on the existing academic work that has shown the promise of
ML/ DL as an automation tool for security and privacy practices. In Section 3, we
dive into the technical discussion of DL and how automation based on it is designed
and developed. The discussion is derived from the author’s first impressions and
practical experience coming from a security background. Section 4 articulates
the practical considerations that a security practitioner has to take into account
when working on DL deployment. Section 5 is a list of DL features that would
make the technology a useful security tool for cybersecurity practitioners.

2 Security and Privacy by Deep Learning

In this section, we survey the types of security and privacy services and applica-
tions in which DL has been deployed successfully – as represented by academic
literature.

2.1 Deep Learning for Security and Privacy

The set of security and privacy services that are being explored in academic
literature to be the target deployment scenarios for DL are as follows:

1. Malware Detection: Efficient pattern recognition in large datasets is what
ML/ DL is purpose built for. A number of proposals are put forward in
academic literature that identify malware with high accuracy [16, 17]. In
most of these proposals, pattern recognition is based on a particular behaviour
(communication, syscall and resource usage/ utilisation patterns, etc). For
an adversarial entity, the objective is to hide or exhibit its behaviour within
the scope of genuine applications to avoid detection.
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2. Anomaly Detection or Network Intrusion Detection: Both anomaly and
network intrusion detection by ML/ DL rely on network traffic analysis to
find usage and communication patterns that represent an abnormal behaviour.
It is important to keep in mind that anomalous behaviour is not necessarily a
set of activities that are prohibited by system policies (security/ privacy). It
is just an out-of-the-ordinary activity that can be genuine or malicious. For
example, user A has access to client records. Usually, user A only accesses
one record a day, but today user A accesses the entire list of clients. If
the access control policy only focused on access (may user A access client
records?) and not on frequency (how many client records can user A access?),
accessing all client records would be a permitted action and not suspicious.
However, this action might be anomalous. Such classification and detection
of out-of-pattern usages fits nicely within the current capabilities of ML/ DL
technology [18]–[20].

3. Distributed Denial of Service (DDoS) Detection: DDoS can be viewed as an
anomalous request to access a particular resource. Therefore, ML/ DL can
efficiently identify out-of-pattern access requests based on the access patterns
to a particular resource (e.g. a website or an application) [21, 22].

From the above list, we can ascertain that DL is not widely used for privacy-
preservation techniques. There is a potential for exposing data on user access
patterns based on the user connection graph, especially in the context of data
flow analysis. These domains might have unique patterns that can be useful for
an effective DL deployment but an academic literature search for applications of
DL in these fields did not yield substantial results. Below, we explain some of
the identified privacy related services that might be suitable for DL deployment
but limited work has been carried out in academic literature:

1. Data Flow Analysis: The flow of data between any two entities can reveal
data consumption in an organisation. For example, the flow of data between
the consumer database and marketing teams can represent potential value
to consumer profiling, targeted marketing, and campaign analysis. The data
flow and usage in a specific enterprise have a set pattern, even when only
looking at individual features such as ‘data flow’ and the actual ‘contents of
the data’. Therefore, ML/ DL can be used to identify anomalies in the usage
of data based on its analysis, and the resulting anomalous data flow patterns
could be very useful for an Intrusion Detection System (IDS) or Intrusion
Detection Prevention (IDP) but not as a privacy preservation function.

2. Data Exposure Potential : Whether in an enterprise environment or in per-
sonal settings, individuals have a circle of other individuals with whom they
communicate. A community map for each individual can be constructed
based on these communication patterns which can represent not only ‘with
whom’ individuals share information but also ‘what information’ is being
shared with their community. For example, an individual shares one type of
information with only a subset of the individuals in his/ her community. This
is easily classifiable and based on the patterns, ML/ DL can predict whether
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information accessible to an individual at a particular point in time has a
high probability of being shared with certain other individuals. This analysis
can be used to build a data exposure prediction which could be a useful
tool for privacy-preservation and assessment. Furthermore, in the event of an
information leakage, an analysis of the data flows and the probability of data
exposure can be incorporated into the forensic investigation to quickly find
any potential points (individuals) that could have leaked the information.
The potential of ML/ DL has not been fully explored in the context of data
exposure in current academic literature. We believe that the application of
ML/ DL for such analysis shows a lot of promise.

Most of the existing literature about privacy and DL is focused on how to
design DL methods in a manner that does not violate the users’ privacy [23]–[25].
Another application of DL in privacy is to build recommendation systems for
users. For example, Yu et al. [26] put forward a privacy setting recommendation
system (iPhoto) for photo sharing based on image analysis. Most dimensions
related to DL and privacy are beyond the scope of the this paper. The scope of
the paper is how DL itself can be used as a privacy-protection mechanism.

3 Deep Learning - A Deeper Look at its Application

In this section, we explore the technical aspects of understanding and deploying
DL. The discussion revolves around the pre-requisites for DL deployment, the
tools that can be used, and DL optimisation. Readers are referred to consult
the survey by Zubair et al. [27] for an in-depth analysis of DL structures and
methodologies.

3.1 Representation Learning

DL uses representation learning algorithms to automatically identify complex
hidden structures in large datasets [10]. Relations between parameters can be
more or less hidden depending on the features present in the data. Representation
learning works to solve this problem by transforming raw data into a more useful
representation for detection and classification predictors by highlighting the
important dependencies [28]. The challenge is to generalise as much as possible
while also preserving most of the information in the original dataset.

DL implements the learning technique in the form of a model, a concatenation
of multiple, relatively simple layers that each perform a transformation on the
data [28]. The layers’ input is either raw data (input layer) or the previous layer’s
learned representation of its input (hidden and output layers). This leads to
automatically identified, hierarchical levels of abstraction, also called feature
extraction, with higher level features defined as a composition of lower-level
features [29, 30]. During the training phase, the model adjusts the internal
parameters used to transform the data to achieve a more useful result [10].
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3.2 Data Normalisation

DL models rely heavily on data as it is the basis of the pre-training and training
phases, which in turn underlie the specialisation of a model to a task.

DL does not need a perfectly curated dataset due to its learning scheme.
Semi-supervised techniques have been shown to alleviate problems, however,
a new training strategy and a better cost function could make training on
incomplete and noisy data sets more efficient [31]. Whitening data is a known
way of speeding up training convergence, readers are referred to [32] for details
on how to transform the input data.

Ioffe and Szegedy [33] describe batch normalisation, where normalisation
is embedded in the model architecture as another method to reduce training-
times. It works towards fixing the distribution of the layer’s inputs and thereby
solves the problems introduced by internal covariate shift. Internal covariate shift
describes the fact that the layers’ input distribution continuously changes during
training due to the internal parameters updating [33]. The difficulty in changing
the dataset in any way is to preserve as much of the original information as
possible. This can be achieved by normalising the training examples relative to
the entire training data [33]. Other, less efficient ways of combating covariate shift
include lowering the training rate and careful parameter initialisation. Using DL
in combination with Big Data is a popular concept in the industry, however, there
are many challenges that need to be overcome. The three V’s model identifies
them as volume, variety, and velocity.

Chen and Lin [31] provides the authors’ thoughts on how to solve these
problems. According to the authors, the large volume of Big Data (number of
inputs, number of represented classes and high dimensionality of the entries)
cannot be accommodated by a single machine due to its limited memory and
computing capacity. A distributed framework would be more suited to the task.
DL has been successfully utilised for the integration of heterogeneous data, e.g. [34]
and [35]. Therefore, the authors believe that DL methods can be applied to Big
Data’s large variety of data structures with further optimisation work. They
propose online learning to combat the velocity (how quickly data is generated).

There are many large datasets ranging across a wide selection of categories
publicly available which can be used in training and testing networks. Examples
are the MNIST database1 of handwritten digits and the Google Audioset2, which
includes thousands of labelled audio clips. Kaggle3 is a platform that hosts ML
competitions and maintains public datasets.

3.3 Designing Deep Learning Models

There are different neural network architectures used in DL, each with their own
advantages and disadvantages. Convolutional networks are a type of feedforward

1 http://yann.lecun.com/exdb/mnist
2 https://research.google.com/audioset
3 https://www.kaggle.com
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network that are designed to process multidimensional signals such as images
and video [36], whereas recurrent networks are adapted to work with sequence
data which makes them more difficult to train but applicable to natural language
processing (NLP) challenges [37]. Deep Belief Networks (DBNs) are made up of
several layers of restricted Boltzmann Machines (RBMs) and are useful for when
the training data set is made up of both labelled and unlabelled entries. They
often perform better than networks trained only with backpropagation [36].

The training distribution and structure can be an important factor in the choice
of model and learning method. Supervised learning methods require labelled data
and tend to have good results when large quantities of data are available [29].
They adjust the model’s internal parameters based on the training loss, calculated
by comparing the predicted output to the expected output as defined by the data
entry’s label. When it comes to unsupervised learning, the ultimate goal is to
abstract the raw data in a way that identifies the important factors of variation
that apply to all classes. Bengio has had success applying a transductive strategy
by using linear models such as Principal Component Analysis (PCA), among
others, as some of the network’s layers [30]. Semi-supervised learning makes
use of both labelled and unlabelled data. The RBMs that make up a DBN are
pre-trained with an unsupervised greedy layer-by-layer algorithm and the whole
model is then fine-tuned with labelled data and backpropagation. DBNs often
perform better than networks trained solely with backpropagation [36], as the
combination of non-linear layers in a model can be sensitive to the initialisation
values. Pre-training, as used with DBNs, can mitigate this sensitivity [29].

When it comes to optimising a model’s accuracy, tuning the hyperparameters
is an important step. They are values that directly influence the training of a
neural network by configuring a model’s complexity and the learning process [38],
both of which are critical to the model’s performance. However, finding the ideal
values for these parameters can be very difficult as fine-tuning is often based on
experience. According to Bengio, there are two common ways of optimising a
model’s performance through the choice of hyperparameters: manual trial and
error and a grid search. Both approaches run into problems when the number
of parameters is too large [30]. Readers are referred to [30] and [39] for a more
efficient optimisation based on random search and greedy exploration. The number
and type of parameters differ between models and learning algorithms. Some of
the most common include the learning rate, momentum, number of hidden units,
number of epochs and batch size.

Training large, distributed networks is slow, as the use of parallel resources
is very inefficient. Denil et al. introduce a way to reduce the number of free
parameters without dropping the accuracy, as many parameters can be predicted
and are, therefore, redundant [40].

Over- and underfitting describe situations where a neural network has not
learned the ideal generalisation of the training data which leads to poor per-
formance when new data is introduced. This can also be described as the bias/
variance dilemma, a trade-off between high bias and high variance [41]. Common
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metrics such as training and test error are used to analyse the accuracy of a
model can help identify over- and underfitting.

High variance means that a model fails to differentiate between the signal
(the general, underlying pattern) and the noise (dataset-specific randomness) of
a dataset. In other words, an overfit model has failed to sufficiently generalise
the features of its specific training distribution and therefore performs poorly on
previously unseen data, as it has no general knowledge it can apply. Overfitting
can occur with a complex model whose learning algorithm has a low bias and
a high variance. Cross validation is a proven method of preventing overfitting
by stopping training before the specification becomes to high [42]. The point in
time at which to stop training is identified by comparing the model’s accuracy
on the training data to its accuracy on the unseen testing data. Training is
stopped if the difference starts growing or is deemed too large, also called early
stopping. Reducing the number of parameters is another method of combating
overfitting [42]. Dropout layers have also been shown to be successful because
they prevent the co-adaption of a network’s hidden units [29]. They introduce
unpredictable noise into the data by dropping random parameters in each training
iteration.

Bias describes the difference between the model’s expected output and the
correct values. High bias occurs when the model is oversimplified and does not
have enough flexibility to capture the underlying relations of features present in
the data or when there are insufficient parameters. A model is said to be underfit
if it has a low variance but a high bias and this can be identified by a high error
on both the training and the test data. A possible solution to this problem is
changing the model’s structure and parameters so that it better fits the problem
to be solved.

Bias and variance are inversely related. The ideal model minimises the ex-
pected total error of a learning algorithm, which is defined as the sum of squared
bias, variance and irreducible error. While bias and variance are reducible, the
irreducible error comes from modelling the problem itself.

3.4 Deploying Deep Learning Methods

There are many open-source tools and frameworks that support DL which can
vary greatly in overhead, running speed and number of pre-made DL components.
Following are short descriptions of a small selection of them.

TensorFlow4 is a Python-based library with automatic differentiation ca-
pabilities that supports both ML and DL. The high-performance numerical
computations, modelled as data flow graphs, can be applied to other domains as
well. TensorFlow is used by companies such as Google, Uber, and AMD.

PyTorch5 is another such library which enables rapid research on ML networks.
The focus lies on extensibility and low overhead, which is possible because the core
logic is written in C++. It also supports reverse mode automatic differentiation,

4 https://www.tensorflow.org
5 https://pytorch.org
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which is the most important type of differentiation for DL applications [43] and
distributed training. In 2017, Uber AI Labs released Pyro6, a deep probabilistic
programming language (PPL) based on PyTorch.

Caffe7 is a C++ library that provides interfaces for Python and MATLAB [44].
It is a clean and modifiable framework, due to the fact that the model’s represen-
tation is separate from the model’s implementation [45]. It is very fast in training
convolutional networks and allows for seamless switching between devices (CPU
and GPU).

MATLAB8 can be used for DL among other things and allows users to build
and analyse models, even with little expert knowledge in DL. It provides access
to models such as GoogLeNet and AlexNet and is compatible with models from
Caffe and TensorFlow-Keras. MATLAB also supports collaboration with the
PyTorch and MXNet frameworks.

MXNet9 is a very versatile DL framework which supports imperative and
symbolic programming as well as multiple languages, such as C++, Python,
R, Scala, MATLAB and JavaScript. Its running speed is similar to Caffe and
significantly faster than TensorFlow. It is used by both AWS and Azure, among
others [44].

4 Practical Considerations of Deep Learning Deployment

In this section, we discuss the challenges related to deploying DL as part of the
cyber security and privacy-preservation mechanism. We discuss three major issues
related to the DL, which is in no way an exhaustive list. However, the problems
listed in this section have a significant impact on current DL implementations.

4.1 Training Data Set

Any DL technique requires training to achieve specialisation for a task, therefore
the training data set and its structure are very important. There are two crucial
elements about the training data set: a) feature-richness and b) trustworthiness.

Feature-richness means that the training data should include an extensive
collection of information so that the DL model can identify as many features as
possible, which will help it differentiate between genuine and malicious behaviours
accurately once it is deployed. Features have to be as extensive as possible; For
example, data related to an activity should cover as much information about that
activity as possible so a malicious entity has as very little room to manoeuvre
and trick the deployed DL system. Furthermore, the training data should include
a diverse set of behaviours. If a training data set is representative of a behaviour
set, the algorithm has a better chance of accurately classifying features in it. If
the behaviour set is not comprehensive, any behaviour that is not part of the

6 http://pyro.ai
7 http://caffe.berkeleyvision.org
8 https://uk.mathworks.com
9 https://mxnet.apache.org
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set might be miscategorised because the DL model could fail to differentiate
between a genuine and malicious behaviour correctly. This failure is due to the
fact that DL builds its knowledge base of genuine and malicious behaviour from
the training dataset during the training phase. One of many learning techniques
is re-enforced learning. Many learning techniques can open up a potential avenue
for an adversary to modify the behaviour classification of an ML/ DL system.

The second crucial element is the data’s trustworthiness. As one of the most
important elements of DL, data should be sourced from a trusted environment
and this is also true for malicious activities captured (and tagged) for the training
data set. The challenge is to capture malicious activities in a trusted manner from
a real environment or a lab simulation that accurately depict how an attacker
could behave. As a note, training is carried out on a data set that represents
‘past’ attacks (known attack patterns) and will not necessarily be representative
of ‘future’ attacks (unknown vulnerability and attack patterns). The challenges
related to new and unknown attacks are further discussed in Section 5.

4.2 Adversarial Samples

There is extensive work in academic literature that discusses the impact and
limitation of ML/ DL against adversarial samples [46]. From a deployment point
of view, security and privacy practitioners have to keep in mind that a deployed
DL system can be susceptible to adversarial samples. This means that an attacker
could influence the DL model’s training to learn malicious activities as genuine.
By doing so, attackers are enabled to accomplish their goal without DL detecting
and flagging them. The challenge related to adversarial samples is crucial, as
organisations deploying DL based security and privacy mechanism would prefer
for them to evolve over time, thereby accommodating the increasing sophistication
in the threat landscape. However, allowing the evolution of a DL model after
initial training opens it up to adversarial samples. On the other hand, a DL
technique restricted to the initial training is not flexible and extensible, two of the
important functions DL needs to cope with the challenges of cybersecurity and
privacy. A potential middle ground could be to select a DL technique that is the
least susceptible and designed to withstand adversarial samples. Unfortunately,
even with such methodologies, the likelihood of adversarial samples cannot be
completely removed. Therefore, adversarial samples are a threat vector that will
see more sophistication in the future as more and more organisations deploy ML/
DL based cybersecurity and privacy-preservation mechanisms.

4.3 General Data Protection Regulation (GDPR)

Organisations dealing with EU citizens’ data have to comply with GDPR reg-
ulations. GDPR gives a number of rights to consumers, among which are the
two that we are going to discuss in this section: Right-to-Know (RtK) and
Right-to-Rectification (RtR).

When it comes to processing user data, the Right-to-Know (RtK, Article
15.1.h) states that data subjects have the right to know about the “the existence
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of automated decision-making, including profiling, referred to in Article 22(1) and
(4) and, at least in those cases, meaningful information about the logic involved, as
well as the significance and the envisaged consequences of such processing for the
data subject” [5]. This article requires the availability of meaningful information
about the processing method used to process users’ data. As discussed before, DL
is chaotic in many instances and the steps taken to reach a particular decision
might have limited traceability or support for reverse-engineering. As an example,
a user is in his or her rights to request information on why they received a
certain result from an organisation. The organisation then has to explain how the
user’s data was processed by the company’s AI to generate that particular result.
GDPR also holds firms accountable for bias and discrimination in their automated
decisions. The challenge of explaining how DL has reached a specific decision
becomes paramount – an aspect of DL that has not been extensively investigated.
To what extent DL’s choice can be explained and whether that is an acceptable
and, more importantly, meaningful explanation to the regulatory-authorities and
consumer needs to be further researched.

The Right-to-Rectification (RtR, Article 16) states that “[t]he data subject
shall have the right to obtain from the controller without undue delay the
rectification of inaccurate personal data concerning him or her” [5]. If a user
exercises RtR, they request changes to their personal data stored in the system.
How these change in the data will impact previous processing and leaning, which
are now based on incorrect data, is still a big question. The challenge is to make
DL rectify its input data selectively post-processing in a manner that does not
require a complete retraining.

On a side note, depending on how DL is deployed, the Right-to-Forget (RtF,
GDPR Article 17) might have an impact if a sufficient number of consumers/
users request their data to be deleted. At that point, the knowledge set reflecting
the behaviour of an organisation’s consumers/ users will not be accurate anymore.
How this impacts DL’s subsequent decisions is still unclear and requires further
investigation.

As a cyberseucrity and privacy practitioner, a clear view of the needs and
visions for a DL deployment are necessary. There are plenty of unanswered
questions related to DL in terms of research (Section 5), operation, and legislation
(GDPR). It is safe to say that this technology has the potential to be beneficial
by improving security and privacy-preservation. However, the pertinent question
is whether it is ready and mature enough to be deployed extensively as a security
and privacy mechanism. The answer to this is complex and depends on multiple
factors, including:

1. Organisational requirements and the prioritised security objectives.
2. How the organisation envisions using ML/ DL, keeping in mind that ML/

DL are not silver bullets.
3. Understanding the limitations of ML/ DL and complimenting these techniques

with traditional security and privacy measures.
4. Accepting that ML/ DL are in the early stage of development and might

go through many developments and improvements in the next few years,
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therefore deployed systems will have to keep up with rapid change (flexibility,
extensibility, and scalability).

5 Research Challenges for Deep Learning

In this section, we put forward list of relevant topics and questions for ML/ DL
research from the perspective of a cybersecurity practitioner.

1. Policy change impact analysis : In an enterprise environment, policies change
regularly, and can be related to the security and privacy aspects of the enter-
prise. The impact assessment of such policies on the enterprise environment
is based on human experts’ knowledge. If the enterprise has deployed ML/
DL as a security and privacy measure, policy changes need to be reflected in
the ML/ DL method’s learning and execution. To the authors’ knowledge,
there is no evaluation of how dynamic policies will impact currently deployed
ML/ DL implementations. Therefore, predictive impact analysis of policy
changes on DL based security and privacy mechanism would be a important
step forward.

2. Defining a new policy : An organisation’s security and privacy objectives are
specified by policies and rule-sets. In existing DL, these policies and rule-sets
are represented in the labelling of individual records in the training data set.
If the policy changes after the deployment of a DL based system, the available
option is to generate a new training dataset based on the new policies and
retraining the DL model. Generating the training data set and retraining can
be considered costs in terms of performance and time. The challenge is to
cut down this cost and make policy changes as similar to traditional security
mechanisms like firewall, access control and IDS, to name a few.

3. Preparing DL to cope with the ‘future’ : The cybersecurity and privacy land-
scape is constantly evolving. To cope with this change, DL has to be flexible
and have the ability to learn new patterns even after deployment. Further-
more, prior knowledge already learned by a particular instance of DL is
valuable, and the ability to transfer it to other instances (for example among
multiple organisations) would vastly improve the readiness of the collective cy-
bersecurty field. A potential path forward could be to develop DL techniques
with lifelong learning capabilities.

4. Isolated or Collaborative Learning : Isolated learning has its pros and cons. The
positive side is that as an organisation, the training set will include behaviours
specific to your organisation. However, this also means that unless you
experience a cyber attack, you will not be able to profile it. With collaborative
learning, if a single instance of the collaboration experiences a cyber attack,
its profiling can then be shared with the other instances in the group. This
has the potential to rapidly improve security countermeasures against new
and previously unknown attacks. Collaborative learning introduces some
additional challenges, such as:
– Knowledge based collaboration: In collaborative learning, should algo-

rithms share their learned knowledge or simply share the raw records
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of the out-of-profile observations? It also requires a method for sharing
prior knowledge between multiple DL instances.

– Raw records based collaboration: Sharing raw records seems simple, as each
instance can run its own learning process over it. However, this could leak
security sensitive data and violate privacy requirements. For raw records
based collaboration, efficient and strong anonymisation techniques have
to be developed. This anonymisation technique has to protect privacy
and security sensitive data but at the same retain sufficient features so
that it is still useful for training other DL instances.

5. Making deep learning forget : There are a number of situations where it is
preferable to make the DL de-profile specific records from its knowledge base.
For example, a) the discovery of malicious data in the training data set that is
now required to be re-labelled as malicious, b) removing adversarial samples
from the DL knowledge and c) if a consumer/ user exercises RtR (Right-
to-Rectification) or RtF (Right-to-Forget) under GDPR. In such situations,
DL techniques need to ‘forget’ about certain records. How to achieve this
seems to be an open question that will be crucial in a future with increased
awareness about privacy in the general public and adversaries successfully
training DL implementations with adversarial samples.

6 Conclusion

In this paper, we briefly explore the potential, practicality, implications, and
shortcomings of DL mechanisms in fields such as security and privacy preservation
mechanisms. There are numerous proposals in academic literature that advocate
the success of DL as an effective mechanism for cybersecurity. We do not evaluate
their claims in this paper. We view DL as a mature domain and evaluate how a
security practitioner would go about deploying it, what challenges and issues they
would have to overcome, and what options are available to resolve some of these
issues. We are of the opinion that DL has come a long way and can potentially be
applied to security and privacy functions with a defined set of static behaviours.
In such situations, DL can efficiently detect any behavioural violations with high
accuracy. However, it is too early to consider it an extensively useable security
measure in its own right. DL has a long way to go before it is mature enough to
be deployed as a standalone Unified Threat Management (UTM) environment.
In this paper, we have discussed the aspects an organisation should keep in mind
when deploying a DL based solution. In addition, we have also included a list of
features that would be useful to security practitioners if they can be provided by
the DL base mechanisms.

In conclusion, DL has a lot of promise and with the right features, it could
become an impactful tool in the security and privacy arsenal. With the increase of
sophistication and complexity of future technology in the current infrastructure,
AI-based security and privacy countermeasures (ML/ DL) might be the next
logical step. For this reason, cybersecurity researchers have to become active
participants in the ML/ DL evolution, rather then just deploying them to security
and privacy problems as off-the-shelf kits.
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