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Abstract
Digital image forensics is a set of techniques used for
digital image forgery detection and is widely used to
certify the content or the authenticity of a document.
The splicing operation, which crops and pastes one
or several regions from separate images, is a common
technique used for image forgery. In the literature, most
image forgery detection techniques are based on machine
learning. Only a few methods take advantage of physical
features to detect the tampering. In this paper, we
propose a new method to detect image splicing from
an analysis of regions of interest in the uv chromaticity
space. Their pixels are compared to the Planckian locus
and the closest ones, seen as achromatic, are stored in
a weighted histogram depicting Gaussian distribution.
After a selection of the suitable Gaussians, the illuminant
color is estimated. Results on spiced images are presented
and discussed.

Keywords: Color image forensics, physical features

1 Introduction
More than 350 million photos have been uploaded every
day on Facebook on average, throughout 2013[1]. On
that same year, due to the popularity of smartphones,
more than 660 billion of photos have been taken, which
increased to 1.1 trillion in 2016 [2]. There is no doubt
that our everyday lives are replete with images coming
from numerous media, let it be television, newspaper,
news site or social network. Given the rising threat of
"fake news", it would be interesting to know the ratio of
manipulated images, which is not at all a straightforward
matter. According to a 2015 poll, while 76% of press
photographers regard image manipulation as a "serious
problem", 25% admit that they sometimes alter the con-
tent of images, other than by cropping [3]. This being
only related to the press, we would also have to include
all the pictures fraudulently submitted in the information
flow and shared all across social medias, which is impossi-
ble to estimate. Indeed, digital image forgery is nowadays
accessible to the general public through the use of numer-
ous powerful and low-cost image editing software. From
this assessment, we can admit that being able to trust the
authenticity of any given digital image has become quite
difficult [4, 5] while having the means to detect image
forgery is now primordial: this is the purview of digital
image forensics, a set of techniques used for image forgery
detection [6, 7], that is to say certifying the content or
the authenticity of documents and their data[8]. Even
though the authenticity of an image can be proved by

directly embedding a digital watermark into it [9], not all
hardware can insert such a watermark before the manip-
ulation of the image. To overcome this difficulty, blind
image forensics has been proposed to deal with the image
tampering without inserting any security information. It
assumes that even if the image forgeries may not leave
usual traces that would indicate tampering, they also alter
the underlying patterns that are introduced by imaging
devices of an original untampered image. A digital image
can be tampered in many ways, such as by geometric
transformations, color adjustments, copy-moves and so
on. One of the most common image manipulation method
consists in cropping and pasting one or several regions
from the separate images, a technique known as splicing.
In this article, we will focus on the detection of images
that have been spliced.

Over the past few years, many techniques and method-
ologies have been proposed to deal with image forgeries
linked to image splicing [6, 10, 11]. Previous works can
generally be classified into three categories. The first
category identifies the manipulated images by detecting
the statistical anomalies, for example in the frequency do-
main [12, 13, 14]. Deep learning based forensic methods
are proposed to design image splicing and detect image
manipulations [15, 16]. Many methods in this category
are based on algorithms needing preconditions, such as
the ones based on a learning strategy, requiring a the
construction of a model to generate results. In addition,
some of them are weak against anti-forensics techniques
that remove the detectable traces found in the images and
used by these methods. The second category evaluates
the changes in the features introduced by digital data
acquisition devices such as cameras, scanners, etc. Most
of the methods in this category require information about
the source acquisition device in order to compare the in-
herent patterns extracted from the sample images. Some
examples of the inherent patterns are the sensor pattern
noise [17], aberrations produced by a lens [18] and so
on. The physically based techniques of the last category
detect the inconsistency of the scene properties. Among
those, the illumination condition has been considered as
an indicator for forgery detection. The illuminant-based
methods are either geometry-based or color-based. The
geometry-based methods detect the inconsistencies of the
direction of light source between the sample regions on the
scene [19, 20, 21, 22], while the color-based ones detect
the illuminant color inconsistencies [23, 24, 25, 26].
In this paper, we will focus on a color-based method

for splicing operation detection. In recent years, a lot of
methods have been proposed for illuminant estimation
[27, 28]. However, very few of them are applied to the
security field. In addition, most of the methods for illu-
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(a) The first dataset, with
pictures both taken indoors
and outdoors.

(b) Subset of the images
used in the sliced pictures.

Figure 1: Preview of pictures.

minant estimation are based on the Lambertian model
[29] and some of them estimate the illuminant using the
dichromatic reflection model [30, 31]. We propose to
adapt a method of illuminant estimation for splicing op-
eration detection based on Mazin and Delon [32], using
the Lambertian model.

The contributions of this work are as it follows: we also
improved the way the illuminant colors are estimated by
making it more quick and reliable. Secondly, we added
a practical way to analyze the illuminant estimation to
detect potential tampering.
A collection of images was created by using a Nikon

D300S camera with two 60mm and 90mm lenses, is com-
posed of 25 high-resolution pictures and is showcased
in Section 4. Each set features indoors and outdoors
photographs of various scenes depicting sets of objects,
humans or simple background sceneries, with a major-
ity of scenes containing specular highlights. Since our
method relies on operations made directly on the pix-
els values of the image, the pictures have been taken in
RAW format with a 14-bit depth to preserve their quality
by avoiding any compression, then converted to a TIFF
format with a 16-bit depth. Multiple objects, persons,
animals and plants have been extracted from different
scenes and pasted in some others, resulting in a set of
twenty sliced pictures involving those different categories
of sceneries. The splicing operations were done using
Adobe Photoshop CS6.

The paper is organized as follows. In Section 2, we sum-
marize the related work in the field of color constancy and
image splicing detection with the illuminant color. Sec-
tion 3 explains the physical principles used to estimate the
illuminant color based on the dichromatic reflection model
and the Lambertian model. In Section 4, we provide a
step-by-step explanation of the method we are proposing
to detect image forgery in addition to numerous experi-
ments on spliced pictures to test their performances. The
conclusion is given in the last section.

2 Related work
As mentioned previously, the illuminant color inconsis-
tency is used to detect image splicing in many proposed
methods. The earliest method applying the illuminant
color analysis in image forensics has been proposed by
Gholap and Bora[23]. The authors estimate the chro-
maticity of the illuminant color of different objects based
on the dichromatic reflectance model and try to detect the
changes in the model. Later on, Francis and Gholap[31]

proposed a method to help dealing with the detection
of the illuminant when encountering pictures that fea-
tures human skin. However, this method turns out to
be especially sensitive to the skin highlight regions. To
avoid these constraints, Wu and Fang[25] estimate the
illuminant color on each overlapping block under the Lam-
bertian assumption, i.e., purely diffuse reflectance. For
this, low-level statistics-based algorithms of illuminant
estimation have been adapted for the specific image block.
The angular error between the estimates of the blocks
and those of some reference blocks is measured for the
final decision of tampering. However, the method is prac-
tically limited by manual selection of reference blocks,
thus the inappropriate reference blocks probably produce
the inaccurate detection results.
Riess and Angelopouou[24] have proposed a physical-

based method for local illuminant estimation, based on
inverse-intensity chromaticity space. Both the illuminant
and distance maps are used to identify image authenticity.
Although this method can perform on rough highlight re-
gions, manual interaction is needed to select the dominant
illuminants. Furthermore, the authors do not provide any
numerical criterion for splicing detection. Recently, De
Carvalho and Riess[22] have developed a learning process
of the illuminant colors for the detection of spliced images
of people. The illuminant estimates for faces are per-
formed using statistics-based[29] and physics-based[24]
methods. These estimates are then used to automati-
cally make tampering decision through a novel machine-
learning approach. The proposed method requires only a
small amount of human interactions and produces satis-
factory results, but it has not shown any effectiveness on
other types of images e.g., images containing plants, or
animals.

In the field of color constancy, extensive methods have
been presented[27]. Indeed, most illuminant color estima-
tors typically assume globally uniform illumination. In
other words, the spectral distribution of one light source
is uniform across the scene and therefore the illuminant
color is constant all over the image. However, in prac-
tice, many real-world images consist of more than one
illuminant and thus often exhibit a mixture of different
light sources. In order to use the illumination as an in-
dicator of image splicing, we require multiple and local
illuminant estimation. However, very few methods ex-
plicitly focus on this direction. In early research, color
constancy for multiple illuminants has been proposed by
Kuang and Xiong[33]. They used the modified local auto
white-balance algorithm to solve the local illuminant for
High-Dynamic-Range images. The illuminant estimation
per pixel is performed through color information of its
neighboring pixels, weighted by the spatial distance, lumi-
nance intensity difference and chromaticity. Later, Bleier
and Riess have proposed a method[34] to determine mul-
tiple light sources using local illuminant estimation for
super pixels which originates from the segmentation on
the image. The common algorithms are applied to each
super pixel independently. The final accurate illuminant
per super pixel is determined using either the average
of all combined estimates or machine learning regression.
Gijsenij and Rui[35] have proposed a general color con-
stancy method for multiple light sources. They apply the
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existing color constancy algorithms to image patches in
order to obtain local illuminant estimates. This method
mainly focuses on scenes with two distinct light sources
and their combination. The final estimation of two dis-
tinct illuminant colors is given either by clustering the
illuminant estimates for patches or by incorporating spa-
tial information with segmentation. Recently, Beigpour
and Riess have developed a new method[36] to estimate
the multiple illuminants and their spatial distribution,
using an energy minimization strategy within a Condi-
tional Random Field. They have also proposed two new
datasets for multi-illuminant estimation. More recently,
Joze and Drew have presented an exemplar-based color
constancy method[37] for multiple illuminants. Mazin
and Delon[32] have proposed a learning-free method based
on the Planckian locus for the estimation of several illu-
minants which we adapted in our second method. The
illuminant colors of the scene are obtained by projecting
gray pixels on a Planckian locus in a specific chromaticity
diagram. Van de Weijer and Gevers[29] have presented a
framework, namely Grey-Edge, that systematically incor-
porates the well-known color constancy methods. Finally,
given its omnipresence in an increasingly wide and varied
range of application in the last years, it should be noted
that Bianco and Cusano[38] developed a Convolutional
Neural Network specifically designed to provide multiple
local illuminant color estimations by working on image
patches. Within a similar context, Shi and Loy[39] de-
veloped a Deep Specialized Network separated into two
sub-networks: one makes multiple illuminant estimation
hypotheses and the other selects one of them. In both
of these papers, it is shown that the presented networks
either achieve or outperform the state-of-the-art perfor-
mance. We will now present the different physical models
used to estimate illuminants in order to detect spliced
regions.

3 Illuminant color estimation
Color constancy aims to estimate the chromaticity of
the illuminant color and then to correct the image to
a canonical light source using the diagonal model. The
illumination estimation, which is thus the main part of
color constancy, is applied in different fields such as im-
age segmentation, image retrieval and object recognition.
Furthermore, the illuminant color can also be an indicator
of image tampering evidence because of the variation of
light sources from two different scenes. The colors of an
object observed in the image are determined by its actual
color and the color of the light source. Therefore, the
objects that are in the same scene but exposed to two
different illuminants may appear of different colors.
In the method we are developing, the main task is

indeed the estimation of these illuminant colors. We will
show below that the different models stated from the
formation of a color image can be of use when trying to
estimate the illuminant color of a given region in a scene.

3.1 Color image formation
A color image taken by a linear device such as a digital
camera is expressed as a vector of 3 pixel values (RGB),

i.e. p = (pR, pG, pB)
T . These values depend on the

surface reflectance for body reflection component Sb(λ, x),
the spectral power distribution E(λ) i.e. the color of the
light source and the device sensitivity function ρ(λ) =
(ρR, ρG, ρB)

T . Thus the image color at location x can be
modeled as[40][41]:

pc(x) =

∫
ω

mb(x)E(λ)Sb(λ, x)ρc(λ)dλ

+

∫
ω

mS(x)E(λ)ρc(λ)dλ, (1)

where c is a color pixel in (R,G,B), λ and ω being the in-
terval of wavelength of the light and the visible spectrum,
respectively. Moreover, as the first part of Equation 1
corresponds to the diffuse body or Lambertian reflectance
and the second part corresponds to the interface or specu-
lar reflectance, mb(x) and mS(x) are the geometric scale
factors for these respective types of reflectance, in that
order. The surface reflectance SS(λ, x) of the interface
component is assumed to be constant as the index of
refraction does not significantly vary according to ω. Ac-
cordingly, SS(λ, x) does not appear in Equation 1 and is
included in mS(x).

3.1.1 Dichromatic reflection model

The dichromatic reflection model[41] states that the light
reflected from an inhomogeneous object is decomposed
into two additive components: the diffuse or body re-
flection and the specular or interface reflection. The
former corresponds to the Lambertian reflectance, while
the latter is assumed to be similar to the spectral en-
ergy distribution of the incident light. The underlying
assumption[40] for most dichromatic-based methods is
that the pixels of an object surface fall on a plan in a
RGB color space. Relying on at least two unparalleled
plans that correspond to two different color surfaces, the
color of the light source is estimated by finding an inter-
section of these planes. Some methods [23, 30, 42, 43] for
illumination estimation propose to use the bright areas
of the image such as highlights, specularities or white
surfaces. Both these approaches assume that the color of
the pixels in the highlighted regions is identical or similar
to that of the light source. Although those dichromatic-
based methods can perform well for the objects that show
specular highlights, they require the highlight regions seg-
mentation and suffer from the problem of similar object
colors.

3.1.2 Lambertian model

Under the Lambertian assumption, the target image only
has a diffuse reflection. It means that the Lambertian
model ignores the specular reflection. As a result, Equa-
tion 1 used in the color image formation becomes:

pc(x) = m(x)

∫
ω

E(λ)S(λ, x)ρc(λ)dλ, (2)

where m(x) is the scale factor of the Lambertian surface
and does not depend of the wavelength of the light. For
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a given x, the reflected light color pc(x) can then be
modeled as follows:

prc(x) =

pRpG
pB

 =

∫
ω

E(λ)S(λ, x)ρc(λ)dλ. (3)

Since pc(λ) is unknown and the spectral power distribu-
tion E(λ) cannot be recovered from the discrete sensor
measures, determining pc is under constraints: it is there-
fore usual to estimate the illuminant color based on some
strong assumptions. We will need two of these assump-
tions in the next part.

3.2 Illuminant color estimation
3.2.1 Illuminant color estimation using dichro-

matic lines

Gholap and Bora[23] have introduced a method to esti-
mate the chromaticity of the illuminant color by using
the specular regions of a pair of objects. The estimation
is accomplished by finding an intersection point, i.e., the
values of the illuminant chromaticity, of two dichromatic
lines in the r − g chromaticity space. First, two dichro-
matic planes corresponding to the two chosen specular
regions must be found, as they represent the observations
of our color signal by being the linear combination of
the diffuse reflection vector and the specular reflection
vector[40]. This is done by the application of principal
component analysis, or PCA, on each of their pixels. It is
used as a feature extraction method to get a better repre-
sentation of the RGB values from our set of pixels, in the
form of a two-dimensional space. After using an orthogo-
nal transformation, the initial set of data is converted into
a set of values of linearly uncorrelated variables which are
the principal components of the PCA. We can obtain our
two-dimensional feature space by projecting the data onto
the plane defined by the first two principal components:
they correspond to the eigenvectors with the two most
significant eigenvalues, meaning that these components
have the largest possible variance and that they are the
most informative about our initial set of data. The two
planes obtained from applying PCA on the sets of pixels
from our regions are mapped in the r − g chromaticity
space using the following parameters:

r =
R

R+G+B
, g =

G

R+G+B
. (4)

Any two specular regions of different colors can be used
in illumination estimation.

This method suffers from several constraints: it needs
an initial detection of specular highlights and the picture,
including the sliced region, must contain specular high-
lights, these specularities should not be too small and
the spliced regions and original areas ratio should stay
balanced.

3.2.2 Illuminant color estimation using Planck-
ian locus

Mazin and Delon[32] have proposed a learning-free
method based on the Planckian locus to estimate the
color of several illuminants. The method relies on two

Figure 2: (a) Two dichromatic planes p1 and p2 in the
RGB color space, (b) p1 and p2 mapped as two dichro-
matic lines l1 and l2 in the r − g chromaticity space. l1
and l2 intersection is highlighted in red.

physical assumptions. The first one concerns the limit of
feasible illuminants: the set of possible light sources is
assumed to be modeled by using the Planckian locus of
black-body radiators. The second physical assumption
concerns the content of the image: it is assumed that
there is at least an achromatic/gray surface that contains
perfectly reflective pixels in the scene, which means that
this achromatic surface is a region that depicts a color
identical to the light source. From these assumptions, the
illuminant can be calculated with the Planckian model,
which states that the spectrum of light source E(T, λ)
emitted by a black body in thermal equilibrium at a
definite temperature T is given by:

E(T, λ) = c1λ
−5 [e c2λT − 1

]−1
, (5)

where T is the temperature in Kelvin, λ corresponds
to the wavelength and c1 = 3.74183 × 1016 Wm2 and
c2 = 1.4388 × 10−2 mK are two constants. Although
Equation 5 can be directly used to compute the spectrum
of most light sources in the daily life, the results cannot
be represented in chromaticity space. In our work, we
use Mazin and Delon’s[32] numerical approach based on
the Planckian locus instead of directly using Equation
5. The Planckian locus is the path followed by the color
of a black body in a given chromaticity space when the
temperature of the black body changes. The black body
is represented by the achromatic surface in the image.
Note that not only most natural illuminants but also
some typical artificial light sources can be estimated by
the Planckian locus[44].

Figure 3a depicts the Planckian locus in the CIE (Inter-
national Commission on Illumination) 1931 xy chromatic-
ity diagram. The black line is a path that goes from deep
red at low temperatures through orange, yellowish white,
white and finally bluish white at high temperatures. The
method we use is based on the following assumption: the
various chromaticities of most illuminant colors are very
close to the values found in the Planckian locus by study-
ing achromatic pixels. The two chromaticity coordinates
x and y are normalization of the tristimulus values XY Z
and are obtained from pixels values in the RGB color
space by the following transformation matrix given by
CIE 1961 when the image origin is unknown: as follows:XY

Z

 =
1

0.17697

0.49000 0.31000 0.20000
0.17697 0.81240 0.01063
0.00000 0.01000 0.99000

RG
B

 ,
(6)

x =
X

X + Y + Z
, y =

Y

X + Y + Z
, (7)
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with R, G and B the intensity of the red, blue and green
channel values of a given pixel in the RGB color space,
respectively.

(a) CIE 1931 xy chro-
maticity diagram.

(b) CIE 1960 uv chro-
maticity diagram.

Figure 3: Planckian locus in the CIE chromaticity dia-
gram.

The Planckian locus can be computed using also the
CIE 1960 color space, also known as MacAdam’s uv
chromaticity diagram[45], which is used in our algorithm.
It is shown in Figure 3b. The uv diagram is represented
by the two chromaticity coordinates u and v, obtained as
follows:

u =
4x

12y − 2x+ 3
, v =

6y

12y − 2x+ 3
. (8)

Figure 3b shows the Planckian locus depending on the
different color temperatures in the CIE 1960 uv chro-
maticity diagram. For T , a color temperature in Kelvin
located between 1000 K and 15000 K, the following values
of u and v project the Planckian locus in the CIE 1960
uv chromaticity diagram:

uP =
0.860117757 + 1.54118254 × 10−4 × T + 1.28641212 × 10−7 × T2

1 + 8.42420235 × 10−4 × T + 7.08145163 × 10−7 × T2
, (9)

vP =
0.317398726 + 4.22806245 × 10−5 × T + 4.20481691 × 10−8 × T2

1 − 2.89741816 × 10−5 × T + 1.61456053 × 10−7 × T2
. (10)

Also, in order to provide a better sampling of these
temperatures according to the human perception[46], we
decide to use the Micro Reciprocal Degree (MIRED):

TMIRED =
106

T
, (11)

with T the color temperature in Kelvin and TMIRED its
MIRED value in reciprocal megaKelvin (MK−1).
Different methods for the estimation of the illumi-

nant have been proposed using the Planckian locus, with
for example Lehman and Palm[43] and Finlayson and
Schaefer[47] estimating the illumination chromaticity by
intersecting the dichromatic line with the Planckian locus.
In those cases, the illuminant color can be estimated even
if there is only one surface in the scene. However, the
image must be segmented into regions of homogeneous
color, and these regions have to contain highlight pixels.
Additionally, the methods work poorly for yellow and blue
illuminated regions whose dichromatic lines have similar
orientations to the Planckian locus. From this approach,
Storring[48] proposes a method to estimate the illumi-
nant color from observations of the skin color. It shows

good performance on real-world images but requires prior
knowledge about the camera parameters. The selection of
achromatic pixels is done by projection on the Planckian
locus and a voting procedure is used to obtain robust
illuminant estimation.
The method of Mazin and Delon [32] has not a pre-

segmentation processing. Moreover, it performs well for
the scene of several illuminants. To estimate the illu-
minant color of a region, its achromatic pixels are first
found by selecting the pixels of the region, projected
in the uv chromaticity diagram, that are the closest to
the Planckian locus. Then, an histogram of the MIRED
temperatures estimated from the achromatic pixels of
the region is built. These temperatures correspond to
the dominant illuminants in the region: the histogram
is considered to be a mixture of Gaussians, with each
Gaussian distribution corresponding to one illuminant.
We proceed with a small filtering to separate the major
Gaussian distributions from the micro-peaks. Finally, an
estimation of the illuminant is made by combining the
Gaussian distributions that are left and projecting the
corresponding temperature to the Planckian locus.

4 Detection of Image Splicing us-
ing Planckian Locus

4.1 Proposed method
We propose an adaptation of the method of Mazin and
Delon [32] for image manipulation detection. The goal of
this method is to compare estimations of the illuminant
color related to different regions of the picture that will
be retrieved via manual segmentation. The original paper
assumed that a single illuminant is used in the whole scene:
since the pictures we are working on are spliced, we chose
to bring this method to the security field by making the
illuminant estimation local. The way we estimate these
illuminants is quicker and more reliable than the original
method and we added a final representation of the picture
showcasing the estimated illuminant colors to easily spot
the possible anomalies in our pictures. Our algorithm is
built as it follows:

1. All the pixels from each region of interest are plot in
the CIE 1960 uv chromaticity diagram

2. The pixels close to the Planckian locus are labeled
as achromatic and are projected on it

3. Their position on the Planckian locus correspond-
ing to a particular temperature value, a weighted
histogram is built

4. A Gaussian filter is applied on the histogram, which
lets us retrieve the different Gaussian distributions
that are represented

5. The most significant Gaussian distribution are kept
and pixels from these Gaussians are used to estimate
the illuminant color of the region

6. The illuminant color, originally estimated in the uv
color space, is also converted to the RGB color space
and gets more saturated for viewing purposes
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7. The colors are applied on the regions of interest to
easily spot the ones that differ

We will use the image (a) in Figure 4 where the object
from the base presented on Figure 1 (b) has been pasted
onto a new image. The chosen regions of interest in (b)
correspond to the different objects in the scene we want
to compare.

Figure 4: (a) Spliced image, (b) Regions of interest.

As mentioned previously in Section 3.2.2, finding the
achromatic pixels in an image plays an important role
in determining the illuminant color of the scene. The
achromatic pixels are the closest to the Planckian locus
in uv chromaticity diagram and are assumed to have the
same color as the light source. Hence, we start by finding
the pixels in our image that are close to the Planckian
locus when projected on the uv chromaticity diagram,
with the use of Equations 6 to 10. To do so, we project
each pixel of the image to the uv chromaticity diagram
and find the point in the Planckian locus that satisfies the
minimal Euclidean distance between it and the projected
pixel:

puvproj = min
∀pPL∈L

||puv − pP ||2, (12)

with puv being a pixel of the image projected in the uv
chromaticity diagram, L being the Planckian locus and
puvproj the projection of puv on the Planckian locus. An
example of a projection is shown in Figure 5. If the
Euclidean distance between the pixel and its projection
is less than a given threshold δ experimentally set at
δ = 0.0125, the pixel is potentially considered as an
achromatic pixel, which means it needs to satisfy the
following condition:

||puv − puvproj ||2 < δ. (13)

This achromatic pixel lets us retrieve the temperature of
its related black body radiator by looking at its position
on the Planckian locus.
In Figure 6, the pixels from the different regions are

projected on the uv chromaticity diagram. The ones
satisfying Equation 13 are represented by red dots while
those which don’t are represented in black. For the sake
of clarity, only 10% of the pixels appear in this graphic.
We can already see that the achromatic pixels from region
3 are located in a lower area on the chromaticity diagram
than the pixels from the other regions, which corresponds
to a higher temperature in the Planckian locus.
Figure 7 highlights the pixels that have been selected.

Note that if less than 5% of the pixels of a region are la-
beled as achromatic, no illuminant color will be estimated.
Here, 99.5%, 97.4%, 74.2% and 99.7% of the pixels from
respectively region 1, 2, 3 and 4 remain. A few pixels

Figure 5: Projection of a pixel on the Planckian locus
from the CIE 1960 uv chromaticity diagram.

Figure 6: Projection on the Planckian locus from the CIE
1960 uv chromaticity diagram of 10% of the pixels from
(a) Region 1, (b) Region 2, (c) Region 3, (d) Region 4.

coming from the cup in region 3 have been labeled as
chromatic and thus do not participate in the rest of the
algorithm.

Figure 7: Achromatic pixels in the different regions.

In order to estimate the illuminant chromaticity of the
region, we need to build the histogram of all the different
temperatures detected from the achromatic pixels we
gathered. As explained in Section 3.2.2 with Equation 11,
this histogram is built in MIRED. To limit the influence
of the darkest pixel, it is also weighted by the power of
each pixel luminance value Y found in the CIE 1931 color
space, as defined in Equation 6.
To estimate the illuminant, we have to extract the

modes of histogram denoting the most frequent MIRED.
These temperatures correspond to the dominant illumi-
nants in the scene. Mazin and Delon[32] propose to use
an a contrario detection method, but operating in this
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way has a drawback: since it has to make the decision for
each interval of histogram, it becomes really complex in
the case of local regions of interest. In our method, we de-
cide to first smooth the histogram with a Gaussian filter,
which makes the histogram a mixture of Gaussians, each
Gaussian distribution being considered as one illuminant.
To detect the different Gaussian distribution, we pro-

pose a new step in Mazin and Delon[32]’s method by
using an ad hoc procedure. Firstly, we start by record-
ing the color temperature which corresponds to a peak
value in the histogram. This temperature value Tmean

is considered as the mean of its corresponding Gaussian
distribution. Secondly, the standard deviation σ is com-
puted by analyzing the distribution values around Tmean.
Having Tmean and σ at hand, we can now approximate
a Gaussian distribution. To avoid parasites, we decided
that if a given Gaussian distribution Gi is to be associated
to an illuminant, it needs to satisfy the two rules stated
below:

1. The ratio between the peak value of the Gaussian
distribution Pi and the peak value of the whole his-
togram PH must be equal or larger than a given
threshold δ1 = 0.05: Pi

PH
≥ δ1

2. The normalized peak value of the Gaussian distribu-
tion, which is the ratio between the peak value of the
Gaussian distribution Pi and the sum of each value
hj in the histogram, must be equal or larger than a
given threshold δ2 = 0.01: Pi

Nb∑
j=0

hj

≥ δ2 with Nb the

total number of bins in the histogram

Figure 8 shows the histogram of our four regions. As
said earlier, the achromatic pixels from region 3 seem
to be of a higher temperature than the other regions.
Note that the histogram is sorted in MIRED: the higher
temperatures are on the left side while the lower ones are
on the right. Note that we obtained the same results using
Gaussian mixture models (GMMs) with the Expectation-
Maximization (EM) algorithm but with a more important
complexity.

Figure 8: Histogram of the achromatic pixels in from
(a) Region 1, (b) Region 2, (c) Region 3, (d) Region 4
(original histograms in blue, estimations in red).

Now that the distribution has been validated, we select
all the achromatic pixels in the [Tmean−σ,Tmean+σ] range
and approximate their value to estimate the corresponding
illuminant. If multiple Gaussian distributions in the

region have been detected, the procedure explained above
is repeated but a weighted mean is operated to estimate
the final illuminant, using the peak values of the Gaussian
distributions as weights for the achromatic pixels.

In Figure 9, we can see that regions 1 and 4 illuminants
estimations are pretty close to each others but regions 2
and 3 seem more distant. While the object from region 3
does indeed come from an other picture, the object from
region 2 comes from the original image: a suitable expla-
nation would be that the object from region 2 is really
close to the light source located on the right, whereas the
objects from region 1 and 4 are more close to the light
source located on the left.

Figure 9: Estimation of the illuminant color in the CIE
1960 uv chromaticity diagram.

Moreover, Figure 9 only gives us information coming
from the uv color space. Another point of view could be
acquired by converting those colors back to the RGB color
space. Since the luminance value, represented by Y , is
needed when going from the xyz to the XY Z color space,
a new value of Y = 0.8 has been arbitrarily given. Finally,
since our the pixels used to estimate our illuminant colors
are achromatic, the color seen in the RGB color space will,
by definition, have a low saturation. As a consequence,
we artificially enhance its color saturation value in the
HSV color space before visualizing it, for comparison
purposes only:

SE = S + 0.2 ∗ (255− S) (14)

with SE being the enhanced saturation value and S being
the normalized original one. In Figure 10, region 3 defi-
nitely stands out by having a greenish color as opposed
to the other three regions having an orange color.

Figure 10: (a) Spliced image, (b) Estimation of the il-
luminant color in the RGB color space, with enhanced
saturation.
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4.2 Results

To validate our method for image splicing detection, we
perform experiments on multiple images that have been
taken and manipulated for the purposes of this paper,
as explained in Section 1. Some results of detection
are showcased below in the following sections and a last
section describes and explains the problems that were
met during the experiments.

4.2.1 Experiment 1

There is no interaction between each region of interest we
can select in an image. The color estimation we get at the
end of the algorithm depends only of the selected pixels.
Therefore, since the final decision is made by comparing
the different colors given by the algorithm, an experiment
dedicated to a non-spliced image is unnecessary, as it is
equivalent to only analyze the non-spliced regions of a
spliced image.

In the first experiment, we will analyze a spliced image
taken outdoors and containing an object coming from
an image taken indoors. In Figure 11, the camera corre-
sponding to region 4 is the object cropped from an other
image. We can also note that region 6 is a gray-colored
reflective surface and a red traffic light directly casts a
red light on it.

Figure 11: (a) Spliced image, (b) Regions of interest.

In Figure 12, we can see that the red parts of region 6
have been discarded as they are not close to the Planckian
locus when projected on the uv chromaticity diagram.
Only the white-gray text remains.

Figure 12: Achromatic pixels in the different regions.

In Figure 13, we can observe that the illuminant color
linked to the spliced region 4 is far away from the rest of
the regions.

Finally, Figure 14 gives us an estimation of the illumi-
nant color of each object. Region 4 illuminant color is
yellow, regions 1, 2, 3, 5, 7 colors are blueish, while region
6 color is more purple: it may come from the fact that

Figure 13: Estimation of the illuminant color in the CIE
1960 uv chromaticity diagram.

two light sources are casted on region 6, both the bluish
day light found in the other regions minus region 4 and
the red traffic light. The algorithm succeeded in showing
us that region 4 was spliced.

Figure 14: (a) Spliced image, (b) Estimation of the il-
luminant color in the RGB color space, with enhanced
saturation.

4.2.2 Experiment 2

We apply our algorithm to the spliced picture we studied
in the previous method. This time, we are using new
regions of interest, seen in Figure 15 (b).

Figure 15: (a) Spliced image, (b) Regions of interest.

As we can see in F igure 16 (a), only 0.4% of the pixels
from region 1 are close enough to the Planckian locus
to be considered as achromatic, the other 99.6% being
represented in black. This region will therefore not be
used in the next steps of the algorithm.

Figure 16: Projection on the Planckian locus from the
CIE 1960 uv chromaticity diagram of 10% of the pixels
from (a) Region 1, (b) Region 2, (c) Region 3, (d) Region
4, (e) Region 5.

8



The results obtained in Figure 17 and 18 are not satis-
fying: every remaining object has a different estimated
illuminant color. This is explained by the fact that re-
gion 2 and 3 depict objects that are coated in an intense
color and their achromatic pixels contain more informa-
tion about their color than the light source they reflect.
The regions 1 and 4 which are gray and white are the
only ones that can give us an acceptable illuminant color
estimation.

Figure 17: Estimation of the illuminant color in the CIE
1960 uv chromaticity diagram.

Figure 18: (a) Spliced image, (b) Estimation of the il-
luminant color in the RGB color space, with enhanced
saturation.

4.2.3 Experiment 3

In our third experiment, we will examine a picture featur-
ing people. The original picture has been taken indoors
in a closed environment and contains one person. The
same person has been photographed outdoors, thus taken
with a different light source, then cropped and pasted in
the first picture, resulting in Figure 19 (a).

Figure 19: (a) Spliced image, (b) Regions of interest

It is difficult to analyze Figure 20 properly as regions
belonging to the spliced person are located next to regions
belonging to the original picture. However, let us take

into account that these regions go by pairs or triplets con-
sidering their nature: regions 1 and 4 depict the person’s
face, regions 3 and 7 depict his hand, regions 2 and 5
depict his shirt and region 6 and 8/9 depict his trousers,
the first region cited being part of the original picture
and the second/third being from the spliced region. We
can see that the spliced regions are always under the
Planckian locus while the original are always above - or
slightly below in the case of region 1. The global illumi-
nant color palette has shifted downward when comparing
the spliced regions to the original ones. The spreading of
the illumination color estimation belonging to the same
picture come from the fact that we try to compare areas of
different nature, with some of them, like the skin, having
a natural color.

Figure 20: Estimation of the illuminant color in the CIE
1960 uv chromaticity diagram

In Figure 21, we can indeed see that the regions related
to the spliced person have been exposed to a more red
light source than the original picture, taken indoors.

Figure 21: (a) Spliced image, (b) Estimation of the il-
luminant color in the RGB color space, with enhanced
saturation

4.2.4 Discussion

Finally, the consequences of the multiple light sources are
visible with our approach. As we have seen in Figure 14,
when analyzing the final picture given by the algorithm,
it is important to take into account the fact that some
objects might receive multiple light sources and therefore
get an illuminant color rather different from the other
objects, even if it has not been spliced.
To estimate the illuminant color, the algorithm tries

to find the achromatic pixel contained in the regions
based on the second physical assumption we made in
Section 3.2.2: there is at least an achromatic surface that
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contains perfectly reflective pixels in the scene, this surface
depicting a color identical to the light source. It first
means that the algorithm will not give acceptable results
if the studied surfaces do not contain a sufficiently high
amount of achromatic pixels. However, an achromatic
surface do not necessarily mean that it is the sign of a near-
black-body radiator either. It may simply be the natural
color of the object. Even if most of the chromatic pixels
are discarded when projected on the Planckian locus, the
remaining pixels may not be related to a reflective surface.
The consequence is that to get significant results, it is
preferable to select regions of interest that correspond
to naturally white or gray colored objects. Otherwise, if
an picked area is of a high-saturated color, it should be
compared to areas of similar design, like a wall with an
other wall or a shirt with an other shirt. It is also the
reason why when pictures involve people, the algorithm
works best if these people possess a similar skin-tone.

5 Conclusion
In this paper, we introduce a method to detect image
splicing operations, a popular image forgery technique
consisting in cropping a region from a given image and
pasting it onto an other. We have proposed the adaptation
of a method based on the Lambertian model, adding a
way to locally estimate the illuminant color and easily
compare multiple regions of an image.

This learning-free approach gives us good results and is
easy to apply, as it does not need a precise segmentation
of the regions of interest. However, these regions need not
to be bright-colored as it interferes with the illuminant
color estimation. Otherwise, colored objects of similar
nature can be used for comparison.
When coming across a suspicious image, our method

involves an analysis of the inconstancies in an estimation
of the scene illuminant color, it also returns a colored
image acting as a decision support and either representing
a "tamper score" in the form of a heat map or a direct
estimation of the illuminant color.
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