Evidential Bagging: Combining Heterogeneous Classifiers in the Belief Functions Framework - Archive ouverte HAL
Communication Dans Un Congrès Année : 2018

Evidential Bagging: Combining Heterogeneous Classifiers in the Belief Functions Framework

Résumé

In machine learning, Ensemble Learning methodologies are known to improve predictive accuracy and robustness. They consist in the learning of many classifiers that produce outputs which are finally combined according to different techniques. Bagging, or Bootstrap Aggre-gating, is one of the most famous Ensemble methodologies and is usually applied to the same classification base algorithm, i.e. the same type of classifier is learnt multiple times on bootstrapped versions of the initial learning dataset. In this paper, we propose a bagging methodology that involves different types of classifier. Classifiers' probabilist outputs are used to build mass functions which are further combined within the belief functions framework. Three different ways of building mass functions are proposed; preliminary experiments on benchmark datasets showing the relevancy of the approach are presented.
Fichier principal
Vignette du fichier
paperevidentialbagging.pdf (478.51 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02294352 , version 1 (23-09-2019)

Identifiants

Citer

Nicolas Sutton-Charani, Abdelhak Imoussaten, Sébastien Harispe, Jacky Montmain. Evidential Bagging: Combining Heterogeneous Classifiers in the Belief Functions Framework. 17th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2018), Jun 2018, Cadix, Spain. ⟨10.1007/978-3-319-91473-2_26⟩. ⟨hal-02294352⟩
62 Consultations
171 Téléchargements

Altmetric

Partager

More