
HAL Id: hal-02294402
https://hal.science/hal-02294402v1

Submitted on 23 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Continuous Collision Detection for a Robotic Arm
Mounted on a Cable-Driven Parallel Robot

Diane Bury, Jean-Baptiste Izard, Marc Gouttefarde, Florent Lamiraux

To cite this version:
Diane Bury, Jean-Baptiste Izard, Marc Gouttefarde, Florent Lamiraux. Continuous Collision De-
tection for a Robotic Arm Mounted on a Cable-Driven Parallel Robot. IROS 2019 - IEEE/RSJ
International Conference on Intelligent Robots and Systems, Nov 2019, Macau, China. pp.8097-8102,
�10.1109/IROS40897.2019.8967836�. �hal-02294402�

https://hal.science/hal-02294402v1
https://hal.archives-ouvertes.fr

Continuous Collision Detection for a Robotic Arm Mounted on a
Cable-Driven Parallel Robot

Diane Bury1,2, Jean-Baptiste Izard1 , Marc Gouttefarde3, Florent Lamiraux2

Abstract— A continuous collision checking method for a
cable-driven parallel robot with an embarked robotic arm is
proposed in this paper. The method aims at validating paths
by checking for collisions between any pair of robot bodies
(mobile platform, cables, and arm links). For a pair of bodies,
an upper bound on their relative velocity and a lower bound
on the distance between the bodies are computed and used
to validate a portion of the path. These computations are done
repeatedly until a collision is found or the path is validated. The
method is integrated within the Humanoid Path Planner (HPP)
software, tested with the cable-driven parallel robot CoGiRo,
and compared to a discretized validation method.

I. INTRODUCTION
This paper deals with continuous collision checking for

a cable-driven parallel robot (CDPR) with a robotic arm
mounted on it. The method developped in this paper is
applied to the robot CoGiRo, shown in Fig. 1, a redundantly-
actuated cable-suspended CDPR developed by LIRMM
and Tecnalia. The problem consists in determining exactly
whether an input path between two configurations of the
robot (consisting of the CDPR and the arm) is collision-free,
or if there exists a configuration along the path for which one
of the robot body or cable is in collision with another robot
body, cable or static part of the environment. Although for
academic instances of path planning problems, discretized
collision checking is usually enough, exact or continuous
collision checking is very important when dealing with real
robots in industrial settings. In some applications like path
length optimization for instance [1], it is important that if a
path has been validated, any sub-path be computed as valid
using the same validation algorithm. This is not the case
with discretized collision checking since the samples tested
for collision may not be the same.

The developed method is integrated within the existing
open-source software Humanoid Path Planner (HPP) [2]
which includes sampling-based planning algorithms such
as Probabilistic RoadMaps (PRM) and Rapidly-exploring
Random Trees (RRT), and different optimization methods.

Several previous works on CDPRs dealt with the issues
of cable-cable, cable-platform and cable-object collisions.
The determination of the loci of cable collisions within a
prescribed workspace is presented in [3], [4] in the case of a
constant-orientation workspace and in [5], [6], [7] in the case

1Tecnalia France, Bat 6 CSU, 950 rue Saint-Priest, 34090
Montpellier, France diane.bury@tecnalia.com,
jeanbaptiste.izard@tecnalia.com

2LAAS-CNRS, University of Toulouse, Toulouse, France
florent.lamiraux@laas.fr

3LIRMM, Université de Montpellier, CNRS, Montpellier, France
marc.gouttefarde@lirmm.fr

Fig. 1. Cable-driven parallel robot CoGiRo with a 7-DOF robotic arm.

of a 6D workspace. Fast heuristic approaches are proposed in
[7] whereas certified calculations based on interval analysis
are introduced in [5], [6]. Besides, an approximate deter-
mination of the volume swept by a cable when the mobile
platform of a CDPR moves within a prescribed workspace
is discussed in [8] and the geometric determination of cable-
cylinder collision loci within the workspace of a CDPR is
dealt with in [9]. In the latter, the cylinder is a fixed object
located inside the CDPR workspace. Moreover, in [10],
the collision-free printing workspace is calculated for fully-
constrained CDPRs intended to print large-dimension objects
in a sequence of horizontal layers. While all these methods
determine various types of cable collision loci within a
prescribed workspace, other previous works address the issue
of checking cable collisions along a prescribed CDPR mobile
platform path [5], [11], [12], which is also the purpose of the
present paper. In [12], a classic discretized collision checking
applied to CDPRs is presented. More advanced methods
based on interval analysis, which can account for parameter
uncertainties and round-off errors in numerical calculation,
are introduced in [5], [11].

The contribution of the present paper is a continuous cable
collision checking method integrated within the open-source
software HPP which can test collisions along a prescribed
path of the mobile platform of a CDPR. Compared to [12],
the proposed method allows continuous collision checking
instead of discretized checking. The methods presented in
[5], [11] to check cable collisions along a path can be
classified as continuous checking method. Indeed, a proper
use of interval analysis ensures that there does not exist any
robot configuration along the path where a cable collision
can occur, taking into account model parameter uncertainties
and round-off errors. However, to the best of our knowledge,

these methods have not yet been applied to a problem case
similar to ours. In this paper, we propose a method that
takes into acount not only collisions between the cables, but
also between the cables and all other bodies of the robot
or the environment. Our method is also easily extended to
other types of continuous validation of a path, for example
cable tension validation. Moreover, its implementation in
HPP makes it easy to use with any new robot, by providing
the necessary files modeling the new robot. The contribution
of the present paper can thus be used with any CDPR.

Besides, Schwarzer [13] proposes a method to check colli-
sion of a multi-arm robot along a continuous path composed
of linear interpolations in the joint space. The method is
based on the computation of upper bounds on the relative
velocities – linear and angular velocities – of each body in the
reference frame of the other bodies. Then, given the distance
– or a lower bound on the distance – between two bodies at a
given parameter value, the method computes a time interval
over which no collision can occur between the bodies. This
method is already implemented in HPP.

Cables are not solid bodies because they deform over
time: they are subject to elongation and sagging. Even when
assimilating the cable to a perfect cylinder attached at one
end to the mobile platform and at the other end to a fixed exit
point on the structure base, the cable length varies depending
on the pose of the platform. Collisions between the cables
and the mobile platform are possible and must be checked,
but since the cables are attached to the platform, the lower
bound on the distance is zero. For those reasons, [13] cannot
be directly applied to a CDPR.

The method proposed in the present paper is inspired from
[13] and adapted to CDPR cable collisions. The method takes
as input
• A set of collision elements that are constituted by

pairs of objects among robotic arm bodies, platform
and cables of the CDPR, and static obstacles in the
environment.

• A path which is a linear interpolation in the joint
configuration space, called in this paper a straight path.
The joint space of the CDPR consists of the 7 values
for the pose of the mobile platform (3 values for the
translation and a quaternion for the rotation) and of the
values of the joints of the robotic arm.

In Section II, we present useful definitions and notations,
and the overall algorithm used to validate a continuous path.
Section III details the different methods used to calculate the
velocity upper bound and the distance lower bound for the
different types of pair of bodies. Implementation results in
HPP are described in Section IV and Section V concludes
the paper.

II. CONTINUOUS COLLISION CHECKING

A. Definitions and notations

We consider a CDPR composed of a mobile platform
suspended by cables attached to a fixed frame structure, as
depicted in Fig. 2. An articulated robotic arm is mounted on

Fig. 2. Notations

the platform for the purpose of grabing and moving objects in
the environment. Some simplifications are made to modelize
the cables:

• The cables are considered to be cylinders.
• Sagging of the cables is either neglected or taken into

account in the cylinder radius.
• Each cable exits the fixed structure at a fixed point Ai.
• Each cable is attached to the mobile platform at a point
Bi, fixed in the platform frame.

During motion planning, straight paths are computed and
must be checked against collisions. We assume that along a
straight path, the platform rotates or translates at a constant
linear or angular velocity — respectively vp and ωp —
in the fixed reference frame. To validate a path in regard
to collisions, every pair of bodies has to be checked for
collisions. Those pairs are called collision elements, and can
be of different types: a cable-cable collision, a cable-platform
collision, a cable-arm collision, or robot-robot collision.
In the software, collision element types are represented as
derived classes of an abstract class, COLLISIONELEMENT.
The path to validate is set at the very start of the algo-
rithm for all collision elements. This class has a method
VALIDATEELEMENT, which takes as input the time param-
eter value t corresponding to the configuration to validate.
The output is a Boolean value indicating whether or not the
configuration at the time parameter t is valid, in which case
the method also returns a collision-free interval containing t,
denoted as interval. The size of interval is computed using
an upper bound on the velocity Vmax of one of the bodies
of the pair relative to the other, and a lower bound on the
distance between the two bodies Dmin. The calculations for
those bounds differ depending on the type of the collision
element as detailed in section III.

Algorithm 1 Validation of a straight path using the di-
chotomy method

1: function VALIDATESTRAIGHTPATH(path)
2: t← 0
3: validSubset← ∅
4: valid← True
5: while valid is True and validSubset 6= [0, T] do
6: success, validInterval ← VALIDATEALLCOL-

LISIONELEMENTS(t)
7: if not success then
8: valid← False
9: else

10: validSubset ← validInterval ∪
validSubset

11: end if
12: t← middle of first interval of validSubset
13: end while
14: if not valid then
15: return first interval of validSubset
16: else
17: return [0, T]
18: end if
19: end function

B. Continuous validation algorithm

1) Validation of a straight path: The input path to
validate is a concatenation of linear interpolation paths
that are called straight paths. Thus we need to suc-
cessively validate each straight path using the function
VALIDATESTRAIGHTPATH, until a collision is found or
until all straight paths have been validated.

Let us denote by [0, T] the interval of definition of
the straight path to validate. If I is a subset of real
numbers, we denote by I the complement of I in [0, T].
Algorithm 1 validates a path by creating a subset of
validated intervals, validSubset. This subset is initial-
ized with the empty set. The algorithm then loops un-
til validSubset is equal to [0, T]. t is initialized to 0.
Function VALIDATEALLCOLLISIONELEMENTS is called
with t and returns an interval containing t valid for all
the collision elements. validSubset is augmented with this
newly validated interval (the new validSubset is the union of
the previous validSubset and the newly validated interval).
Then t receives the parameter value of the middle of the
first non-tested interval. The algorithm then progresses until
either [0, T] is entirely validated, or a collision is found.

2) Finding a valid interval for all collision elements
around a given configuration: As detailed in Algorithm 2,
the function VALIDATEALLCOLLISIONELEMENTS takes
as input a valid parameter value in [0, T] and returns a
valid interval containing the input parameter value. The
function loops over all the collision elements, stored in
a list collisionElemList. A local variable validInterval
is initialized to] − ∞; +∞[and represents the inter-
val currently validated. For each collisionElem, an in-

terval valid for this collision element only is calculated
with VALIDATEELEMENT and the total valid interval
validInterval is trimmed by doing an intersection with this
newly calculated interval.

3) Validating an interval for one collision element: The
function VALIDATEELEMENT returns an interval around the
given time parameter t for a collision element. Each collision
element stores the set of intervals currently validated for a
path. This variable is reset each time the algorithm starts
working on a new path. Before computing a valid interval
around t, it is first checked if the interval to validate has
already been validated.

If not, an upper bound Vmax of the velocity of one of the
bodies relative to the other body of the pair is calculated, as
well as a lower bound Dmin of the distance at parameter t
between the two bodies of the element (see next section for
the calculation methods). If a collision is found during the
calculation of Dmin, VALIDATEELEMENT returns false
and reports the collision. If no collision is found, the value
of Dmin is a strictly positive real number. We define the
output valid interval newV alidInterval in (1).

newV alidInterval = [t− Dmin

Vmax
, t+

Dmin

Vmax
] (1)

III. CALCULATION OF THE VELOCITY AND
DISTANCE BOUNDS

A. Collision between two bodies of the robot

As previously stated, for a pair of non-cable bodies of
the robot (mobile platform, fixed structure, arm body), we
calculate Vmax using the method of [13]. Dmin is computed
using the FCL library [14] (BSD License). If the pair is
composed of a link and its child link, then the collision
checking is disabled, because the two bodies either touch
each other by design, or cannot be in collision due to joint
bounds.

B. Collision between a cable and the platform

Because each cable i is by design in contact with the
platform at its attachment point, the method of [13] used
for two bodies of the robot cannot be used as it stands.
We choose to simply consider a shortened version of the
cable that stops at a fixed distance d of the cable attachment
point Bi on the platform. We calculate Vmax an upper bound
on the velocity of any point of the cable relative to the
platform, and Dmin, a lower bound on the distance between
the shortened cable and the platform.

A previous iteration of our algorithm used a sampling-
based model, computed off-line, to reduce the computing
time, but at the expanse of the accuracy.

Calculation of a velocity upper bound
We consider a straight path, for which the linear and

angular velocities of the platform are constant and known
as stated in Section II. They are respectively noted vp and
ωp, and we note ωp = ‖ωp‖2 and vp = ‖vp‖2. C is the
origin of the platform frame. We want to compute an upper
bound on the velocities of all the points of cable i in the
platform frame.

Algorithm 2 Validation of a configuration by validating each interval element
1: function VALIDATEALLCOLLISIONELEMENTS(t)
2: validInterval←]−∞,∞[
3: for each collision element collisionElem in collisionElemList do
4: (valid, newV alidInterval, report)← VALIDATEELEMENT(collisionElem, t, validInterval)
5: if not valid then . there is a collision for config(t)
6: return (False, validInterval, report)
7: else . there is no collision for config(t)
8: validInterval← validInterval ∩ newV alidInterval
9: end if

10: end for
11: return (True, validInterval) . validInterval is continuously valid for every collision element
12: end function

For cable i, we consider an orthogonal local frame FB
i

centered on Bi with its x-axis aligned with
−−−→
BiAi and directed

toward Ai. Let Pi be the point on cable i at a fixed distance
r of Bi. The relation between the coordinate vector P p

i of
Pi in the platform frame and its coordinate vector P i

i in the
local cable frame Fi is given by (2).(

P p
i

1

)
=Mi/p

(
P i
i

1

)
(2)

Mi/p =

(
Ri/p Ti/p
0 0 0 1

)
is the homogeneous matrix

representing the position and orientation of the local cable
frame in the platform frame. Ri/p ∈ SO(3) is a rotation
matrix. Ti/p =

−−→
CBi = bi ∈ R3 is the position of the

attachment point Bi in the platform frame. Since Bi is fixed
in the platform frame, Ti/p is constant. With P i

i = (r 0 0)T

being constant, by differentiating (2) with respect to time,
we get (

Ṗ p
i

0

)
=

(
[ωi/p]×Ri/p 0

0 0 0 0

)(
P i
i

1

)
(3)

where Ṗ p
i is the velocity of point Pi in the platform frame,

[ωi/p]× is the antisymmetric matrix corresponding to the
cross product with the cable frame angular velocity vector
ωi/p ∈ R3 in the platform frame, of norm ωi/p. This gives:

Ṗ p
i = [ωi/p]×Ri/pP

i
i (4)

Therefore, we can bound the norm:

||Ṗ p
i ||2 ≤ ωi/p||P i

i ||2 (5)

By composition of angular velocities, we have ωi/p =
ωi/o +ωo/p, and by bounding the norm: ωi/p ≤ ωi/o + ωp,
with ωi/0 being the angular velocity of the cable joint frame
i in the global reference frame.

Since Bi is fixed in the platform frame, which has known
fixed linear and angular velocities vp and ωp, Bi is moving
around Ai with a linear velocity of norm vBi

≤ vp + ωpbi.
Since ‖

−−−→
AiBi‖2 ≥ Li,min, we get (6) and then (7).

ωi/0 ≤
vp + ωpbi
Li,min

(6)

ωi/p ≤ ωp +
vp + ωpbi
Li,min

(7)

From (5) and (7), and knowing we also have an upper
bound on ‖P i

i ‖2 which is Li,max, we get:

||Ṗ p
i ||2 ≤ Li,max

(
vp + ωpbi
Li,min

+ ωp

)
= Vmax (8)

where bi is a known constant value depending on the
design of the CPDR, and Li,min and Li,max can be consid-
ered either as constant values depending on the shape of the
workspace, or calculated for each straight path. Eq. (8) gives
an upper bound on the velocity of point Pi in the platform
reference frame along a straight path.

Calculation of a distance lower bound
The FCL library is used to compute a lower bound Dmin

on the distance between a cable i and the mobile platform. A
STL file represents the 3D collision model of the platform,
while the cable is represented by a cylinder. Since the cable
and the platform are connected at point Bi, as stated above,
we consider a shortened portion of the cylinder AiB̃i where
BiB̃i = d

−−−→
BiAi

||
−−−→
BiAi||

. d is a fixed distance chosen so that for

any configuration, if a point of [BiB̃i] is in collision with the
platform, then at least a point of [B̃iAi] is also in collision
with the platform. By design, Dmin will never be greater than
d, and it should be noticed that the closest point between the
platform and the cable will generally be the (virtual) end of
the cable B̃, i.e. Dmin = d. Choosing d as large as possible
reduces the number of iterations necessary to validate an
interval, and thus the computing time.

C. Collision between two cables

If two cables have the same attachment points on the
platform or the same exit points on the base structure,
collision checking between them is disabled since these two
cables cannot collide. For all other cable pairs, a velocity
upper bound Vmax and a distance lower bound Dmin are
calculated and used in (1).

Calculation of a velocity upper bound
We need to find an upper bound on the velocities of all

the points of cable i in the local frame of cable j. Let Pi be

the point on cable i at a fixed distance r of Bi, with P j
i its

coordinate vector in the local frame of cable j. Similarly to
the calculations in Section III-B, we can write:(

P j
i

1

)
=Mi/j

(
P i
i

1

)
(9)

where Mi/j =

(
Ri/j Ti/j
0 0 0 1

)
denotes the homoge-

neous matrix defining the position and orientation of the local
frame of cable i with respect to the local frame of cable j.
ωi/j is the rotation matrix of norm ωi/j of the local frame
of cable i relative to the local frame of cable j.

Differentiating with respect to time, and knowing that
P i
i = (r 0 0)T and Ti/j =

−−−→
BjBi are constant:(

Ṗ j
i

0

)
=

(
[ωi/j]×Ri/j 0

0 0 0 0

)(
P i
i

0

)
(10)

We then have Ṗ j
i = [ωi/j]×Ri/jP

i
i . This gives ‖P j

i ‖2 ≤
ωi/j‖P i

i ‖2. We have ωi/j = ωi/0 − ωj/0. Using (6) and
knowing we also have an upper bound on ‖P i

i ‖2 which is
Li,max,, we obtain:

‖Ṗ j
i ‖2 ≤ Li,max

(
vp + ωpbi
Li,min

+
vp + ωpbj
Lj,min

)
= Vmax (11)

Calculation of a distance lower bound
We use the FCL library to compute a lower bound on the

distance between two cables, represented by cylinders. The
radius of the cylinder depend on the actual diameter of the
cable, and can take into account a safety margin if desired.
For two cables, the distance between their attachment points
on the platform is a fixed upper bound on the distance
between the cables and thus on Dmin. It means that the
proposed method is slower for a CDPR with cables attached
close to one another on the platform than for a CDPR with
cables attached far from one another. Indeed, if the cable
attachment points are close, Dmin is small and the algorithm
can only validate small portions of the path.

D. Collision between a cable and the robotic arm

We consider a cable i and a body of the robotic arm,
attached to joint Ja. Let J0 = Jp, J1, ..., Jm−1 = Ja the list
of joints linking the platform joint Jp to Ja. J1 is the joint
attaching the robotic arm to the platform.

Calculation of a velocity upper bound
Let Pi be a point on cable i, and P a

i its coordinate vector
in the joint frame Ja.(
P a
i

1

)
=Mjm−2/jm−1

Mjm−3/jm−2
... Mj0/j1Mi/p

(
P i
i

1

)
(12)

Where Mjk/jk+1
=

(
Rjk/jk+1

Tjk/jk+1

0 0 0 1

)
is the ho-

mogeneous matrix representing the position of joint Jk in
the reference frame of Jk+1.

By differentiating (12) with respect to time, we obtain

(
Ṗ a
i

0

)
=

([
ωjm−2/jm−1

]
×Rjm−2/jm−1

vjm−2/jm−1

0 0 0 0

)
· · ·

· · ·Mj0/j1Mi/p

(
P i
i

1

)
+Mjm−2/jm−1

([
ωjm−3/jm−2

]
×Rjm−3/jm−2

vjm−3/jm−2

0 0 0 0

)
· · ·

· · ·Mj0/j1Mi/p

(
P i
i

1

)
+ · · ·

+Mjm−2/jm−1
· · ·Mj0/j1

([
ωi/p

]
×Ri/p vi/p

0 0 0 0

)(
P i
i

1

)
(13)

Then by bounding the norm using properties of rigid-body
transformations:
||Ṗ a

i ||2 ≤ vi/p + ωi/p||P i
i ||2

+ vj0/j1(||P
i
i ||2 + ||Ti/p||2)

+ vj1/j2(||P
i
i ||2 + ||Ti/p||2 + ||Tj0/j1 ||2)

· · ·
+ vjm−2/jm−1

(||P i
i ||2 + ||Ti/p||2 + ...+ ||Tjm−3/jm−2

||2)
(14)

We note Dk the cumulative length of joint Jk:

D0 = 0 Dk =

k−1∑
t=0

||Tjt/jt+1
||2 for k ≥ 1 (15)

Since Li,max being an upper bound on ||P i
i ||2, the origin

Bi of the local cable frame is fixed in the platform frame so
vi/p = 0, and using (7), we obtain an upper bound on the
velocity of all points of cable i relative to the frame of joint
Ja:
||Ṗ a

i ||2 ≤ Vmax =

(
ωp +

vp + ωpbi
Li,min

)
Li,max+

m−2∑
k=0

(
vjk/jk+1

(Li,max + ||Ti/p||2 +Dk)
)

(16)
||Ti/p||2 and all the ||Tjk/jk+1

||2 are known by design of
the robot. The same reasoning can be applied to validate
collisions between a cable and an object of the environment.

Calculation of a distance lower bound
The FCL library is used once again to compute a lower

bound on the distance between a cable, represented as a
cylinder, and the body of the robotic arm, represented by
a 3D collision model.

IV. IMPLEMENTATION RESULTS IN HPP
We have implemented the continuous collision checking

method proposed in Sections II and III in the software HPP.
The CoGiRo CDPR is simulated in HPP. The continuous
method is compared to a discretized collision checking
method, which uses a configuration validation method and a
time step τ .

The computer used to run the software HPP is an ”Intel(R)
Core(TM) i7-7600U CPU @ 2.80GHz” with 4,096 KB of
cache memory and 16 GB of RAM.

This benchmark is performed on CoGiRo with the robotic
arm. Random straight paths are generated by shooting ran-
dom configurations in the configuration space, and keeping

τ (s) True pos True neg New true pos False pos False neg
0.1 633 362 5 0 0
0.01 634 362 4 0 0
0.001 634 362 4 0 0

TABLE I
RESULTS FOR THE CONTINUOUS VALIDATION COMPARED TO THE

DISCRETIZED VALIDATION WITH A TIME STEP τ FOR 1000 RANDOM

straight paths

the first two valid configurations. Each straight path is
validated using the continuous method and the discretized
method with different time steps. Results are put into five
categories:
• True positive: a collision was both detected by the

discretized and the continuous methods.
• True negative: no collision were detected either by the

discretized nor the continuous method.
• New true positive: a real collision was found by the con-

tinuous method, but was not detected by the discretized
method.

• False positive: a collision was detected by the continu-
ous method but is not an actual collision as determined
by the configuration validation method.

• False negative: the continuous method failed to detect
a collision that was found by the discretized method.

Results are resumed in Tables I and II with different time
steps tested for the discretized method. The smaller the time
step is, the bigger the average computation time is for the
discretized method.

As shown in Table I, there is no false positive, thanks to the
fact that the FCL library only returns zero as a lower bound
of the distance between two objects if they are actually in
collision. The continuous method is garanteed to find every
collision, thus there is no false negative. The discretized
method misses collisions that the continous method is able
to find, even when the time step is reduced. With a time step
of 0.001s, the discretized method has a longer computing
time and fails to detect collisions. These results show the
efficiency of the continuous method, and its usefulness in
situations where no collision is tolerated.

V. CONCLUSIONS

This paper introduced a method which extends a con-
tinuous collision checking method for a multi-arm robot
to a CDPR with a robotic arm mounted on its platform,
to take into account collisions including the cables. The
method has been integrated within the software HPP and
tested in simulations on the robot CoGiRo. Results show
that the method is effective and is able to find collisions
which are undetected by a discretized method even with
a small time step. Although our method is exact and can
validate a path regarding collisions, it does not ensure the
path is adapted to be performed on the physical robot. The
algorithm could be improved using a cost-base planning
method to maximize distance to obstacles. Future work will
include applications on the physical robot CoGiRo to plan
movements in a cluttered environment.

computing Continuous Discretized, τ = 0.1s
time (s) min mean max min mean max

True positives 1.8e-04 0.095 1.1 2.6e-04 9.7e-03 0.052
True negatives 0.18 0.57 2.3 0.011 0.033 0.057
All paths 0.27 0.018

computing Discretized, τ = 0.01s Discretized, τ = 0.001s
time (s) min mean max min mean max

True positives 2.6e-04 0.095 0.50 2.6e-04 0.92 4.6
True negatives 0.11 0.33 0.59 1.0 3.3 6.7
All paths 0.18 1.8

TABLE II
COMPUTING TIMES FOR 1000 RANDOM straight paths

REFERENCES

[1] M. Campana, F. Lamiraux, and J. P. Laumond, “A gradient-based
path optimization method for motion planning,” Advanced Robotics,
vol. 30, no. 17-18, pp. 1126–1144, 2016. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-01301233

[2] J. Mirabel, S. Tonneau, P. Fernbach, A.-K. Seppälä, M. Campana,
N. Mansard, and F. Lamiraux, “HPP: a new software for constrained
motion planning,” in IEEE/RSJ Intelligent Robots and Systems, Octo-
ber 2016.

[3] J.-P. Merlet, “Analysis of the influence of wires interference on
the workspace of wire robots,” in Advances in Robot Kinematics,
J. Lenarc̆ic̆ and C. Galletti, Eds. Dordrecht, The Netherlands:
Springer, 2004, pp. 211–218.

[4] S. Perreault, P. Cardou, C. Gosselin, and M. Otis, “Geometric de-
termination of the interference-free constant-orientation workspace of
parallel cable-driven mechanisms,” ASME Journal of Mechanisms and
Robotics, vol. 2, no. 3, 2010.

[5] L. Blanchet, “Contribution la modlisation de robots cbles pour leur
commande et leur conception,” Ph.D. dissertation, Université de Nice
Sophia-Antipolis, 2015.

[6] L. Blanchet and J.-P. Merlet, “Interference detection for cable-driven
parallel robots (cdprs),” in IEEE/ASME International Conference on
Advanced Intelligent Mechatronics (AIM 14), 2014, pp. 1413–1418.

[7] D. Q. Nguyen and M. Gouttefarde, “On the improvement of ca-
ble collision detection algorithms,” in Cable-Driven Parallel Robots,
T. Bruckmann and A. Pott, Eds. Springer, 2014, pp. 29–40.

[8] A. Pott, “Determination of the cable span and cable deflection of cable-
driven parallel robots,” in Cable-Driven Parallel Robots, C. Gosselin,
P. Cardou, T. Bruckmann, and A. Pott, Eds. Springer, 2017, pp.
106–116.

[9] A. Martin, S. Caro, and P. Cardon, “Geometric determination of
the cable-cylinder interference regions in the workspace of a cable-
driven parallel robot,” in Cable-Driven Parallel Robots, C. Gosselin,
P. Cardou, T. Bruckmann, and A. Pott, Eds. Springer, 2017, pp.
117–127.

[10] M. Fabritius, C. Martin, and A. Pott, “Calculation of the collision-
free printing workspace for fully-constrained cable-driven parallel
robots,” in Proc. ASME International Design Engineering Technical
Conferences, no. DETC2018-85961, Québec city, Québec, Canada,
2018.

[11] J.-P. Merlet and D. Daney, “Legs interference checking of parallel
robots over a given workspace or trajectory,” in Proc. IEEE Int. Conf.
Robotics and Automation, Orlando, Florida, may 2006, pp. 757–762.

[12] S. Lahouar, E. Ottaviano, S. Zeghoul, L. Romdhane, and M. Cecca-
relli, “Collision free path-planning for cable-driven parallel robots,”
Robotics and Autonomous Systems, vol. 57, pp. 1083–1093, 2009.

[13] F. Schwarzer, M. Saha, and J.-C. Latombe, “Exact collision checking
of robot paths,” in Algorithmic Foundations of Robotics V, STAR 7,
J.-D. B. et al., Ed. Springer, 2004, pp. pp 25–41.

[14] J. Pan, S. Chitta, and D. Manocha, “FCL: A general purpose library
for collision and proximity queries,” in IEEE International Conference
on Robotics and Automation, 2012.

