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Abstract. Lightweight cryptography is at the heart of today’s secu-
rity needs for embedded systems. The standardised cryptographic algo-
rithms, such as the Advanced Encryption Standard (AES), hardly fits
the resource restrictions of those small and pervasive devices. From this
observation a plethora of Lightweight Block Ciphers have been proposed.
Every algorithm has its own advantages in terms of security, complex-
ity, latency, performances. This paper presents first a classification of
some popular Substitution-Permutation-Networks (SPN) class of light-
weight ciphers according to their architecture and features which share
many common operators. From this last point, we studied a round-based
generic hardware architecture that allows a security architect to dynam-
ically change the lightweight cryptographic algorithms to be executed.
The results of the ASIC implementation show that the configuration
part of the proposed flexible architecture adds significant complexity. If
compared with the parallel implementation of several algorithms, the
complexity ratio becomes interesting when the number of algorithms (or
the level of agility) increases. For instance, if we consider 6 SPN ciphers,
the configurable architecture provides a complexity reduction of 62.5%,
whereas there is no reduction with 4 algorithms.
Keywords: Lightweight cryptography, SPN, ASIC, Configurable Archi-
tecture.

1 Introduction

With the intense development of small and pervasive computing devices, as IoTs
and their ability to communicate through insecure networks, it becomes essential
to add security features. Indeed, from connected homes to connected vehicles or
medical devices, security is at the heart of tomorrow’s issues as it will affect our
private lives as much as our health. Hence, all these devices need to be protected
using sound cryptography in order to get a good level of confidentiality, integrity
and privacy. Such devices are constrained by a low complexity with restricted
chip area, memory and energy, while still needing communication channels. The
security of these devices and the sensitive data they process have to be addressed
by a new generation of Lightweight Cryptography algorithms which provide a

mailto:firstname.lastname@telecom-paristech.fr


good compromise between security and complexity in terms of area, latency and
energy.

The most common standard symmetric-key cryptographic algorithm used
to secure digital information is the Advanced Encryption Standard (AES) [22].
However, AES does not fit the strong restrictions of small embedded systems.
This observation led to the development of Lightweight Block Ciphers. Plethora
of such ciphers are available in the literature [7]. The NIST has started a
project [19] to develop a strategy for the standardisation of lightweight cryp-
tographic algorithms. Some of these algorithms are based on the same basic
computation steps as AES since they use a Substitution Permutation Network
(SPN) structure [17], some others use Feistel networks as DES [24]. Out of these
numerous algorithms, none have emerged as a clear favorite in terms of becom-
ing a NIST standard. PRESENT [8] has been accepted as an ISO standard [15],
but the impact of standardisation was not as significant as AES. Actually, this
means first, that the security of these algorithms is not officially recognised by an
authority. Second, that some industrial may use modified versions of those algo-
rithms, loosing interoperability and eventually weakening the algorithm. Third,
since the demand for such algorithms is increasing and the maturity of some of
them is becoming evident, the NIST might eventually standardise one of them
rendering obsolete actual devices or protocol implementations. From these three
last points, it appears that the possibility to use a flexible architecture allow-
ing the user to change afterwords the cryptographic algorithm is an interesting
feature. Moreover, this "agility" characteristic increases the security level as the
attacker is thwarted by the unsteady nature of the cryptographic computing. The
point is to know if such flexible architecture is feasible in terms of complexity
and other physical constraints.

We could think this objective could be made possible thanks to the com-
mon operators of SPN algorithms. But the cryptographic algorithms were de-
veloped focussing on different features and the SPN operators have thus been
implemented in different manners Most algorithms focus on area, others such as
PRINCE [9] and MANTIS [6] focus on latency thanks to a specific structure,
inspired by SPN, called α−reflection. The objective of low energy consumption
is tackled by MIDORI [3] and PICCOLO [23]. It arises the question of how sim-
ilar those algorithms are, and if these similarities can be used to design a unique
hardware to implement them. This would permit the deployment of those block
ciphers, while being ready to switch as soon as a standard emerges. This Generic
Architecture would also have the advantage of allowing algorithms to be slightly
modified or tweaked if necessary. The basic idea to develop such an architecture
is that the SPN structured algorithms share similar functions. Those functions
can be grouped within steps which have the same function but do not work in
the same way. These steps are further detailed in chapter 2.

An original fine-grain FPGA [20] has already been proposed. It is based
on the utilization of Full-adder configurable cells. Other flexible cryptographic
architectures have been proposed [25], [12] or [18] which focuses on an agile
permutation layer but none of these targeted specifically lightweight cryptogra-



phy. We propose in this paper to study a coarse-grain approach by taking into
account the common operators found in the Lightweight algorithms. However,
even if some operators are very close, the Feistel class of algorithms are too far
from the SPN in terms of scheduling. Therefore, the study targets the SPN class
only.

Our contributions. In this paper, we first propose a classification of light-
weight cryptographic algorithms according to their internal scheduling and func-
tions. From this classification and a detailed study of the differences between the
selected SPN algorithms, a generic round-based hardware architecture has been
proposed. It can be configured for different levels of agility in order to handle
some or all families of ciphers. The permutation layer (P-layer) which is quite
specific to each algorithm has been deeply investigated. A third contribution is
the evaluation of the generic architecture and the comparison with implementa-
tions of independent lightweight cryptographic ciphers.

The paper is organised as follows. Section 2 presents the classification of the
different families of SPN lightweight algorithms. It focuses on the different func-
tions which require specific hardware modules. Section 3 describes the design of
the generic architecture. The overall architecture alongside the design of each
step. Section 4 justifies the different design choices of the P-Layer, as the archi-
tectural optimisations in the P-Layer are strongly related to the requirements
of each family of algorithms. Section 5 discusses the results of the architectural
implementations. The hardware resources usage for different levels of agility are
presented and compared to direct implementation of the algorithms. Finally,
Section 6 concludes the paper.

2 Classification of the algorithms

There are multiple ways to classify symmetric cryptographic algorithms, the
main category used is the structure of the algorithm. An algorithm has either
a Feistel structure (SIMON and SPECK [5]), an SPN structure (AES) or a
structure derived from SPN (PRINCE [9], PICCOLO [23]).

Our study focuses on implementing SPN and SPN-like algorithms, as their
functions are similar enough to be handled by the same hardware, and a large
proportion of lightweight cryptographic algorithms use this structure. The SPN
algorithms are composed of three steps:

– The Sbox: S, which corresponds to the confusion
– The P-Layer: P, which corresponds to the diffusion
– The AddKey: K, which corresponds to the addition of the secret

SPN Algorithms can differ by the order in which they execute those steps.
This allow to classify them into three families based on the relative order of these
steps. The first type is the SKP-type (SKINNY [6]), for which S is followed by
K, itself followed by the P-layer. The second type is the SPK-type (MIDORI [3],
GIFT [4], PRESENT [8]), for which S is followed by the P-layer, itself followed
by K. On the one hand, each family can be implemented without changing the



order, simply by changing the first step of the algorithm. On the other hand, the
two families are not coherent and require extra modules to be handled by the
same architecture. Note that it is also possible to handle both these families by
adding computation to the key since the P and K are both linear layers. The
last family is that of the α− reflective algorithms (PRINCE [9], MANTIS [6])
which change the order of the steps during the encryption.

Table 1 presents a classification proposal.

Table 1: Classification of Lightweight Ciphers sub-blocs
Algorithms GIFT PRESENT SKINNY MANTIS PRINCE MIDORI

SKP X
SPK X X XStep order

α reflection X X

bit-level X XPermutation nibble-level X X X X
Matrix None X X

4 × 4 matrix X X X
P-Layer

Multiplication 64 × 64 matrix X

Sub key extraction A B C C C
Rotation X X X
Sbox XKey Scheduling

Round constant X X X X X X

The P-layer P has two main types of permutations, either at the bit-level
(PRESENT [8], GIFT [4]) or at the nibble-level (SKINNY [6], PRINCE [9]).
These two different approaches require more or less complex permutation mod-
ules and implementing one but not the other has an influence over the cost of
the permutation. An additional matrix multiplication can be used. It can be a
4 × 4 multiplication of the nibbles (SKINNY [6], MANTIS [6]) or a 64 × 64 mul-
tiplication on the whole word (PRINCE [9]). PRESENT [8], GIFT [4] do not
use matrix multiplication. Each type represents different levels of complexity,
especially if we consider the resources to store the matrix values. Finally, though
most algorithms only use one Sbox, α − reflective algorithms (PRINCE [9],
MANTIS [6]) use two Sboxes: the Sbox and its inverse.

The Key Scheduling block is in charge of generating the round keys. Key
Scheduling is done in very different ways from one algorithm to the other. De-
spite basic operations such as rotation or the use of round constants, the Key
scheduling uses different functions applied to different parts of the key. Indeed,
the sub-key generation is rather complex to unify as extracting different groups
of bits of variety of size is hard to achieve in hardware without great increase
in the design size. For example, GIFT [4] divides the entire key in 16-bit words
and extracts two of them (A type), PRESENT [8] extracts two nibbles (B type)
and use the Sbox. In other algorithms such as PRINCE [9] and MANTIS [6] the
key is divided into two parts (C type) used separately. For these reasons, and
because making the key scheduling generic in hardware would be complex and
costly, we have decided to use a buffer that will contain pre-computed round
keys. The round keys will be generated by software in the configuration phase.



Table 2 presents a selection of Lightweight Block Cipher and their implemen-
tations results from the literature.

Table 2: Comparison of Area, Latency and Throughput for implementations of
64-bit block size Lightweight Block Ciphers

Cipher Ref. Tech Architecture Area Latency TPmax TP@100kHz
(nm) (cycle/round) (GE) (ns) (Gbps) (kbps)

Block size : 64-bit

PRINCE [9] 90 1/32 7996 13.9 4.56 -
[9] 90 11/32 3286 58.3 1.10 -

PRESENT [4] 90 32/32 1560 52.16 1.23 -

Midori64 [3] 90 16/16 2450 33.92 1.89 -

[6] 180 32/32 1696 59.84 0.95 177.78
[6] 180 1/32 17454 51.59 1.24 6400
[6] 180 128/32 1399 121.60 0.09 8.12
[6] 180 2048/32 1172 2170.88 0.02 2.03

SKINNY 64

[4] 90 32/32 1477 58.88 0.96 -

[6] 180 1/14 11209 20.5 3.12 -Mantis7 [6] 180 1/14 23926 11.0 5.82 -

[4] 90 28/28 1345 51.24 1.25 -
[4] 90 112/28 1113 239.68 0.06 -GIFT-64
[4] 90 2048/32 930 4784.64 0.01 -

3 Generic Architecture

In order to handle multiple algorithms with the same hardware, the architecture
is designed to be configurable.

The overall architecture is divided between the key scheduling and the con-
figurable SPN structure. Each cipher computes the three steps of the SPN struc-
ture in a specific order, and can skip some of them (completely or at a specific
round). In our design, this is achieved through the use of four 3-way multiplexers
(see figure 1) which are controlled using configuration bits. These configuration
bits need also to be different from one round to another.

For the desired functionality, there are only 15 different possible options to
order the three steps, therefore all the multiplexers can be configured with only
4 bits per round. Thus, the number of necessary configuration bits is 4× the
maximum number of rounds that the implemented ciphers need. This can be
further reduced if we store a unique configuration for all the rounds that use the
same configuration.
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Fig. 1: Overall organisation of the Generic Architecture

3.1 Key Scheduling

Initially, as with the rest of the architecture, the key scheduling of each algorithm
was studied in order to identify similarities between each of them. The issue is
that unlike the algorithm itself, which uses a set SPN structure and is broadly
similar to the standardised AES, key scheduling is achieved through a plethora
of methods. Each of these methods applies calculation specific to the algorithm.
An example would be isolating parts of the key, a few bits long, apply a certain
processing such as an LFSR or the algorithm’s Sbox to them, then each part is
reordered and the result is shifted. Not only does this general description not
fit most of the key scheduling but even if it were, being able to isolate different
amounts of different-sized sample represents a real challenge and requires an
important amount of hardware no matter the solution.

Once it had been made obvious that the variety of key scheduling does not
allow a unified implementation at a reasonable cost, a different path had to be
considered in order to obtain the used round keys. Using a configurable archi-
tecture means this architecture would most likely not work independently and
thereby require to be included within a processor system. Computing the round
keys could be done by software, prior to or in parallel with the configuration
phase and the unrolled key could be stored in a specific buffer. Obviously this
processor system, used for security applications, would have to ensure a secure



way to store and handle the unrolled key. Moreover, as the key is generally not
changed at each encryption, handling the Key Scheduling through software is
not an issue.

3.2 The Sbox: S
The S module is rather straight forward, for each of the 16 possible nibble inputs
there is an output defined through information stored within a RAM bloc. This
module is therefore similar to a LUT. The substitution of each of the 16 nibbles
is done in parallel and therefore requires 16 actual Sboxes. Most algorithms
use the same Sbox throughout the entire encryption process but some of them
require two different Sboxes. This is the case with α − reflective algorithms
which use both an Sbox and its inverse, such as PRINCE [9] and Mantis [6].
Including a second Sbox means having to store twice as much information and
add a mechanism to switch from one Sbox to the other.

3.3 The Key Addition: K
Each algorithm uses a different key for each round, called a round key, which
is computed during the key scheduling. The round key considered here is not
necessarily what algorithms call their round key, it also encompasses the round
constant if any. Thereby, the K step is simply composed of 64 Xor gates in
parallel to add the state to the software precomputed round key. The main
security issue is that the round keys need to be stored in a secure environment,
which is coherent with the natural use of encryption where the key needs to be
stored securely. This mechanism also echoes the fact that the K needs to access
this secure memory once per round, therefore once per cycle. Memory does not
usually have this feature but this can be handled by using a bypass between this
section of the memory and the K module. That part was not implemented and
is a theoretical solution.

3.4 The P-Layer: P

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15

M

s0, s4, s8, s12

Fig. 2: The Generic Matrix Multiplication

The permutation bloc P for an SPN structured algorithm can include two
different parts. The first part, equivalent to the MixColumn function of AES, is
a matrix multiplication.



This matrix multiplication (see figure 2) uses the same four bits of the input
with four different bit sets of the matrix to compute four bits of the output. This
means that the matrix multiplication uses four times 64 bits values or a unique
256 bits value. This seems like a lot but it is still smaller then a full 64 × 64
matrix.

The second part of the P bloc is equivalent to the Shift Row function of the
AES cipher. This part required a lot of attention for multiple reasons. First, in
a classic Lightweight Bloc Cipher, this part generally implemented as a simple
reordering of wires and uses no specific hardware. Second, the algorithms which
do not use a matrix multiplication require permutation at a bit level rather than
the at the nibble level as with AES’s Shift Row. Third, designing a configurable
permutation meant being able to route a signal through a crossbar-like module,
but crossbars are expensive in terms of both area and configuration memory. It
was therefore essential to find a lighter solution. The most efficient solution to
optimise those crossbars was using Banyan switches [13].

1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

16161616

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

64

Fig. 3: The Generic Permutation Function

The chosen solution (see figure 3) was based on a thorough study of each
algorithms’ requirements in terms of permutation flexibility and the crossbar-like
modules were optimised to better fit the situation (these optimised crossbar-like
modules will be referred to as Banyan switches for the rest of the paper). More
details on P will be given in section 4.

3.5 The Configuration

The generic architecture uses configuration parameters to select an algorithm.
These parameters are set during the configuration phase, before the encryption
begins. This allows the algorithm used to be changed dynamically.

The configuration memory bits are distributed throughout the architecture.
A shift register mechanism is used (see figure 4) to limit the complexity of the
external configuration interface. Once the shift register’s content is valid, the
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Fig. 4: The configuration scheme

configuration data is written by bloc in a configuration register chosen by a
selection signal.

4 Detailed analysis of the P-Layer

Each module of the Generic Architecture has been designed to allow several
levels of agility depending on the acceptable area overhead. This was achieved
by identifying the common characteristics of different algorithms and designing
the architecture accordingly. The most key part in unifying the architecture to
each algorithm was P.

4.1 Unifying the Matrix Multiplication

The matrices used for the matrix multiplication are of two types. The first type
is considering a 4 × 4 matrix composed of nibbles whose value is either F or
0 (SKINNY [6]). They are represented as 4 × 4 matrix but the multiplication
actually applies to each bit of the state’s 4 × 4 matrix of nibbles, they can
therefore be considered as 4 × 4 matrix of nibbles. The second type is a 64 × 64
bit matrix which is mostly filled with 0s but has 4 16×16 sub-matrices composed
of 1s and 0s (Prince [9]). The latter matrix are themselves composed of 16 4 × 4
diagonal matrices, therefore the 16 × 16 matrix can only have 1s placed along
the 4 × 4 matrix’s diagonals (see figure 5a).

This property makes it possible to reduce the 64 × 64 matrix to the infor-
mation on the 4 × 4 matrix’s diagonal which compose the 16 × 16 sub-matrix.
There are 16 4 × 4 matrix in each of the 4 16 × 16 sub-matrices, each of which
have 4 bits on their diagonal, which amount to a total of 4 × 16 × 4 = 256bits of
useful information. The first type only consists of a 4 × 4 matrix of nibbles with
a single bit either at 1 or 0. In this type of matrix, the value of a bit is the same
as the other bits of the same nibble, in other word the 4 × 4 × 4 = 64bits of the
matrix can be summed up as 4 × 4 = 16bits of useful information.
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Fig. 5: Unifying the different types of Matrix Multiplication

This meant that either some algorithms were discarded in order to maintain
a lower amount of required information, or they had to be harmonised. Doing so
meant turning 16 bits of information into 256 bits without changing the result
of the multiplication. This was achieved by changing every nibble of the 4 × 4
matrix into a 4 × 4 matrix, either filled with 0s if the nibble was a 0 or the
4 × 4 identity matrix if the nibble was a 1 (see figure 5b). The result is a 16 × 16
matrix with 4 × 4 × 16 = 64bits of useful information, which is the same as one
of the 16 × 16 sub matrix of the 64 × 64 matrix. The 16 × 16 matrix thereby
obtained was then duplicated four times in order to have the 256 bits of useful
information as with the 64 × 64 matrix. This choice is still costly as 256 bits is
meaningful but is much less than the 64 × 64 = 2048bits of the entire matrix.
The question remains nonetheless on whether adding the second type of matrix
is worth the cost, this will be discussed later.

4.2 Minimizing the Cost of the Permutation

Permutation was a key issue as it is usually achieved by just reordering the
wires. The overhead of making this bloc configurable could thus be significant.
The simplest way to go is to consider a 64 × 64 crossbar which would allow
any permutation but would be incredibly costly both in terms of area and in
terms of the size of configuration memory. It was therefore essential to identify



similarities between the different permutations in order to limit the area of this
module.

The result was two levels of permutations, as explained beforehand, the bit-
level permutation and the nibble-level permutation. The bit-level permutation
(PRESENT [8], GIFT [4]) allows any layer-input bit to end up as any layer-
output bit within the same 16-bit word, the restriction being that two bits from
the same input nibble may not end up in the same output nibble. This restriction
is coherent with the diffusion properties of a cipher as a bit level permutation
needs to spread the information as much as possible in order to ensure the
security. It requires four sets of Banyan switches each using the same parameters,
which apply to each of the four 16-bit words of the 64-bits state.
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Fig. 6: Detailed permutation design

It is composed of two layers (see figure 6a). Between these layers, the connec-
tion wires are fixed and cannot be configured. They link each bit of a nibble to a
different nibble. The first layer defines which bit of each nibble will be connected
to which nibble of the second layer, through the use of a 4×4 Banyan switch for
each nibble. The second layer reorders the bits within each nibble with a 4 × 4
Banyan switch for each nibble.

Nibble-level permutation (see figure 6b) works similarly and therefore, once
again, any layer-input nibble may end up as any layer-output nibble and the
restriction is that two nibbles of the same 16-bit input may not end in the same
16-bit word output. There is an exception to this rule in the case of an actual
Shift Register where each nibble is reordered but every nibble stays within the
same 16-bit word. It also requires two layers of Banyan switches separated with
transition wires, which can be configured. There is a set of multiplexers which
allows either to connect the four nibbles of a 16-bit word to four different 16-bit
words or to keep each nibble within the same 16-bit word, which is needed for
the Shift Row function. The first layer defines which nibble goes to which 16-bit
word, and the second layer reorders each 16-bit word. They each use four 4-bit
4 × 4 Banyan switches.

Finally, the Banyan Switches are composed of a set of five switches (see fig-
ure 7). Each switch allows the reordering of two inputs and is controlled by a
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single configuration bit. The 4 × 4 Banyan Switch can thus be configured to
reorder its 4 inputs to get any permutation at the output. The 4 × 3 × 2 = 24
permutations can be controlled with only 5 configuration bits. This structure
allows to reduce the area in terms of logic and configuration memory.

5 Implementation Results

The architecture was implemented targeting the Cadence Free45PDK standard
cells library. Post synthesis results are used to evaluate the area and complexity
of our design.

First the generic architecture complexity is evaluated for different levels of
agility. Second the generic architecture is compared to the cost of implementa-
tion of classic Lightweight Block Ciphers to identify the gain of using such an
architecture.

Table 3: Cost of architecture’s sub-parts for the level of agility III
CostSub-part Area GE Area percentage

Route_Mux 695 678
Sbox 348 339

Permutation 956 932
Multiplication 1390 1355

Configuration

Other 87 85

26.9

Route_Mux 2791 2720 21.6

S 1784 1739 13.8

Permutation 2059 2007P Multiplication 744 725 21.7

K 175 171 1.4



The Generic architecture can be divided in multiple sub-parts which have
been presented in detail in chapter 3. The results of Table 3 show the cost of
each of these parts. Making the architecture agile has important over-costs. For
instance, Permutation is usually free in terms of area but making it configurable
will obviously make it costly. It is also true for S which requires a configurable
table and could not be optimised through the use of specific logic functions. The
other two main parts are also new to such an architecture as they do not exist
in a non-agile implementation of cryptographic algorithms. The Route_Mux
allows to order each step at each round and therefore uses an important amount
of multiplexers in order to select the path for the entire state. Finally, the most
costly sub-part is the configuration which gathers all the parameters used to
select which algorithm is implemented within the architecture. This last sub-part
is divided between the different aspects which need configuration. It appears that
the Multiplication requires the most important part of the parameters. Indeed,
configuration of the Matrix multiplication has a cost of 256 bits (see section 4.1)
which is a lot more that the 64 bits required for S or the 176 bits used to define
the algorithm’s route at each round. The overhead of the generic architecture is
therefore important but most of it is due to the very nature of the architecture
whose agility has a minimal cost which cannot be canceled. It would therefore
seem that this architecture is not efficient when compared to a single algorithm
but, the more algorithms it implements, the more interesting it becomes.

The next step was thereby comparing different levels of agility in order to
identify how much adding new algorithms costs. This will then lead to a compar-
ison between the cost of the generic architecture and the cost of implementing
multiple algorithms.

Table 4: Different levels agility for the architecture
Algorithm Level of Agility
PRESENT

GIFT I

SKINNY
MIDORI II

III

PRINCE
MANTIS

IV

Each level of agility, I, II, III and IV from Table 4 allows the implementation
of a certain set of algorithms. Each of these levels is compared to the cost of
each of the algorithms it can handle in Table 5.

Figure 8 illustrates the complexity reduction provided by the generic archi-
tecture when the level of agility increases. It shows that balance is achieved
around an agility of four algorithms and that once this limit is exceeded, the
generic architecture offers a real gain.



Table 5: Comparison between different levels of agility and the sum of the algo-
rithms it can implement

Area of the Sum of the
Generic Architecture ImplementationsLevel of Agility

(in GE) (complexity ratio)

I 8494 1.72
II 8245 1.96
III 9212 1
IV 9631 0.625
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Fig. 8: Complexity Ratio for different levels of agility

6 Conclusion

An implementation of a round-based generic architecture of SPN lightweight
ciphers has been presented. The results showed it was possible to compound
multiple algorithms within the same architecture to provide agility features. The
proposed architecture has the advantage of allowing to easily change the config-
uration at a round level and thus implementing the majority of SPN Lightweight
algorithms.

However, the proposed architecture has a significant complexity cost, mainly
due to the configuration logic. Compared to the complexity of a parallel im-
plementation of different algorithms, we observe a complexity reduction if more
than 4 ciphers are considered. The reduction can reach 62.5% if 6 different algo-
rithms are considered. These results are promising if agility requirement is more
important than complexity.

Apart from optimizing the design complexity by finding more optimal im-
plementations for each sub bloc, a prospect is to search for ways to implement



countermeasures against physical attacks. Indeed, specific countermeasures have
to be implemented as they have to take into account the flexibility of our archi-
tecture without significantly increasing the global complexity.
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