N
N

N

HAL

open science

Genetic-algorithm based framework for lattice support
structure optimization in additive manufacturing

Benjamin Vaissier, Jean-Philippe Pernot, Laurent Chougrani, Philippe Veron

» To cite this version:

Benjamin Vaissier, Jean-Philippe Pernot, Laurent Chougrani, Philippe Veron.
based framework for lattice support structure optimization in additive manufacturing. Computer-

Aided Design, 2019, 110, pp.11-23. hal-02294579

HAL Id: hal-02294579
https://hal.science/hal-02294579v1
Submitted on 23 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Genetic-algorithm

https://hal.science/hal-02294579v1
https://hal.archives-ouvertes.fr

Genetic-algorithm based framework for lattice support structure
optimization in additive manufacturing”

Benjamin Vaissier *°, Jean-Philippe Pernot*”, Laurent Chougrani ", Philippe Véron*

2 Arts et Métiers, LISPEN EA 7515, HeSam, Aix-en-Provence, France
b poly-Shape, 235 rue des Canesteu, Salon-de-Provence, France

ABSTRACT

Keywords:

Support structures
Lattice structures
Genetic algorithm
Directed Steiner tree
Additive manufacturing

The emergence and improvement of Additive Manufacturing technologies allow the fabrication of com-
plex shapes so far inconceivable. However, to produce those intricate geometries, support structures are
required. Besides wasting unnecessary material, these structures are consuming valuable production and
post-processing times. This paper proposes a new framework to optimize the geometry and topology of
inner and outer support structures. Starting from a uniform lattice structure filling both the inner and
outer areas to be supported, the approach removes a maximum number of beams so as to minimize the
volume of the support. The most suited geometry for the initial lattice structure is defined at the beginning
considering the possibilities of the manufacturing technologies. Then, the pruning of the structure is
performed through a genetic algorithm, for which the control parameters values have been tuned through
a design of experiments. The proposed approach is validated on several test cases of various geometries,
containing both inner and outer areas to be supported. The generated support structures are compared to
the ones obtained by several state-of-the-art support structure strategies and are proved to have lower

material consumption.

1. Introduction

Additive Manufacturing (AM) has taken a huge step towards
industrialization over the last few years, and the field is growing
rapidly [1]. This new family of manufacturing technologies enables
the production of complex shaped parts, impossible to produce
with traditional manufacturing processes. Thus, it plays a key
role in the emergence of the latest industrial revolution, Industry
4.0, that is encouraging the integration of intelligent production
systems and advanced information technologies [2]. As opposed
to subtractive manufacturing technologies, AM consists in joining
materials to make objects from 3D model data, usually layer upon
layer [3]. Thanks to this approach, geometries like lattice and
porous structures, organic structures generated by topological op-
timization [4], parts with intricate flow channels [5] are becoming
possible and easier to manufacture.

Despite the growing interest and the apparent ease of im-
plementation, the production of parts in additive manufacturing
requires some precautions. Indeed, with most AM technologies,
the addition of support structures is required to ensure the good

™ This paper has been recommended for acceptance by Jun Wu, Xiaoping Qian,
and Michael Yu Wang.
* Corresponding author.
E-mail address: jean-philippe.pernot@ensam.eu (J.-P. Pernot).

production of a part. Support structures can fulfill three main
functions [6]: (i) sustain overhangs, bridges and islands; (ii) stiffen
the part to prevent distortions; (iii) dissipate heat from thermal
accumulation areas. An overhang corresponds to a surface forming
an angle with the horizontal plane inferior to a threshold value,
called overhang angle, usually considered equal to 45° [7]. A bridge
is a large overhanging area, generally horizontal, sustained at its
two end points. An island corresponds to a material volume that
will, at a certain building layer, be completely disconnected from
the rest of the part and from the building platform.

This paper primarily focuses on the sustainment function, i.e.
how overhanging areas can be sustained. The stiffening and dissi-
pation requirements are not directly tackled, but are discussed in
the conclusion. Support structures can be classified into two main
categories:

e removable support structures (also referred to as external or
outer support structures) are usually located in reachable
spaces around the part and are removed after the production,
during a post-processing phase. This type of support is widely
used.

e permanent support structures are included in the final part
to support internal cavities and unreachable areas after the
production. They are also known as internal or inner support
structures. This category is avoided as much as possible.

Fig. 1. Lattice support structures generated from a triangle mesh of the Stanford
Bunny using the proposed framework: full view (a) and cross-sectional view (b).

To minimize the need of support structures, some approaches
focus on generating self-supporting geometries [8]. However, in
most practical cases, it is not possible to eliminate all the overhang-
ing surfaces. The optimization of support structures thus repre-
sents a great financial stake for the industry. For removable support
structures, three characteristics can be optimized: volume, pro-
duction time and removability. The volume of a support structure
impacts the quantity of material fused during production. It also
affects the production time. However, the time spent to manufac-
ture the object also depends on the geometry of the support. This
is because the scan speed is not the same for all the areas of the
support, and usually the scan speed for the outline of a geometry
is lower than the one for the filling of that same geometry. Finally,
the ease of removal of a support decreases the finishing time, and
diminishes therefore the overall cost of the part. For permanent
support structures, by definition, only the volume and the produc-
tion time are to be minimized.

This article proposes a new framework for the optimization
of support structures, based on a discrete optimization of lattice
structures. Starting from a uniform lattice structure filling both the
inner and outer areas to be supported, the approach removes a
maximum number of beams so as to minimize the overall volume
of the external and internal supports (Fig. 1). The most suited
geometry for the initial lattice is defined at the beginning con-
sidering the possibilities of the manufacturing technologies. Its
topology is then optimized by pruning the lattice through a genetic
algorithm. Post-processing steps are finally performed to prepare
the model and make it ready for printing.

The contribution is threefold: (i) the volume of the generated
support structures is minimized, in order to reduce the overall
production cost of the part; (ii) the algorithm generates aperiodic
self-supporting tree-like structures, with no privileged direction,
making it optimal for future mechanical optimization and easily
removable during the finishing step; (iii) the framework imple-
ments a new methodology using a genetic algorithm to find a
solution to the Directed Steiner Tree (DST) problem associated to
the underlying lattice support structure optimization.

The paper is organized as follows. After an overview of the cur-
rent developments on support optimization (Section 2), Section 3
describes the proposed framework composed of several steps. The
problem of finding a lightweight lattice support structure is then
introduced together with the proposed genetic algorithm (GA)
used for its resolution (Section 4). The approach is then discussed
and validated on several test cases, and the best control parameters
are selected for each step according to the results of several exper-
imentations (Section 5). The results are compared with the ones
obtained by several state-of-the-art support structure strategies.
Section 6 ends this paper with conclusions and perspectives.

2. Related works

Support structures are essential for the good production of
parts. They prevent material from collapsing and reduce part de-
formation. However, they represent an important proportion of
the production cost (e.g. material volume, production time and
support removal time) and optimizing them is therefore essential.

Depending on the adopted technology, support structures do
not have the same role, and therefore the same geometries. Various
support structures geometries can be found in the literature. They
can be classified into four main categories: extruded patterns,
dually periodic patterns, triply periodic patterns and aperiodic
structures.

The extruded patterns consist in a 2D shape in the XY plane
repeated at each layer up to the part geometry. They are the most
common geometries because they can be easily generated and
manipulated. For example in Laser Beam Melting (LBM), Calig-
nano carries out a design of experiments to optimize perforated
blocks and lines supports with regard to part deformation, and
he also proposes an orientation optimization procedure as well
as a support optimization procedure [9]. Jdrvinen et al. optimize
part surface roughness and removability of tube and web ex-
truded structures by varying various parameters such as the thick-
ness [10]. Jhabvala et al. generate filled block support structures
with porous micro-structure, thanks to a pulsed laser, making
them easily removable [11]. Krol et al. developed a discrete op-
timization based on a Finite Element Analysis (FEA) model by
subdividing extruded crossing walls [12,13]. For the Fused Deposi-
tion Modeling (FDM) technology, Jin et al. propose a slice-based
algorithm to generate extruded plastic support structures [14]
and Huang et al. extend this method with a pixel-based algo-
rithm [15,16]. Crump et al. also filed a patent on the creation of an
interface between the part and the support structures to facilitate
the removal of the latter [17]. For the StereoLithography Apparatus
(SLA) technology, Quian et al. developed an algorithm projecting
overhanging areas onto the building platform to generate block-
like support structure [18]. Finally, for the Electron Beam Melting
(EBM) technology, Cheng et al. and Cooper et al. use contact-free
blocks placed underneath the overhanging areas to dissipate the
thermal energy induced by the process [19-21].

The dually periodic patterns consist in 3D complex shapes re-
peated according to a 2D pattern in the XY plane. For example
in LBM, Gan and Wong optimize tree-like geometries by varying
the repetition frequency in the XY plane and analyze for each
support structure thus generated its influence on the temperature
distribution during production, and on the surface roughness after
support removal [22]. In FDM, Boyard repeats a tree-like structure
under the overhanging areas to support plastic parts [23].

The triply periodic patterns consist in 3D complex shapes re-
peated in the X, Y and Z directions. For example, Hussein et al. make
use of minimal surface structures (like the Schwartz diamond or
the Schoen gyroid) to support a cantilever part [6,24], whereas
Cloots et al. stack parts on top of each other in the building chamber
by using lattice support structures [25]. In FDM, Li et al. vary the di-
ameter of lattice structure beams in order to create stiffer support
structures [26], whereas Lee et al. propose a voxel-based hollowing
method to create inner support structures [27]. In SLA, Swaelens
et al. filed a patent on the geometries of support structures, includ-
ing perforated crossing walls and lattice support structures [28].

The aperiodic support structure category gathers all the sup-
port geometries that do not present any repetition pattern. For
example in FDM, Mezzadri et al. generate organic support struc-
tures through a topology optimization of the support volume. On
their side, Schimdt et al. have developed an algorithm to generate
tree-like support structures [29]. This algorithm has latterly been
implemented in the free software Meshmixer, and will be com-
pared to the framework proposed in this article. Vanek et al. also

generate tree-shaped support geometries by computing the inter-
section of cones placed under overhanging surfaces [30] whereas
Vaidya et al. repeat octahedral unit cells to achieve the same
goal [31]. Dumas et al. and Shen et al. also use the possibility
of FDM to create bridges (large overhanging areas sustained at
its two ends) to reduce support volume [32,33]. To support in-
ternal cavities, Mao et al. propose a hybrid approach combining
muscle fiber inspired structures and triply periodic structures to
optimize locally the strength-to-weight ratio of the part. Stava
et al. also support cavities by adding inner structures, and propose
a tetrahedron-based hollowing process to reduce the mechanical
loads on supports [34]. Finally, the internal support structures
can also be compared with the works on part hollowing of Wu
etal. [35], Lee et al. [36] Xie et al. [37].

Most of the previously mentioned works propose algorithms
to support all the overhanging surfaces but few take into account
the importance of minimizing the volume of the generated struc-
tures. Besides removing unnecessary beams and thus unnecessary
fused material, our framework operates on a pre-optimized lattice
structure whose geometry has the minimal volume to make it
manufacturable. In Section 5, the results generated by the pro-
posed framework are compared to the ones obtained by some of
the previously introduced state-of-the-art approaches.

Furthermore, many approaches are exploring extruded, dually
periodic and triply periodic structures but few focus on aperiodic
supports. However, the overhanging and thermo-mechanical con-
straints of a part supporting problem do not, most of the time, fol-
low any pattern. Therefore, the geometry of the support structures
should not a priori present any shape repetition. The framework
presented in this paper optimizes a lattice structure by removing
the unnecessary beams and therefore generates aperiodic tree-like
structures, presenting no repetition bias. Finally, working on such
a tree-like structure also contributes to ease the removal of the
external supports during the finishing step.

3. Overall framework

This section introduces the new optimization framework devel-
oped to sustain part overhanging surfaces. As a reminder, an over-
hang corresponds to a surface forming an angle usually considered
inferior to 45° with the horizontal plane [7].

Basically, an overhanging surface is sustained if every point pg
of the surface is at a distance smaller than an overhang dis-
tance o, (with p referring to process) from at least one other
point p; with support material directly below it (p; is therefore
necessarily on the border of the overhanging surface). The over-
hang distance o, depends on the adopted AM technology, material
and print parameters. For example, with the FDM technology, the
overhang distance o, can reach dozen of centimetres [32] (de-
pending on the material) whereas with the LBM technology, it is
considered that o, >~ 0.5 mm. This is illustrated in Fig. 2 wherein
green areas are sustained since they gather together points which
are close enough to existing support structures. At the opposite,
red zones correspond to unsustained areas far from any existing
support structure. The sustainment condition can be expressed as:

VS € 0S(P), Vpo € S, 3p1 € SP(S) : [P0 — P1ll < 0p (1)

where S corresponds to an overhanging surface, OS(P) is the set
of all the overhanging surfaces of a part P, and SP(S) is the set of
all the sustained points of S with support material directly below
them.

From this definition, it becomes straightforward that the use
of lattice structures is a good means to ensure the sustainment
condition while minimizing the support material to be used under
the overhanging surfaces. The principle of the proposed framework

Fig. 2. The sustainment condition: a partially (a) and a fully (b) sustained sur-
face. The unsustained areas are in red. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

is to first generate such an initial lattice structure under the over-
hanging surfaces of a part, and then to remove from this lattice
the maximum number of beams, without however breaking the
sustainment condition. More precisely, the proposed framework is
composed of several steps illustrated in Fig. 3:

1. Initial lattice generation: starting from a watertight triangle

mesh composed of one or more oriented shells, a lattice
structure with a manufacturable unit cell geometry is gener-
ated to support the inner and outer overhanging areas. This
lattice is obtained by repeating a parallelepipedic unit cell in
the three orthogonal directions of the 3D space, with three
constant repetition distances. In this paper, one specific unit
cell geometry is used, but any other self-supporting geome-
try could have been chosen. The adopted unit cell combines
a body-centered cubic (BCC) cell and five vertical beams,
located at each vertical edge and at the vertical axis of the
cube (Fig. 4).
It is defined by three parameters: a corresponds to the size
of the base, h to the height of the cell, and d to the diameter
of the beams. As a consequence, the maximum beam angle
omax and the overhanging distance of the lattice o, (with £
referring to lattice) can be easily computed. This lattice must
satisfy the sustainment condition (1) because the optimiza-
tion algorithm identifies the best sublattice of this initial
lattice. Thus, the sustainment condition for this specific unit
cellis o; < 20, which gives:

a < (d+20,)v2 (2)

The lattice is then trimmed to the part surface so that every
beam going through the part surface is cut short. Finally,
the parameters of the lattice are not considered as variables
of our lattice support structure discrete optimization. Thus,
the best values are selected in a preliminary step that is
discussed in Section 5.2.

2. Pre-processing: the variables and parameters of the opti-
mization problem are identified. The nodes of the lattice
connected to only one beam, also called “isolated nodes”
with a valency of 1, are identified. Those nodes appear
because of the trimming of the lattice to the part sur-
face. Among the isolated nodes, the ones connected to an

overhangs sources

1)

Oriented Pre-processed initial
part lattice (wireframe)

Pre-optimized
lattice (wireframe)

Optimized
supports (wireframe)

Post-processed
supports (volume)

Fig. 3. The proposed optimization framework (example on the Standford Bunny external supports).

overhanging area are called sources and are the ones that
must be sustained. The other isolated nodes are called wells
and do not need to be sustained.

3. Pre-optimization: the variables of the optimization prob-
lem for which the value in the optimal solution can be
directly deduced are identified and removed from the set
of optimization variables, thus reducing the computation
time. For example, if a source node has only one outgo-
ing beam, this beam is needed in order to preserve the
sustainment constraint and is thus necessarily part of the
optimal solution. This beam is therefore directly added to
the solution beam set, the source is removed from the set of
variables, and the beam’s lower extremity is added to the set
of variables as a new source. Likewise, if one of the smallest
outgoing beams is directly connected to a well (i.e. its lower
extremity is a well), this beam is added to the solution beam
set and the source is removed from the set of variables.

4. Optimization: a Genetic Algorithm (GA) attempts to deter-
mine which sublattice of the initial lattice structure has the
smallest cumulated beam length while respecting the sus-
tainment constraint. In this step, the initial lattice structure
is pruned until the termination conditions are reached. This
algorithm is introduced in Section 4 and the method used to
tune its control parameters is discussed in Section 5.1.

5. Post-processing: once the sublattice is found (in the finite so-
lution set defined by the lattice structure), a post-processing
step is applied to even further reduce its length (in a dif-
ferent solution set, spatially continuous). The beam paths
between connection points (i.e. sources, wells and points of
valency greater than 2) are straightened by replacing each
beam path with a unique rectilinear beam between the two
associated connection points. Because of the initial lattice
topology, this added beam is assured to be self-sustained,
and will not generate any new overhanging area. Then, the
resulting lattice structure is triangulated using for instance
the approach of Chougrani et al. [38] which minimizes the
number of generated triangles before printing.

At the end of this optimization process, some preparation steps
are still required before printing. For example, the generated ge-
ometry is to be sliced and the printing parameters selected.

4. Solving the lattice support structure discrete optimization
(LS? DO) problem

The lattice support structure optimization problem introduced
in the previous section is a discrete problem because the number
of potential solutions is finite. To to find a solution to this problem,
a Directed Acyclic Graph (DAG) is associated with the initial lattice
and a Genetic Algorithm (GA) is used to find the subgraph respect-
ing the sustainment constraints and with the smallest cumulated
beam length.

Fig. 4. The unit cell used in this paper.

4.1. Problem formalization

In this paper, a unique lattice graph G = (V, E) is associated
to a lattice L (defined as a set of interconnected beams) through
the following construction process. To each beam extremity of L is
associated a unique vertex v € V (a junction node between several
beams being considered as the same unique extremity). Then, to
each beam of L is associated a unique edge e € E connecting
the two vertices in V corresponding to the beam extremities. The
unicity of the lattice graph associated to a specific lattice can clearly
be deduced from the construction process. To each subgraph G’ of
G, a unique lattice can be constructed by removing all the beams of
L for which the corresponding edge of G is not in G'. Such a lattice
is called a sublattice of L.

An element of V is denoted v; withi € {1, ..., |V|}. Similarly,
a source vertex vs; is associated to a lattice source node, and a
well vertex vy; is associated to a lattice well node. Likewise, Vs
represents the set of all the source vertices, and Vi, the set of all
the well vertices. For a vertex v; of V, out(v;) denotes the set of
outgoing edges of v;, and in(v;) denotes the set of incoming edges
of v;. Let us note out,,q is the maximum number of outgoing beams
in the graph, i.e. outpe = maxi=1_v|{lout(v;)|}. Let us also note
Vour is the set of all vertices in V with at least one outgoing edge:
Vour = {vi € V : out(v;) # @}. Because each edge is necessarily an
outgoing edge for one of its extremity vertex, the number of beams
of G can be written as:

El = Y lout(v) (3)

veVout

In the proposed approach, a lattice graph is oriented as fol-
lows. Each edge of the graph is oriented from its vertex correspond-
ing to the highest lattice node (in the Z direction, perpendicular
to the build platform) to the vertex corresponding to the lowest
lattice node. Furthermore, the lattice graph is weighted with a
function w, E — R which associates to each edge of the

Fig. 5. Example of LS?DO problem on a 2D Stanford Bunny (left) and the weighted
directed acyclic graph (DAG) associated (right). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

lattice graph a cost value equal to the length of the corresponding
lattice beam. In this paper, the cost value w,(e;) of an edge e;, with
j € {1,..., |E|}, corresponds to the length of the corresponding
beam in the lattice. Consequently, the weight (or length in the
present case) w(G) of a lattice graph G = (V, E) is given by the
sum of all the costs of its edges.

The framework starts by generating a lattice structure L under
the overhanging areas (red borders on the 2D Stanford Bunny
of Fig. 5) and optimizes it by finding a sublattice of L with the
minimum cumulated beam length, that sustains all the identified
sources in Vs. In terms of graph, the problem is to find a subgraph ¢/
of the initial lattice graph G = (V, E) with the minimum cost w(G'),
and which connects every source vertex in Vs to at least one well
vertex in Viy. The optimization problem (associated to the LS?DO
problem) can therefore be defined as follows:

Minimize:
E'|
w(G) =) wele)) (4a)
j=1
subject to:
G = (V,E') e sub(G)with Vs V' (4b)
Vs € Vs, 3w € Vy s.t.w € V' and Py (s, w) # 0 (4¢)

where sub(G) defines the set of all subgraphs of G and P¢ (s, w)
the set of all paths from s to w in G'. Fig. 5 shows the weighted
DAG associated to the LS?DO problem (in gray). Red vertices are
the sources, and blue vertices are the wells.

Now, if one connects all the well vertices to a new root vertexr,
by simply adding a set of edges E weighted with a 0 value (blue in
Fig. 5), the problem remains unchanged, but it can be formulated
as: “Find the tree T = (Vr, E7) in Gjp; = (V U {r}, E UE, w,) with
the minimal cost w(T), rooted at r such that Vs C Vr € VU{r} and
Er C EUE”. Therefore in Fig. 5 the weights on the edges are equal
to the lengths of the beams in the lattice structure, except the blue
edges which all have a null weight and which are not associated to
any beam of the lattice structure.

One could notice the similarity between this problem and the
classical Spanning Tree (SpT) problem. However, this problem
differentiates itself from the rooted and directed version of the SpT
problem since only a subset of the graph vertices must be con-
nected to the root. Actually, the previous formulation corresponds
to the definition of the Directed Steiner Tree (DST) problem known
to be NP-hard [39,40]. Halperin et al. proved that, for any ¢ > 0,

there is no polynomial approximation algorithm within a log?> ™ n
ratio, unless P = NP [41]. Thus, many subjects of research focus
on approximating the solution to the DST problem. For example,
Charikar et al. present an algorithm with an approximation ratio
of 0(k?3 1og"* k), where k is the number of pairs of vertices to be
connected [42]. Zelikovsky also proposes an O(k¢) -approximation
algorithm for any € > 0 in the case of a DAG [43].

4.2. Resolution using a genetic algorithm

The resolution of the LS?DO problem is performed using a Ge-
netic Algorithm (GA) whose control parameters have been tuned
through a design of experiments. Genetic algorithms are meta-
heuristics. They are generic algorithms, adaptable to various kinds
of problems, and display a random nature. In this sense they are
non-deterministic algorithms. They are part of the larger fam-
ily of evolutionary algorithms. Actually, genetic algorithms, and
metaheuristics in general, have been successfully used in the past
and have proved their efficiency to find solutions to variants of
Steiner Tree problems [44-46], and to solve complex geometrical
or mechanical NP-hard problems [47-49].

A GA manipulates populations of chromosomes. Each chro-
mosome is a set of variables, called genes, encoding a potential
solution to a problem, i.e. a subgraph in the present case. The values
that can be taken by a particular gene are called alleles. To find an
approximate solution to the DST problem associated to the LS?DO
problem, two encoding approaches have been considered:

o the activation encoding (Fig. 6 left) is one of the simplest ways
to encode a subgraph into a chromosome. Here, a boolean
variable x; is associated to each edge e; in the set of edges
E of the initial graph, and these variables are concatenated
to form the so-called activation chromosome. The activation
chromosome thus contains |E| genes, each of which has two
possible alleles: 0 or 1. If x; = 0, then the edge e; is not
activated, else if x; = 1 it is activated. Every subgraph of a
graph can thus be encoded. For the specific LS*DO problem,
each subgraph of the initial one is not necessarily a solution
of the problem, i.e. there is not necessarily a path from each
source to at least a well as defined by Eq. (4c). Therefore,
a validation step needs to be executed in order to ensure
that Eq. (4c) is satisfied.. Let us note Cyeivation iS the set of
all the chromosomes defined by the activation encoding. The
number of potential solutions thus defined is therefore:

l_[glout(v)] (5)

veVour

IEL — 9 ¥ vevy lout) _

| Cactivation | =

o the switch node encoding (Fig. 6 right) is another way to en-
code a solution to the DST problem into a chromosome. Here,
a variable x; is associated to each vertex v; in the set V,,; of
the initial graph, selecting the only outgoing edge in out(v;)
that will be activated if at least one incoming edge in in(v;)
is activated. The switch node chromosome thus contains |V, |
genes, and the gene x; takes valuesin {1, ..., |out(v;)|}. Let us
note Cgyiecn is the set of all the chromosomes defined by the
switch node encoding. The number of possible chromosomes
define by the switch node encoding is:

|Cowicen] = [lout(v)] (6)

veVout

In the 2D example of Fig. 6 (right), a maximum of three
values can be assigned to the genes x;, i.e. outpg,, = 3. 1If
x; = 1, then the oriented edge starting from v; and pointing
to the left is activated, else if x; = 2 then the one pointing
vertically downward is activated, else if x; = 3 the one
pointing to the right is activated. This encoding method can

e2 e4 e6 e8 el0 el2 el4
[efefa]s]efs]ofu]s]ofo]ofo]1]o]
el € e5 e7 e el el3 ei15
el7 el9 e2l e23 e25 e27 e29
[1]o]oJofofoJoJofif1]o]1]ofo]
el6 el8 e20 €22 e24 e26 e28

v2 v4 V6 v8 vi0 vi2 vi4
[2]i]3]2]2]3]3]2]2f3]2]1]2]3]1]
vl V3 V5 v7 v9 vil vi3 yi5
v2 v4 v6 v8 vi0 vi2 vi4

|VlIBltIVIVSI&I’gIVIVI&IVIBIVI&IBI

V9 vil v1i3 vyi5

\4

Fig. 6. The activation encoding (left), the switch node encoding (right) and the resulting 2D supports (center).

Table 1

Comparison of the number of chromosomes between the activation and the switch
node encoding strategies on the initial lattice structure of the 3D Standford Bunny
external supports (o¢mex = 45°,d = 0.5 mm and o, = 1 mm).

Encoding strategies

activation switch node
Before pre-optimization 1025652 10'1912
After pre-optimization 1020149 109357

only encode subtrees of a graph because for each vertex vj,
only one outgoing edge in out(v;) can be activated. The set
of potential solution is, therefore, the set of all subtrees of
the initial graph rooted in r. Actually, since the solution to
the DST problem must be a tree rooted in r, the switch node
encoding is particularly adapted to to find a solution to the
LS?DO problem.

By comparing Eqgs. (5) and (6), one can notice that the set of
all subtrees rooted in r is consistently smaller than the set of all
subgraphs. Therefore, the switch node encoding reduces greatly the
number of considered solutions. Considering a 3D lattice struc-
ture composed of basic cells as the one of Fig. 4, the variable x;
associated to a vertex v; of the initial graph can take 5 different
values corresponding to the 5 directions of the oriented edges
starting from v; and going down. Naturally, with another type of
unit cell, the values of the variables are to be changed. Table 1
gives an overview of the number of potential chromosomes for
each encoding strategy on the initial lattice support structure of the
3D Standford Bunny. Those values are computed from Egs. (5) and
(6) with |V, | = 17 043 before preoptimization, |V, | = 13387
after preoptimization and such that Vv € V¢, out(v) = 5.

It clearly reflects the importance of reducing the number of
potential solutions by selecting the appropriate encoding strategy
and by using a pre-optimization strategy (step 3 of the frame-
work). As a consequence, in this paper, the switch node encoding
has been adopted.

The execution of the GA is described in the flowchart of Fig. 7. At
first, an initial population of chromosomes is selected. Naturally,
the number of chromosomes is much smaller than the ones dis-
played in Table 1. In this paper, the initial population is chosen
randomly but it can be selected through a heuristic algorithm to
obtain good initial solutions. Then the so-called fitness of each

Population initialization

* Initial generation

Fitness computation

* Unselected

chromosomes

Parents selection

Selected parents +

Crossover

A Y 2

Mutation

Offspring *

Fitness computation

—

Reinsertion
(survivor selection)

New generation

Best solution

Fig. 7. Genetic algorithm flowchart.

initial chromosome is computed in parallel. The fitness of a chro-
mosome is directly equal to the sum of the weights associated
with the edges activated by that chromosome. Once each chro-
mosome is evaluated, a set of parent chromosomes is selected
in the initial population. Those parents are going to give birth
to the next generation of chromosomes, through crossovers and
mutations. However, all the selected parents are not giving birth
to children: each parent has a probability to be part of a crossover,
and a probability to mutate. Those probabilities are parameters of
the GA. Once the child chromosomes are created, their fitness is
once again computed. Some children are then selected to be rein-
serted into the previous population to form the next generation of
chromosomes. Finally, the GA checks if the termination conditions
are fulfilled: if so, the best chromosome of the last generation

Table 2

Factors and their levels for the design of experiments parameterization.

Levels 0 1 2 3

Selection Elite Roulette wheel Stochastic universal sampling ~ Tournament
Crossover One-Point Two-Points Uniform Three parents
Mutation Reverse Sequence Twors Uniform -

Reinsertion Elistist Uniform - -

MinSize 50 100 500 1000

Span (MaxSize-MinSize) 50 100 500 1000
Crossover probability 0.25 0.5 0.75 1

Mutation probability 0.01 0.1 0.3 0.5

is considered as the solution to the problem, and otherwise, the
evolutionary algorithm goes on with another generation created
through the previous steps.

Finally, the GA makes use of 4 operators: selection, crossover,
mutation and reinsertion. The GA also has 4 execution parameters
that influence the algorithm: minimal size of a population (Min-
Size), maximal size of a population (MaxSize), crossover probabil-
ity (CP) and mutation probability (MP). Thus, the GA is controlled
by 8 parameters for which the best values must be selected in order
to find a solution to the LS*DO problem as efficiently as possi-
ble. The way the 8 control parameters are selected is explained in
the next section.

5. Experimentations and results

This section addresses the approach used to select the GA con-
trol parameters through a DoE, and the one used to identify the ini-
tial lattice structure parameters. The proposed framework is then
applied to several test cases and the generated support structures
are compared to the ones obtained with several state-of-the-art
approaches.

5.1. GA parameters selection

The GA adopted in the proposed framework has been imple-
mented through the GeneticSharp library [50], created by Gia-
comelli, and available on GitHub. Therefore, the levels for the 4
operators of our GA are the ones of this implementation. Table 2
lists the levels of the 8 parameters (4 operators plus 4 execution
parameters) controlling our GA: 6 parameters with 4 levels, 1
parameter with 3 levels and 1 parameter with 2 levels. A brief ex-
planation of each operator possible values is given in the following
paragraphs.

Selections: the so-called Elite selection is selecting only the
chromosomes with the best fitness values. For the Roulette Wheel
selection, the probability of a chromosome to be selected is the
ratio of its fitness over the sum of the fitness values of all the chro-
mosomes of the population. The Stochastic Universal Sampling is
a variation of the Roulette Wheel selection which ensures that
a chromosome with a 3.8% selection probability, for example, is
selected in practice 3 or 4 times out of a 100 (and not 0, 1 or 2
times which could happen with uncontrolled randomness). The
Tournament selection operator creates random pairs of chromo-
somes and discards for each pair the chromosome with the lowest
fitness value, until the population size fits the requirements.

Crossovers: for the One Point crossover operator, a swapping
gene index is randomly defined: all the genes before the swapping
index are derived from the first parent whereas the genes after
the swapping index are derived from the second parent. The Two
Points crossover presents the same mechanism, but with two
swapping points. With a Uniform crossover operator, each gene of
the child chromosome is independently selected from one parent
or the other, according to a mixing probability. For the Three
Parents crossover, each gene is also selected independently: if the
gene values of the first and second parents are equal, this value is

attributed to the child chromosome. Otherwise, the value of the
third chromosome gene is attributed.

Mutations: with the Reverse Sequence mutation, a portion of the
chromosome is flipped (the first gene of the portion becomes the
last and vice-versa). Twors mutation exchanges the position of two
randomly chosen genes. With a Uniform mutation operator, the
value of a gene is randomly changed, each allele having the same
probability to be chosen.

Reinsertions: an Elitist reinsertion is reinserting only the chro-
mosomes with the best fitness values, whereas with a Uniform
reinsertion, the offspring are reinserted at random, with the same
probability for each chromosome.

5.1.1. Design of experiments set up

A design of experiments (DoE) has been carried out to deter-
mine which GA parameters are the most suited for the LS?DO
problem. The Taguchi tables method has been selected because it
offers a good trade-off between accuracy of the results and number
of different experiments to realize. According to the number of pa-
rameters and the number of levels for each parameter, the L3, (2! x
4%) table has been selected. During the 32 experimentations, two
quantities have been observed to define the quality of the GA
parameterization: the length of the lattice structure associated to
the solution graph, and the computation time (i.e. time to return
a solution). The length of the lattice support structure can then be
converted into a volume once the diameter of the beams has been
set up.

Because of the random nature of the GA, the DoE can be biased:
one run of the GA with a certain set of parameters can produce
exceptional results compared to what it would produce most of
the time. In order to smooth this effect, for each set of parameters,
it has been decided to run the GA five times, to discard the two
extrema (the lowest and the highest measurements) of the two
observed quantities, and to analyze the effects of the set of param-
eters with the mean of the three remaining measurements, called
the trimmed response.

Finally, to set up the DoE, it is important to stress that the
LS?DO is a part-specific problem: from one part to another, the
initial lattice is different, so the evolution of the algorithm may
vary. Therefore, the identification of the best GA parameters has
been carried out on 3 parts containing more or less complex inner
and outer areas to be sustained: the Standford Bunny, an industrial
Stem and an industrial Turbine (Figs. 13-15). Those parameters
have then been used to run the GA algorithm on other parts which
have not been used during the DoE: the Armadillo and Bird (Figs. 16
and 17).

5.1.2. Analysis of the DoE results

Following this DoE, the 32 experimentations have been run 5
times on the 3 parts. Fig. 8 compares the effects of the 3 DoE on the
length measurement whereas Fig. 9 compares the effects of the 3
DoE on the time measurement. As a reminder, the length measure-
ment is equal to the length of the corresponding lattice at the end of
arun of the GA with a specific bundle of parameters. Therefore, the
objective of the DoE is to find out the parameters which are ideal for

Selection Crossover
120.0% 120.0%
110.0% \(110.0% —
100.0% 100.0% _—
90.0% E——— 90.0% /\,«/
80.0% 80.0%
70.0% ! 70.0% L
Elitist Roulet. Stoch. Tourn. 1Point 3Prnts Unif. 2Points

Stem 110.7% 98.3% 99.8% 91.2%
e TUrb.. 114.2% 95.0% 98.9% 91.9%

Stem 103.9% 105.8% 82.4% 107.9%
e TUrb.. 102.9% 111.0% 73.8% 112.4%

Bunny 115.1% 98.4% 98.9% 87.7% Bunny 104.6% 107.3% 74.8% 113.3%
MinSize Span

120.0% 120.0%
110.0% — 110.0%
100.0% \;ﬁ 100.0% _———— .

90.0% 90.0%

80.0% 80.0%

70.0% 70.0%

s0 100 500 1000 s0 100 500 1000

Stem | 106.8% 107.5% 93.2% 92.5% Stem 99.6% 99.0% 101.2%
e Turb. 111.4% 110.3% 87.3% 90.9% e Turb.. 99.6% 105.8% 96.4% 98.2%
Bunny 99.4% 108.9% 95.6% 96.1% Bunny 102.3% 109.6% 89.6% 98.5%

100.1%

Mutation Reinsertion
120.0% 120.0%
110.0% 4 110.0% o
100.0% / 100.0% — =
90.0% ;“‘“‘ ’ 90.0% =
80.0% 80.0%
70.0% : 70.0% v .
Revers. Twors Unif. Elitist Unif.
Stem 91.8% 93.4% 110.3% Stem 92.4% 107.6%
e TUTD. 83.6% 91.1% 112.2% e TUTD. 89.2% 110.8%
Bunny 90.2% 84.1% 111.5% Bunny 90.1% 109.9%

Crossover Probability Mutation Probability
120.0% 120.0%

110.0% 110.0%

100.0% —————— 100.0% —_——————
90.0% 90.0%

80.0% 80.0%

70.0% 70.0%
0.25 0.5 0.75 1 0.01 0.1 03 05

-Stem 104.1% 100.9% 96.9% 98.1% Stem 101.3%
102.3% 97.9% 96.8% e Turb. 104.1%

100.7% 98.6% 99.4%

s Turb. 103.0% 103.3% 97.8% 94.7%

Bunny 100.3% = 105.7% 96.1% 98.0% Bunny 111.3% 100.7% 93.4% 94.6%

Fig. 8. Effect analysis of the DoE regarding the length of the solution.

Selection Crossover
200.0% 200.0% =
150.0% 150.0% / ~
100.0% — ~— 100.0% i
50.0% 50.0% _—
0.0% 0.0%

Elitist Roulet. Stoch Tourn. 1Point 3Pmts Unif. 2Points.

Stem 110.4% = 128.9% 80.0% 80.7% Stem 60.3% 47.1% 1825% 110.1%

Turb. 68.4% 64.7% 136.9% 129.9%

Turb. 102.3% 126.0% 109.5% 62.2%

Bunny 80.9% 106.6% 113.7% 98.7% Bunny 84.2% 80.3% 119.4% 116.1%
MinSize Span
200.0% 200.0%
150.0% = 150.0%
100.0% — 100,09 = —
. — J . —
50.0% 50.0%
0.0% 0.0%
50 100 500 1000 50 100 500 1000

Stem 77.7% 61.5% 124.1% 136.7% -Stem 116.2% 116.3% 85.9% 81.6%
Turb. 82.0% 55.7% 114.1% 148.3% Turb. 124.7% 103.6% 90.6% 81.1%
Bunny 65.8% 76.7% 1158% 141.7% Bunny 91.5% 84.2% 92.7% 131.5%

Mutation Reinsertion
200.0% — 200.0%
150.0% =2 150.0%
o ~ o —
100.0% N 100.0% —
50.0% - 50.0%
0.0% 0.0%
Revers. Twors Unif. Elitist Unif.

Stem 184.3% 141.6% 40.7% - Stem 56.2% 143.8%

s TUPD.. 150.3% 181.2% 37.2% e TUr. 69.0% 131.0%

Bunny 165.7% 166.3% 33.5% Bunny 92.4% 107.6%

Crossover Probability Mutation Probability

200.0%
150.0%

200.0%

150.0%

100.0% e —— 100.0% _:A«\\/
50.0% 50.0%

0.0% 0
® o 05 075 1 0.0% 0.01 01 03 05

Stem 86.6% 98.1% 87.0% 128.3%
e Turb.. 72.4% 72.2% 109.2% 146.2%

Stem 76.3% 120.0% 82.0% 121.7%
—Turb. 96.0% 111.7% 69.4% 122.8%
Bunny 75.6% 82.5% 103.1% 138.9% Bunny 87.7% 93.6% 88.4% 130.3%

Fig. 9. Effect analysis of the DoE regarding the computation time.

both the length and the computation time. For each parameter, the
most suited level is thus the one with the smallest effect. The effect
of each level is computed as follows: it is the sum of the considered
measurement (length of returned solution or computation time) of
all the experiments for which the factor is set to the corresponding
level. Then, the effect of each level is normalized (by dividing it by
the mean of the considered measurement of all the experiments
of the DoE) to be able to compare the tendencies over all the test
cases.

For example, one can consider the DoE carried out on the Stem
part. For this DoE, 32 experiments have been repeated 5 times. For
each experiment, the repetitions with the lowest and the highest
lengths have been discarded, and the trimmed length response of
the experiment has been computed as the sum of the length of the
3 remaining repetitions divided by 3. Then, the trimmed length
response of all the experiments has been gathered in a table. To
compute, for instance, the effect of the Elitist level for the Selection
operator, the experiments for which the Selection operator is set
to Elitist are considered and the corresponding effect is computed
as the mean of these experiments trimmed length responses. Fi-
nally, this effect is divided by the mean of all the trimmed length
responses of the Stem DoE, giving 110.7% according to Fig. 8.

For the length measurement (Fig. 8), it can be noted that the
tendencies of the effects are globally similar over the 3 parts. For
the selection, crossover and reinsertion operators, the ideal levels
are identical for the 3 test cases (namely the Tournament, Uniform
and Elitist levels). For the mutation operator, the Reverse and the
Twors levels seem more effective than the Uniform one. However,
between the two, none is better than the other on all the test

cases. Therefore, the Twors level has been arbitrarily selected. For
the MinSize parameter, the two highest levels (namely 500 and
1000) seem to be more efficient than the others, but the best
one is difficult to isolate. The same tendency can be noticed for
the Crossover Probability (with the 0.75 and 1 levels) and for the
Mutation Probability (with the 0.3 and 0.5 levels). For the Span
factor, the 500 level is better than the others for the Turbine and
the Stanford Bunny parts, but it returns a slightly longer solution
for the Stem part.

For the proposed framework, the length measurement is con-
sidered as more important than the computation time, because the
latter should be negligible with regard to the production time of
the parts (especially in the case of series production). Therefore,
to select the best parameters, the most beneficial levels over the
length measurement have been selected, and for the conflicting
parameters, the level with the lowest time-consumption has been
chosen. Following this rule, the 8 control parameters values are
presented in Table 3. Thus, for the mutation operator, the time
consumption cannot help to decide between the Reverse and the
Twors levels. However, for the MinSize parameter, the 1000 level
clearly increases the computation time, so the 500 level will be
favored. Likewise, for the Crossover Probability, the 0.75 level will
be privileged over the 1 level, and for the Mutation Probability, the
0.3 level will be chosen over the 0.5 level. For the Span parameter,
the time-consumption graph comforts the preselection made.

Fig. 10 presents the evolution graph of the LS>DO on the Tur-
bine internal support, using the selected GA parameters levels of
Table 3. Each abscissa corresponds to a generation index. The blue
continuous line represents the evolution of the best chromosome

Table 3
Selected levels of the GA parameters implemented
in our framework.

Parameters Selected levels
Selection Tournament
Crossover Uniform
Mutation Twors
Reinsertion Elitist
MinSize 500
Span (MaxSize-MinSize) 500
Crossover Probability 0.75
Mutation Probability 0.3
1000 , .
900 o ho s, Best chromosomes
b3
800 ‘*" eeesee Worst chromosomes
700 p

600
500
400
300

200
0 50 100 150 200 250 300
Generation index

Fitness

00g 0.
ootes%es’s o% PO

Fig. 10. Evolution graph of the GA on the Turbine internal support.

(with the lowest fitness) of the generation, whereas the red dotted
line represents the worst chromosome (with the highest fitness)
of the generation. The other chromosomes of the generation are
not represented but their fitnesses would lie between these two
values. The termination condition of the GA has been set arbitrarily
for this test case to 100 generations without evolution of the best
chromosome, but this value can be set manually by the user. It can
be seen that the fitnesses of the chromosomes of the generations
are converging over time to the same low value, indicating that
the GA is reaching the end of its search: this converging fitness is
probably close (or equal) to the optimal solution length.

5.2. Lattice parameters selection

As mentioned in Section 3, the parameters of the initial lattice
are not considered as variables of the optimization process. Thus,
those parameters have to be tuned before generating the initial
lattice and before solving the LS?DO problem using the GA. The
lattice structure parameters are as follows (Fig. 4):

e maximal beam angle a;,,,x which corresponds to the maxi-
mal angle between a beam of the lattice and the horizontal
plane. It can vary between 45° and 90°.

e beam diameter d whose value is constrained by the adopted
technology. For LBM technology, it can vary between 0.5 mm
(minimal beam diameter that can be manufactured) and +o0.

e unit cell parameter a corresponding to the repetition distance
of the unit cells in the X and Y directions. It is a lattice gener-
ation parameter, but it is not really a lever for action. Indeed,
the value of a must satisfy the sustainment condition (Eq.
(2)). This equation makes a dependent of the beam diameter d
and overhanging distance oy, the last two being independent
from each other. o, is therefore the true lever of action,
and has to be smaller than 1 mm (o, < 20,) for the LBM
technology.

According to Eq. (2), if the overhang distance o, decreases, the
unit cell parameter a decreases and the lattice structure becomes
denser. The main objective of the developed framework being to
minimize the volume of the lattice support structure, one can

V (in mm3)
1000
900
800
700
600
500
400

300 222.42

200 L=

776.76

597.33

395.6:

unmanufacturable

100
0 :)

025 05 075 1 125 15 d(inmm)

Fig. 11. Volume of internal supports after optimization for the Stanford Bunny

according to the initial lattice beams diameter d.

V (in mm3)
1000
900 =
©
800 S
©
700 2
600 2
©
500 E
=
400 3 302.10 323~V
300 | 22242 25102
00
o B
45° 50° 55° 60° Qo

Fig. 12. Volume of internal supports after optimization for the Stanford Bunny
according to the initial lattice maximal beam angle &nqy.

Table 4
Most suitable lattice parameters values implemented in our
framework for the LBM technology.

Parameters Most suitable values
maximal beam angle (mqy) 45°

beam diameter (d) 0.5 mm
overhanging distance (o;) 1 mm

clearly understand that the optimal value for o, is the highest
possible.

However, increasing the value of the beam diameter d results
in a sparser lattice structure, but with thicker beams. Likewise,
changing the value of the maximal beam angle o,qx Will result in
a lattice with less but longer beams. Therefore, it is not obvious
that setting these initial lattice parameters to their lowest values
will minimize the volume of the lattice support structure solution
found by the GA. To clarify this point, some experimentations have
been carried out by varying the beam diameter d and the maximal
beam angle o4 On the internal support structure of the Stanford
Bunny. Figs. 11 and 12 present the results of these experimenta-
tions. As it can be seen in Fig. 11, a low beam diameter d induces
the lowest volume of the supports after optimization. Likewise, in
Fig. 12, a low maximal beam angle produces the lowest volume
for the supports after optimization. Therefore, the best values for
the d and o parameters of the initial lattice are the lowest
possible.

Following those rules, the three lattice parameters values have
been chosen equal to the commonly used lower limits of the
manufacturing constraints of the adopted printing technology. For
the LBM technology, the adopted parameters are summarized in
Table 4. This technology is the one used to print the Stem part of
Fig. 18 whose support structure has been generated following the
framework proposed in this paper.

e
‘n‘&

Fig. 13. Stem external supports generated by our framework (a), by Meshmixer (b), by SLA (c) and by SLM (d) support strategies.

Fig. 14. Turbine external supports generated by our framework (a), by Meshmixer
(b), by SLA (c) and by SLM (d) support strategies.

5.3. Results comparison

5.3.1. Volume comparison

To evaluate the interest of using lattice structures to support
overhanging areas, the internal support structures obtained by
using the proposed framework could be compared to the hollowing
methods proposed by [35-37]. However, since these approaches
consider other optimization criteria, i.e. taking into account me-
chanical resistance as well as part manipulation, this comparison
would not be fair.

Therefore, a more extended study has been performed to com-
pare the support structure generated by our genetic-algorithm
based framework with the support structures obtained by the work
of Schmidt et al., implemented in the free software MeshMixer [29]
and the ones generated by another software commonly used by
industry. For the latter, two supporting strategies are compared
to the proposed framework: one dedicated to generating support
structures for SLA technology, and the other one for SLM technol-
ogy. This comparison is done on the internal and external support
structures of the 3 test cases (Figs. 13-15). To remove the parts
from the building platform, they are positioned at a constant height
in order to enable a tool to cut the supports under them. It must be
noted that for the comparison, the Meshmixer and the SLA support
structures have been generated with the same diameter as the ones
generated with the proposed framework (d = 0.5 mm).

In addition to the three test cases used to select the GA pa-
rameters through the DoE, two other models provided by Vanek
et al. [30] have been supported with our framework, with Mesh-
mixer, and with the SLA and the SLM strategies, in order to have an
independent comparison: the Standford Amarillo and a model of a
Bird. It must be mentioned that the overhang distance o, used by
Vanek et al. is greater than the one used in this article, since the AM
technology considered is different (LBM in this article and FDM in
their case).

First, with the Meshmixer strategy, it can be noticed that some
supports are going around the part (under the chin of the Bunny
for example), avoiding to attach the base of the support to the
part. Likewise with the SLA support strategy, some support pillars
are directly connected to the build platform, whereas a sloping
connection to the part itself would decrease their volume. The ob-
jective is probably to avoid additional time-consuming part finish-
ing operation, on the junction surfaces. However, the consumption
of material, and thus the production time are greatly increased by
this choice.

The supports generated with the Meshmixer strategy are also
not rectilinear (and present a curly shape), unlike the supports
generated with the proposed framework. This is probably due to
the optimization strategy executed and must intuitively lead to a
degradation of the support mechanical strength.

Contrary to the proposed framework and the Meshmixer strat-
egy, the SLA strategy presents tree-like support structures with
vertical trunks: near the overhang surfaces, beams are highly clus-
terized but after a certain distance, no more beams reunion is
found, and the supports finish in a vertical pillar. It is thus less opti-
mized than the proposed framework and the Meshmixer strategy,
and the resulting structures have higher volumes.

Fig. 17. Bird external supports generated by our framework (a), by Meshmixer (b), by SLA strategy (c), by SLM strategy (d), and by Vanek et al. [30] (e).

Table 5

Volumes comparison between solutions obtained by the proposed framework and the support structures generated by the other strategies.

Stem supports Turbine supports Bunny supports Armadillo supports Bird supports
internal external internal external internal external external external
Volumes (in mm?)
LS?DO using GA 420 1300 45 3130 210 310 740 810
Schmidt et al. [29], 460 1450 85 3450 245 390 750 1000
Meshmixer
SLA strategy 565 1850 70 6990 300 400 940 2280
SLM strategy 630 3100 90 5760 380 470 1370 3650
Vanek et al. [30] N/A N/A N/A N/A N/A N/A 30" 20
Volume reductions
LS?DO wrt Meshmixer —9% —10% —47% —9% —14% —21% —1% —23%
LS?DO wrt SLA strategy —26% —30% —36% —55% —30% —23% —27% —181%
LS?DO wrt SLM strategy —33% —58% —50% —46% —45% —34% —85% —351%

*with 10 wm wall thicknesses.

The SLM strategy is mentioned here because it is the main sup-
port strategy used with LBM technology. It consist of vertical thin
walls, perforated with rhombus shapes. The generated supports
are intuitively much denser than the tree-like support structure,
because they are also supposed to withstand the part residual
stresses. They are also more difficult to remove than the support
structures generated by the proposed LS?DO technique. However,
the comparison of the two gives an idea of the optimization range
for the support volume: the best trade-off between dense supports

to minimize the part deformation, and light supports only sustain-
ing the overhangs, should lie between supports generated by these
two strategies.

More precisely, Table 5 compares the volume of the supports
obtained by using our framework and the volume of the sup-
port structures generated by Meshmixer, by the SLM and the SLA
supporting strategies. It clearly shows that the proposed frame-
work enables the generation of the support structures with the
lowest volume. Table 5 also indicates the volume of the support

Table 6
Computation times comparison between solutions obtained by the proposed frame-
work and the support structures generated by the other strategies.

Stem Turbine Bunny Armadillo Bird
supports supports supports supports supports
Computation times
LS?DO using GA 75 min 48 min 26 min 33 min 18 min
Schmidt et al. [29], 30 min 154 min 21 min 76 min 83 min
Meshmixer
SLA strategy 3min2ls 25s 11s 9s 2s
SLM strategy 1min10s 3min5s 20s 11s 4s
Vanek et al. [30] N/A N/A N/A 161 min 80 min

structures provided by Vanek et al. [30] for the Amarillo and the
Bird models only, the code of Vanek et al. not being available (N/A)
to test it on the other examples. However, these structures present
wall thicknesses of approximatively 10 wm on their whole height,
which is technically unmanufacturable in LBM or in FDM at the
moment. Therefore, these volumes cannot be fairly compared to
the ones of the supports generated by our framework, and are
mentioned only on an indicative basis.

5.3.2. Time comparison

A comparison of the computation times required to gener-
ate the previously presented support structures is detailed in Ta-
ble 6. For the Stanford Bunny, the Stem and the Turbine parts,
these results include the times to generate both the internal and
the external support structures. The results of the LS?DO, the
Meshmixer, the SLA and the SLM strategies have been obtained
with an Intel®Core™ i7-4710HQ CPU at 2.50 GHz, with 16 GB of
RAM, and an Nvidia GeForce GTX 970 M GPU. These characteristics
are similar to the ones used by Vanek et al. [30] to obtain their
support structures (mentioned in the last line of Table 6). There-
fore, the computation times can fairly be compared with respect
to hardware characteristics. It is also important to mention that,
with the actual implementation of the proposed framework, no
GPU computation is realized.

These results demonstrate that the software solutions used by
industry to generate support structures are the fastest (i.e. the
SLA and SLM strategies). Besides probably using GPU computing,
these large gaps can be explained by the fact that their result-
ing structures are less optimized than the ones proposed by the
other methods (as demonstrated by Table 5). However, it can be
noticed that the proposed framework is faster than the work of
Schmidt et al. [29] implemented in Meshmixer on some test cases,
but not on all of them. This might be explained by the fact that
their support structures are sometimes going around the part (as
detailed in Section 5.3.1): imposing such constraints requires more
computation and thus greater optimization times.

In comparison to the work of Vanek et al. [30], the presented
framework is faster. This could be due to the difference in the
nature of the two considered problems, the one identified in this
article being discrete, whereas the one solved by Vanek et al. being
continuous. Furthermore, the overhang distance used in their work
is greater than the one used here, because the AM technology
differs (LBM versus FDM). If they were using the same overhang
distance as the one used in this article, the number of connection
points on the overhang surfaces would be greater, and their op-
timization would take even more time to run. The comparison of
Table 6 is thus not completely fair, to our own disadvantage.

As a conclusion, besides generating support structures with
lower volumes, the proposed framework is also showing reduced
computation times in comparison to other state-of-the-art aca-
demic works. However, it is not yet competing with GPU-using
commercial software. Nevertheless, besides implementing GPU
computation, the proposed framework computation time could be

Fig. 18. The Stem test case printed in LBM and sawn in two to make internal
supports visible.

optimized by coupling the GA with a heuristic algorithm, or by
creating specific GA operators (for the Crossover or the Mutation
operator for example), more adapted to the specific LS*DO prob-
lem.

6. Conclusions and future works

In this paper, a new framework has been proposed to optimize
support structures for additive manufacturing. The aim of the
framework is to sustain all the overhanging areas of a part, leaving
aside the deformation and thermo-accumulation issues. To do so,
an initial manufacturable lattice structure is generated under the
overhanging areas. Then, a GA optimizes this lattice by removing
the maximum number of beams, while ensuring that all the areas
to support are still sustained. Naturally, working on such tree-
like structures also contributes to ease the removal of the external
supports during the finishing step.

This article has presented various results. The GA control pa-
rameters values the most suited for the LS?DO problem have been
selected through a DoE. The internal and external support struc-
tures of five test cases have been successfully generated and also
manufactured, and their volumes have been compared to the ones
of support structures generated by several other state-of-the-art
strategies, underlining the interest of the developed algorithm
in terms of volume optimization. Other approximation or meta-
heuristic algorithms could also be used to find an approximate
solution to the DST problem and compared to the GA presented
in this article. However, through the compared results, it has been
shown that using a GA to to find a solution to the LS?DO problem
performs already better than the traditional support generation
strategies. The computation times have also been compared, and
if commercial solutions perform faster but with less optimized
volumes, the proposed approach is faster than other academic
methods.

As a perspective for this research, the convergence of the GA
could be further improved. For example, a heuristic search could
be implemented in order to generate better initial populations, or a
quick local search could be done after each crossover and mutation,
in order to obtain better child chromosomes.

Furthermore, in order to decrease the computation time of
the GA, the various overhanging areas could be optimized by
stages: once a first quick optimization is completed, the over-
hanging areas with no common support structures (two disjoint
subgraphs) could be separated in various clusters, and each cluster
could be optimized again with a normal optimization. Because
each cluster would contain less overhanging areas and less initial
beams, their optimization would converge exponentially quicker,

resulting in a reduced overall computation time. Naturally, such
a decomposition strategy could also benefit from an ad-hoc GPU
implementation.

In order to further improve the optimization of the support
structures, the objective function (that only includes the material
volume) could be extended, by taking into account the support
removal and finishing costs. However, these costs can be hard to
estimate because they depend on many factors (e.g. the tools used,
the training of the operator).

Finally, because the deformation and thermal accumulation
problems have been left aside, the proposed framework is only a
first block in the wide area of support structure optimization. Its
coupling with thermo-mechanical optimization algorithms is of
interest in the future, in order to generate poly-functional support
structures, that can sustain overhangs, rigidify features subject to
deformation, and dissipate the thermal accumulation areas of any
additively manufactured part.

References

[1

Tofail SA, Koumoulos EP, Bandyopadhyay A, Bose S, O'Donoghue L, Chari-
tidis C. Additive manufacturing: Scientific and technological challenges, mar-
ket uptake and opportunities. Mater Today 2018;21(1):22-37.

Dilberoglu UM, Gharehpapagh B, Yaman U, Dolen M. The role of addi-

tive manufacturing in the era of industry 4.0. Procedia Manuf 2017;11:

545-54.

ASTM F2792-12a. Standard terminology for additive manufacturing technolo-

gies. 2012, Withdrawn 2015.

Panesar A, Abdi M, Hickman D, Ashcroft I. Strategies for functionally graded

lattice structures derived using topology optimisation for additive manufac-

turing. Addit Manuf 2018;19:81-94.

Brooks H, Brigden K. Design of conformal cooling layers with self-supporting

lattices for additively manufactured tooling. Addit Manuf 2016;11:16-22.

Hussein A, Hao L, Yan C, Everson R, Young P. Advanced lattice sup-

port structures for metal additive manufacturing.] Mater Process Technol

2013;213(7):1019-26.

Thomas D. The development of design rules for selective laser melting. [Ph.D.

thesis], 2009.

Langelaar M. An additive manufacturing filter for topology optimization of

print-ready designs. Struct Multidiscip Optim 2017;55(3):871-83.

Calignano F. Design optimization of supports for overhanging structures

in aluminum and titanium alloys by selective laser melting. Mater Des

2014;64:203-13.

[10] Jdrvinen J-P, Matilainen V, Li X, Piili H, Salminen A, Mdkeld I, Nyrhild O. Char-
acterization of effect of support structures in laser additive manufacturing of
stainless steel. Physics Procedia 2014;56:72-81.

[11] Jhabvala], Boillat E, André C, Glardon R. An innovative method to build
support structures with a pulsed laser in the selective laser melting process.
Int J Adv Manuf Technol 2012;59(1-4):137-42.

[12] Krol TA, Zaeh MF, Schilp], Seidel C. Computational-efficient design of support
structures and material modeling for metalbased additive manufacturing. In:
Ansys conference & 29th CADFEM users meeting. 2011, p. 12.

[13] Krol TA, Zaeh MF, Seidel C. Optimization of supports in metal-based additive
manufacturing by means of finite element models. 2012, p. 12.

[14] Jin Y-A, HeY, FuJ-Z. Support generation for additive manufacturing based on
sliced data. Int] Adv Manuf Technol 2015;80(9-12):2041-52.

[15] Huang X, Ye C, Mo J, Liu H. Slice data based support generation algorithm for
fused deposition modeling. Tsinghua Sci Technol 2009;14:223-8.

[16] Huang P, Wang C, Chen Y. Algorithms for layered manufacturing in image
space. In: Advances in computers and information in engineering research,
vol. 1.2014.

[17] CrumpSS, Comb JW, Priedeman Jr WR, Zinniel RL. Process of support removal
for fused deposition modeling. US Patent; 1996, 5, 503, 785.

[18] Qian B, Lichao Z, Yusheng S, Guocheng L. Support fast generation algorithm
based on discrete-marking in rapid prototyping. In: Affective computing and
intelligent interaction. 2012, p. 683-95.

[19] Cheng B, Chou K. Geometric consideration of support structures in part over-

hang fabrications by electron beam additive manufacturing. Comput Aided

Des 2015;69:102-11.

[2

3

[4

5

[6

[7

[8

[9

(20]
(21]
(22]
(23]
(24]

(25]

(26]

[27]

(28]

[29]
(30]

(31]

(32]
(33]
(34]
(35]
(36]
(37]
(38]
(39]
[40]

(41]

[42]

[43]

[44]

[45]

(46]

(47]

(48]

[49]

(50]

Cheng B, Chou YK. Overhang support structure design for electron beam
additive manufacturing. ASME; 2017, VO02T01A018.

Cooper K, Steele P, Cheng B, Chou K. Contact-free support structures for part
overhangs in powder-bed metal additive manufacturing. 2015, p. 12.

Gan M, Wong C. Practical support structures for selective laser melting.]
Mater Process Technol 2016;238:474-84.

Boyard N. Méthodologie de conception pour la réalisation de piéces en fabri-
cation additive. [Ph.D. thesis], 2015.

Hussein A. The development of lightweight cellular structures for metal
additive manufacturing. [Ph.D. thesis], 2013.

Cloots M, Spierings AB, Wegener K. Assessing new support minimizing strate-
gies for the additive manufacturing technology SLM. In: 24th International
SFF symposium-an additive manufacturing conference. Austin, USA: Univer-
sity of Texas at Austin; 2013, p. 631-43.

Li D, Dai N, Jiang X, Shen Z, Chen X. Density aware internal supporting
structure modeling of 3d printed objects. IEEE; 2015, p. 209-15.

Lee], Lee K. Block-based inner support structure generation algorithm for
3d printing using fused deposition modeling. Int] Adv Manuf Technol
2016;2151-63.

Swaelens B, Pauwels], Vancraen W. Method for supporting an object made by
means of stereolithography or another rapid prototype production method.
US Patent; 1997, 5, 595, 703.

Schmidt R, Umetani N. Branching support structures for 3d printing. In: ACM
SIGGRAPH 2014 studio. ACM; 2014, p. 9.

Vanek], Galicia JAG, Benes B. Clever support: Efficient support structure
generation for digital fabrication. Comput Graph Forum 2014;33(5):117-25.
Vaidya R, Anand S. Optimum support structure generation for additive manu-
facturing using unit cell structures and support removal constraint. Procedia
Manuf 2016;5:1043-59.

Dumas], Hergel], Lefebvre S. Bridging the gap: Automated steady scaffoldings
for 3d printing. ACM Trans Graph 2014;33(4):10.

Shen Z-H, Dai N, Li D-W, Wu C-Y. Bridge support structure generation for 3d
printing. In: World scientific. 2016, p. 141-9.

Stava O, Vanek], Benes B, Carr N, Méch R. Stress relief: Improving structural
strength of 3d printable objects. ACM Trans Graph 2012;31(4):48.

Wu], Wang CC, Zhang X, Westermann R. Self-supporting rhombic infill
structures for additive manufacturing. Comput Aided Des 2016;80:32-42.
Lee M, Fang Q, Cho Y, Ryu J, Liu L, Kim D-S. Support-free hollowing for 3d
printing via voronoi diagram of ellipses. Comput Aided Des 2018;101:23-36.
Xie Y, Chen X. Support-free interior carving for 3d printing. Visual Inform
2017;1(1):9-15.

Chougrani L, Pernot J-P, Véron P, Abed S. Lattice structure lightweight trian-
gulation for additive manufacturing. Comput Aided Des 2017;90:95-104.
Hauptmann M, Karpiriski M. A compendium on steiner tree problems. Inst.
fiir Informatik; 2013.

Watel D. Approximation de I'arborescence de steiner. [Ph.D. thesis],
Versailles-St Quentin en Yvelines; 2014.

Halperin E, Krauthgamer R. Polylogarithmic inapproximability. In: Proceed-
ings of the thirty-fifth annual ACM symposium on theory of computing. ACM;
2003, p. 585-94.

Charikar M, Chekuri C, Cheung T, Dai Z, Goel A, Guha S, Li M. Approximation
algorithms for directed steiner problems. In: Proceedings of the 9th annual
ACM-SIAM symposium on discrete algorithms. 2000, p. 15.

Zelikovsky A. A series of approximation algorithms for the acyclic directed
steiner tree problem. Algorithmica 1997;18(1):99-110.

Bravo-Azlan H, Candia-Vejar A. A metaheuristic solution to a constrained
steiner tree problem. In: Computer science society, 1997 proceedings., XVII
international conference of the chilean. IEEE; 1997, p. 16-20.

Chen Z-H, Hou W-G, Dong Y. The minimum steiner tree problem based on
genetic algorithm. In: International conference on modeling, simulation and
optimization (MSO 2018). p. 5.

Singh K, Sundar S. Artifical bee colony algorithm using problem-specific
neighborhood strategies for the tree t-spanner problem. Appl Soft Comput
2018;62:110-8.

GeY, ShanF, Liu Z, Liu W. Optimal structural design of a heat sink with laminar
single-phase flow using computational fluid dynamics-based multi-objective
genetic algorithm.] Heat Transf 2017;140(2). 022803.

Bhoskar MT, Kulkarni MOK, Kulkarni MNK, Patekar MSL, Kakandikar G, Nand-
edkar V. Genetic algorithm and its applications to mechanical engineering: A
review. Mater Today: Proc 2015;2(4-5):2624-30.

Renner G, Ekart A. Genetic algorithms in computer aided design. Comput
Aided Des 2003;(35):18.

Giacomelli D. Geneticsharp. 2018.

http://www.tcpdf.org

