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Abstract. Botnets have been part of some of the most aggressive cy-
berattacks reported in recent years. To make them even harder to be
detected and mitigated, attackers have built C&C (Command and Con-
trol) infrastructures on top of popular Internet services such as Skype
and Bitcoin. In this work, we propose an approach to detect botnets with
C&C infrastructures based on the Bitcoin network. First, transactions
are grouped according to the users that issued them. Next, features are
extracted for each group of transactions, aiming to identify whether they
behave systematically, which is a typical bot characteristic. To analyse
this data, we employ the OSVM (One-class Support Vector Machine) al-
gorithm, which requires only samples from legitimate behaviour to build
a classification model. Tests were performed in a controlled environment
using the ZombieCoin botnet and real data from the Bitcoin blockchain.
Results showed that the proposed approach can detect most of the bots
with a low false positive rate in multiple scenarios.

Keywords: Anomaly Detection · Bitcoin · Blockchain · Botnet Detec-
tion · One-class Support Vector Machine

1 Introduction

Botnets are a significant threat to the Internet security. By compromising hun-
dreds or thousands of Internet nodes, attackers can coordinate distributed large-
scale attacks, which usually are very aggressive. Botnets are composed of three
main elements: bots, botmasters, and the C&C (Command and Control) in-
frastructure. Bots are regular network nodes that attackers compromise to be
under their control. Botmasters are malicious users who design the attacks and
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send instructions to bots for attacks execution. The C&C infrastructure is the
logical communication infrastructure that botmasters use to send instructions to
bots. C&C architectures have evolved over the years. Attackers have built cen-
tralised infrastructures, based on protocols such as IRC (Internet Relay Chat)
and HTTP (Hypertext Transfer Protocol), as well as distributed ones, which
rely on peer-to-peer networks [1, 8].

Attackers have also been investing in C&C infrastructures that explore legit-
imate applications to keep their operations covered. In these scenarios, bots and
botmasters operate as clients of widely used services such as instant messengers
[14], online social networks [11] and blockchains [3]. Once these services are de-
signed to share data with as many people as possible, attackers build their C&C
structure on top of them. Therefore, they have resilient environments to rely on,
which are kept up by the services’ owners. Moreover, their actions are harder
to detect because their traffic may be mistaken as the legitimate traffic from
regular clients of these services. These botnets are also referred to as stealthy
botnets [2, 14].

In this work, we propose an approach to detect Bitcoin-based botnets. In
these botnets, botmasters send instructions piggybacked on Bitcoin transactions
to the bots. These botnets are not observable in general traffic features such as
packet size, volume of packets, and bit rate, because they use the same Bitcoin
network protocols as regular users. Therefore, we assume that, in Bitcoin-based
botnets, the systematic behaviour typically found in bots can be observed in
transactions attributes such as their values, numbers of inputs, numbers of out-
puts, and addresses.

The proposed approach makes use of the One-class SVM (Support Vector
Machine) algorithm and can be divided into two main steps. First, data about
legitimate transactions are collected from the Bitcoin blockchain, which is pub-
licly available, to create a classification model with OSVM. Then, transaction
data are retrieved from network packets and compared to the model, allowing
the classification of the traffic as legitimate or malicious. To evaluate the ap-
proach, we built a controlled environment using the ZombieCoin botnet [3]. The
results showed that our approach could detect the most of the bots, keeping a
low false positive rate.

To the best of our knowledge, no other work has proposed a systematic
approach to detect Bitcoin-based botnets. The key contributions of our study
are:

– an approach to detect Bitcoin-based botnets that analyses only transactions
attributes. It is independent of traffic features such as packets size, volume
of packets, and bit rate;

– design of the detection approach based on the OSVM algorithm, which, un-
like supervised techniques, does not require samples of malicious observations
to create a classification model.

The remaining of this paper is organised as follows. Section 2 presents the
related work. In Section 3, we discuss the proposed model. Section 4 shows the
evaluation. Finally, Section 5 draws the final conclusions.



Detection of Bitcoin-based Botnets using a One-class Classifier 3

2 Related Work

Researchers have proposed multiple approaches for botnet detection in recent
years. They range from methods that do not aim at any specific type of botnet
to approaches designed specifically to Web-based, P2P, or stealthy botnets.

In [13], Wang and Paschalidis proposed a detection method that does not
have any specific botnet type as a goal. They assume that activities are more
correlated among malicious nodes than among legitimate ones, and botmasters
and attack targets present distinguishable network traffic because they commu-
nicate with many other nodes. Their approach starts by employing the large
deviations principle to detect anomalies in IP flows. It also models interaction
graphs from source/destination data in network packets and makes use again of
the large deviations principle to detect anomalies in these graphs. The outputs
of these two processes are analysed to find out the most active nodes, which are
supposed to be botmasters or targets. Then, community detection techniques
are used to identify bots from the interactions of the most active nodes.

Sakib and Huang [8] proposed an approach to detect HTTP-based botnets.
The proposed solution applies three anomaly detection algorithms in two steps.
In the first step, HTTP requests features are analysed using Chebyshev’s In-
equality, One-class SVM, and Nearest Neighbor based Local Outlier Factor to
find out if the requests were generated by human actions or bots (legitimate or
malicious). In the second step, Chebyshev’s Inequality is used to classify the bot
requests as malicious or legitimate. Hsu et al. [4] also analysed HTTP packets to
detect HTTP-based botnets. However, unlike [8], they computed metrics based
on the number of distinctly accessed servers and the payload size similarity. To
detect the bots, they compare these metrics to thresholds.

Wang et al. [12] proposed the BotCluster, a botnet detector that inspects
IP flows to detect P2P-based botnets. At first, it combines unidirectional IP
flows to turn them into bidirectional flows. Next, the system filters out non-
P2P flows using a whitelist and the flow loss response rate. Then, DBSCAN, an
unsupervised clustering algorithm, is applied to separate the legitimate P2P flows
from the malicious ones. The authors assumed that botnets behaviour presents
high regularity, as well as actions from different bots in the same botnet are
correlated, the both being observable in IP flows. Zhang et al. [14] proposed to
detect stealthy P2P botnets following a similar sequence of two steps. First, they
identified all hosts that were part of P2P communications. Next, they analysed
the P2P flows to detect the malicious ones. To do so, they selected the more
active P2P clients, considering them as bot candidates. Then, they investigated
the hosts the bot candidates interacted to. According to the authors, bots usually
communicate with the same hosts, which was observed to distinguish them from
legitimate clients.

Albanese et al. [2] also proposed a system to detect stealthy botnets. This
system explores the periodicity of traffic associated with data exfiltration using
periodogram analysis. Additionally, the authors discussed techniques to find the
best places in the network to deploy the solution, and the use of moving tar-
get defence to neutralise stealthy bots evasion movements. Venkatachalam and
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Anitha [11] proposed a system to detect Stegobot, a stealthy botnet proposed
by [6] that makes use of steganography to leak the target data in images shared
on online social networks (OSN). The proposed system extracts features from
OSN profiles regarding uploaded images, level of activity, and relationships with
other profiles. Then, these profiles are classified into legitimate or malicious by
supervised classification techniques such as SVM, k-Nearest Neighbour, Decision
Tree, and Naive Bayes.

Unlike the previous work [12–14], in this work we do not rely on IP flow anal-
ysis. In Bitcoin-based botnets, once bots communicate with peers to disseminate
transactions in the same way regular users do, there are no flow statistics that can
disclose bot-related activities. Instead, we analyse transaction attributes such as
the number of inputs and outputs, values of outputs, and rates of transactions to
detect bot traffic. In this sense, our work follows a strategy similar to that used
by [4, 8, 11], which also make use of information extracted from bots activities
on a low-level basis. Nonetheless, it is important to highlight that, to the best
of our knowledge, it is the first time a systematic approach has been proposed
to detect Bitcoin-based botnets.

3 Proposed Approach

In this section, we present the proposed approach to detect Bitcoin-based bot-
nets. We discuss first the approach rationale, and then the details on the two
modules: Model Creation Module and Botnet Detection Module.

3.1 Approach Rationale

Different works on botnet detection assumed that bots present a more system-
atic behaviour than regular nodes. Depending on the work, this regularity was
observed on the correlation between bots behaviour [12, 13], features extracted
from HTTP packets [4, 8], the time the bots kept active [14], and the periodicity
of traffic related to data exfiltration [2].

In this work, we explored the regularity of bots behaviour regarding the
transactions attributes. Each transaction has different attributes such as number
of inputs and outputs, addresses, and values. Fig. 1 illustrates a transaction. It
contains an identifier, which is the hash of the transaction, and the inputs and
outputs with their addresses and values. In the transaction illustrated, a user
is transferring $1.0 from its account holding the address ”12cb...Tu3S” to the
accounts with addresses “1Q2T...Jvm3” and “1bee...Vwq8”, which will receive
$0.8 and $0.2, respectively. We assumed that bots present a more systematic
behaviour for these attributes because they are programmed, and so they may
not follow the same behaviour as a human being making Bitcoin transfers.

To be able to compute the evolution of these attributes throughout multiple
transactions, we grouped these transactions according to the users that issued
them. The blockchain is composed of a set of transactions denoted as T =
{t1, . . . , tn}. Considering the set of users U = {u1, . . . , un} that issued these
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transactions, we assume that each user ui has its set of transactions Tui
, where

Tui
⊂ T . Each transaction t is defined by the 3-tuple (ts, I, O), where ts denotes

the transaction timestamp, I the set of inputs, and O the set of outputs.

Transaction ID: f4184f...31e9e16 

Input #1
address: 12cb...Tu3S 

value: $1.0

Output #1
address: 1Q2T...Jvm3 

value: $0.8

Output #2
address: 1bee...VwQ8 

value: $0.2

Fig. 1. Example of a transaction.

Having the set of transactions Tui
for a user ui, we can extract the features

to distinguish botnet traffic from regular traffic. Algorithm 1 shows how the
features are extracted. In this algorithm, |X| denotes the amount of elements in
the set X, e.g., |t1.I| represents the number of inputs in the transaction t1.

Algorithm 1: Extracting a feature vector for a set of transactions

Input : List of transactions Tu = {t1, t2, . . . , tn} for user u, and the timestamp
startT ime referring to the oldest transaction of the dataset

Output: Feature vector f for user u

1 Function extractFeatures(T = {t1, t2, . . . , tn}, startT ime)
2 f.inMedian←median(|t1.I|, |t2.I|, . . . , |ti.I|);
3 f.inIQR←iqr(|t1.I|, |t2.I|, . . . , |ti.I|);
4 f.outMedian←median(|t1.O|, |t2.O|, . . . , |ti.O|);
5 f.outIQR←iqr(|t1.O|, |t2.O|, . . . , |ti.O|);
6 f.lowVMedian←median(lowestOutput(t1),. . . ,lowestOutput(ti));
7 f.lowV IQR←iqr(lowestOutput(t1),. . . ,lowestOutput(ti));
8 f.iatMedian←median(t2.ts− t1.ts, t3.ts− t2.ts, . . . , ti.ts− ti−1.ts);
9 f.iatIQR←iqr(t2.ts− t1.ts, t3.ts− t2.ts, . . . , ti.ts− ti−1.ts);

10 f.txT ime← (ti.ts− startT ime)÷ (|Tu|);
11 f.addressPerTx← (|inputAddrs(Tu)|)÷ (|Tu|);
12 return f

13 end

Almost all the features extracted are based on two statistical measures: the
median (denoted in Algorithm 1 as the function median(x1, . . . , xn)), and the
interquartile range (IQR, denoted in Algorithm 1 as iqr(x1, . . . , xn)). The median
is a measure of central tendency, while the IQR measures the data dispersion.
The objective is to determine the central tendency and the dispersion of some
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transaction attributes for a particular user, modelling its behaviour. All the
extracted features are discussed next.

– The median (inMedian) and the IQR (inIQR) of the number of inputs, and
the median (outMedian) and the IQR (outIQR) of the number of outputs
of each transaction. Legitimate users can build transactions with various
amounts of inputs and outputs depending on their needs, while bots, being
programs, might present a more systematic behaviour.

– The median (lowVMedian) and the IQR (lowV IQR) of the lowest output
value of each transaction. Bot transactions cannot involve high amounts of
funds, because their operation must be as profitable as possible to the attack-
ers. This way, it is expected that the lowest output value of bot transactions
is usually smaller than the one found in legitimate transactions. Besides, un-
like bots, legitimate users are expected to present more variability in these
values. In Algorithm 1, lowestOutput(t) denotes a function that take as
input a transaction and returns its lowest output.

– The median (iatMedian) and the IQR (iatIQR) of the time intervals be-
tween two subsequent transactions. Bots are expected to present more pe-
riodicity than legitimate users, since they usually perform some automatic
tasks.

– The relation (txT ime) between the amount of transactions and the time
elapsed. Bots may present a high level of interaction with botmasters, par-
ticularly when they are receiving instructions to launch attacks. This way,
it is expected that they receive more transactions within a particular time
interval than a legitimate user.

– The relation (addressPerTx) between the number of distinct input ad-
dresses and the number of transactions. The decision on how to use (or
reuse) addresses is programmed in bots, while legitimate users can change it
from one transaction to another. Therefore, the number of distinct addresses
can vary from legitimate to bot users. In Algorithm 1, inputAddrs(T ) rep-
resents a function that takes a set of transactions as input and returns the
set of distinct input addresses used in these transactions.

To classify the feature vectors as legitimate or malicious, we employed the
OSVM technique. In supervised machine learning techniques, usually employed
in botnet detection, a classification model is built from data instances represent-
ing the different classes the data can be classified into. For example, to detect
botnets, samples from malicious and legitimate behaviour should be labelled and
presented to the classifier, which would construct a model that could be used to
classify future samples as legitimate or malicious. This can be problematic when
the labelling process is labour-intensive and error-prone, or samples of some of
the classes hardly occur [5].

A solution to address this issue is to use one-class classifiers. In these tech-
niques, only samples of one class are presented to the classifier to build the
classification model, e.g., samples of legitimate behaviour. Then, the upcoming
samples are classified as belonging or not to this class. Therefore, the labelling
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process is no longer necessary. The OSVM algorithm is a one-class classifica-
tion technique that was successfully used in many domains [5]. This technique
creates hyperplanes that work as boundaries around the region containing the
training data. This way, if an instance is inside these boundaries, it is classified
as belonging to the modelled class. Otherwise, it is classified as an anomaly. In
our case, we provided data from legitimate Bitcoin users to create the model.
Then, all data instances that are outside the boundaries set for this class are
classified as bots.

3.2 Model Creation Module

The objective of the Model Creation Module, represented in Fig. 2, is to create
a classification model from information available on the Bitcoin blockchain.

Blockchain

Users
Identification

Feature
Extraction

Users Filtering OSVM Model
Creation

User 1 
lowest.iqr

lowest.median

... 
inputs.median

inputs.iqr

User 2 
lowest.iqr

lowest.median

... 
inputs.median

inputs.iqr

User n 
lowVIQR

lowVMedian

... 
inMedian

inIQR

Block 1 
Transaction 1
Transaction 2 

Transaction n
... 

Block 2 
Transaction 1
Transaction 2 

Transaction n
... 

Block n 
Transaction 1
Transaction 2 

Transaction n
... 

User 1 
Transaction 1
Transaction 2 

Transaction n
... 

User 2 
Transaction 1
Transaction 2 

Transaction n
... 

User n 
Transaction 1
Transaction 2 

Transaction n
... 

User 1 
pk.rate

time.tx.rate 
time.tx.iqr

... 

User 2 
pk.rate

time.tx.rate 
time.tx.iqr

... 

User n 
txTime

iatMedian 
iatIQR
... 

Model

Fig. 2. Creation of classification model from Blockchain data.

The first step for the model creation is to retrieve a set of blocks from the
blockchain. All the transactions from the retrieved blocks are extracted to a list
denoted as T = {t1, . . . , tn}. Next, the Users Identification step is performed.
The objective of this step is to assign every transaction in T to a user u.

As already discussed in Section 3.1, a Bitcoin transaction t has a set of inputs
and outputs. Inputs and outputs are associated with addresses, which are derived
from the public keys of the users involved in the transaction. These addresses are
pseudonyms, and a single user can have multiple addresses. When a user wants
to send funds to someone, it signs the transference using its private key and
informs the public keys of the fund destinations. It is recommended that users
generate new keys for every transaction, avoiding that transactions are traced
and the users identified [7]. Even so, it is possible to group Bitcoin transactions
according to their source. We followed two strategies to do it:
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– As many users do not generate new keys to make new transactions, it is possi-
ble to explore this fact to group them. Let t1 and t2 be two transactions, and
inputAddrs({t1, . . . , tn}) a function that returns the set of input addresses
for a given set of transactions. If inputAddrs({t1})∩ inputAddrs({t2}) 6= ∅,
then we assume that these two transactions were generated by the same user.

– The second strategy explores a heuristic based on multi-input transactions
[7, 10]. Sometimes, a user does not have enough funds attached to a single
address to complete a transaction. To avoid breaking this transaction into
smaller ones, the user includes multiple inputs, each one associated to an
address, in a single transaction. Therefore, it is possible to assume that all
the input addresses of this kind of transaction belong to the same user.

After assigning the transactions to the users, the next step is to extract the
feature vectors from them. To do so, all the transactions of each user are ordered
by timestamp. Then, for a given user ui, the transactions in Tui are processed
according to Algorithm 2. The main idea of Algorithm 2 is to generate feature
vectors as the transactions were being assigned one by one to the user. For
example, let’s suppose a user has six transactions {t1, . . . , t6} and minTxs is
4. Then, three different feature vectors would be extracted: f1 extracted from
t1, t2, t3 and t4, f2 extracted from t1, t2, t3, t4 and t5, and f3 extracted from
t1, t2, t3, t4, t5 and t6. The function extractFeatures(T, startT ime) present in
Algorithm 2 is defined in Algorithm 1.

Algorithm 2: Extracting feature vectors for one user

Input : List of transactions Tu = {t1, t2, . . . , tn} for user u, the timestamp
startT ime referring to the oldest transaction present in all blockchain
collected data, and the minimum number of transactions per user
minTxs

Output: List of feature vectors Fu for user u
1 for i← minTxs to n do
2 f ←extractFeatures({t1, t2, . . . , ti},startT ime);
3 add f to Fu;

4 end

The idea behind this approach is related to the way the Botnet Detection
Module works, classifying users every time they have new transactions. If the
Botnet Detection Module waits until it gathers a large number of transactions
for a particular user to start analysing it, the bot detection might take a long
time. Otherwise, if the Botnet Detection Module analyses this user every time
a transaction is assigned to it, it might detect a bot quicker, after only a few
transactions has been assigned to this user. Once the Model Creation Module
is building a classification model for the Botnet Detection Module, it has to
emulate the same process followed by the latter one.
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After extracting the features, the next step is Users Filtering. Users with high
dispersion for the number of inputs and outputs and the output values are more
likely to be legitimate. Therefore, in this step, we filter this kind of user out. Only
legitimate users that may be more similar to bots are included in the OSVM
model, since they demand a more sophisticated technique to be differentiated
from bots. The filtering process is detailed in Algorithm 3. Three thresholds,
tin, tout and tlow, are set by computing the first quartile (denoted in Algorithm
3 as the function firstQuartile(x1, . . . , xn)) of three features, namely inIQR,
outIQR and lowV IQR. All feature vectors in F are considered to compute these
thresholds. Next, all feature vectors that hold values below the thresholds are
included in a new list of feature vectors F ′. In F ′, a feature f ′ is defined by the
5-tuple (lowVMedian, iatMedian, iatIQR, txT ime, addressPerTx).

Algorithm 3: Filtering out users with high dispersion

Input : List of feature vectors F = {f1, f2, . . . , fn}
Output: List of remaining feature vectors F ′ = {f1, f2, . . . , fm}, where m ≤ n

1 tin ← firstQuartile({f1.inIQR, f2.inIQR, . . . , fn.inIQR}) ;
2 tout ← firstQuartile({f1.outIQR, f2.outIQR, . . . , fn.outIQR}) ;
3 tlow ← firstQuartile({f1.lowV IQR, f2.lowV IQR, . . . , fn.lowV IQR}) ;
4 foreach f in F do
5 if f.inIQR ≤ tin ∧ f.outIQR ≤ tout ∧ f.lowV IQR ≤ tlow then
6 add f to F ′;
7 end

8 end

The last step performed by the Model Creation Module is OSVM Model Cre-
ation. In this step, firstly, all features for each feature vector are scaled according
to their minimum and maximum values between a range from 0 to 1, as defined
by Equation (1):

xf [j] =
xf [j]−min(x[j])

max(x[j])−min(x[j])
,∀f ∈ F ′,∀j ∈ J (1)

where f corresponds to a given feature vector, F ′ to all feature vectors ex-
tracted, j to a feature in the J feature space, and xf [j] to the value present in
feature j for the feature vector f . The OSVM algorithm receives the normalised
feature vectors as input and provide as output a model of the behaviour of the
users represented by these feature vectors.

3.3 Botnet Detection Module

The Botnet Detection Module analyses network packets to detect the presence of
bots in the monitored network. Therefore, in a real network, this module would
be placed in the border between the monitored network and the Internet, being
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able to analyse all Bitcoin packets exchanged between internal and external
nodes. We assume that Bitcoin-based bots are implemented as SPV (Simplified
Payment Verification) clients due to their low memory and traffic footprint.
Unlike full Bitcoin clients, SPV clients do not receive all the transactions that
other clients broadcast, and do not keep a copy of the entire blockchain. They
rely on full nodes, which forward to SPV clients the transactions of their interest.
An overview of this module is presented in Fig. 3.

Transaction Data
Extraction User Updating

Feature
Extraction User Filtering

User n 
Transaction 1
Transaction 2

Transaction n
...

Transaction 
Inputs

Outputs
Pkt 1 Pkt 2 ... Pkt n

User n 
lowVIQR

lowVMedian

... inMedian
inIQR

OSVM
Classification... 

pk.rate

time.tx.iqr
... 

User n 
txTime

iatMedian 
iatIQR

... 

Model

Legitimate
User

Legitimate
User

Malicious
User

Fig. 3. Botnet detection using data extracted from transactions and the model created
previously.

The first step of the Botnet Detection Module is to inspect Bitcoin packets,
one by one, and extract transaction data from them. Then, this data is used
to update a user profile. The users are determined according to the packets’ IP
addresses, since SPV nodes only receive transactions of their interest. A user
u has a list of transactions Tu = {t1, . . . , tn}, which were forwarded to the
u’s IP address. Every time a new t is added to Tu, u is classified again. To
classify u, it is necessary to extract its features. The list Tu containing all the
transactions that u received so far is passed as an argument to the function
extractFeatures(T, startT ime) in Algorithm 1. This function returns a feature
vector fu.

With fu, it is possible to perform an attempt of classification using the thresh-
olds set in Algorithm 3. If the user cannot be classified based on those thresholds,
the OSVM algorithm is used. Before applying the OSVM algorithm, the feature
vector fu is scaled following the normalisation step in Equation (1), except that
this time, the max(x[j]) and min(x[j]) are the same as the ones used when
the model was created. As it was done in the Model Creation Module, only the
features lowVMedian, iatMedian, iatIQR, txT ime, and addressPerTx are
used in the OSVM classification. Algorithm 4 shows how the classification pro-
cess works. In this algorithm, the normalisation step is denoted as the function
normalise(x), and the OSVM classification algorithm is denoted as the function
OSVM(x).
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Algorithm 4: Classifying user

Input : A feature vector f for user u
Output: Classification of u: “legitimate” or “malicious”

1 if f.inIQR > tin ∨ f.outIQR > tout ∨ f.lowV IQR > tlow then
2 classification← “legitimate”;
3 else
4 f ′ ← normalise(f);
5 classification← OSVM(f ′);

6 end

4 Evaluation

In this section, we describe the experiment performed to evaluate the proposed
approach. First, some concepts of the ZombieCoin botnet [3] are presented. Next,
the details of the experimental design are provided. Finally, the results are pre-
sented and discussed.

4.1 ZombieCoin

To evaluate our approach, we built an instance of the ZombieCoin botnet, which
was proposed by Ali et al. [3]. This botnet makes use of the Bitcoin network to
allow the botmaster to transmit instructions to the bots. Both the botmaster
and the bot are developed with the BitcoinJ library as SPV clients. This botnet
explores a function in Bitcoin transactions referred to as OP RETURN. This
function allows users to include up to 80 bytes of data into the transaction. It
may be used, for example, to add textual information about the transaction like
clients usually do in conventional banking transfers. Next, we present an outline
of ZombieCoin operation:

– The botmaster has a key pair (public and private keys) that is used to protect
its account and sign its transactions. When the botmaster is installed, it
provides a command line interface to the user with a list of instructions that
can be transmitted to the bots.

– The bot has the public key of the botmaster hardcoded. Using this key, it
can request the botmaster transactions to its peers and authenticate them.
Once the bot is installed, it can receive transactions with instructions from
the botmaster, decode them and perform actions as requested.

– All the communication between bots and botmaster is based on standard
Bitcoin protocol specification.

We implemented three commands in the ZombieCoin bot and botmaster:
REGISTER, SYN FLOOD ATTACK, and UDP FLOOD ATTACK. When a
bot receives the REGISTER command, it generates a file with a unique bot
identifier, the current timestamp, and some information about the compromised
host such as the number of processors, processor architecture, operating system,
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and available memory. This file is uploaded to a Dropbox account belonging to
the botmaster. Botmasters send this kind of command periodically to enumer-
ate the active bots and have some control and detailed information about the
compromised machines [3, 14]. When SYN FLOOD ATTACK or UDP FLOOD
ATTACK commands are sent, the bot launches the respective DoS attack against
the selected target.

4.2 Experiment Design

To emulate the malicious traffic, we built a network with six nodes. An instance
of the ZombieCoin botmaster was deployed in an Amazon Web Service (AWS)
host. To implement the bots, five Linux containers were created in a host at our
laboratory, and each container hosted a ZombieCoin bot instance. Containers
are lightweight virtual machines that emulate a machine with its own operating
system, but share the host’s operating system kernel with other applications.
LXC4 was used to create and manage the containers. The botmaster host had
a public IPv4 address attributed by AWS. Private IPv4 addresses were assigned
to the bots’ hosts. The botmaster and the bots had access to the Internet. The
software Wireshark5 was installed in the machine hosting the bots’ containers,
being able to capture all the packets the bots transmitted and received.

Bots and botmaster were executed for nearly two hours, and the botmaster
sent twelve commands to the bots. The objective was to reproduce a situation
with an attacker actively using its botnet to launch DDoS attacks, while check-
ing the status of its bots periodically. These commands will be detailed in the
next section, when a particular scenario is discussed to show how the approach
detected the malicious commands.

The legitimate behaviour was emulated with 239,495 transactions collected
from blocks appended to the main Bitcoin blockchain between 17-06-2018 and
20-06-2018. They were grouped into users, composing a database of legitimate
users.

Multiple experimental scenarios were set according to two parameters: the
number of legitimate users used to create the model (lmodel) and the number of
legitimate users present in the botnet detection step (ldetection). The idea behind
the first parameter was to observe if the performance proposed by the approach
improves depending on the size of the sample of legitimate users used for the
model creation. The second parameter was defined to analyse if different num-
bers of legitimate users could influence the task of distinguishing malicious and
legitimate instances. Higher amounts of legitimate users increase the probability
of having more diverse legitimate behaviour, which might confuse the botnet
detector.

Five different values were assigned to lmodel: 100, 200, 300, 400, and 500 users.
ldetection received the values 10, 20, 30, 40, and 50. The combination of these
values resulted in twenty five experimental scenarios. Ten rounds were executed

4 https://linuxcontainers.org/
5 https://www.wireshark.org/
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for each scenario, and, at each round, the legitimate users were randomly selected
from our database. The five malicious users were included in all rounds for all
scenarios.

The performance of the proposed approach was evaluated according to the
following metrics [9]:

– TPR: TP
TP+FN among all feature vectors extracted from malicious users, how

many were correctly classified.
– FPR: FP

FP+TN among all feature vectors extracted from legitimate users,
how many were incorrectly classified as malicious.

– AUC: 1
2 (TPR+ (1− FPR)) combines TPR and FPR into a single metric,

facilitating the comparison between different experimental rounds.

TP, TN, FP, and FN stand for true positives, true negatives, false positives,
and false negatives, respectively. The RBF (Radial Basis Function) kernel was
used for the OSVM algorithm. For all tests, minTxs was set to 3 transactions.

4.3 Results and Discussion

Firstly, we searched for a common value for the OSVM hyperparameter ν that
could allow the different scenarios to reach a good performance. For each sce-
nario, the proposed approach was executed with ν ranging from 0.05 to 0.95 in
steps of 0.05. The ν values that yield the best AUC for each scenario were com-
puted, and Fig. 4 shows the histogram for these values. It is possible to observe
that ν = 0.05 is the most frequent value, which was assumed for the remaining
tests.

Fig. 4. Histogram for best values of ν considering different scenarios.

Another objective of the evaluation was to investigate how the number of
legitimate users selected to create the model (denoted as lmodel) and the num-
ber of legitimate users present in the detection step (denoted as ldetection) could
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affect the results. Fig. 5 shows the performance of the approach taking into
consideration the arithmetic mean of the AUC calculated throughout the ten
rounds at each combination of lmodel and ldetection. Although most of the sce-
narios presented good results, with the mean AUC above 0.8, the scenario with
lmodel = 500 users was clearly the best one. Different values for ldetection did
not affect the results in any situation. We assumed lmodel = 500 users for the
remaining tests.

Fig. 5. AUC mean for different combinations of lmodel and ldetection.

The next step is to analyse the results for the metrics AUC, TPR, and FPR
considering lmodel = 500, ν = 0.05, and ldetection = {10, 20, 30, 40, 50}. The
mean (1.00) and the standard deviation (0.00) computed for TPR indicate that
this metric was equal to 1.00 for all the rounds. This means that even creating
different classification models at each round and changing ldetection, the proposed
approach was able to classify correctly all the feature vectors related to malicious
users. The mean FPR was very low (0.01), and its standard deviation (0.02)
shows that the values computed for this metric throughout the multiple rounds
were not significantly higher than its mean. Once AUC is a function of TPR
and FPR, its results were also good, with the mean = 0.99 and the standard
deviation = 0.01.

Finally, we analysed a particular case to observe the characteristics of the
true positives and the false positives. To carry out this analysis, we selected the
case that presented the closest AUC to the mean for this metric, which was 0.99.
The selected case was the sixth round of the experiment with lmodel = 500, and
ldetection = 40. For this case, we had 54 true positives, 248 true negatives, 1 false
positive, and 0 false negatives. Table 1 presents the classification of the feature
vectors generated from the commands received by the malicious users.

As soon as the proposed approach started analysing the transactions, it de-
tected the bots. minTxs was set to 3, so the approach waited for three transac-
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Table 1. Malicious commands sent and their detection.

Elapsed time
Command User 1 User 2 User 3 User 4 User 5

(min)

0 REGISTER NA NA NA NA NA
7 REGISTER NA NA NA NA NA
14 SYN FLOOD ATTACK TP TP TP TP TP
22 REGISTER TP TP TP TP TP
35 SYN FLOOD ATTACK TP TP TP TP TP
37 REGISTER TP TP TP TP TP
52 REGISTER TP TP TP TP TP
54 UDP FLOOD ATTACK TP TP TP TP TP
64 UDP FLOOD ATTACK TP TP TP TP TP
67 REGISTER TP TP TP TP TP
82 REGISTER TP TP TP TP TP
97 REGISTER TP TP TP TP TP

tions of a user to begin analysing it. In our tests, the botmaster sent the third
transaction 14 minutes after the beginning of the experiment. Table 1 shows that
the two first transactions were not analysed (“NA”) and, after that, all the anal-
ysed transactions sent for the bots were classified as malicious (“TP”). The only
false positive was raised to a user that presented a very low dispersion for the
number of inputs, outputs, and transferred value. Besides, its number of outputs
was unusually high and its transfer value uncommonly low, when compared to
other normal users.

Overall, the approach presented a high predictive performance. We evaluated
different scenarios with multiple numbers of legitimate users, and the results for
true positives and false positives were good for most of them. The scenarios that
included more users (500) in the model creation step were the ones with the best
results. In these scenarios, all malicious feature vectors were correctly classified
as so in all rounds, and there were only a few false positives. Still, in all these
scenarios with 500 users for model creation, the proposed approach was able to
detect the bots as soon as it gathered the minimum number of transactions that
allowed an analysis. This means that, for these cases, the proposed approach
detected the bots right after the botmaster sent the third transaction in a row,
only 14 minutes after the experiment had started.

5 Conclusion

Botnets have been the protagonists of severe attacks on the Internet. As attack-
ers started building their C&C infrastructures on top of widely-used services,
they became harder to be detected and mitigated. In this paper, we proposed an
approach to detect Bitcoin-based botnets. The approach is based on the OSVM
classifier, which requires only legitimate samples to build the classification model.
To detect the bots, the proposed approach extracts information from different
transactions belonging to the same user, aiming to identify whether the traffic
belongs to a bot. Tests were conducted using the ZombieCoin botnet and real
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transaction data from Bitcoin blockchain. The results demonstrated a high pre-
dictive performance, with high true positive rates and low false positive rates
in several scenarios. The study of a particular case showed that the proposed
approach detected the bots after the botmaster had sent only three commands.
As future work, we intend to extend the proposed approach to detect botnets
based on other blockchain applications such as Ethereum.

References

1. Acarali, D., Rajarajan, M., Komninos, N., Herwono, I.: Survey of approaches and
features for the identification of HTTP-based botnet traffic. Journal of Network
and Computer Applications 76, 1 – 15 (2016)

2. Albanese, M., Jajodia, S., Venkatesan, S.: Defending from Stealthy Botnets Using
Moving Target Defenses. IEEE Security Privacy 16(1), 92–97 (2018)

3. Ali, S.T., McCorry, P., Lee, P.H.J., Hao, F.: ZombieCoin 2.0: managing next-
generation botnets using Bitcoin. International Journal of Information Security
17(4), 411–422 (Aug 2018)

4. Hsu, F.H., Ou, C.W., Hwang, Y.L., Chang, Y.C., Lin, P.C.: Detecting Web-Based
Botnets Using Bot Communication Traffic Features. Security and Communication
Networks 2017 (2017)

5. Khan, S.S., Madden, M.G.: A survey of recent trends in one class classification.
In: Irish Conference on Artificial Intelligence and Cognitive Science. pp. 188–197.
Springer (2009)

6. Nagaraja, S., Houmansadr, A., Piyawongwisal, P., Singh, V., Agarwal, P., Borisov,
N.: Stegobot: A Covert Social Network Botnet. In: Filler, T., Pevný, T., Craver,
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