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Abstract

For a digital signature scheme, unforgeability and non-repudiation are
two main security requirements. In 2017, Galbraith, Petit and Silva pre-
sented GPS signature, an efficient isogeny based signature with a proven
unforgeability. In this paper, we present a successful key substitution
attack on GPS signature which threaten the non-repudiation of GPS sig-
nature. We also suggest how to prevent key substitution attack in general
as well as our attack in this paper. We also present an example of our
attack using Sage to illustrate isogenies of elliptic curves and our attack.

Keywords. Isogeny-based signature, non-repudiation, Post-quantum cryp-
tography

1 Introduction

The essential security goals of digital signatures include integrity of the signed
data, authenticity of the signed data and the signer, and non-repudiation of the
origin of the signature. The unforgeability of a signature scheme guarantees the
integrity and authenticity of the signature scheme. Therefore, unforgeability and
non-repudiation are two main security requirements for signature schemes. The
forgeability of a signature can be an evidence of the failure of non-repudiation
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National Research Foundation of Korea(NRF) grant funded by the Korea Govern-
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of the signature scheme, and thus, the issue of non-repudiation of a signature
can be addressed only for unforgeable signatures. However, the unforgeability
of a signature may not guarantee the non-repudiation of the signature [6, 1].

It suggests that further analysis on the non-repudiation of unforgeable signa-
ture schemes is necessary, especially for the newly presented signature schemes
such as post-quantum signatures (secure signatures in the presence of quantum
computers). The isogeny-based public key cryptography is widely studied as a
candidates of post-quantum signatures due to short key sizes and compatibil-
ity with the current elliptic curve primitives [10, 3, 4, 15]. In [12], Galbraith,
Petit and Silva presented an efficient isogeny based signature, which we call it
as GPS signature, by applying the Fiat-Shamir transformation [2] to the De
Feo-Jao-Plût identification [10]. GPS signature scheme is proven unforgeable
under the hardness assumptions of some isogeny problems in the random oracle
model [12].

In this paper, we study the non-repudiation of GPS signature scheme. We
present a successful key substitution attack, one of the most basic attack which
threaten the non-repudiation of a digital signature scheme. Our attack on GPS
signature implies that the non-repudiation fails for the current version of GPS
signature. Our result is the first key substitution attack on isogeny based sig-
nature schemes under the consideration of the non-repudiation of the signature.
Since the non-repudiation has not been considered in the current design of
isogeny based signatures even though it is one of the main security issues of
digital signature schemes, we believe that our result would put forward fur-
ther studies on secure design of isogeny based signatures. Our attack on GPS
signature uses isomorphisms on the underlying elliptic curves and the fact that
isomorphic elliptic curves have the same j-invariants. We recommend to restrict
different j-invariants for each public key to prevent our key substitution attack
in this paper. Moreover, we suggest to format the message as specific to each
public key, such as pk||message, prior to signing according to the analysis of
Menezes and Smart [1].

The paper is organized as follows. In Section 2, we give preliminaries on
isogeny, non-repudiation of signature and key substitution attack. Section 3 de-
scribes our key substitution attack on GPS signature scheme using isomorphism
and explain why the non-repudiation fails for GPS signature with an example
of our key substitution attack. We also discuss countermeasures of our attack
on GPS signature. Section 4 concludes the paper.

2 Preliminaries

In this section, we review some concepts and properties of isogenies of elliptic
curves and isogeny problems related to GPS signature. We also recall the def-
inition of key substitution attack for digital signature schemes and its impacts
on the non-repudiation of signatures.
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2.1 Elliptic Curves and j-invariants

Definition 2.1. (Elliptic curve [9]) An elliptic curve over a field K is a smooth
projective plane curve of genus one having a specified distinguished point. Pro-
jective Weierstrass equation of an elliptic curve over a field K is

E(K) : Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3;

Affine Weierstrass equation of an elliptic curve over a field K is

E(K) : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 with ∞;

When char K6= 2, 3 , we can write

E(K) : y2 = x3 + ax+ b;

with a, b ∈ K such that 4 = −16(4a2 + 27b2) 6= 0 for smoothness condition.

Standard projective coordinates are used to represent the points of elliptic
curve y2 = x3 + ax+ b. In standard projective coordinates, the triple (X,Y, Z)
represents the affine point (x = X/Z, y = Y/Z) of the curve. We use the
standard projective coordinates in our example in Section 3.2.

Definition 2.2. (j-invariant [9]) Let E be the elliptic curve given by y2 =
x3 + ax + b, where a, b are elements of a field K of characteristic not 2 or 3.
Define the j-invariant of E to be

j = j(E) = 1728
4a3

4a3 + 27b2
.

Given an elliptic curve E, its j-invariant can be found in polynomial-time;
moreover, given a j-invariant j∗ ∈ K, one can find a curve E with j(E) = j∗

in polynomial time. As the name suggests, the j-invariant is invariant under
K-isomorphisms of algebraic sets, and so a j-invariant uniquely identifies a K-
isomorphism class of elliptic curves over K.

Theorem 2.3. [9] Let E1(K) = {(x1, y1)|y21 = x31 + a1x1 + b1} and E2(K) =
{(x2, y2)|y22 = x32 + a1x2 + b1} be two elliptic curves over the field K with the
j-invariants j1 and j2, respectively. If j1 = j2, then there exists µ 6= 0 in
the algebraic closure K such that a2 = µ4a1, b2 = µ6b1. The transformation
x2 = µ2x1, y2 = µ3y1 takes one equation to the other.

2.2 Isogeny

Definition 2.4. (Isogeny [9]) Let E and E
′

be elliptic curves defined over a
field K. An isogeny from E to E

′
is a non constant morphism φ : E → E

′
that

maps the neutral element into the neutral element.
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An isogeny φ : E → E
′

over a finite field Fq can be represented as a rational
map whose coefficients belong to Fq. An isogeny of degree m, when it is con-
sidered as a rational map, is called an m-isogeny. If φ is a separable isogeny,
then degφ = |kerφ| [10]. If there is a separable isogeny between two curves, we
say that they are isogenous. A theorem of Tate in [7] says that if E and E′ are
defined over a finite field Fq, then E and E′ are isogenous over Fq if and only if

|E(F′

q) = |E′(F′

q)| for every finite extension F′

q of Fq. In [8], it has been shown
that E′ is isogenous to E over Fq if and only if E is isogenous to E′ over Fq. The
isogeny class of a curve E over Fq is defined to be the set of all curves E′ which
are isogenous to E, up to Fq-isomorphism. Since any algebraic morphism of
curves is either constant or surjective [11], if φ : E → E′ is a nontrivial isogeny,
then φ(E) = E′.

An isogeny φ : E → E
′

such that E = E′ is called an endomorphism. The set
of endomorphisms of an elliptic curve E denote End(E). For a finite field F, this
set End(E) is a Z module of rank 2 or 4. We say that E is supersingular if the
rank of End(E) as a Z module is 4, and ordinary otherwise. Any supersingular
elliptic curve E is defined over Fp2 for some prime p, and for each prime m 6= p
there are m + 1 isogenies of degree m with domain E (though not all of them
are defined over Fp2 , in general)[10]. These isogenies of degree m are in one-to-
one correspondence with the subgroups of E of order m; moreover, each such
subgroup Φ ⊂ E is the kernel of a unique isogeny φ, and we write φ(E) = E/Φ
[8]. That is, an isogeny can be identified with its kernel [14]. Hence to specify
an isogeny it suffices to specify its kernel, and conversely given a subgroup Φ of
E we can construct the isogeny φ whose kernel is Φ, using Velu’s formulae [13].

If we have two isogenies φ : E → E
′

and φ̂ : E′ → E such that φ · φ̂ and
φ̂ ·φ are the identity maps, we say that φ, φ̂ are isomorphisms and E and E′ are
isomorphic. The isomorphic elliptic curves over finite field can be named with
their j-invariant.

2.3 Computational Isogeny Problems relating to GPS sig-
nature

There are several hard problem candidates related to supersingular elliptic
curves, we present the problems related to the security of GPS signature scheme.
The GPS signature scheme is based on De Feo-Jao-Plût identification protocol
[10] which uses isogeny smooth prime defined as follows.

Definition 2.5. (isogeny smooth prime[10]) A prime p is called isogeny smooth
prime if p = `e11 `

e2
2 f ± 1 where `1 and `2 are two distinct small primes, and e1,

e2 and f are positive integers.

The security of GPS signature scheme relies on Computational Supersingular
Isogeny (CSSI) and Decisional Supersingular Product (DSSP) problems from
[10]. Let E0 and E1 be supersingular elliptic curves over Fp2 for an isogeny
smooth prime p, that is, p = `e11 `

e2
2 f ± 1. Let {R1, S1} and {R2, S2} be bases

for E0[`e11 ] and E0[`e22 ], respectively.
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Problem 2.6. (Computational Supersingular Isogeny - CSSI)
Let φ1 : E0 → E′ be an isogeny with kernel 〈[m1]R1 + [n1]S1〉, where m1, n1
are chosen uniformly at random from Z/`e11 Z, and not both divisible by `1. The
problem is, given (E′, (φ1(R2), φ1(S2)), to find a generator of 〈[m1]R1+[n1]S1〉.

Problem 2.7. (Decisional Supersingular Product - DSSP)
Let φ : E0 → E1 be an isogeny of degree `e11 . The problem is, given

((E0, E1), (R2, S2, φ(R2), φ(S2)), (E2, E3)),

to determine from which distribution the pair (E2, E3) is sampled;

• (E2, E3) such that there is a cyclic group G ⊆ E0[`e22 ] of order `e22 and
E2
∼= E0/G and E3

∼= E1/φ(G).

• (E2, E3) where E2 is chosen at random among the curves having the same
cardinality as E0, and φ′ : E2 → E3 is a random `e11 -isogeny.

As discussed in [10] and [12], the problems CSSI and DSSP are non-standard
isogeny problems since they use special primes as isogeny smooth prime, use
somewhat small isogeny degrees, and reveal auxiliary points. In general, the
problems CSSI and DSSP are proven to be exponentially hard even under
quantum attack [10], but it is known that revealing auxiliary points may be
dangerous in certain context. Even with such concern on the underlying com-
putational problems CSSI and DSSP, GPS signature is simple to describe and
easy to implement which could be very important advantages in practice.

2.4 Non-repudiation of Signature Scheme and Key Sub-
stitution Attack

A digital signature scheme consists of three polynomial time algorithms

(KeyGen,Sign,Verify)

which are defined as follows:

KeyGen(1λ): On a given security parameter λ, the algorithm KeyGen outputs
a pair (pk, sk) of keys, where pk is a public key for signature verification
and sk is a private key for signature generation. The private key sk is
kept secret by the owner of the public key pk.

Sign(sk,m ∈ {0, 1}∗): On a given message m ∈ {0, 1}∗ and a private key sk,
the algorithm Sign outputs a signature σm.

Verify(m,σm, pk): On a given input ((m,σm), pk), the algorithm Verify outputs
1(= valid) or 0(= invalid).

We say that a digital signature is correct if

Verify(m,Sign(sk,m ∈ {0, 1}∗), pk) = 1
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for any (pk, sk) ← KeyGen(1λ) and message m. The existential unforgeability
(EUF) of a signature requires that it is infeasible for anyone to compute a valid
signature under a public key pk without knowing the private key sk. Generally,
a secure signature scheme means EUF-CMA (existential unforgeable against
chosen message attack) secure which is defined as follows.

Definition 2.8. (EUF-CMA)
A digital signature scheme (KeyGen,Sign,Verify) is EUF-CMA secure if for
all probabilistic polynomial-time algorithm A with access to a signing oracle
Sign(·, sk), there is a negligible function ε(·) such that:

Pr

[{
(pk, sk)← KeyGen(1λ)

(m∗, σ∗)← ASign(·,sk)(pk)
: (m∗ /∈ Q)∧(Verify(m∗, σ∗, pk) = 1)

]
≤ ε(λ),

where Q is the set of queries which A has accessed to the signing oracle.

The non-repudiation of a signature requires that it is infeasible for the signer
to repudiate his/her signing on a valid signature under the public key pk of the
signer. For a digital signature scheme, unforgeability and non-repudiation are
two main security requirements which seem to be closely related. The existence
of a forged signature of a signature scheme lets the signer to claim his/her
signed signature as a forged signature. Therefore, issue of non-repudiation of a
signature is to be considered only for EUF-CMA secure signatures. It is known
that unforgeability of signature may not guarantee the non-repudiation of the
signature [1, 6].

We focus on the non-repudiation of digital signatures in this paper. The
most basic attack for the non-repudiation is the public key substitution attack.
The goal of public key substitution attack is to compute a new public key pk′

where a valid signature σ on a message m under a public key pk can be also
validated under pk′. Therefore, any signer can repudiate his/her signing on a
signature σ on a message by using the existence of a successful key substitution
attack. More precisely, the signer, the owner of public key pk, computes pk′

by using a key substitution attack and claims that the signature σ is signed
by the owner of pk′, not himself/herself. The key substitution attack has been
formalized as follows.

Definition 2.9. (Key Substitution Attack) [6]
Given a signature scheme (KeyGen,Sign,Verify), a key substitution attack is a
probabilistic polynomial-time algorithm A which on input of valid domain pa-
rameters outputs two valid public keys pk and pk′ and a message/signature pair
(m,σ) where Verify(m,σ, pk) and Verify(m,σ, pk′) each return 1(= valid). A
digital signature scheme is key substitution secure if it is secure against key
substitution attacks.

Since the potential attacker for the non-repudiation of a signature scheme
is the original signer, one can assume that the key substitution attacker for the
non-repudiation of a signature knows the private key of the original signature
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and the private information, such as nonce, used during signing process. And
this contrasts the potential attackers against the unforgeability of a signature
scheme.

3 Results

3.1 GPS Signature Scheme

This section recalls a signature scheme in [12], which we call it as GPS signature.
Let p be a large isogeny smooth prime, that is, p = `e11 `

e2
2 · f ± 1, where `1, `2

are small primes (typically `1 = 2 and `2 = 3). We define a supersingular
elliptic curve E0 over Fp2 with |E0(Fp2)| = `e11 `

e2
2 · f and a primitive `e11 -torsion

point P1 ∈ E0. Define E1 = E0/〈P1〉 and denote the corresponding `e11 -isogeny
by φ : E0 → E1. In [12], Galbraith, Petit and Silva apply the Fiat-Shamir
transform [2] to the De Feo-Jao-Plût identification scheme, and construct GPS
signature which is described as follows.

KeyGen(1λ): On input a security parameter λ, the algorithm proceeds the
following steps:

• generate a prime p = `e1A `
e2
B · f ± 1 with at least 4λ bits for small

`1, `2, f (ideally f = 1, `1 = 2, `2 = 3) and `e11 ≈ `
e2
2 .

• choose a supersingular elliptic curve E0 with j-invariant j0.

• compute points R2, S2 ∈ E0(Fp2)[`e22 ] and a random primitive `e11 -
torsion point P1 ∈ E0[`e11 ].

• compute an isogeny φ : E0 → E1 with kernel generated by P1, and
let j1 be the j-invariant of the image curve.

• set R
′

2 = φ(R2), S
′

2 = φ(S2).

• choose a hash function H with t = t(λ) bits of output.

• output
pk = (p, j0, j1, R2, S2, R

′

2, S
′

2, H), sk = P1.

Sign(sk = P1,m ∈ {0, 1}∗): On the given input, the algorithm proceeds the
following steps:

• for i = 1, . . . , t,

– choose random integers 0 ≤ αi < `e22 .

– compute an isogeny ψi : E0 → E2,i with the kernel generated by
R2 + [αi]S2 and let j2,i = j(E2,i).

– compute an isogeny ψ
′

i : E1 → E3,i with the kernel generated by

R
′

2 + [αi]S
′

2 and let j3,i = j(E3,i).

– compute

h = H(m, j2,1, . . . , j2,t, j3,1, . . . , j3,t) = b1b2 · · · bt ∈ {0, 1}t.
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• for i = 1, . . . , t,

– if bi = 0 then set zi = αi.

– if bi = 1 then compute ψi(P1) and set zi = (j2,i, ψ
′′
i ) where

ψ′′i : E2,i → E′3,i is an isogeny with the kernel generated by
ψi(P1).

• output
σm = (h = b1b2 · · · bt, z1, . . . , zt)

Verify(m,σm, pk): On the given input,

• from pk, recover the parameters p,E0, E1.

• for each 1 ≤ i ≤ t, using the information provided by zi, one recom-
pute the j-invariants j′2,i and j′3,i.

– in the case bi = 0 this is done by using zi = αi and computing j′2,i
from the isogeny with kernel generated by R2 + [αi]S2 ∈ E0 and
j′3,i from the isogeny with the kernel generated by R

′

2 + [αi]S
′

2 ∈
E1.

– when bi = 1 then the value j2,i and a description of the isogeny
ψ′′i : E2,i → E′3,i is provided in zi. The verifier computes j′2,i =
j2,i and j′3,i as the j-invariant of the image curve of ψ′′i which
means that j′3,i = j(E2,i/Ker(ψ

′′
i )) = j(E′3,i).

• compute h
′

= H(m, j′2,1, . . . , j
′
2,t, j

′
3,1, . . . , j

′
3,t).

• output 1(= valid) if and only if h
′

= h.

Theorem 3.1 ([12]). If the problems CSSI (Computational Supersingular Isogeny)
and DSSP (Decisional Supersingular Product) are computationally hard then the
signature above, GPS signature, is secure in the random oracle model under a
chosen message attack.

3.2 Our Attack on the Non-repudiation of GPS Signature

Now we show that GPS signature fails to provide non-repudiation of the signa-
ture. In particular, we present a key substitution attack on GPS signature for
a signer to repudiate his/her signature. We describe our attack in general and
present an example.

3.2.1 A description of Our Key Substitution Attack

Our attack uses isomorphism of elliptic curves. A legal but malicious user U
creates two public keys

pk = (p, j0, j1, R2, S2, R
′

2, S
′

2, H), and pk′ = (p, j0, j1, R̃2, S̃2, R̃2

′
, S̃2

′
, H) (1)

• η0(P̃1) = P1, η0(R̃2) = R2, η0(S̃2) = S2 and
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• η−11 · φ · η0(R̃2) = R̃2

′
, η−11 · φ · η0(S̃2) = S̃2

′

for some isomorphisms η0 : E′0 → E0 and η1 : E′1 → E1 with the inverses
η−10 : E0 → E′0 and η−11 : E1 → E′1, respectively.

The public key pk′ is correctly formulated by using the isogeny η−11 · φ · η0 :

E
′

0 → E
′

1 with kernel generated by P̃1. We set φ̃ = η−11 · φ · η0.
The following commutative diagram explains the relations between pk and

pk′.

E′0 E′1

E0 E1

E2,i E3,i

η0

φ̃ = η−11 · φ · η0

ψi

φ

η1

ψ′i
ψ′′i

Now we prove that the user with the public key pk
′
succeed a key substitution

attack on GPS signature scheme.

Theorem 3.2. Let the public keys pk = (p, j0, j1, R2, S2, R
′

2, S
′

2, H) and pk′ =

(p, j0, j1, R̃2, S̃2, R̃2

′
, S̃2

′
, H) of GPS signature be given as in Equation 1. For

any valid signature σm = (h = b1b2 · · · bt, z1, . . . , zt) on a message m ∈ {0, 1}∗
under the public key pk, σm is a valid signature on the message m ∈ {0, 1}∗
under the public key pk′.

Proof. From the validity of σm = (h = b1b2 · · · bt, z1, . . . , zt) as a signature on
the message m ∈ {0, 1}∗ under the public key pk, the followings hold,

• for the i = 1, ..., t with bi = 0, which implies that zi = αi,

– j2,i = j(E0/〈R2 + [αi]S2〉) and j3,i = j(E0/〈R′2 + [αi]S
′
2〉).

• for the i = 1, ..., t with bi = 1, which implies that zi = (j2,i, ψ
′′

i : E2,i →
E′3,i), j3,i = j(E2,i/〈Ker(ψ

′′

i )〉) = j(E′3,i).

• h = b1b2 · · · bt = H(m, j2,1, . . . , j2,t, j3,1, . . . , j3,t).

Now we show that σm is also a valid signature onm under pk′. From (m,σm),
anyone can verify the validity of σm as a signature on m under pk′ as follows:

• If bi = 0, that is, zi = αi, any verifier computes (j
′

2,i, j
′

3,i) as follows by

using pk′ which turns out (j
′

2,i, j
′

3,i) = (j2,i, j3,i):

9



– The verifier computes j′2,i = j(E′0/〈R̃2 + [αi]S̃2〉) from an isogeny

ψ̃i : E′0 → E′2,i whose kernel is generated by R̃2 + [αi]S̃2. We want to
show that j′2,i = j2,i. Since η0 : E0 → E′0 is an isomorphism, we have

j′2,i = j(E′0/〈Ker(ψ̃i)〉) = j(E0/〈Ker(ψ̃i · η−10 )〉).

We also have that Ker(ψ̃i · η−10 ) = 〈R2 + [αi]S2〉 from the fact

η−10 (R2 + [αi]S2) = η−10 (R2) + [αi]η
−1
0 (S2) = R̃2 + [αi]S̃2.

Therefore, j′2,i = j(E0/Ker(ψ̃i · η−10 )) = j(E0/〈R2 + [αi]S2〉) = j2,i

– The verifier computes j′3,i = j(E′1/〈R̃2

′
+ [αi]S̃2

′
〉) from an isogeny

ψ̃i
′

: E′1 → E′3,i whose kernel is generated by R̃2

′
+ [αi]S̃2

′
. We want

to show that j′3,i = j3,i. Since η1 : E1 → E′1 is an isomorphism, we
have

j′3,i = j(E′1/〈Ker(ψ̃i
′
)〉) = j(E1/〈Ker(ψ̃i

′
· η−11 )〉).

We also have that Ker(ψ̃i · η−11 ) = 〈R′2 + [αi]S
′
2〉 from the fact

η−11 (R′2 + [αi]S
′
2) = η−11 (R′2) + [αi]η

−1
1 (S′2) = R̃2

′
+ [αi]S̃2

′
.

Therefore, j′3,i = j(E1/〈Ker(ψ̃i
′
·η−11 )〉) = j(E1/〈R′2+[αi]S

′
2〉) = j3,i.

• If bi = 1, that is, zi = (j2,i, ψ
′′

i : E2,i → E′3,i), then any verifier computes

j
′

3,i as follows

j′3,i = j(E2,i/〈Ker(ψ
′′

i )〉) = j3,i.

• Since the verifier computes (j
′

2,i, j
′

3,i) such that (j
′

2,i, j
′

3,i) = (j2,i, j3,i) for
all i, it is clear to see that

H(m, j′2,1, . . . , j
′
2,t, j

′
3,1, . . . , j

′
3,t) = H(m, j2,1, . . . , j2,t, j3,1, . . . , j3,t) = h.

Therefore, σm = (h, z1, . . . , zt) is a valid signature on m ∈ {0, 1}∗ under the

public key pk′ = (p, j0, j1, R̃2, S̃2, R̃2

′
, S̃2

′
, H).

Theorem 3.2 implies that the signer U whose public key is pk can repu-
diate his/her signing of σm on m whenever he/she wants by submitting pk′

as another public key that validates the signature σm on m. Moreover, we
note that the public key pk′ can be computed independently to any valid pair
(message, signature) under pk, the owner U of pk can register pk′ as another
legal user in the system a priori to prepare his/her future malicious actions.
This concludes that GPS signature scheme does not provide the non-repudiation
property.
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Remark 3.3. Unruh [5] has given a transform that converts a secure interactive
identification scheme into a signature scheme that is secure against a quantum
adversary. In [12] the authors presented a post-quantum version of GPS signa-
ture using the Unruh transform and prove that it is existentially unforgeable in
the quantum random oracle model if CSSI and DSSP are computationally hard
for a quantum computer. It is easy to see that our key substitution attack on the
(classic) GPS signature scheme works exactly the same for the post-quantum
version of GPS signature scheme, too. Therefore, we see that the post-quantum
version of GPS signature scheme does not provide the non-repudiation property,
too.

3.2.2 An Example

In this section, we present a simple example of our key substitution attack
on GPS signature for a clear view of isogenies and our attack. We compute
our example using Sage with a small prime p for simplicity. We also use the
hash function MD5 in our example, but our attack succeeds independently the
underlying hash function.

( A Valid Key Generation )

• p = 24 · 33 · 2− 1 = 863;

• E0 : y2 = x3 + x, an elliptic curve over a finite field Fp2 ;

• a is generator of finite field Fp2 ;

• Choose points P1, R2, S2 ∈ E0 as follows:

P1 = (197a+ 648 : 758a+ 405 : 1),

R2 = (422a+ 27 : 548a+ 682 : 1), S2 = (164a+ 7 : 478a+ 586 : 1)

• Compute an isogeny φ : E0 → E1 of degree 16 with the kernel 〈P1〉 where
E1 : y2 = x3 + (155a + 756)x + (18a + 470) and the isogeny φ is defined
as follows:
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φ = (
q1(x)

q2(x)
,
r1(x, y)

r2(x)
)

q1(x) = x
16

+ (−36a− 343)x
15

+ (169a+ 373)x
14

+ (312a+ 388)x
13

+(284a+ 400)x
12

+ (−398a+ 78)x
11

+ (330a− 125)x
10

(−41a− 139)x
9

+(−295a− 193)x
8
+ (249a− 353)x

7
+ (−321a− 224)x

6
+ (−199a+ 165)x

5

+(−182a+ 265)x
4
+ (352a+ 127)x

3
+ (−31a+ 257)x

2
+ (−239a+ 77)x

+(174a+ 150)

q2(x) = x
15

+ (−36a− 343)x
14

+ (200a− 339)x
13

+ (143a+ 351)x
12

+(−65a− 311)x
11

+ (195a− 81)x
10

+ (23a+ 395)x
9
+ (−25a+ 252)x

8

+(340a− 422)x
7
+ (329a− 325)x

6
+ (−24a+ 201)x

5
+ 307a− 158)x

4

+(242a− 368)x
3
+ (−118a− 163)x

2
+ (147a− 20)x+ (48a+ 133)

r1(x, y) = x
23
y + (−286a+ 33)x

22
y + (215a+ 131)x

21
y + (203a− 75)x

20
y

+(202a− 238)x
19
y + (203a+ 273)x

18
y + (−348a− 351)x

17
y

+(−31a− 269)x
16
y + (412a+ 373)x

15
y + (117a+ 414)x

14
y

+(204a+ 157)x
13
y + (−203a− 363)x

12
y + (290a− 250)x

11
y

+(−59a− 49)x
10
y + (−189a+ 349)x

9
y + (−391a− 360)x

8
y

+(385a− 231)x
7
y + (328a− 189)x

6
y + (−142a− 283)x

5
y

+(76a+ 398)x
4
y + (−303a+ 129)x

3
y + (352a+ 62)x

2
y

+(−16a− 397)xy + (366a+ 237)y

r2(x) = x
23

+ (−286a+ 33)x
22

+ (184a− 20)x
21

+ (−60a− 208)x
20

+(−235a+ 431)x
19

+ (428a− 178)x
18

+ (−a+ 378)x
17

+ (327a+ 338)x
16

+(−27a− 356)x
15

+ (77a+ 351)x
14

+ (−385a− 137)x
13

+ (425a− 63)x
12

+(226a+ 372)x
11

+ (95a+ 156)x
10

+ (118a− 425)x
9
+ (−128a+ 248)x

8

+(344a+ 299)x
7
+ (310a− 417)x

6
+ (184a+ 337)x

5
+ (371a− 154)x

4

+(−105a+ 307)x
3
+ (11a+ 243)x

2
+ (79a+ 327)x+ (409a− 149)

• Compute j-invariants j0 = j(E0) = 2 , j1 = j(E1) = 465a+ 831.

• Compute R′2, S
′
2 ∈ E1 as follows:

R
′

2 = φ(R2) = (347a+ 480 : 357a+ 737 : 1),

S
′

2 = φ(S2) = (712a+ 662 : 268a+ 204 : 1)

• Hash function H = MD5 : {0, 1}∗ → {0, 1}128

• Output
pk = (p, j0, j1, R2, S2, R

′

2, S
′

2, H), sk = P1.

( A Key Generation for Key Substitution Attack )

• For the given E0 from the valid key generation, compute an isomorphism
ζ0 : E0 → E

′

0 defined by ζ0(x, y) = (557x, (842a + 442)y) for the elliptic
curve E′0 : y2 = x3 + 2x. Compute η0 = ζ−10 : E′0 → E0, then η−10 = ζ0.
Note that η0(x, y) = (251x, (677a+ 93)y) and j(E′0) = j(E0) = j0.
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• For the given E1 from the valid key generation, compute an isomorphism
ζ1 : E1 → E

′

1 defined by ζ1(x, y) = (406x, (385a+239)y) for E
′

1 : y2 = x3+
(465a+542)x+(349a+291). Compute η1 = ζ−11 : E′1 → E1, then η−11 = ζ1.
Note that η1(x, y) = (423x, (779a+ 42)y) and j(E′1) = j(E1) = j1.

• Compute

– P̃1 = η−10 (P1) = (256a+ 404 : 23a+ 425 : 1)

– S̃2 = η−10 (S2) = (603a+ 31 : 164a+ 224 : 1)

– R̃2 = η−10 (R2) = (636a+ 736 : 825a+ 34 : 1)

• Compute the isogeny φ̃ = η−11 · φ · η0 : E′0 → E′1. Note that the kernel of

φ̃ is 〈P̃1〉. Set

– S̃2

′
= φ̃(S̃2) = (830a+ 379 : 680a+ 602 : 1)

– R̃2

′
= φ̃(R̃2) = (213a+ 705 : 795a+ 677 : 1)

• Output

pk′ = (p, j0, j1, R̃2, S̃2, R̃2

′
, S̃2

′

, H), sk = P̃1

(A Signature Generation using sk on a message m = message)
A signature σm on the message m = message is computed as follows: First

we compute the first part h of the signature as follows: For a randomly chosen
[αi]1≤i≤t = [15, 5, 6, 18, 2, . . .], compute the following isogenies and j-invariants
for each i:

• ψi : E0 → E2,i with the kernel 〈R2+[αi]S2〉 and j2,i = j(E0/〈R2+[αi]S2〉):

j2 = [j2,1, j2,2, j2,3, j2,4, . . .] = [515a+716, 473a+144, 473a+144, 451a+551, . . .]

• ψ′i : E1 → E3,i with the kernel 〈R′2+[αi]S
′
2〉 and j3,i = j(E1/〈R′2+[αi]S

′
2〉):

j3 = [j3,1, j3,2, j3,3, j3,4 . . .] = [232a+541, 657a+665, 657a+665, 590a+114 . . .]

For the two sequences j2 and j3 of j-invariants, compute the hash value

h = b1b2b3 · · · = H(message, j2, j3) = 10111011 . . ..

Now we compute the second part (zi’s) of the signature as follows:

• From the fact b1 = 1, set z1 = (j2,1 = 515a+ 716, ψ
′′

1 ), where

– ψ
′′

1 : E2,1 → E′3,1 is an isogeny with the kernel generated by ψ1(P1)
for the elliptic curves E2,1 : y2 = x3 + (285a+ 129)x+ (507a+ 262)
and E′3,1 : y2 = x3 + (713a+ 733)x+ (70a+ 235).
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• b2 = 0, and set z2 = α2 = 5.
...

Finally, we have a sequence z = [z1, z2, z3 . . .] = [(515a+ 716, ψ
′′

1 ), 5, (473a+
144, ψ

′′

3 ), . . .], and the computed signature is σ = ((h, z),message). This signa-
ture σm = ((h, z),message) can be verified as a valid signature on message under
the public key pk.

(Key Substitution Attack on σm using the public key pk′)

Note that pk′ = (p, j0, j1, R̃2, S̃2, R̃2

′
, S̃2

′

, H). Suppose that a valid signature
σ = ((h, z),message) under pk is given as follows:

• h = H(message, j2, j3) = 10111011 · · ·

• z = [z1, z2, z3, . . .] = [(515a+716, ψ
′′

1 ), 5, (473a+144, ψ
′′

3 ), . . .] = [(j2,1, ψ
′′

1 :

E2,1 → E′3,1), α2, (j2,3, ψ
′′

3 : E2,3 → E′3,3), . . .]

For the verification, anyone compute the values of j-invariants (j′2 = [j′2,1, j
′
2,2, . . .], j

′
3 =

[j′3,1, j
′
3,2, . . .]) for the pk′ as follows:

From b1 = 1 and z1 = (j2,1, ψ
′′

1 ) = (515a+ 716, ψ
′′

1 : E2,1 → E′3,1):

• set j′2,1 = j2,1 and

• compute the j-invariant j′3,1 = j(E′3,1) = 232a + 541, which turns out
j′3,1 = j3,1.

From b2 = 0, that is, z2 = α2 = 5 :

• The verifier computes an isogeny ψ̃2 : E′0 → E′2,2 with the kernel R̃2 + 5S̃2

and the j-invariant j′2,2 = j(E′0/〈R̃2 + 5S̃2〉) = 473a + 144, which turns
out j′2,2 = j2,2.

• The verifier computes an isogeny ψ̃′2 : E′1 → E′3,2 with the kernel R̃2

′
+5S̃2

′

and the j-invariant j′3,2 = j(E′1/〈R̃2

′
+ 5S̃2

′
〉) = 657a + 665, which turns

out j′3,2 = j3,2.

Similarly, the values of j-invariants j′2, j
′
3 for the pk′ such that j2 = j

′

2,
j3 = j

′

3 are computed. Clearly, h = H(message, j2, j3) = H(message, j′2, j
′
3),

therefore, the signature σ = ((h, z),message) is valid under pk′.

3.3 How to prevent Our Attack

Our attack on GPS signature uses isomorphisms of the underlying elliptic curves
and isomorphic elliptic curves have the same j-invariants. Therefore, if one re-
stricts distinct j-invariants (j0, j1) for each public key, our key substitution at-
tack can be prevented. However, our result is the first key substitution attack on
isogeny based signature schemes under the consideration of the non-repudiation
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of the signature and one could expect a more advanced key substitution attack
on isogeny based signature.

In general, there are two ways to prevent key substitution attacks on dig-
ital signature schemes. One is that the certificate authority (CA) for public
keys requires that users to prove possession of user’s private key before issu-
ing certificates. This prevents the adversary mounts key substitution attacks
without knowing the corresponding private key. However, this counter-measure
is not suitable to prevent key substitution attack under consideration of non-
repudiation, since the original signer is considered as a potential attacker and
the original signer knows the related private keys. Another way to prevent key
substitution attack is proposed by Menezes and Smart. They formalize the key
substitution security as a security of signature schemes in multi-user setting and
formatting messages specific to each public key, such as including the signer’s
public key to the message in some unambiguous way prior to signing (e.g.,
pk||message) guarantees the key substitution security if the original signature
scheme is proven unforgeable [1].

4 Conclusion

GPS signature [12] is an efficient isogeny based signature scheme which is proven
EUF-CMA secure in the random oracle model under the assumption that the
problems CSSI (Computational Supersingular Isogeny) and DSSP(Decisional
Supersingular Product) are infeasible. In this paper, we show that the current
version of GPS signature fails to provided non-repudiation by presenting a pub-
lic key substitution attack on GPS signature. In [12], they also presented a
post-quantum version of GPS signature which is proven EUF-CMA secure in
the quantum random oracle model based on the hardness of CSSI and DSSP.
It is easy to see that our key substitution attack on the (classic) GPS signa-
ture scheme works exactly the same against the post-quantum version of GPS
signature scheme, too. We recommend to use distinct j-invariants (j0, j1) for
each public key of GPS signature scheme to prevent our key substitution attack.
Moreover, we suggest to format messages as specific to each public key, such as
pk||message, prior to signing according to the analysis of Menezes and Smart
[1].
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