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Abstract. In machine learning, Ensemble Learning methodologies are
known to improve predictive accuracy and robustness. They consist in
the learning of many classifiers that produce outputs which are finally
combined according to different techniques. Bagging, or Bootstrap Aggre-
gating, is one of the most famous Ensemble methodologies and is usually
applied to the same classification base algorithm, i.e. the same type of
classifier is learnt multiple times on bootstrapped versions of the initial
learning dataset. In this paper, we propose a bagging methodology that
involves different types of classifier. Classifiers’ probabilist outputs are
used to build mass functions which are further combined within the be-
lief functions framework. Three different ways of building mass functions
are proposed; preliminary experiments on benchmark datasets showing
the relevancy of the approach are presented.

Keywords: belief functions; information fusion; bagging; supervised learning.

1 Introduction

As the amount of learning algorithms and methodologies in the literature has
reached a point where it is almost impossible to stay up to date on all of them,
many users or even researchers tend to use them as black boxes, without focusing
much on their understanding or interpretation, often setting model parameters
to default values. Beside some obvious computational time differences between
them, it has been proven that there is no optimal learning algorithm in the sense
that most models are optimal for certain types of learning data and have advan-
tages and drawbacks [1]. Indeed, dataset dimensions, attribute types, variance
and noise make each learning dataset more suited to some learning algorithms
than others. To illustrate this fact, six standard learning algorithms have been
applied to six benchmark datasets and the resulting mean accuracies (i.e. the
correct predictions rate) from 1000 10-fold cross validation simulations are pre-
sented in Figure 1. We can easily observe some disparities between the different
types of classifier (decision trees, SVM, etc) used on those six datasets. For ex-
ample, neural network seems to be one of the less accurate classifier on almost
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all datasets except for ”Balance scale” where it is the most accurate one. We also
can observe that decision trees and neural network have the highest accuracy
variances.

Fig. 1. Learning algorithms mean accuracies on 1000 simulations with default param-
eters tuning in R.

Ensemble learning methodologies consist in the learning of many classifiers
from the same initial dataset. In that context, classifiers are then aggregated,
or the predictions they provide (their outputs) are combined in order to get
final predictions. The resulting classifier is usually more accurate and robust
[2–4]. One particular ensemble method, called bagging or bootstrap aggregating,
has an additional advantage: it tends to avoid over-fitting [3]. Bagging uses
some re-sampling methods in order to decrease the dependency of classifiers on
the learning data, i.e. to decrease the learning data’s bias and variance. Unlike
other ensemble methods as Bucket-of-models [2, 5], bagging usually involves the
simultaneous and multiple use of a single algorithm, to further combine their
predictions with a simple vote procedure.

This problem can be seen as an information fusion problem if we consider the
trained classifiers as information sources and their predictions as the information,
or evidence, to fuse. Traditionally, in bagging methods classifiers’ outputs are
combined through a vote procedure as they usually involve the same type of
classifiers. With that approach, fusing the same type of classifiers should indeed
lead to a uniform weighting.

In the evidential framework, researchers have proposed some evidential bag-
ging methods, handling uncertain data and the combination procedure is also
performed between the same type of classifiers [6–8]. To the best of our knowl-
edge, no work has been proposed that combine heterogeneous types of classifier
with belief functions.

In this paper we present a bagging method that involves the fusion of different
types of classifiers’ outputs, or predictions. We propose to take into account the
classifiers’ outputs reliability during the aggregation step within the formalism of
the belief functions theory [9, 10]. This choice is motivated by its generalization
power (including probabilistic and possibilistic cases) and the flexible tools it
provides. In addition many approaches have been developed in different contexts,
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especially for information fusion problems when we have evidence about the
sources reliability [11]. In this work, we chose to use predictive performance of
the classifiers as reliability evidences. Then the classifiers’ probabilistic outputs
and their reliabilities are used to build one predictive belief function per classifier.
Finally, a suitable combination procedure is used to merge those belief functions
into a global predictive mass function.

After defining our classification formalism, recalling bagging basis, the theory
of belief functions with some basic fusion tools are presented in Section 2; our
evidential bagging model is described in Section 3 experiments are provided
on benchmark datasets in Section 4 and finally results and perspectives are
discussed in Section 5.

2 Related works and positioning

In this section, first the general classification formalism is given, then a succinct
overview of Ensemble learning methods is presented; finally Bagging is more
precisely described.

2.1 Classification formalism

Starting from a dataset D containing N learning examples (x, y)i=1,...,N , classifi-
cation tasks aim at learning a model f able to predict the class label y∗ of any new
unlabeled example from its attribute (or feature) values x such that y∗ = f(x).
The attributes X = (X1, . . . , XJ) take their values in X = X 1 × · · · × X J , the
class Y in a finite set Ω. Spaces X j can be categorical or numerical.

D =

 x1, y1
...

xN , yN

 =

 x11 . . . x
J
1 y1

...
...

...
x1N . . . xJN yN

 .

Samples are assumed to be i.i.d. but in practice data are often noised, casual
correlations can randomly occur and some outliers or very rare examples can
occur even in very small datasets. In order to discount those outliers’ influence
and to reduce bias, bootstrapping techniques [12] can be applied. By doing so,
overfitting can be decreased without the need of large datasets but the different
bootstrapped subsamples’ results (i.e. predictions) have to be aggregated in a
conservative way so that the most uncertain predictions can be weakened.

In this context, a classifier is a function c : X → Ω, the notation c(x) corre-
sponds to the prediction obtained by c from attribute values x ∈ X .

2.2 Ensemble Learning methods

As almost each learning algorithm is optimal for specific types of learning data
and problems [1], many researchers do not confine in single classifiers and tend
to use many of them when dealing with real data. In this context, Ensemble
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Learning methods have become very common tools to improve classifiers per-
formance (in term of accuracy and robustness) by using predictive algorithms’
heterogeneity and resampling techniques to avoid overfitting. In fact, Ensemble
Learning has become a whole research field [4, 3] where we can distinguish three
main types of methodology: boosting, stacking and bagging. Boosting [13] is an
iterative procedure where the classifier is re-learnt in order to better classify
misclassified examples. AdaBoost is the most famous boosting algorithm [14].
Stacking [15] focuses on the classifiers outputs aggregation step with the learn-
ing of an aggregation algorithm. Bagging, or Bootstrap-Aggregation, is based
on resampling and was first presented by Breiman [16] with the well known
Random forest algorithm which consists in the learning of several decision trees
from different bootstrapped subsamples and in their aggregation through a vote
procedure. In this paper, a Bagging methodology is proposed based on a bucket
of diverse learning algorithms with an aggregation step formalized in the eviden-
tial framework and involving belief functions generated from the single classifiers’
predictions and evaluations.

2.3 Bagging

In most applications, getting a dataset truly representative of the actual popu-
lation is a complex task as sampling often implies noise intrusion and thus bias
and variance creation [17]. As a matter of fact, in most learning datasets, some
rare examples of the reality can be over-represented which often leads to over-
fitted models. During the learning process, those examples should not be given
too much weight as they can be considered outliers. It is for that matter that
Bagging involves resampling, in order to discount that kind of bias [12].

Nevertheless, in most bagging approaches, the same learning algorithm is
used to fill the bag because of the heterogeneity of the classifiers’ natural outputs
(scores, class probability, etc). During the aggregation step, trainable combiners
have shown some asymptotically optimal properties [18] but involves a common
training set for all single classifiers. In this work we use a combiner learnt on
such a validation set which will be also used for the single classifiers evaluations.

2.4 Theory of Belief Functions

The theory of belief functions, also known as Evidence or Dempster-Shafer theory
was first presented by A. Dempster in 1967 in a statistical context [9] as an
attempt to reconcile frequentists and Bayesians. Dempster laid the foundation
of a mathematical theory that deals with uncertainty in a much more general
framework than standard probability theory and which handles aleatory (or
objective) uncertainties and epistemic (or subjective) ones.

Even if some evidential works are related to statistical and classification
contexts, many researchers use belief functions as a convenient framework for
information fusion problems. As a matter of fact, fusion problems occur in many
contexts, even in the classification ones. In the evidential framework two levels
are considered: the credal and the decision ones. The credal level is dedicated to
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the uncertainty representation whereas the decision step uses the credal one to
make decision.

Credal level Let Y be an uncertain quantity whose value y lies in a finite set
Ω called the frame of discernment.

Definition 1. A mass function m regarding Y ’s value y ∈ Ω is a function
defined on the set of subsets1 of Ω, which is usually written 2Ω or P(Ω) and
called the powerset, with its values in [0, 1] and verifying

∑
B∈2Ω

m(B) = 1

The quantity m(∅) is usually fixed to 0 in many cases. From m, two uncertainty
measures can be defined about y, the belief function Bel and the plausibility
function Pl, which express the information contained in m in different ways,
more conservatively for Bel than for Pl. Since there is 1 to 1 correspondancies
between m, Bel and Pl, belief functions can indifferently refer to a mass function
m or its corresponding inferior uncertainty measure Bel.

Decision level In a practical matter, the decision step of many problems is
often handled by transforming belief functions into pignistic probabilities [19]
(cf. Definition 2) to further consider the most probable event in the pignistic
sense.

Definition 2. The pignistic probability distribution attached to a mass function
m is defined by:

∀ω ∈ Ω, BetP (ω) =
∑

A⊆Ω|ω∈A

m(A)

|A|
. (1)

Sources reliability and evidential Fusion. Information fusion problems aim
at combining different informative contents coming from different sources. In the
evidential framework, sources are represented by mass functions.

Three main concepts must be taken into account when combining eviden-
tial sources: dependence, reliability and conflict. The first combination method
proposed in the belief function theory was Dempster’s conjunctive combination
rule. Nevertheless, this rule handles conflict in a way that has been criticized
[20, 21]. Moreover, this rule requires independence between sources.

To take more conveniently into account the conflict and the dependence be-
tween sources, several combination rules have been proposed [21, 20, 22]. To avoid
dependence hypothesis, some works [11, 23] use the average operator to combine
beliefs functions, which is in line with voting procedures. In this paper we chose
this operator as a basis.

3 Evidential Bagging

This section presents the three evidential generative models defined in this paper,
as well as the fusion approach proposed to aggregate the predictions provided
by the different single classifiers. Finally the general scheme of our approach is
given.

1 The expressions B ⊆ Ω and B ∈ 2Ω are equivalent.



6

3.1 Generative models

Even if the different learning algorithms may provide outputs of different struc-
tures, most data science software enable a calibration step in order to get a
probability distribution on class labels from those outputs. Those probabili-
ties express an uncertainty which should be integrated in any bagging approach
that presents an uncertainty focus. Nevertheless, those uncertainty measures are
computed on the learning data and are therefore subject to over-fitting. Better
estimators of classifiers’ performance can be computed on other dataset. In this
paper we compute single classifiers’ accuracy on such a separate dataset which
we recall as the validation set.

If we consider the single classifiers as information sources, and their proba-
bilist outputs as the uncertain information to merge, one way to evaluate the
classifiers reliability is to evaluate their accuracy on the validation set. Our ap-
proach consists in discounting the classifiers’ outputs according to their reliabili-
ties. To this aim, belief functions are generated in order to enrich the probabilist
outputs of the single classifiers. Those belief functions are based both on class
probabilist predictions, and accuracies computed on validation sets. They are
finally merged into a final belief function and its pignistic probability gives class
predictions. Proposed models are introduced hereafter:

1. simple discounting (EBagSD): using this model we consider that the
less accurate classifiers should be the most discounted during the aggre-
gation step. Otherwise stated, we consider that the reliability of a classifier
c is a function of its global accuracy denoted accc (computed on the val-
idation set). To this aim, the mass function associated to c is defined as
∀i ∈ {1, . . . , N}, ∀ω ∈ Ω:{

mc
i ({ω}) = P ci (ω)× accc

mc
i (Ω) = 1− accc

. (2)

where P ci (ω) stands for the probability of the class label ω provided by the
classifier c on the example xi.

2. class dependent model (EBagCD): some classifiers are more accurate
in predicting some specific class labels. Such accuracy variations can be
observed by analysing the confusion matrix associated to each classifier.
We therefore propose to take advantage of this information to spread un-
certainty about classification involving specific class labels from Ω. Using
this model the following definitions of mass functions are considered; ∀c ∈
{1, . . . , C}, ∀i ∈ {1, . . . , N}, ∀ω ∈ Ω:{

mc
i ({ω}) = P ci (ω)× P c(Y = yi|c(xi) = yi)

mc
i (Ω) = P c(Y 6= yi|c(xi) = yi)

. (3)

Note that for a given classifier c, P c(Y |c(X)) is estimated by using the con-
fusion matrix of the classifier c computed on the validation set as follows:

P c(Y = yi|c(xi) = yi) = |(x,y)∈X×Ω : {c(xi)=yi}∩{Y=yi}|
|(x,y)∈X×Ω : {c(x)=yi}| .
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3. contextual model (EBagcon): we consider two types of regions of X : one
containing instances often misclassified and its complementary. In addition,
we consider that not all classifiers will misclassify instances of the same
regions of X . We are therefore interested by the definition of a contex-
tual model that will consider an estimation of the single classifiers’ mis-
classification risk or probability of each examples. Formally, to estimate this
risk, that is both dependent on the classifier and the processed instance,
we consider that ∀c ∈ {1, . . . , C}, we have misc : X → [0, 1] a function
used to assess the misclassification risk of a classifier c regarding a given
xi ∈ X whose predicted label is yi, i.e. yi = c(xi); Intuitively, higher is the
estimated risk, lower the confidence on the provided class will be. Based
on this function, we consider the following definition of the mass function,
∀c ∈ {1, . . . , C}, ∀i ∈ {1, . . . , N},∀ω ∈ Ω:{

mc
i ({ω}) = P ci (ω)× (1−misc(xi))

mc
i (Ω \ {yi}) = misc(xi)

. (4)

We consider that misc is obtained using a binary classifier (SVM in our
case) that will be trained using examples defined by the error and success
classifications of c during the validation phase with a regression approach.
Otherwise stated the classifier predicts a numerical output in [0, 1] standing
for the misclassifications observed in the validation set (1 for misclassified
examples and 0 for well classified ones).

Whereas generative models EBagSD and EBagCD are based on the sin-
gle classifiers global accuracy, model EBagcon uses their local misclassifica-
tion risk to discount their predictions. Therefore, the focal elements of models
EBagSD and EBagCD are the class labels and the frame of discernment Ω.
Model EBagcon considers the class labels and their complementary sets - intu-
itively, if a single classifier misclassifies an instance, our belief should be focused
on its prediction’s complementary.

3.2 Combination and prediction

Classifiers’ mass combination: As evidential independence is needed to ap-
ply Dempster’s combination rule and disjunctive semantic has no sense in case
of different classifiers predicting different class labels, the aggregation step of our
model was done by averaging the mass functions generated by the single classi-
fiers. Actually, in the evidential bagging contents, most authors have combined
the classifiers’ outputs through a vote procedure or with the average operator ap-
plied to their class probabilities because of the dependencies between classifiers
[24, 6, 25, 8].

Final prediction: At the decision or prediction step, we chose the most likely
class labels in the pignistic sense, i.e. the average belief function (computed from
all single classifiers outputs) is transformed into its pignistic probability and then
the most likely class label is predicted.
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prediction(mc
i ) = argmax

ω∈Ω
BetP ci ({ω}).

3.3 Global procedure

Considering a set of classifiers, and a set of labelled data, the global procedure
of our evidential bagging model is composed of four main steps illustrated in
Fig. 2:

1 Training of each classifier. This step is used to estimate the best param-
eters of each classifiers based on training data. A set of trained classifiers, i.e.
tuned models, is obtained.

2 Belief function generation through a post-analysis of training perfor-
mance evaluations: the step used to compute data that will be used to define
the mass functions. The treatments applied for each model vary; all rely on the
analysis of the single classifiers’ performance on the validation set. For the sim-
ple discounting model (Eq. 2), the accuracy of each classifier is computed on the
validation set. For the class dependent model (Eq. 3) the confusion matrix is
computed on the validation set. The conditional probabilities that will be used
to define the mass functions are estimated based on the confusion matrix. Fi-
nally, using the contextual model (Eq. 4) the misclassification risk is estimated
by training a SVM classifier in the aim of distinguishing cases for which the
classifier fails to provide a good classification.

3 Mass combination : given an evidential generative model, the various
evidential predictions provided by the classifiers are combined to output a single
global mass function with the average operator.

4 Prediction (or decision) step: the global mass function is transformed
into its corresponding pignistic probability in order to predict the most probable
class labels.

4 Experiments

In this section, we evaluate our evidential bagging approach on several UCI1,
Kaggle2 and KEEL3 benchmark datasets. Number of examples, attributes and
class labels of those datasets are summarized in Table 1.

The considered learning algorithms were: decision tree (’tree’ ), random forest
(’forest’ ), support vector machine (’SVM’ ), linear discriminant analysis (’lda’ )
and naive Bayes classifier (’bayes’ ). The implementation was handled in R with
the following functions (and packages)rpart (rpart), randomForest (randomFor-
est), svm (e1071), nnet (nnet), naiveBayes (e1071) and lda (MASS). All the

1 https://archive.ics.uci.edu/ml/datasets.html
2 https://www.kaggle.com/datasets
3 http://sci2s.ugr.es/keel/category.php?cat=clas
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Fig. 2. Global process

dataset N J K
Balance scale 625 3 3

Banana 5300 2 2
Banknote 1372 4 2

Breast tissue 106 9 6
Contraceptive method 1473 9 3

E.coli 336 5 8
Glass 214 9 6
Iris 150 4 3

Mammographic 830 5 2
Nursery 12958 8 4

Occupancy 8143 6 2
Pima 768 8 2

Satimage 6435 36 6
Tic tac toe 958 9 2
Titanic 2201 3 2
Wine 178 13 3

Table 1. Number of examples (N), attributes (J) and class labels (K) of several
benchmark datasets from UCI, Kaggle and KEEL

learning algorithms were implemented in R with their default parameters. For
each dataset, 100 10-fold cross validation procedures were implemented for dif-
ferent bagging methods involving different aggregation approaches:

– voteBag: simple vote procedure from the precise single classifiers’ predictions
– Pmean: averaging of the single classifiers’ probabilistic predictions and pre-

diction of most probable class label
– EBagSD: simple discounting model (see Eq. (2))
– EBagCD: class dependent model (see Eq. (3))
– EBagcon: contextual model (see Eq. (4))

For each fold, a learning set and a validation set were built as follows: a quarter
of the examples contained in the nine other folds were randomly selected as the
validation set; the remaining examples were then used to build the learning set.
The accuracy means and standard deviations results are summarised in Table
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2. T-tests were performed between the voteBag models and the most accurate
ones, bold accuracies stand for the significantly highest ones. R implementations
of tested methods, links to datasets, as well as complete technical details about
the evaluation are provided at https://github.com/lgi2p/evidentialBagging.

dataset voteBag Pmean EBagSD EBagCD EBagcon
Balance scale 0.767 0.765 0.765 0.759 0.764

Banana 0.759 0.808 0.816 0.820 0.830
Banknote 0.895 0.904 0.912 0.923 0.918

Breast tissue 0.519 0.519 0.524 0.512 0.538
Contraceptive method 0.558 0.559 0.560 0.559 0.561

E. Coli 0.864 0.863 0.864 0.658 0.866
Glass 0.689 0.688 0.690 0.675 0.700
Iris 0.959 0.959 0.959 0.960 0.959

Mammographic 0.833 0.834 0.834 0.835 0.836
Nursery 0.957 0.969 0.970 0.968 0.970

Occupancy 0.983 0.983 0.983 0.984 0.984
Pima 0.766 0.765 0.765 0.712 0.766

Satimage 0.881 0.873 0.875 0.880 0.881
Tic tac toe 0.810 0.838 0.846 0.887 0.851
Titanic 0.782 0.783 0.783 0.782 0.783
Wine 0.978 0.976 0.977 0.978 0.978

Table 2. Mean accuracies on 30 10-fold cross validation procedures

Fig. 3. Bag size effect

Globally, there is no systematically and significantly outperformance between
models even if EBagcon seems to be the most accurate model. This is not too
surprising as the general spirit of classifiers is to link attributes (i.e. context)
and class labels, whereas inferring global reliability or treating class labels non-
symmetrically is not at the basis of standard classification tasks. EBagCD model
is the less accurate and robust one for the datasets (Breast Tissue, E.Coli and
Glass) containing the more class labels (i.e. for K ≥ 6). This suggests that
expressing single classifiers’ reliability on specific class labels has a sense for
limited number of labels.

As in any bagging methods, the number of bagged classifiers has an impact
on the resulting classifier’s accuracy, bigger bags implying higher accuracies. In
Figure 3, the accuracies over 100 10-fold cross validations are represented for dif-
ferent bag sizes (1 to 100 per learning algorithm) on the ’Tic tac toe’ and ’Glass’
datasets. For the dataset ’Tic tac toe’, the most accurate model is EBagCD
whereas it is EBagcon for the dataset ’Glass’. This corroborates the fact that
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our class-dependent model (EBagCD) is more accurate on dataset containing
few class labels (2 for ’Tic tac toe’, 6 for ’Glass’). As enhanced by Table 2,
for datasets containing many class labels, our contextual model (EBagcon) is
preferable.

5 Conclusions and perspectives

A general bagging approach has been proposed that involves belief mass gen-
eration from each classifiers and evidential fusion between classifiers’ evidential
predictions. Different aspects of the classifiers (global accuracy, confusion ma-
trix or local misclassification risk) can be separately evaluated on a validation set
and used to generate those belief functions. Experiments on benchmark datasets
show encouraging results especially for the model EBagcon, which is based on
a misclassification risk learnt on a separated validation set and depending on
attributes values. That approach can refer to the concepts of taking into account
the learning context or learning the local context (before the actual learning
process) and should be further studied.

A more complete study of this evidential bagging approach should include
a global sensitivity analysis over the type of classifiers to bag, the combina-
tion rule (between single classifiers’ evidential predictions) and the prediction,
or decision step. It is noticeable that considering the pignistic transform after
averaging the mass functions is equivalent to some straightforward probabilistic
modelling. Nevertheless, since probabilities are some particular belief functions,
the evidential framework provides many tools in term of fusion and decision for
any future extension. In some recent works [26, 27], likelihood-based tools have
been presented that could represent an alternative to pignistic transformation.
From an optimisation point of view, some clustering over class labels should im-
prove the EBagCD model (i.e. the class dependent one). Moreover, ideas behind
the three presented evidential generative models could be used to define a single
model. In addition, in this paper, one of the used single classifier is based on
a bagging approach: the random forest. By doing so, we actually made a sec-
ond order bagging (or bagging of classifiers bags). To go further on this aspect,
mathematical properties of bagging approaches should be taken into account in
order to solve one pragmatic dilemma: should we make larger bags or should we
nest single classifiers bags?
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