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ABSTRACT 
Bond graph software can simulate bond graph models without the user needing to manually derive equations. This 

offers the power to model larger and more complex systems than in the past. Multibond Graphs (those with vector bonds) 
offer a compact model which further eases handling multibody systems. Although multibond graphs can be simulated 
successfully, the use of vector bonds can present difficulties. In addition, most qualitative, bond graph-based exploitation 
relies on the use of scalar bonds. This paper discusses the main methods for simulating bond graphs of multibody systems, 
using a graphical software platform. The transformation between models with vector and scalar bonds is presented. The 
methods are then compared with respect to both time and accuracy, through simulation of two benchmark models. This 
paper is a tutorial on the existing methods for simulating 3D rigid and holonomic multibody systems using bond graphs, 
and discusses the difficulties encountered. It then proposes and adapts methods for simulating this type of system directly 
from its bond graph within a software package. The value of this study is in giving practical guidance to modellers, so that 
they can implement the adapted method in software. 

 
Keywords: bond graph, multibond graphs, multibody system, modelling methodology, simulation, closed kinematic 
chain 

 
1. INTRODUCTION 

 
There has been a resurgence of interest in bond 

graphs in the last twenty years, as computer science has 
progressed 1, 2. Software environments with graphical 
user interfaces enable the user to enter, modify and 
interpret bond graphs, allowing the graphical aspect to be 
fully exploited. Equations can be automatically 
generated, reducing the scope for human error, and high-
performance numerical solvers can be utilised to solve 
them.  

As far as multibody systems are concerned, several 
bond graph methods have been developed. Karnopp and 
Rosenberg define a procedure for constructing bond 
graphs from Lagrange equations 3-5. Tiernego and Bos 
offer a modular approach based on Newton-Euler 
equations 6 and Hamiltonian formalism 7. Different 
specific physical aspects of multibody systems have also 
been modelled: high pairs of joints 8, complex friction 
models (9, 10), and flexible bodies (11, 12).  In addition, 

bond graph models have been developed for industrial 
applications: motorcycle 6, vehicle dynamics 13, 14, 
automotive powertrains 15, 16, robots 17, and biomechanics 
18. Some books which have some parts on the modelling 
of multibody systems 1, 19-21. However, it is relatively 
unusual to simulate mechanisms directly from the bond 
graph without manually deriving the associated 
equations 6, 22-26. This paper therefore focuses on the 
methods for simulating 3D rigid and holonomic  
multibody systems from bond graphs. The authors define 
the class of multibody system studied as one where the 
joints are lower pairs of joints, only a viscous friction 
model is considered, and the bodies are assumed to be 
rigid. The simulation of such systems in bond graphs is 
problematic, with little detailed literature on the subject.  

The aim of this paper is to overview and expand on 
existing methods, in order to provide guidance on 
simulating multibody systems directly from a bond graph 
i.e. automatically within a software package, as opposed 
to the user manually deriving the dynamic equations. It 
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is addressed to bond graph specialists as well as 
engineers. The software used here is 20-SIM: a 
simulation package for dynamic systems using physical 
components, block diagrams, bond graphs and equations 
of motion. The methodology recommended to modellers 
depends on the type of system to be modelled (open chain 
(OC) or closed kinematic chain (CKC) systems). Several 
methods for simulating multibody systems with bond 
graphs will be compared numerically, by observing 
parameters such as time (computational load) and 
accuracy. 

An important part of this methodology is to show 
how a bond graph with vector bonds can be transformed 
into a bond graph with scalar bonds.  This is because 
bond graph exploitation largely relies on the use of scalar 
bonds: simplification and reduction 27, structural analysis 
28, and model inversion 29-34.  

The method is demonstrated on two classic 
multibody case studies: a planar pendulum and a slider 
crank. The bond graph approach used in this paper has 
specific features which allow a structured and modular 
development of complex mechatronic systems: it is 
multiphysics, graphical, object-oriented, and acausal. 
Embedded electronics could easily be inserted into the 
models (e.g. modelling a torque delivered by an electrical 
actuator in the slider crank system). The graphical nature 
of bond graphs facilitates a global view and 
comprehension of large complex mechatronic systems, 
such as helicopter anti-vibratory system 35. The oriented-
object and acausal features also permit a modular 
approach, allowing knowledge to be capitalised upon and 
the modelling task to be automated.  

The outline of the paper is as follows: Section 2 gives 
a brief review of bond graph modelling in the context of 
multibody systems. Section 3 is dedicated to the 
methodology used to simulate bond graphs for 
Multibody systems both with vector and scalar bonds. 
Section 4 presents the applications of the presented 
methods and a numerical comparison. Section 5 draws 
general conclusions. 

 
Notation 
 

Subscripts 
 
i Relative to the body i   
 
Mechanical notation 
 
General 
 

h
M N


 Vector associated with the bipoint (MN) 
expressed in the hR frame 

0



g iW  

Weight vector of body i expressed in 
the inertial reference frame 0R  

i/0


i  Angular velocity vector of body i with 
regard to the inertial reference frame 
expressed in the frame iR  

/0


i

MV  Linear absolute velocity (in regards to the 
inertial frame) of point M expressed in the 
frame iR  

/ k


i

M iV  Linear relative velocity vector of point M of 
body i with regards to the body k expressed 
in the frame iR  

0
iP
 

Transformation matrix from the inertial 
reference frame 0R  to the frame iR

 
 ext i  External mechanical wrench applied to 

body i 
q  Generalized velocity 

iq  Independent generalized velocity 

dq  Dependent generalized velocity 

T  Module of the velocity transformer 
between dependent and independent 
generalized velocity 

M   Module of the velocity transformer 
between dependent and the whole 
generalized velocity 

Gj body j’s centre of mass 
 
Reference frames 
 

 0 0 0 0 0, , ,R O x y z
    Inertial reference frame (or 

Galilean frame) 
 , , ,

  
i i i i iR O x y z  Local reference frame of body  i 

 
Model variables of the rigid body i 
 

, ,i i ix y z  Positional parameters of body i’s centre of 
mass [m] 

, ,  i i i  Angular parameters of the body i with 
regard to the inertial reference frame [rad] 

  
Model parameters 
 

mi 
Body i‘s mass expressed the inertia frame 
[kg] 

IGi 
Body i‘s inertia matrix about mass-centre 
of body i expressed in its frame[kg.m²] 

EJSGi 
Eulerian Junction Structure (EJS) matrix 
about mass-centre of body i expressed in its 
frame 

 
2. BOND GRAPH MODELING DEDICATED TO 

MULTIBODY SYSTEMS 
 
2.1. Brief review  

 
This section reviews the main contributions on 

modelling dynamic behaviour of three-dimensional 
multibody systems. A more detailed review can be found 
in 1. 

The multibond graph formalism 36 37 is an extension 
of bond graph method, where the scalar power bonds 
become vector bonds and the elements multiports. It 
extended the application of the bond graph to the study 
of multibody systems with three dimensions. 

The bond graph approach for multibody systems was 
introduced by Bos 38 6. In his PhD thesis, Bos developed 
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bond-graph models for three-dimensional multibody 
systems and discussed how to derive the equations of 
motion from the bond-graph in several different forms. 
He conducted simulations of a 3D motorcycle, although 
the equations were derived by hand. 

Library models for a rigid body and for various types 
of joints have been provided by Zeid and Chung  39 so 
that bond graph models of rigid multibody systems can 
be assembled in a systematic manner.  

Felez 40 develops a software program that models 
multibody systems using bond graphs. To manage 
derivative causalities with this software, he proposes 
introducing Lagrange multipliers into the system to 
eliminate derivative causality.  

Van Dijk and Breedveld present different methods 
for simulating bond graph models 41. Simulations were 
conducted with a predecessor of the 20-sim software, and 
numerically compared on the basis of computing time 
and accuracy. The potential to use multibond graphs was 
mentioned, but the difficulty of implementing bond 
graphs with vector bonds was not detailed. This point 
will be discussed later in this paper.     

Marquis-Favre and Scavarda 42 propose a method to 
simplify bond graph models for multibody systems with 
kinematic loops. Nevertheless, few complex multibody 
systems with closed kinematic loops have been simulated 
directly from dedicated software. 

More recently, a body of work has conducted 
simulations of complex kinematic closed systems with 
multi-bond graphs directly from 20-sim software: e.g. 
Rideout 23, Ersal  , Rahman 25 and Boudon 35.  

 
2.2. Approach chosen 

The authors selected the Bos and Tiernego method 38 
for modelling multibody systems with bond graphs, 
because it allows a modular approach. This method 
enables a multibody system to be built as an assembly of 
bodies and joints, and is based on the use of absolute 
coordinate systems (Figure 1) and Newton-Euler 
equations. The dynamic equations of a rigid body 
therefore depend on its mass/inertia properties and on 
geometric parameters for the body under consideration. 
The kinematic joints constrain the effort and flow vectors 
associated with the articulation points in the assembly of 
two bodies, so that the desired relative motion can be 
achieved. Consequently, the dynamic equations of the 
complete system consist of the dynamic equations of 
each body, in terms of its own parameters and the 
constraint equations of each joint.  

 
Figure 1 - Parametrization of the free rigid body 

 
2.3. Modelling Rigid bodies  

Consider the architecture of a rigid body multibond 
graph model based on 1, 6, 42,  43.  

Figure 2 - Bond graph model of the rigid body 
 
This bond graph architecture is based on the Newton-

Euler equations (equations (1) and (2)). The inertia 
matrix I

iG , modelled with the multiport energy store 
element I in the upper part of Figure 2, is associated with 
gyroscopic terms which are modelled with a multiport 
gyrator element - also called Eulerian Junction Structure 
- about the centre of mass of body i expressed in its 
coordinate frame EJS

iG . The mass matrix m i is 
modelled with a multiport energy store element I, shown 
in the lower part of Figure 2.  

 0 0 0
/0

0jh j pes j j G
h

d
F P V

dt   m
  

  (1) 

   /0 i/0 i/00i i

i
i i i i i i

G G i G
h

d
M

dt
       

 I I
  

   (2) 

The upper part of the bond graph in Figure 2 represents 
the rotational dynamic part expressed in the body frame, 
while the lower part is for the translational dynamic part 
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

i
i

/0


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
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
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expressed in the inertial reference frame (or Galilean 
frame). Note that the power bonds corresponding to the 
rotational quantities are marked in purple while the 
power bonds corresponding to the translational quantities 
are in green. The two 1-junction arrays correspond to the 
angular velocity vector of body j with regards to the 
inertial frame  i/ 0

i



and the translational velocity 
vector of body i’s centre of mass in regards to the inertial 
frame  0

/ 0iV G


 respectively.  

The central part of Figure 2 describes the kinematic 
relations (equation (3)) between the velocities of the two 
points of the body i (  / 0

i

jV M


and  0
/ 0kV M


) and 

the velocity of the centre of mass  / 0
i

iV G


resulting 
from the formula of the rigid body.  

 

0 0

0 0

00 0 0
/ / /0

00 0 0
/ / /0

k i i

j i i

M R G R S i k

M R G R S i j

V V G M

V V G M

  

  

 

    (3) 

           As the translational dynamic is expressed in the 
inertial reference frame, a modulated transformer 

element (MTF) between 
0/i

i
G RV


and 
0

0
/iG RV


transforms 

the coordinates (equation (4)) between the body frame Ri 
and the inertial frame R0.  

0
/0 0 /0.

i i

i i
G GV P V
 

  (4) 

In this paper, XYZ Cardan angles have been employed 
for the sake of simplicity. The rotation matrix 

0
iP can be 

calculated from Cardan angles. The components of 
angular velocity for each body expressed in the body 
frame (the pseudo-velocities, or rates of change of 
Cardan angles) are used to determine the body’s 
orientation and the corresponding coordinate 
transformation matrix. This classical process is used in 
the Cardan block detailed in Figure 3. It should be noted 
that the initial conditions for the integration of time 
derivatives must be consistent with regards to the 
kinematic constraints. 

It can be noticed that the finite rotation 
transformation should be also defined with other 
coordinates systems since this transformation is powerful 
conservative : for example, Euler angles with angles 
which are compatible with the mechanism concerning 
the singularities aspects, the Rodrigues-Hamilton 
parameters or the Cayley-Klein parameters. The 
implementation of the finite rotation transformation with 
the Rodrigues-Hamilton parameters is given in 43.

 

 
Figure 3 - Calculation of the Cardan angles and rotation matrix from the angular velocity 

 

2.4. Modelling Kinematic joints 
The joint models express the constraints that are 

introduced when rigid bodies are connected. As with the 
bond graph model of the rigid body, the joint models 
have been built in a modular way i.e. their models do not 
change when the whole model of the system is 
assembled. The idea of this section is to allow bond graph 
practitioners to use a library of all the common existing 
kinematic joint models. 

 
2.4.1. General kinematic joint model 

The modelling of kinematic joints determines the 
rotational or translation degree of freedom allowed by the 
joint.  

Flow sources can be used to suppress the joint’s 
degrees of freedom. However, in order to circumvent the 
causality constraints mentioned before, the joints models 
are presented with an additional L element which is 
either an R/C element or a modulated effort source MSe 
depending of the choice of simulation method (R/C 
element methods or the use of Lagrange multipliers).  

For the unconstrained degrees of freedom, the choice 
of modelling assumptions can dictate additional 
elements. If the joints are assumed to be perfect (i.e. 
without any dissipation or energy storage), there are no 
additional elements. However, if dissipation or 
compliance are assumed in the joints, R or C elements 
are added at the corresponding 1–junctions. These R/C 

/0
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elements will be called functional elements and should 
not be confused with the R/C elements used as parasitic 
elements for purpose simulation in section 3.3.3. 

The joint model is built from the following kinematic 
relationships: 

1 1 1
1/0 1/2 2/0    

  
  (5) 

Where 

 1
1/0


is the absolute velocity of body 1 expressed in 1R

frame 

1
1/ 2


is the relative angular velocity of body 1 with 

regard to body 2 expressed in 1R  frame 

1
2/0


 is the absolute velocity of body 2 expressed in 1R

frame  

And 
 

 
2 2 2

2 1

1 1 1
2/0 2/1 1/0

11 1 1
2/1 1/0 1/0 1 2

O O O

O O

V V V

V V O O

  

 

 

   

  

    (6) 

Which can be also written as 

 2 2 1

11 1 1 1
/0 2/1 /0 1/0 1 2O O OV V V O O   

  
  (7) 

Where  

2

1
/0OV


 is the absolute velocity of point O2 

1

1
/0OV


 is the absolute velocity of point O1 

2

1
2/1OV 


is the relative velocity of point O2 with regard to 

the frame 1R  
11

1/0 1 2O O 


is the velocity component due to the 

rotation of frame 1R  with regards to the inertial reference 

frame 
 
The general kinematic joint model is then detailed in 
Figure 4. 

 
Figure 4 - General kinematic joint model 

 
In the general kinematic joint model, MTF elements 

modulated by coordinate transformation matrix are used 
to express the kinematic quantities in the frame 
associated with the body they are connected to. 
 

2.4.2. Kinematic joint models 
Based on the general kinematic joint model, models of 
common kinematic joints are given in Figure 5, Figure 6 
and Figure 7. 
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1
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Figure 5 - Kinematic joint models - part 1 
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Figure 6 - Kinematic joint models - part 2 
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Figure 7 - Kinematic joint models - part 3 

 
3. METHODOLOGY OF MODELING FOR 

SIMULATION  
 
3.1. General aspects 

 
The first two steps of modelling a multibody system 

with bond graphs are choosing the dimension of the 
multi-body model (2D or 3D), and choosing the 
dimension of the bonds (scalars or vectors).  

In keeping with the philosophy of a modular 
approach, the authors propose a 3D model and vector 
bonds. Depending on the modelling objectives, the user 
can transform the model to one with scalar bonds in order 
to exploit it later (as described in Figure 8).  

 

 
Figure 8 - Steps for the BG exploitation of MBS 
 
Hence, modelling with vector bonds is discussed 

first, and then with scalar bonds.  
 

3.1.1. Modelling with vector bonds 
  

The first step in carrying out a simulation of a bond 
graph is the assignment of causalities. Two causality 
constraints appear with vector bonds, as noted by 24 and 
44. 

The first causality constraint (C1) is:  

C1: each component of a vector bond must have 
the same causality.  

Consequently, it is not possible to constrain the 
motion using Sf elements in only one or two dimensions 
without introducing some parasitic elements into the 
remaining unconstrained dimension(s). 

The second causality constraint (C2) is:  
C2: the causality of transformers implied in the 

cross products, and the causality of gyrators in the 
bond graph model of the rigid body, are intrinsically 
fixed.  
 The transformers implied in the cross products 

must have flow-in-flow-out causality  
 The gyrators must have flow-in causality.  
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moduli (matrices associated to the elements) are not 
invertible are present for two elements: the transformer 
(TF) between the rotational and translational domain and 
the gyrator (GY) since both elements implement cross 
products. Consequently, transformers and gyrators have 
the mandatory fixed causality assignment specified 
above. The transformers and gyrators with the acceptable 
causal forms mentioned are given in Figure 9. 
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Figure 9 - Causalities imposed with [Modulated] TF 

and GY elements 
 

The causalities imposed on the transformers lead to 
some specific results when multibody systems with 
kinematic loops are considered. Figure 10 presents the 
bond graph model of a rigid body with vector bond and 
the imposed causalities. Consequently, in the bond graph 
of a rigid body, attaching flow sources (Sf) to more than 
one hinge point or the centre of mass at the same time is 
not possible and leads to causality conflicts. This 
situation typically occurs when the multibody system is 
composed of kinematic loops. In 24, the author gives the 
example of an oscillating bar which, with its two joints, 
is a closed kinematic chain system with one body. This 
case will appear in the slider crank model presented in 
this paper. 

 

 
 
Figure 10 - Bond graph model of rigid body with vector 

bonds and the imposed causalities 
 

3.1.2. Modelling with scalar bonds 
 

Bond graph models with scalar bonds do not have the 
same causality constraints as vector multi-bonds. 
However, in order to obtain the bond graph model with 
scalar bonds in a systematic way from the vector bond 
model, the same causality constraints (C1 and C2) on the 
gyrators and the transformers used for cross products are 
kept. Consequently, following the method chosen for the 

simulation of the bond graph model (presented in section 
3.3), the scalar equivalent transformers representing 
coordinate transformation (here called coordinate 
transformation subsystems) should be adapted to respect 
the causality imposed by the rest of the bond graph. This 
is true of both the rigid bodies and the joints. The 
causality of these transformers depends on the elements 
used to constrain the motion.  

These coordinate transformation subsystems can 
have two different structures: the structure with flow-in-
flow-out causality and the structure with effort-in-effort-
out causality. The causalities of these coordinate 
transformation subsystems are imposed by the position 
of the 0-junctions or 1-junctions with regard to the scalar 
MTFs. The coordinate transformation subsystem with 
flow-in-flow-out causality is built with the 1-junctions at 
its input in order to propagate causality to the rest of the 
elements. Following the same logic, the coordinate 
transformation subsystem with effort-in-effort-out 
causality is built with the 0-junctions at the input. 

Figure 11 presents the two possible structures of the 
coordinate transformation subsystem and the cross 
product model for the BG model of the rigid body. The 
use of these coordinate transformation subsystems in the 
joints is illustrated in section 4 of this paper (see Figure 
19). For the sake of clarity, the modulation signals for the 
MTFs are not displayed. Figure 12 and Figure 13 
presents respectively the translational dynamics model 
and rotational dynamics model in scalar bond graphs. To 
the authors’ knowledge, these models have been 
presented for the first time in this form in 27, 45. 

A procedure for transforming a multibody model 
with vector bonds into one with scalar bonds is as 
follows: 
1) Identify the causality of the transformers linked to 

coordinate transformation (in bodies and joints). 
2) Replace each of these transformers with the 

appropriate transformer subsystems, and assign the 
same causality as that seen on the vectorial MTF in 
the model with vector bonds:  

a) If the vectorial MTF is flow-in-flow-out causality, 
then use the coordinate transformation subsystem 
with flow-in-flow out causality (with 1-junctions at 
the input and 0-junctions at the output). 

b) If the vectorial MTF is effort-in-effort-out causality, 
then use the coordinate transformation subsystem 
with effort-in-effort-out causality (with 0-junctions 
at the input and 1-junctions at the output). 
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Figure 11 - Bond graph model of rigid body with scalar bonds 

 
 

 
          Figure 12 – Rotational dynamics 
 
 

 
 

Figure 13 – Translational dynamics 
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3.2. DAE formulation 
 
In this paper, absolute coordinates are selected in 

order to keep a modular approach. Consequently, due to 
the kinematic constraints, derivative causality appears on 
the inertial elements and leads to differential-algebraic 
equations. It is important to notice that both open chain 
(OC) and closed kinematic closed (CKC) systems 
therefore lead to a DAE formulation. One of the priorities 
of the simulation methods proposed in this paper will 
therefore be to handle DAEs. 
 

3.3. Review of the simulation Methods  
 

The methods presented in this section come from the 
references given in section 2.1. The value of this study is 
in giving practical guidelines to modellers, so that they 
can implement the adapted method in 20-sim software. 
 

3.3.1. Minimal coordinates method 
 

Description 
 

The minimal coordinates method is based on 
formulating the dynamics using minimal set of joint 
coordinates (as generalized coordinates) to describe the 
mechanism’s degrees of freedom.  

Tiernego and Bos method leads to a model with a 
mixed differential-integral causalities on its inertial 
elements. The number of variables of inertial elements 
with derivative causalities depends on the variables of the 
inertial elements with integral causalities. The principle 
of the method is to transform the dependent inertia 
storage element (using  transfomers) and to combine 
them with to the independent elements. This idea was 
first described in the context of bond graphs by 
Karnopp3. 

Allen46 uses this transformation on multibody 
systems where the dynamics are described with Lagrange 
equations and generalized coordinates. Breedveld7 
utilises it on a rigid body dynamics model corresponding 
to Newton-Euler equations with absolute coordinates. 
From a bond graph point of view, the minimal 
coordinates method consists of a two-level 
transformation through transformer elements as detailed 
in Figure 14. One level of transformers converts the 
velocities associated with inertial elements in absolute 
coordinates to the generalized velocities chosen as the 
joint’s coordinates (also called relative coordinates). A 
second level of transformers converts the generalized 
velocities to the independent generalized velocities 
vector.   

 

Figure 14 - Equivalent mechanism BG model in relative 
coordinates 

 
As mentioned in section 2.3, the dynamics of a 

mechanism are represented by two elements. The 
rotational dynamics of a mechanism are described by I-
elements, characterised by the inertia tensor I of the body 
and the corresponding gyrator MGY. The translational 
dynamics are also described by an I-element, 
characterised by the mass tensor mi.  

For a system of n degrees of freedom, there are n 
independent velocities grouped in vector iq . The 

generalized velocity vector q defined for a mechanism 

can be partitioned into independent and dependent 
generalized velocities as follows:  

i
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  (8) 

The dependent generalized velocities can be written 
as a function of the independent generalized velocities.  

d iq Tq    (9) 

Where T  is a displacement-dependent velocity 
transformation between dependent and independent 
generalized velocities. 
 

From equations (8) and (9), the generalized velocities 
can be written as a function of the independent 
generalized coordinates.  

 

iq M q    (10) 

With 
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. This notation is inspired by 46. 

The inertial velocities of each body can be written as 
a function of the generalized velocities.  

 

i iV T q    (11) 

Where 
i ii VT T or T  are displacement-dependent 

velocity transformations between inertial and 
generalized velocities. 
 

Allen46 shows that the transformation of multiport 
inertia elements over a modulated transformer 
transformation leads to a virtual inertia Ĩ and a modulated 
gyristor element MGR. The ‘virtual’ denomination 
comes from the fact that the terms of this inertia are not 
constant. The modulated gyristor MGR comes from the 
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modulated transformer with a variable modulus. In 7, 
Breedveld formulated the displacement of I-elements 
and the gyrator GY element over a transformation from 
the inertial velocities to the generalized velocities. This 
leads to the following equations. 

 

1 . . .m .
i i i i i

T T
G V i V

i i

I T I T T T      (12) 

1 . .m .    
i i i i i

T T
G V i V

i i

MGR T I T T T   (13) 

1 . .  i i i

T
G

i

EJS T EJS T   (14) 

The second transformation leads to the virtual inertia 
Ĩ2, gyristor MGR2 and junction structure EJS2 associated 
with the independent generalized velocities. These are 
both modulated by the independent generalized 
parameters qi: 

2 . . . . . .m . .
i i i i i

T T T T
G V i V

i i

I M T I T M M T T M        

 (15) 
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The bond graph of the two-level transformation is 
given in Figure 15. 

 

 
Figure 15 - Displacement of I and GY elements through 

two-levels of transformers 
 

This method requires three steps of symbolic 
manipulations. The first one is the determination of the 

iT  and M  matrices from the kinematic relations. The 
second is the derivation of these matrices, which is 
required for the construction of the MGR elements. The 
third is the multiplication of non-linear matrices for the 
final computation of the added elements. Allen 46 
conducts manual symbolic manipulation so as to 
determine the velocity relations from the displacement 
equations obtained by geometric analysis. Bos 6 has 
improved this method by using the bond graph to derive 
the velocity’s transformation. Felez 47 and Borutzky 1 
later presented a similar method to systematically deduce 
the kinematic relations from a modified bond graph 
model by the addition of controlled flow sources.  

The technique of transforming storage elements from 
dependent to independent has been applied on industrial 
mechanisms: a forming machine 46, 48, a web cutting 
machine  49, a pneumatic welding robot 50 and 
manipulator robots 51. More recently, bond graph 
examples have been published: a planar pendulum in 52, 
and a simple slider crank modelled from Lagrange 
equations using Karnopp procedure in 1. In this paper, it 
is applied on a slider crank modelled with the modular 
Bos and Tiernego method, and can be easily used for 
more complex systems. As Borutzky points out 1, this 
method essentially applies the well-known joint 
coordinate formulation of Nikravesh 53 to the bond graph 
modelling of multibody systems. 
 
Advantages  

All derivative causalities are removed, and only 
integral causality remains on the inertia associated with 
the independent generalized velocity vector. The virtual 
inertia will always be in integral causality because it is 
grouped to an inertia element in integral causality during 
the transformation.Consequently, the number of 
equations is reduced and an ODE formulation is 
achieved, which is much more compact than a DAE 
system. The ODE model can be solved with a fixed step 
solver such as 4th Order Runge-Kutta. 
 
Drawbacks 

The technique can be very demanding in terms of 
computer memory, and requires consistent mathematical 
simplifications by an expert user. 

The modularity (i.e. the property whereby the 
mechanism can be assembled as a set of subsystems 
according to its structure) disappears. Hence, simulation 
of a mechanism’s subsystems can no longer be conducted 
individually to check the whole model one piece at a 
time. 
 

3.3.2. The ZCP opening method 
 

Description 
Once causality is applied, different types of causal 

paths between elements can be identified. A closed 
causal path without any integration operations is called a 
zero-order causal path (ZCP) 22, 54-57. Bond graphs with 
ZCPs generate mathematical models with DAEs. There 
is a direct link between the nature of the ZCPs in the bond 
graphs and the index of the DAEs. The definitions of 
ZCPs are given by Felez 22 as follows: 
 Class 1 ZCPs: The causal path is set between storage 

ports with integral causality and storage ports with 
differential causality. The associated topological 
loops are flat. 

 Class 2 ZCPs: The causal path is set between 
elements whose constitutive relations are algebraic 
(resistors are the most typical case). The topological 
loops are flat. 

 Class 3 ZCPs: A causal cycle whose topological 
loops are open. The causal path starts and ends in the 
same port of an element. 
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 Class 4 ZCPs: Causal cycles whose topological 
loops are closed. 

Only Class 4 ZCPs lead to DAEs with an index of 2. 
When the DAE’s index is inferior to 2, a Backward 
Differentiation Formula (BDF) solver (such as the one in 
20-sim) can handle these equations. In some cases (scalar 
bonds or vector bonds with no kinematic loops), the 
simulation can thus be conducted without additional 
specific elements.  

 
Advantages 

First, this method enables simulations to be 
conducted directly from the model without requiring the 
addition of elements (R/C elements or controlled effort 
sources) at the correction location. The initial physical 
model is therefore not changed. Second, this method is 
faster than the two following methods (R/C elements and 
controlled effort sources), as demonstrated in section 4.  

 
Drawbacks 

When multibody systems have kinematic loops, the 
bond graph may contain Class-4 ZCPs which lead to a 
DAE formulation with an index superior to 1. When this 
happens, the BDF solver often encounters difficulties in 
the numerical computation of the model. The ZCP 
opening method consists of opening the Class-4 ZCP 
using ‘break variables.’ This technique can be used at an 
equation level or at a graphical level. The classical 
technique uses modulated sources (MSe) at 1-junctions 
of the Class-4 ZCPs to open them. Without a systematic 
approach to the detection of the Class-4 ZCPs, this 
method may be difficult to use when dealing with a case 
that involves complex multibody systems. Hence, the 
authors have not used this method here. 

 
3.3.3. The R/C parasitic element                                                             

 

Description 
The R/C parasitic element method first appears as the 

“Stiff-compliance” approach in 58. In the literature, 
others terminologies can be found: singular perturbation 
59, parasitic elements 23, 60, virtual springs 61 and coupling 
or pads 21, 62 

This method is based on the introduction of parasitic 
elements: compliances and resistances in the bond graph 
models of the joints. When used with multibody systems, 
this method has two objectives: eliminating the 
kinematic constraints, and eliminating the derivative 
causality (which yields algebraic loops) so that an 
explicit solver may be used.  

As mentioned in section 3.1.1, vector bond graphs 
impose some supplementary causality constraints (C1 
and C2). These constraints can be enforced using flow 
sources (Sf), but they may lead to causal conflicts 
because of their flow-out causality. Enforcing the 
constraints with parasitic elements (R and C elements) 
can circumvent these conflicts since they can take effort-
out causality. Firstly, they allow the preservation of the 
causality assignments for all bonds of a multibond (C1 
respected). Secondly, they allow the suppression of 

causality conflicts which may appear due to the causality 
of the transformers implied in the cross product and 
gyrators (C2 respected). 
 
Advantages 

With the R/C parasitic element method, all derivative 
causalities are removed. This leads to an explicit ODE 
model, which can be solved with a fixed step solver such 
as 4th Order Runge-Kutta.  

Unlike the Lagrange multipliers method, the 
consistency between the initial conditions for CKC 
system are not mandatory. In 23, the parasitic element 
method is even used to determine initials conditions. In 
addition, over-constrained (also called hyperstatic) 
systems can be simulated without any difficulties, as 
demonstrated in section 4. Karnopp and Rosenberg 5 
state that “The idea of using artificial C-and R-elements 
to enforce constraints and thus to avoid derivative 
causality or differential-algebraic equations may appear 
to be a “brute-force” approach. This may be true, but 
first, a brute-force approach that is effective should not 
be discounted and, second, it has been argued that this 
approach is in many cases superior to the alternatives.” 
 

Drawbacks 
This method introduces new elements (R and C 

elements) to the initial bond graph, whose parameters 
and initial conditions (in the case of C-elements) need to 
be specified. The values of the compliant elements must 
reflect the compliances which exist in all mechanical 
joints. The stiffness' that are used should be high enough 
so as to approximate the constraints and not change the 
dynamics of the system. However, high stiffness’ can 
introduce high-frequency dynamics. This  forces the 
solver to take very small integration steps to meet the 
tolerance criteria and, consequently, the simulation is 
slowed. This method therefore leads to a compromise 
between the accuracy of the results and the simulation 
time: the stiffer the system is, the more numerical errors 
are reduced but the higher the simulation time. 

 
Implementation 

Even theoretically where explicit solvers can be used, 
the authors recommend the use of the implicit MBDF 
(Modified Backward Differentiation Formula) solver for 
three reasons. The first is because the MBDF solver is 
faster than classic explicit solver when a stiff ODE is 
concerned. The second is because, as an implicit method, 
the stability is guaranteed. The third is that controlled 
effort sources necessitate use of the MBDF solver. Using 
the MBDF solver with R/C Elements too allows 
comparison between the use of R/C elements and 
controlled effort sources. In this paper, all simulations 
have been conducted with MBDF solvers. 

 
3.3.4. The Lagrange multipliers method 

 
Description 

In the Lagrange-multiplier method, the constraint 
forces are modelled by controlled effort sources (MSe) 
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rather than by parasitic elements. This method originates 
from Bos and Felez 6, 40 and has been implemented in 20-
Sim by Borutzky and Van Dijk 1, 41, 63.  The same concept 
is also implemented by Ersal 24 with pseudo flow source 
(PSf) elements. 

This method is similar to the parasitic elements in that 
the causality conflict is suppressed by removing the flow 
sources (Sf) and enforcing the constraint by other 
elements which do not have flow causality (here the 
controlled effort sources MSe) 

The controlled effort sources (MSe) are computed 
such that the difference between velocities for the 
constraints is zero. The principle is to apply an effort 
equivalent to the one that the system would impose on a 
flow source. It would have a practical operation as a flow 
source but with effort-out causality instead of a flow-out 
causality.  

The constitutive laws of the controlled effort sources 
are as follows: 
- the usual constitutive law for an effort source, 
- the constraint: effort = e such that flow(e)=f.  

Figure 16 illustrates the implementation of this 
constraint. The effort e(t) applied iteratively to the 
system is determined so that the difference ε(t) between 
the flow measurement f (t) and its set point fc(t) tends to 
zero. This implementation uses the constraint() function 
in 20-Sim. At every simulation step, this function 
induces an iterative procedure to find the force that keeps 
the velocity offset at zero within a given error margin. 
This iterative procedure is only supported by the 
Modified Backward Differentiation Formulation in 20-
Sim software. 

The effort-out causality of the controlled effort 
sources ensures that all the inertial elements (I elements) 
receive integral causality. The dependent states are 
therefore not visible as derivative causality. However, 
the controlled effort source establishes within itself 
algebraic dependencies and thus indicates an implicit 
form of equations. As stated in 1, the DAE system has an 
index of 2 due to the fact that the constraint forces do not 
appear in the algebraic constraints but is in a semi-
explicit form which can be solved by the MBDF solver. 

 
Advantages 

Contrary to the parasitic elements method, the 
modulated sources (MSe) do not need additional tuning 
because no additional parameters are added to the 

system. In other words, the order of the system is not 
modified because no new states (with their associated 
parameters and initial conditions) are introduced. The 
absence of supplementary parameters creates a bond-
graph that describes the system ideally, within the limit 
of the numerical tolerance on the constraints equations. 

Although some iterations are required during the 
simulation to satisfy the constraint equations at each time 
step, the computational load is comparable or better than 
the parasitic elements method, where the differential 
equations are truly explicit but very stiff. 
 

Drawbacks 
The bond graph obtained with this approach leads to 

implicit differential equations. Explicit integration 
algorithms therefore cannot be used, and the constraints 
can only be met within some numerical tolerances during 
the simulation. Consequently, the implementation of this 
method requires care. 

 
Implementation 

The Lagrange multipliers method is more challenging 
to implement than RC elements, because the kinematic 
constraints imposed by the joints may produce 
computational conflicts. This issue occurs on closed 
kinematic chains with over constrained multibody 
systems. Due to the topology of the system, more than 
one joint could impose the same constraint on the system, 
in which case the simulation will no longer be possible. 
The number of the controlled effort sources must not 
exceed the degrees of freedom that need to be eliminated.  

In order to solve this problem, the redundant 
constraints must be removed. For the slider crank 
example in the last section of this paper, a practical 
detection method will be applied to determine the 
redundant constraints. 

The system’s initial conditions should be consistent 
with constraints. If a controlled effort source is attached 
to a 1-junction to keep the velocity at zero, and a non-
zero initial velocity is imposed on an I-element 
connected to the same 1-junction, then a simulation 
cannot be conducted. Note at this point that 20-Sim does 
not offer an automatic correction of inconsistent initial 
conditions, but the user can always code the calculation 
of consistent initial conditions. 

 
Figure 16 – Implementation of the controlled effort source 

 
 
4. CASE STUDIES 

 

The systems chosen here are intentionally kept 
simple, in order to demonstrate the methods for 
simulating bond graph models of multibody systems. 

System
 flow t





  0cflow t  t

 effort t

Constraint()
 p.effort t  p. flow t

System
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Two classical systems are chosen: the planar pendulum 
as an example of an open-chain (OC) system, and the 
slider crank as an example of a closed kinematic chain 
(CKC) system. The physical models parameterized with 
absolute coordinate systems are given in Figure 17 and 
Figure 22. For ease of representation, the physical 
models are given with a planar representation. However, 
the bond graph models have been realised on 3D physical 
models. This will impact the modelling of the crankshaft, 
which only contains redundant constraints when 
modelled in 3D. 

4.1. Planar pendulum 
4.1.1. Mechanical scheme 

 

 
Figure 17 - Physical models of a planar pendulum 
 

4.1.2. Modelling with vector bonds 
The models of the planar pendulum with the vector 

bonds are presented in Figure 18. Note that, when the 
Tiernego/Bos method is applied (ZCP method), inertial 
elements with differential causalities are present. When 
R/C or controlled effort sources methods are used, 
integral causalities are conserved in the inertial elements.  

 

Figure 18 – Bond graph models with vector bonds of a planar pendulum 
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4.1.3. Modelling with scalar bonds 
The models of the planar pendulum with scalar bonds 

are presented in Figure 19.
 

 
Figure 19 – Bong graph models with scalar bonds of a planar pendulum 
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4.1.4. Simulation results 
 

For the ZCP method, the equations are DAEs because 
of the inertial elements with differential causalities. 
However, since the ZCPs are class 2 or 3 (not 4), 20-
sim’s BDF solver can handle the DAE. For the R/C 
method, the inertial elements with integral causalities 
lead to explicit differential equations, which could be 
easily integrated using explicit algorithms such as 4th 
Order Runge-Kutta. In order to compare the three 
methods (ZCP, R/C and MSe), the BDF solver in 20-Sim 
is used. For the Lagrange multipliers method, the 
dependencies are not visible in form of derivative 
causality, but the equations still take an implicit form. 
Consequently, as previously discussed, explicit 
integration algorithms cannot be used. 

From the results obtained (Table 1), similar 
conclusions to 41 can be made. The ZCP method is the 
fastest of the three methods. The computational time of 
the Lagrange multipliers method is still comparable to 
the ZCP method but needs the addition of elements: the 
control effort sources. It can also be seen that there is a 
slight difference in computational time between the 
models with scalar bonds and vector bonds. The models 
with vector bonds take a little longer to simulate than the 
ones with scalar bonds. 
 

Table 1- Numerical comparison of the simulation 
methods for the planar pendulum model 

System Constraints Bonds Methods 
Computing 

time 
(s) 

Planar 
pendulum  

(OC) 

Isostatic 
 

Vector 
ZCPs 0.045 

R/C  0.145 

MSe 0.050 

Scalar 

Minimal 
coordinates 0.015 

ZCPs 0.031 

R/C  0.6 

MSe 0.040 
 
In order to test the accuracy of the solution, these 

methods are compared to a bond graph model with 
minimal coordinates. This is the simplest possible model,  
presented in 52 and recalled in Figure 20. From the results 
obtained (Figure 21), it can be seen that the ZCP method 
is almost identical to the bond graph with minimal 
coordinates. The R/C method yields a short ‘peak,’ 
which is due to the excitation of the modes introduced by 
these elements. 

 

 

Figure 20 - Planar pendulum with minimal coordinates 

 

Figure 21 - Difference of the different methods (ZCP, 
Lagrange and Singular perturbation with regards to the 

model with minimal coordinates) on the angular 
velocity 

4.2. Slider crank 
 

4.2.1. Mechanical scheme 
Classically, the slider crank is composed of three 

bodies: the crank, the rod, the piston and four joints. 
Depending on the choice of the joints on CKC system, a 
hyperstatic system (also called an over-constrained 
system) can appear. That is the case when the slider crank 
comprises three revolute joints and one prismatic joint 
(Figure 22). In this case, the system is over-constrained 
because the number of constraints is higher than the 
relative degree of freedom after connection (shown in 
Table 2). The last line of the table corresponds to the 
remaining DOFs after having closed the kinematic loop. 

 

 

Figure 22 - Physical model of a hyperstatic slider crank 
 

This mechanical model can be modified into an 
isostatic one (Figure 23). The method is based on the 
reduction of DOFs from the reduction of constraints, as 
shown in Table 3. 

 
 

Table 2 - Analysis of the hyperstatic slider crank model 

Stage Joint concerned Relative DOF Joint type Number of constraints 
Relative DOF after 
connection 

1 fixed frame and crank 6 revolute joint 5 1 
2 crank and rod 6 revolute joint 5 1 
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3 rod and piston 6 revolute joint 5 1 
4 piston and Fixed frame 1+1+1=3 prismatic joint 5 -2 
 

Table 3 - Analysis of the isostatic slider crank model 

Stage Joint concerned Relative DOF Joint type No of constraints 
Relative DOF after 
connection 

1 fixed frame and crank 6 revolute joint 5 1 
2 crank and rod 6 rotational joint 4 2 
3 rod and piston 6 spherical joint 3 3 
4 piston and Fixed frame 1+2+3=6 prismatic joint 5 1 
 

Table 4 – Main characteristics of the two slider crank models 

 Hyperstatic slider crank model Isostatic slider crank model 
Number of coordinates 18 (3 bodies) 18 (3 bodies) 

Number of constraints 20  
3 revolute joints (5 DOFs) 

 + 1 prismatic joint (5 DOFs) 

                        17 
1 revolute joint (5 DOFs) 
+1 rotational joint (4 DOFs) 
+1 spherical joint (3 DOFs) 
+1 prismatic joint (5 DOFs) 

Kinematic mobility 1 1 

Overconstraints 3 0 

 

 
The redundant coordinates can be determined 

automatically using a structural multibody tool such as 
MapleSIM 64. The process of identifying and removing 
constraints is done numerically. MapleSIM achieves this 
by obtaining the Jacobian and residual of all the 
constraints, and then performing numerical projections to 
determine which rows/constraints have the most effect 
on the condition of the matrix.  

A summary of the two models studied is presented in 
Table 4. 

 

 

Figure 23 - Physical model of an isostatic slider crank 
 

The different structure of the mechanical model 
(hyperstatic or isostatic) plays an important role in the 
simulation as shown in the next section.  

 

4.2.2. Hyperstatic model  
 

Modelling with vector bonds 
 

The bond graph model of the hyperstatic slider crank 
with vector bonds and R/C elements method is presented 
in Figure 24. The R/C method relaxes the kinematic joint 
constraints. The dynamic equations are therefore 
transformed into an ODE form with no geometric 
constraints to deal with. Consequently, this method 
easily permits the simulation of hyperstatic CKC 
systems. In fact, the added springs have a very strong 
stiffness to keep a physical behaviour close to a rigid 
joint but, from a computational point of view, the 
hyperstatic nature of the model has disappeared thanks to 
the addition of the R/C elements. 

When over-constraints are present, the Lagrange 
multipliers create more difficulties than the use of R/C 
elements methods. In this case (CKC system), more than 
one joint could impose the same constraint on the system. 
In order to solve the model with Lagrange multipliers, 
the redundant constraints must be eliminated. For that 
purpose, the model has to be changed to an isostatic one 
by joint altercation. 
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Figure 24 – Bond graph model with vector bonds and R/C elements method of the hyperstatic slider crank 
 
Modelling with scalar bonds 

 
The model with scalar bonds and R/C elements is 

built with the procedure given in Section 3.1.2. 
 

4.2.3. Isostatic model 
 

Modelling with vector bonds 
 

When the definition of joints is modified by removing 
the redundant constraints, the simulation of the isostatic 
model can be conducted with both the R/C elements and 
Lagrange multipliers methods. The bond graph model of 
the isostatic slider crank with vector bonds and MSe 
elements is presented in Figure 25. 
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Figure 25 – Bond graph model with vector bonds and MSe elements of the isostatic slider crank

Modelling with scalar bonds 
 

The models with scalar bonds are built in a similar 
way for both the R/C method and the Lagrange 

multipliers method. The bond graph model of the 
isostatic slider crank with scalar bonds and MSe 
elements is presented in Figure 26. 
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Figure 26 – Bond Graph model with scalar bonds and MSe elements of slider crank 

 
4.2.4. Minimal coordinates model 

 
In order to test the accuracy of the solution, these 

methods are again compared to a bond graph model with 
a minimal coordinate’s formulation. The method is 
presented in Section 3.3.1 and results from the isostatic 
model previously described. The kinematic scheme of 
the slider crank with geometric parameters is detailed in 
Figure 27. Note that only three parameters (xi,yi,γi) for the 
absolute coordinates are shown on this planar scheme 
but, in the bond graph models, six parameters 
(xi,yi,zi,αi,βi,γi) are considered for the absolute 
coordinates. The bond graph model is presented in Figure 
28. All the dependent storage elements with derivative 
causality have been transformed by transferring the 
inertia of those elements to the independent storage 
element with integral causality (the angle of the crank 

), by the use of a virtual inertia and gyristor. The 
transformation matrices (from the inertial velocities to 
the generalized velocities,  and the generalized velocities 
to the independent coordinate  ) are given in Appendix 

B.  

 

Figure 27 – Kinematic scheme of the slidercrank 
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Figure 28 - Slider crank model with minimal coordinates 
 

4.2.5. Simulation results 
 
A simulation of the dynamics of these models has 

been conducted. Identical results to 65 have been obtained 
(Figure 29 and Figure 30).  

A comparison of results in terms of computing time 
of the simulation is presented in Table 5. The simulation 
of hyperstatic kinematic closed systems (such as the 
slider crank with three revolute joints) is possible with 
R/C elements as we have previously mentioned, and the 
simulation time of the hyperstatic system is comparable 
to the isostatic system. Both the R/C method and the 
Lagrange multipliers method have comparable 
computation times. Their computational loads are bigger 

than that of the minimal coordinates, but remain within 
acceptable limits. Finally, as in the planar pendulum, 
models with vector bonds always take a little longer to 
simulate than the ones with scalar bonds.  

For the ZCP method with both scalar and vector 
bonds, CKC systems induce several zero-order causal 
paths of class 1 and 4. The Class1-ZCPs are associated 
with dependences between energy storage elements, 
whereas the Class4-ZCPs are associated with causal 
cycles along the junction structures. The DAE index will 
typically be greater than one. Consequently, the model 
with ZCPs does not permit direct simulation with the 
MBDF solver. In order to enable simulation, a specific 
causality assignment or break variables should be used to 
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reduce the DAE index. There is no automatic method for 
locating ZCPs on large bond graphs within platforms 
such as 20-sim at the time of writing. However, an 
automatic ZCP-location method would not significantly 
improve computation time and accuracy. 

Figure 31 shows that the R/C method and the 
Lagrange multipliers method perform comparably to the 

minimal coordinates method, with errors of less than 4e-
3 m/s. The errors are dependent of some parameters: the 
value of the R/C method or the value of the integration 
error accepted for the solver. The proposed values of R/C 
elements (parasitic stiffness=10-7 N/m and parasitic 
damping=200 N.s/m) are therefore considered 
satisfactory for this application.  

 

  
Figure 29 - Evolution of the centre of gravities in the inertial frame of the different bodies 

 

 
Figure 30 - Evolution of angles 

 
Table 5 - Numerical comparison of the simulation methods for the Slider crank models 

 

System Constraints Bonds Methods Computing time (s) 

Slider Crank 
(CKC) 

Hyperstatic 
Vector R/C 0.5 
Scalar R/C 0.45 

Isostatic 
 

Vector 
ZCPs Hard to conduct 

R/C 0.51 
MSe 0.330 

   Scalar 

Minimal coordinates                         0.19 
ZCPs      Hard to conduct 

R/C  0.4 
MSe 0.300 
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Figure 31- Difference between the different methods (Lagrange multipliers and R/C methods) and the model with minimal 
coordinates on the piston velocity 
 
5. CONCLUSIONS 

 
This paper presents three methods for simulating 

bond graph models of multibody systems: ZCP, R/C 
elements and Lagrange Multipliers. For each method, the 
authors suggest both conditions and practical rules for 
application implementing. Additional considerations 
include the nature of the chain of Multibody systems, the 
nature of the system towards its joint constraints, and the 
nature of the bonds.  

A method for transforming vector bond graphs to 
scalar bond graphs is also provided. Future work will 
automate this.   

Numerical comparisons complement the results 
given by Van Dijk 41 and Felez 22. There is no best unique 
solution for conducting bond graph simulations of 
multibody systems: all of these methods are correct, and 
the best will depend on the application. The authors 
suggest the following guidelines. 
 The R/C method is perhaps the most convenient. It 

permits the simulation of both iso and over 
constrained multibody systems with kinematic 
closed loops. It is tolerant of small inconsistencies in 
the initial conditions, and allows the use of a 
classical explicit solver. The computational time and 
accuracy are comparable to the other methods.  

 Lagrange multipliers must be implemented with care 
in the case of the over-constrained multibody 
systems, but give an ideal description of the system 
within the limit of the numerical tolerance on the 
constraints equations.  

 The ZCP method can be easy and quick to 
implement on simple multibody systems. When 
applying it to large systems, a systematic way of 
detecting the class-4 ZCPs would be advantageous. 

 
 
 
 

APPENDIX A: SIMULATION PARAMETERS 
 

The parameters used in the two systems (simple 
pendulum and slider crank) are the following. 

 
Table 6 - Model parameters of the simple pendulum 

Parameter Description Value  Units 

L Bar length 1 m 
M Bar mass 1 kg 
I Bar moment of inertia 0.083 kg.m² 

B 
Rotational damping in 

the revolute joint 
10 N.s/rad 

 Parasitic stiffness’ 106 N/m 
 Parasitic damping 200 N.s/m 

 
Table 7 - Model parameters of the slider crank 

Parameter Description Value  Units 

r Crank length 0.2 m 
l Rod length 1 m 

m1 Crank mass 1 kg 
m2 Rod mass 1 kg 
m3 Piston mass 1 kg 
I1 Crank moment of inertia 1 kg.m² 
I2 Crank moment of inertia 1 kg.m² 
 Parasitic stiffness’ 107 N/m 
 Parasitic damping 200 N.s/m 

T Input torque 10 N.m 

b 
Rotational damping in 

the C revolute joint 
2 N.s/rad 

c 
Viscous damping in the 

prismatic joint 
5 N.s/m 

 
APPENDIX B: FLOW RELATIONS BETWEEN 

DEPENDANT AND INDEPENDANT 
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COORDINATES 
 

Relations between inertial kinematic quantities and 
generalized velocities 
 

The rotational inertial velocity of body 1 expressed as 
a function of the generalized coordinates and the 
associated transformation matrix is given in equations 
line (18). 
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The translational inertial velocity of body 1 expressed 
as a function of the generalized coordinates and the 
associated transformation matrix is given in equations 
line (19). 
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 The rotational inertial velocity of body 2 
expressed as a function of the generalized coordinates 
and the associated transformation matrix is given in 
equations line (20). 
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 The translational inertial velocity of body 2 
expressed as a function of the generalized coordinates 
and the associated transformation matrix is given in 
equations line (21) and line (22). 
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The kinematic quantities of body 3 expressed as a 
function of the generalized coordinates and the 
associated transformation matrix is given in equations 
line (23). 
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Relations between dependent generalized velocities 
and independent generalized velocities 
 

The flow relations between independent   and 

dependent velocities   , , x used to build the BG model 

of the slider crank are the following:  
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