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Abstract
The surrogate modeling toolbox (SMT) is an open-source Python package that contains
a collection of surrogate modeling methods, sampling techniques, and benchmarking
functions. This package provides a library of surrogate models that is simple to use and
facilitates the implementation of additional methods. SMT is different from existing
surrogate modeling libraries because of its emphasis on derivatives, including training
derivatives used for gradient-enhanced modeling, prediction derivatives, and derivatives
with respect to training data. It also includes unique surrogate models: kriging by
partial least-squares reduction, which scales well with the number of inputs; and energy-
minimizing spline interpolation, which scales well with the number of training points.
The efficiency and effectiveness of SMT are demonstrated through a series of examples.
SMT is documented using custom tools for embedding automatically tested code and
dynamically generated plots to produce high-quality user guides with minimal effort
from contributors. SMT is maintained in a public version control repository1.

1https://github.com/SMTorg/SMT
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1 Motivation and significance
In the last few decades, numerical models for engineering have become more complex
and accurate, but the computational time for running these models has not necessarily
decreased. This makes it difficult to complete engineering tasks that rely on these
models, such as design space exploration and optimization. Surrogate modeling is often
used to reduce the computational time of these tasks by replacing expensive numerical
simulations with approximate functions that are much faster to evaluate. Surrogate
models are constructed by evaluating the original model at a set of points, called
training points, and using the corresponding evaluations to construct an approximate
model based on mathematical functions.

Surrogate modeling is often used in the context of design optimization because of
the repeated model evaluations that are required. Derivatives play an important role in
optimization, because problems with a large number of optimization variables require
gradient-based algorithms for efficient scalability. Therefore, situations frequently arise
where there are requirements for surrogate models associated with the computation or
use of derivatives.

There are three types of derivatives in surrogate modeling: prediction derivatives,
training derivatives, and output derivatives. Prediction derivatives are the derivatives
of the surrogate model outputs with respect to the inputs, and they are the deriva-
tives required when using a surrogate model in gradient-based optimization. Training
derivatives are derivatives of the training outputs with respect to the training inputs
that provide additional training data that increase the accuracy of the surrogate model.
Output derivatives are derivatives of the prediction outputs with respect to the training
outputs, which are required if a surrogate model is reconstructed within a gradient-
based optimization process. We describe these derivatives in more detail in Section 3.3.

Various packages that build surrogate models have been developed using different
programming languages, such as Scikit-learn in Python [35], SUMO in MATLAB [13],
and GPML in MATLAB and Octave [38]. However, these packages do not handle the
derivatives.

In this paper, we introduce a new Python package called the surrogate modeling
toolbox (SMT). SMT is different from existing surrogate modeling libraries because of
its emphasis on derivatives, including all three types of derivatives described above.
SMT also includes newly developed surrogate models that handle derivatives and do
not exist elsewhere: partial least-squares (PLS)-based surrogate models [5–7], which
are suitable for high-dimensional problems, and the regularized minimal-energy tensor-
product spline (RMTS), which is suitable for low-dimensional problems with up to
hundreds of thousands of sampling points [18]. To use SMT, the user should first
provide a set of training points. This could be done either by using the sampling
techniques and benchmarking functions implemented in SMT or by directly importing
the data. Then, the user can build a surrogate model based on the training points and
make predictions for the function values and derivatives.

The main goal of this work is to provide a simple Python toolbox that contains a
set of surrogate modeling functions and supports different kinds of derivatives that are
useful for many applications in engineering. SMT includes sampling techniques, which
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are necessary for the construction of a surrogate model. Various sample functions are
also included to facilitate the benchmarking of different techniques and for reproducing
results. SMT is suitable for both novice and advanced users and is supported by
detailed documentation available online with examples of each implemented surrogate
modeling approach2. It is hosted publicly in a version-controlled repository3, and is
easily imported and used within Python scripts. It is released under the New BSD
License and runs on Linux, macOS, and Windows operating systems. Regression tests
are run automatically on each operating system whenever a change is committed to
the repository.

The remainder of this paper is organized as follows. First, we present the architec-
ture and the main implementation features of SMT in Section 2 and then we describe
the methods implemented in SMT in Section 3. Section 4 gives an example of SMT
usage and presents a set of benchmarking functions implemented within SMT. We
apply SMT to two engineering problems in Section 5 and present the conclusions in
Section 6.

2 Software architecture, documentation, and automatic
testing

SMT is composed of three main modules (sampling methods, problems, and surro-
gate models) that implement a set of sampling techniques, benchmarking functions,
and surrogate modeling techniques, respectively. Each module contains a common
interface inherited by the corresponding methods, and each method implements the
functions required by the interface, as shown in Figure 1.

SMT’s documentation is written using reStructuredText and is generated using the
Sphinx package for documentation in Python, along with custom extensions4. The
documentation pages include embedded code snippets that demonstrate the usage.
These code snippets are extracted dynamically from actual tests in the source code,
ensuring that the code snippets are always up to date. The print output and plots
from the code snippets are also generated dynamically by custom Sphinx extensions
and embedded in the documentation page. This leads to high-quality documentation
with low effort, requiring only the addition of a custom directive and the path to
locating the test code. Similarly, another custom directive embeds a table of options,
default values, valid types, valid values, and descriptions in the documentation for the
surrogate model, sampling method, or benchmarking problem. The documentation
also uses existing Sphinx directives to embed descriptions of the user-callable methods
in the classes.

In addition to the user documentation, we also provide developer documentation
that explains how to contribute code to SMT. The developer documentation includes
a different list of application programming interface (API) methods for the Surrogate-
Model, SamplingMethod, and Problem classes, which are classes that must be imple-

2http://smt.readthedocs.io/en/latest
3https://github.com/SMTorg/smt
4https://smt.readthedocs.org
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Figure 1: Architecture of SMT.

SMT

+ problems
+ sampling methods
+ surrogate models

problems::
Problem

+ call ()
# evaluate()

sampling methods::
SamplingMethod

+ call ()
# compute()

surrogate models::
SurrogateModel

+ set training values()
+ update training values()
+ set training derivatives()
+ update training derivatives()
+ predict derivatives()
+ predict output derivatives()
+ predict variances()
+ predict values()
+ train()
# predict derivatives()
# predict output derivatives()
# predict values()
# predict variances()
# train()

mented to create a new surrogate modeling method, sampling technique, or bench-
marking problem, respectively.

When a developer issues a pull request, the request is merged once the automatically
triggered tests run successfully and at least one reviewer approves it. The repository on
GitHub5 is linked to two continuous integration testing services, Travis CI (for Linux
and macOS) and AppVeyor (for Windows), which trigger test suite execution whenever
code is committed and prevent changes from being merged if any of the tests fail.

3 Surrogate modeling methods
To build a surrogate model, two main steps are necessary. First, we generate a set
of training points from the input space where the quantity of interest is computed.
This step can be done by using one of the sampling techniques implemented in SMT
(Section 3.1), or by uploading an existing training dataset. Second, we train the
desired surrogate model on those points and make a prediction of the output values
and derivatives (Section 3.2).

3.1 Sampling methods

SMT contains a library of sampling methods used to generate sets of points in the
input space, either for training or for prediction.

Random sampling: this class creates random samples from a uniform distribution

5https://github.com/SMTorg/smt
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over the design space.

Latin hypercube sampling: this is a statistical method for generating a quasi-random
sampling distribution. It is among the most popular sampling techniques in
computer experiments thanks to its simplicity and projection properties in high-
dimensional problems. Five construction criteria are available in SMT: four cri-
teria defined in the pyDOE package6 and the enhanced stochastic evolutionary
criterion [21].

Full-factorial sampling: this is a common sampling method where all input variables
are set at two levels each. These levels are usually denoted by +1 and -1 for
high and low levels, respectively. Full-factorial sampling computes all possible
combinations of these levels across all such input variables.

Figure 2 shows the implementation of the Random class, which inherits from the
SamplingMethod class.

Figure 2: Implementation of the Random class, which inherits from the Sampling-
Method class. The compute function evaluates the requested number of sampling points
uniformly over the design space.

import numpy as np

from six.moves import range

from smt.sampling_methods.sampling_method

import SamplingMethod

class Random(SamplingMethod ):

def _compute(self , n):

"""

Compute the requested number of sampling points.

Arguments

---------

n : int

Number of points requested.

Returns

-------

ndarray[n, nx]

The sampling locations in the input space.

"""

xlimits = self.options[’xlimits ’]

nx = xlimits.shape [0]

return np.random.rand(n, nx)

3.2 Surrogate models

Table 1 lists the surrogate modeling methods currently available in SMT and sum-
marizes the advantages and disadvantages of each method. The methods include
both well-established methods and methods recently developed by the authors that
use derivative information. Among the well-established methods, we implement krig-
ing [39], radial basis functions (RBF) [36], inverse distance weighting (IDW) [41], least

6https://pythonhosted.org/pyDOE/randomized.html
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squares (LS) [16, ch. 3], and quadratic polynomials (QP) [16, ch. 3]. In Figure 3, we
show the implementation of the RBF class, which inherits from the SurrogateModel
class.

The methods that we recently developed are kriging combined with partial least
squares (KPLS) [7], KPLSK for the construction of a standard kriging model in high-
dimensional problems [6], gradient-enhanced KPLS (GE-KPLS) [5], and RMTS [18].

Table 1: Surrogate modeling methods provided by SMT.

Method Advantages (+) and disadvantages (−) Derivatives References
Train. Pred. Out.

Kriging + Prediction variance, flexible No Yes No Sacks et al. [39]
− Costly if number of inputs or training points is large
− Numerical issues when points are too close to each other

KPLS + Prediction variance, fast construction No Yes No Bouhlel et al. [7]
+ Suitable for high-dimensional problems
− Numerical issues when points are too close to each other

KPLSK + Prediction variance, fast construction No Yes No Bouhlel et al. [6]
+ Suitable for high-dimensional problems
− Numerical issues when points are too close to each other

GE-KPLS + Prediction variance, fast construction Yes Yes No Bouhlel and Martins [5]
+ Suitable for high-dimensional problems
+ Control of the correlation matrix size
− Numerical issues when points are too close to each other
− Choice of step parameter is not intuitive

RMTS + Fast prediction Yes Yes Yes Hwang and Martins [18]
+ Training scales well up to 105 training points
+ No issues with points that are too close to each other
− Poor scaling with number of inputs above 4
− Slow training overall

RBF + Simple, only a single tuning parameter No Yes Yes Powell [36]
+ Fast training for small number of training points
− Susceptible to oscillations
− Numerical issues when points are too close to each other

IDW + Simple, no training required No Yes Yes Shepard [41]
− Derivatives are zero at training points
− Poor overall accuracy

LS + Simple, fast construction No Yes No Hastie et al. [16]
− Accurate only for linear problems

QP + Simple, fast construction No Yes No Hastie et al. [16]
− Large number of points required for large number of inputs

Surrogate models provide a vector of prediction outputs y for a given vector of
prediction inputs x ∈ Rnx , and can be expressed as

y = f (x,xt,yt) , (1)

where xt ∈ Rnx and yt are the vectors of training inputs and outputs, respectively,
which are used to build the surrogate model a priori, and x is the unknown point to
predict with the surrogate model. We now describe the surrogate modeling methods
available in SMT.
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Figure 3: Implementation of the RBF class, which inherits from the SurrogateModel
class.

from smt.surrogate_models.surrogate_model

import SurrogateModel

class RBF(SurrogateModel ):

def _initialize(self):

super(RBF , self). _initialize ()

...

def _setup(self):

options = self.options

...

def _train(self):

self._setup ()

...

def _predict_values(self , x):

"""

Evaluates the model at a set of points.

x : np.ndarray [n_evals , dim]

Evaluation point input values

y (output ): Evaluation point output values

"""

n = x.shape [0]

...

def _predict_derivatives(self , x, kx):

"""

Evaluates the derivatives at a set of points.

x : np.ndarray [n_evals , dim]

Evaluation point input variable values

kx : int

The 0-based index of the input variable with

respect to which derivatives are desired.

dy_dx (output ): Derivative values.

"""

n = x.shape [0]

...

def _predict_output_derivatives(self , x):

"""

Evaluates the output derivatives at a set of points.

x : np.ndarray [n_evals , dim]

Evaluation point input variable values

dy_dyt (output ): Output derivative values.

"""

n = x.shape [0]

...

3.2.1 LS and QP

The LS method [16] fits a linear model with coefficients β = (β0, β1, . . . , βnx), where nx
is the number of dimensions, to minimize the residual sum of the squares between the
observed responses in the dataset, and the responses predicted by the linear approxi-
mation, i.e.,

min
β
||Xβ − y||22, (2)
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where X =
(

1,x(1)T , . . . ,x(nt)T
)T

. The vectors in X have (nt × nx + 1) dimensions

and nt is the number of training points. The square polynomial model is given by [16]

y = Xβ + ε, (3)

where ε is a vector of random errors and

X =

1 x
(1)
1 . . . x

(1)
nx x

(1)
1 x

(1)
2 . . . x

(1)
nx−1x

(1)
nx x

(1)
1

2
. . . x

(1)
nx

2

...
... . . .

...
... . . .

...
...

...

1 x
(nt)
1 . . . x

(nt)
nx x

(nt)
1 x

(nt)
2 . . . x

(nt)
nx−1x

(nt)
nx x

(nt)
1

2
. . . x

(nt)
nx

2

 . (4)

The vector of estimated polynomial regression coefficients using ordinary LS estimation
is

β = XTX−1XTy. (5)

3.2.2 IDW

The IDW model is an interpolating method where the unknown points are calculated
with a weighted average of the sampling points using [41]

y =


∑nt

i β
(
x,x

(i)
t

)
y

(i)
t∑nt

i β
(
x,x

(i)
t

) , if x 6= x
(i)
t ∀i

y
(i)
t , if x = x

(i)
t for some i

, (6)

where x ∈ Rnx is the prediction input vector, y ∈ R is the prediction output, x
(i)
t ∈ Rnx

is the input vector for the ith training point, and y
(i)
t ∈ R is the output value for the

ith training point. The weighting function β is defined as

β
(
x(i),x(j)

)
= ||x(i) − x(j)||−p2 , (7)

where p is a positive real number called the power parameter, which must be strictly
greater than one for the derivatives to be continuous.

3.2.3 RBF

The RBF surrogate model [36] represents the interpolating function as a linear combi-
nation of basis functions, one for each training point. RBF are named as such because
the basis functions depend only on the distance from the prediction point to the train-
ing point for the basis function. The coefficients of the basis functions are computed
during the training stage. RBF are frequently augmented to global polynomials to
capture the general trends. The prediction equation for RBF is given by

y = p (x) wp +
nt∑
i

φ
(
x,x

(i)
t

)
wr, (8)
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where x ∈ Rnx is the prediction input vector, y ∈ R is the prediction output, x
(i)
t ∈ Rnx

is the input vector for the ith training point, p (x) ∈ Rnp is the vector mapping the

polynomial coefficients to the prediction output, φ
(
x,x

(i)
t

)
∈ Rnt is the vector mapping

the RBF coefficients to the prediction output, wp ∈ Rnp is the vector of polynomial
coefficients, and wr ∈ Rnt is the vector of RBF coefficients. The coefficients, wp and
wr, are computed by solving the following linear augmented Gram system:

φ
(
x

(1)
t ,x

(1)
t

)
. . . φ

(
x

(1)
t ,x

(nt)
t

)
p
(
x

(1)
t

)T
...

. . .
...

...

φ
(
x

(nt)
t ,x

(1)
t

)
. . . φ

(
x

(nt)
t ,x

(nt)
t

)
p
(
x

(nt)
t

)T
p
(
x

(1)
t

)
. . . p

(
x

(nt)
t

)
0




wr1
...

wrnt

wp

 =


y

(1)
t
...

y
(nt)
t

0

 . (9)

Only Gaussian basis functions are implemented currently. These can be written as
follows

φ
(
x(i),x(j)

)
= exp

(
−||x

(i) − x(j)||22
d2

0

)
, (10)

where d0 is a scaling parameter.

3.2.4 Kriging-based models

Kriging [39] is an interpolating model that is a linear combination of a known function
fi (x) added to a realization of a stochastic process, Z (x), to obtain

ŷ =
k∑
i=1

βifi (x) + Z (x) , (11)

where βi is the ith linear regression coefficients and k is the number of linear regression
coefficients to be determined. Here, Z (x) has a mean of zero and a spatial covariance
function given by

cov
[
Z
(
x(i)
)
, Z
(
x(j)
)]

= σ2R
(
x(i),x(j)

)
, (12)

where σ2 is the process variance and R is the correlation. Two types of correlation
functions are available in SMT: the exponential (Ornstein–Uhlenbeck process)

R
(
x(i),x(j)

)
=

nx∏
l=1

exp
(
−θl

∣∣∣x(i)
l − x

(j)
l

∣∣∣) ,
and the Gaussian correlation function

R
(
x(i),x(j)

)
=

nx∏
l=1

exp

(
−θl

(
x

(i)
l − x

(j)
l

)2
)
,

where θl ∈ R+. The number of hyperparameters θ is equal to the number of variables
nx. They are estimated by maximizing the likelihood function using the gradient-
free optimization algorithm COBYLA [37]. These two correlation functions are called
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abs exp (exponential) and squar exp (Gaussian) in SMT. The deterministic term, the
sum in the kriging prediction (11), is replaced by a constant, a linear model, or a
quadratic model, all of which are available in SMT.

KPLS [7] is a kriging model that uses the PLS method. KPLS is faster than krig-
ing because fewer hyperparameters need to be estimated to achieve high accuracy.
This model is suitable for high-dimensional problems owing to the kernel constructed
through the PLS method. The PLS method is a well-known tool for high-dimensional
problems that searches the direction that maximizes the variance between the input
and output variables. This is done by a projection in a smaller space spanned by the
principal components. The PLS information is integrated into the kriging correlation
matrix to scale the number of inputs by reducing the number of hyperparameters. The
number of principal components, h, which corresponds to the number of hyperparam-
eters in KPLS is much lower than nx. For example, the PLS-Gaussian correlation
function is

R
(
x(i),x(j)

)
=

nx∏
l=1

h∏
k=1

exp

(
−θkw(k)2

l

(
x

(i)
l − x

(j)
l

)2
)
. (13)

We provide more details on the KPLS method in previous work [7].
The KPLSK model is built in two steps [6]. The first step is to run KPLS and

estimate the hyperparameters expressed in the reduced space with h dimensions. The
second step is to express the estimated hyperparameters in the original space with nx
dimensions, and then use this as a starting point to optimize the likelihood function of
a standard kriging model. The idea here is to guess a “good” initial hyperparameter
and apply a gradient-based optimization using a classic kriging kernel. This guess is
provided by the KPLS construction: the solutions (θ∗1, . . . , θ

∗
h) and the PLS-coefficients(

w
(k)
1 , . . . , w

(k)
nx

)
for k = 1, . . . , h. Using the change of variables

ηl =
h∑
k=1

θ∗kw
(k)
l

2
(14)

for l = 1, . . . , nx, we express the initial hyperparameters point in the original space. We
demonstrate this using a KPLS-Gaussian correlation function RKPLS in the following
example [6]:

RKPLS

(
x(i),x(j)

)
=

h∏
k=1

nx∏
l=1

exp

(
−θkw(k)

l

2
(
x

(i)
l − x

(j)
l

)2
)

= exp

(
nx∑
l=1

h∑
k=1

−θkw(k)
l

2
(
x

(i)
l − x

(j)
l

)2
)

= exp

(
nx∑
l=1

−ηl
(
x

(i)
l − x

(j)
l

)2
)

=
nx∏
l=1

exp

(
−ηl

(
x

(i)
l − x

(j)
l

)2
)
,

(15)
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where the change of variables is performed on the third line, and the last line is a
standard Gaussian correlation function. The hyperparameters point (14) provides a
starting point for a gradient-based optimization applied on a standard kriging method.

3.2.5 Gradient-enhanced KPLS models

GE-KPLS [5] is a gradient-enhanced kriging (GEK) model with the PLS approach.
GEK is an extension of kriging that exploits gradient information. GEK is usually more
accurate than kriging; however, it is not computationally efficient when the number of
inputs, the number of sampling points, or both, are high. This is primarily owing to
the size of the corresponding correlation matrix that increases in proportion to both
the number of inputs and the number of sampling points.

To address these issues, GE-KPLS exploits the gradient information with a slight
increase in the size of the correlation matrix and reduces the number of hyperparam-
eters. The key idea of GE-KPLS is to generate a set of approximating points around
each sampling point using a first-order Taylor approximation. Then, the PLS method
is applied several times, each time on a different number of sampling points with the
associated sampling points. Each PLS provides a set of coefficients that contribute to
each variable nearby the associated sampling point to the output. Finally, an average of
all PLS coefficients is computed to estimate the global influence to the output. Denot-

ing these coefficients by
(
w

(k)
1 , . . . , w

(k)
nx

)
, the GE-KPLS Gaussian correlation function

is given by

RGE-KPLS

(
x(i),x(j)

)
= σ

nx∏
l=1

h∏
k=1

exp

(
−θk

(
w

(k)
l x

(i)
l − w

(k)
l x

(j)
l

)2
)
. (16)

This approach reduces the number of hyperparameters (reduced dimension) from nx
to h, where h << nx.

As mentioned previously, PLS is applied several times with respect to each sampling
point, which provides the influence of each input variable around that point. The idea
here is to add only m approximating points (m ∈ [1, nx]) around each sampling point.
Only the m highest coefficients given by the first principal component are considered,
which usually capture the most useful information. Bouhlel and Martins [5] provide
more details on this approach.

3.2.6 RMTS method

The RMTS model is a type of surrogate model for low-dimensional problems with
large datasets that has fast prediction capability [18]. The underlying mathematical
functions are tensor-product splines, which limits RMTS to up to four-dimensional
problems, or five-dimensional problems in certain cases. On the other hand, tensor-
product splines enable a fast prediction time that does not increase with the number
of training points. Unlike other methods, such as kriging and RBF, RMTS is not
susceptible to numerical issues when there is a large number of training points or when
points are too close together. The prediction equation for RMTS is given by

y = F (x) w, (17)
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where x ∈ Rnx is the prediction input vector, y ∈ R is the prediction output, w ∈ Rnw

is the vector of spline coefficients, and F (x) ∈ Rnw is the vector mapping the spline
coefficients to the prediction output.

RMTS computes the coefficients of the splines, w, by solving an energy minimiza-
tion problem subject to the conditions that the splines pass through the training points.
This is formulated as an unconstrained optimization problem where the objective func-
tion consists of a term with the second derivatives of the splines, a term that represents
the approximation error for the training points, and another term for regularization.
Thus, this optimization problem can be written as

min
w

1

2
wTHw +

1

2
βwTw +

1

2

1

α

nt∑
i

[
F
(
x

(i)
t

)
w − y(i)

t

]2

, (18)

where x
(i)
t ∈ Rnx is the input vector for the ith training point, y

(i)
t ∈ R is the output

value for the ith training point, H ∈ Rnw×nw is the matrix of second derivatives,

F
(
x

(i)
t

)
∈ Rnw is the vector mapping the spline coefficients to the ith training output,

and α and β are the regularization coefficients.
In problems with a large number of training points relative to the number of spline

coefficients, the energy minimization term is not necessary and can be set to zero by
setting the reg cons option to zero. In problems with a small dataset, the energy
minimization is necessary. When the true function has high curvature, the energy min-
imization can be counterproductive. This can be addressed by increasing the quadratic
approximation term to one of higher order and using Newton’s method to solve the
resulting nonlinear system. The nonlinear formulation is given by

min
w

1

2
wTHw +

1

2
βwTw +

1

2

1

α

nt∑
i

[
F
(
x

(i)
t

)
w − y(i)

t

]p
, (19)

where p is the order set by the approx order option. The number of Newton iterations
is specified in the nonlinear maxiter option.

RMTS is implemented in SMT with two choices of splines: B-splines and cubic
Hermite splines. RMTB uses B-splines with a uniform knot vector in each dimension.
The number of B-spline control points and the B-spline order in each dimension are
options that trade off efficiency and precision of the interpolant. For the cubic Hermite
splines, RMTC divides the domain into tensor-product cubic elements. For adjacent
elements, the values and derivatives are continuous. The number of elements in each
dimension is an option that trades off efficiency and precision. B-splines are usually the
better choice when training time is the most important factor, whereas cubic Hermite
splines are the better choice when the accuracy of the interpolant is most important [18].

3.3 Derivatives

There are three types of derivatives in SMT.

Prediction derivatives ( dy/ dx) are derivatives of predicted outputs with respect to
the inputs at which the model is evaluated. These are computed together with the
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prediction outputs when the surrogate model is evaluated [26]. These are required
for gradient-based optimization algorithms based on surrogate models [2, 3].

Training derivatives ( dyt/ dxt) are derivatives of the training outputs with respect
to the corresponding inputs. These are provided by the user and are used to
improve the model accuracy in GE-KPLS.

When the adjoint method is used to compute training derivatives, a high-quality
surrogate model can be constructed with a low relative cost, because the adjoint
method computes these derivatives at a cost independent of the number of inputs.

Output derivatives ( dy/ dyt) are derivatives of predicted outputs with respect to
training outputs, which is a measure of how the prediction changes with a change
in training outputs, accounting for the retraining of the surrogate model. These
post-training derivatives are used when the surrogate model is trained within an
optimization iteration. This feature is not commonly available in other frame-
works; however, it is required when the training of the surrogate model is embed-
ded in a gradient-based optimization. In this case, derivatives of the prediction
outputs with respect to the training outputs must be computed and combined
with derivatives from other parts of the model using, for example, the chain rule.

Given its focus on derivatives, SMT is synergistic with the OpenMDAO frame-
work [14], which is a software framework for gradient-based multidisciplinary analysis
and optimization [17, 31, 32]. An SMT surrogate model can be a component that is
part of a larger model developed in OpenMDAO and can provide the derivatives that
OpenMDAO requires from its components to compute the coupled derivatives of the
multidisciplinary model.

3.4 Additional surrogate modeling methods

To extend surrogate modeling to higher-level methods, we implemented a component
within SMT named extensions. These methods require additional and sometimes dif-
ferent steps than the usual surrogate modeling. For example, multi-fidelity methods
combine data generated from different sources, such as coarse and fine mesh solutions.
Another example is the mixture of experts (MoE) class of methods, which linearly
combines several surrogates. Three such methods are available within SMT.

MoE modeling performs a weighted sum of local surrogate models (experts) instead
of one single model. It is based on splitting the input space into several subspaces
via clustering algorithms and training a surrogate model within each subspace.
Hastie et al. [16] provide a general introduction to the MoE method. The im-
plementation of MoE within SMT is based on Gaussian mixture models and
expectation maximization [4].

Variable-fidelity modeling (VFM) samples points using both low-fidelity function
evaluations that are cheap to evaluate and more costly high-fidelity evaluations.
It then uses the differences between the high- and low-fidelity evaluations to
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construct a bridge function that corrects the low-fidelity model [15]. SMT imple-
ments additive and multiplicative bridge functions.

Multi-fidelity kriging (MFK) uses a correlation factor ρ(x) (constant, linear, or
quadratic) and a discrepancy function δ(x). The high-fidelity model is given by

yhigh(x) = ρ(x)ylow(x) + δ(x).

SMT follows the formulation proposed by Le Gratiet [25], which is recursive and
can be easily extended to multiple levels of fidelity.

4 Example and benchmark functions
SMT contains a library of analytical and engineering problems that can be used for in-
structional or benchmarking purposes. The analytical functions currently implemented
in SMT are the sphere, Branin, Lp norm, Rosenbrock, and tensor-product functions, all
of which are detailed in A. The engineering functions currently implemented in SMT
are the cantilever beam, robot arm, torsion vibration, water flow, welded beam, and
wing weight problems (described in B).

Figure 4 shows the implementation of the Sphere class, which inherits from the
Problem class. This function is a simple example that serves as a good first test for
newly developed surrogate modeling and surrogate-based optimization methods. This
function is a continuous and convex function where the global minimum is at the origin.

Figure 5 shows an example of the use of RMTC within SMT for the robot arm
function [1]. This function is scalable; however, the number of dimensions must be an
even number (we use two dimensions in this example). This function gives the position
of a robot arm, which is made by multiple segments, in a two-dimensional space where
the shoulder of the arm is fixed at the origin. This function is highly nonlinear, and
the use of training derivatives samples is particularly beneficial in this case [5].

5 Applications
In this section, we describe two applications that highlight the unique features of SMT.
We also provide an overview of the main previous applications realized using SMT.
The first application is the computation and validation of the prediction derivatives for
an airfoil analysis tool, where we apply GE-KPLS. The second application describes
a practical use for output derivatives, where we use RMTS to compute the outputs
derivatives for a surrogate model that is dynamically trained with an optimization
iteration.

5.1 Airfoil analysis and shape optimization tool

Li et al. [26] used the GE-KPLS implementation in SMT with an MoE technique to
develop a data-driven approach to airfoil and shape optimization based on compu-
tational fluid dynamics (CFD) simulations7. They used a database of 1100 existing

7https://github.com/mdolab/adflow
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Figure 4: Implementation of the Sphere class, which inherits from the Problem class.
The main function is evaluate, which computes either the output values or the deriva-
tives depending on the variable kx.

import numpy as np

from smt.problems.problem import Problem

class Sphere(Problem ):

# Class Sphere inherits class Problem

# Set up methods of class

def _initialize(self):

self.options.declare(’name’, ’Sphere ’, types=str)

def _setup(self):

# Bornes of the sphere problem

self.xlimits[:, 0] = -10.

self.xlimits[:, 1] = 10.

def _evaluate(self , x, kx):

"""

Arguments

---------

x : ndarray[ne , nx]

Evaluation points.

kx : int or None

Index of derivative (0-based) to return

values with respect to. None means return

function value rather than derivative.

Returns

-------

ndarray[ne, 1]

Functions values if kx=None or derivative

values if kx is an int.

"""

ne, nx = x.shape

y = np.zeros((ne, 1), complex)

if kx is None:

y[:, 0] = np.sum(x**2, 1).T

else:

y[:, 0] = 2 * x[:, kx]

return y

airfoils8 and enriched the database with 100,000 more generated airfoils. The data was
used to create a surrogate model of force coefficients (lift, drag, and moment) with
respect to flight speed (Mach number), the angle of attack, and airfoil shape variables.
The shape design variables consisted of shape modes obtained by singular-value de-
composition of the existing airfoil shapes. The approach proved successful, enabling
shape optimization in 2 sec using a personal computer with an error of less than 0.25%
for subsonic flight conditions. This is thousands of times faster than optimization using
direct calls to CFD.

To validate the prediction derivatives provided by SMT, we built a surrogate model
of the airfoil drag coefficient similar to the one above using the following four inputs:
first thickness mode t1, first camber mode c1, Mach number M , and angle of attack α.
We compute the partial derivatives of the drag coefficient (Cd) with respect to these

8http://webfoil.engin.umich.edu
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Figure 5: Example of use of RMTC within SMT on the robot arm function [1].

"""

Example solving an SMT benchmark problem using the

Regularized Minimal -energy Tensor -product

Cubic hermite spline surrogate model

"""

from smt.problems import RobotArm

from smt.sampling_methods import LHS

from smt.surrogate_models import RMTC

import numpy as np

# Sample the training points

fun = RobotArm(ndim =2)

sampling = LHS(xlimits=fun.xlimits)

xt = sampling (750)

yt = fun(xt)

for i in range(fun.options[’ndim’]):

# Derivative with respect to the i-th variable

yd = fun(xt,kx=i)

yt = np.concatenate ((yt,yd),axis =1)

# Construct the RMTC model

t = RMTC(xlimits=fun.xlimits , min_energy=True , \

nonlinear_maxiter =20)

t.set_training_values(xt,yt[:,0])

for i in range(fun.options[’ndim’]):

# Add the gradient information to the

# sampling points

t.set_training_derivatives(xt,yt[:,1+i],i)

t.train()

# Predict function values

xtest = sampling (5000)

yp = t.predict_values(xtest)

# Predict the derivative values

for i in range(fun.options[’ndim’]):

ydp = t.predict_derivatives(xtest ,i)

# Predict the derivatives with respect to the

# training points

ytdp = t.predict_output_derivatives(xtest)

four variables. The range of the first thickness and camber modes are such that we
cover 55% of the airfoil database. The range of M is [0.3, 0.4] and the range of α is [0, 4].
To train the surrogate model, we use 20 training points with their respective training
derivatives. We use the GE-KPLS model, where we provide training derivatives using
an adjoint approach [28, 29]. To validate the prediction derivatives of the constructed
surrogate model, we generate 100 new points different from the training points and
compute the relative error on those points using

ε =
||∂Cd

∂x
− ˆ∂Cd

∂x
||2

||∂Cd

∂x
||2

, (20)

where ∂Ĉd/∂x is the vector of 100 surrogate model prediction derivatives with respect
to one of the four variables (x = t1, c1,M, α), ∂Cd/∂x is the vector of corresponding
reference derivative values with respect to x, and ||.||2 is the L2 norm. The resulting
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relative errors corresponding to each variable (listed in Table 2) show that the surrogate
model provides an accurate estimate of the derivatives with a relative error less or equal
to 10−2.

Table 2: Relative error of the prediction derivative of Cd with respect to t1, c1, M ,
and α. The surrogate model yields an accurate prediction derivative with an error less
than or equal to 10−2.

∂Cd/∂t1 ∂Cd/∂c1 ∂Cd/∂M ∂Cd/∂α
ε 0.010 0.007 0.009 0.002

Using the constructed surrogate, we compare two gradient-based optimization al-
gorithms:

Optimization 1 uses the surrogate model derivatives provided by SMT;

Optimization 2 uses finite-difference derivatives.

The optimization problem is to minimize the drag coefficient (Cd) subject to a lift
constraint (Cl = 0.5). Optimization 1 achieved a slightly lower drag (0.03%) than
Optimization 2 using 21 times fewer evaluations.

CD (10 4) CL Number of
Evaluations

Baseline
Optimization 1
Optimization 2

     99.90
     94.57
     94.60

     0.582
     0.500
     0.500

--
8
172

0.1

0.0

0.1

1.0

0.5

0.0

0.5

1.0

Figure 6: Top left: drag and lift coefficients for the baseline, the solution of Optimiza-
tion 1, and the solution of Optimization 2. Bottom left: airfoil shapes for all three
cases; the shapes for both optimizations is indistinguishable. Right: pressure distri-
butions. Optimization 1 achieved a 0.03% lower drag compared with Optimization 2
using a fraction of the evaluations.
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5.2 Aircraft design optimization considering dynamics

The design optimization of commercial aircraft using CFD is typically done by modeling
the aircraft performance at a small number of representative flight conditions [22, 23].
This simplification is made because it would be prohibitively expensive to simulate
the full, discretized mission profile using CFD at all points. However, full-mission
simulation is sometimes necessary, such as when the flight is short or when considering
morphing aircraft designs [9, 30]. This requires a surrogate model of the aerodynamic
performance as a function of a small number of parameters such as flight speed and
altitude. In a design optimization context, the surrogate model must be retrained each
optimization iteration because the aircraft design changes from iteration to iteration
as the shape is being optimized.

This is the situation in an aircraft allocation-mission-design optimization problem
recently solved using RMTS [19]. In this work, the optimization problem maximized
airline profit by optimizing the twist, span, sweep, and shape of the wing of a next-
generation commercial aircraft. The profit was computed by simulating the fuel effi-
ciency and flight time for the aircraft on a set of routes operated by the hypothetical
airline. To do this, a surrogate model was generated for the wing lift and drag co-
efficients (CL and CD) as a function of the angle of attack (α), Mach number (M),
and altitude (h). In each optimization iteration, the training CL and CD values were
computed at a series of points in M–α–h space using CFD. The training outputs were
used to retrain the RMTS surrogate model, and the mission simulations for all the
airline routes were performed using inexpensive evaluations of the trained surrogate
model, as shown in Figure 7. However, because the overall optimization problem was
solved using a gradient-based algorithm, we required derivatives of the prediction out-
puts (CL and CD values at the M–α–h points at which we evaluated the surrogate)
with respect to the training outputs (CL and CD values at the fixed M–α–h points
where the training points were located).

Figure 8 shows the surrogate model with the altitude axis eliminated by projecting
onto the other two axes, where CL replaces α as one of the inputs. The horizontal and
vertical axes represent the inputs. The red points are the training points and the black
points are the prediction points. Therefore, the output derivatives are the derivatives
of the outputs at the black points with respect to the training outputs at the red points.

5.3 Other applications

In addition to the two applications we just described, SMT has been used to solve other
engineering problems. We summarize these applications in Table 3. The number of
input variables ranges from 2 to 99. This demonstrates SMT’s ability to solve different
engineering problems of various complexities.

6 Conclusions
SMT is unique compared with existing surrogate modeling libraries in that it is de-
signed from the ground up to handle derivative information effectively. The derivative
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Optimizer
Area, sweep,
twist, shape

Area, sweep,
twist, shape

Altitude,
cruise Mach

Altitude Altitude
Allocation
variables

Geometric
constraints

Geometric
model

CFD solver
CFD training

data

Atmospheric
models

Mach Mach
Velocity,
density

Aerodynamic
surrogate

Drag

Propulsion
surrogate

SFC

Thrust
constraints

Lift Thrust
Mission

analysis eq.
Fuel burn,
block time

Profit, alloc.
constraints

Allocation
model

Figure 7: Extended design structure matrix [24] for the aircraft allocation-mission-
design optimization problem that used RMTS [19]. The aerodynamic surrogate model
predicts wing lift and drag coefficient as a function of the angle of attack, Mach number,
and altitude. This surrogate model is retrained each iteration because the lift and drag
training data change each optimization iteration as the aircraft wing design changes.
Since a gradient-based algorithm is used for this large-scale optimization problem, we
require output derivatives: derivatives of the lift and drag prediction outputs with
respect to the lift and drag training data. These are provided by RMTS.

information includes training derivatives used for gradient-enhanced modeling, pre-
diction derivatives used for surrogate-model-based optimization, and derivatives with
respect to the training data used when the optimization loop includes reconstructing
the surrogate model. However, SMT does not need to involve derivatives and pro-
vides a simple general interface to various surrogate modeling techniques. Together
with the provided problems, SMT is a convenient framework to develop new methods
for sampling and surrogate modeling, and then benchmarking them against existing
methods.

SMT arose from our own research needs, namely the development of the GE-KPLS
and RMTS surrogate models, which require the handling of derivatives. GE-KPLS is a
method we recently developed that scales much better with the number of inputs than
the other methods, thanks in part to the use of the derivative information. RMTS
is another method that we recently developed that is best suited to low-dimensional
problems and handles both structured and unstructured training points.

SMT is distributed through an open-source license and is freely available online9.
We provide documentation that caters to both users and potential developers10. SMT
allows users collaborating on the same project to have a common surrogate modeling
tool that facilitates the exchange of methods and reproducibility of results.

9https://github.com/SMTorg/SMT
10http://smt.readthedocs.io/en/latest/
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Initial design

Optimized design

Fig. 8 The contours show L/D, the red markers indicate training point locations, and the black markers and
lines indicate the path of the aircraft through CL-M space for the longest-range mission. The L/D = 26 contour
is highlighted in grey.

22

Figure 8: RMTS surrogate model for the performance of an aircraft, represented by
the lift-to-drag ratio (L/D), as a function of Mach number (M), and lift coefficient
(CL) [19]. In this context, an output derivative is the derivative of the L/D values at
the prediction points (shown in black) with respect to the L/D values at the training
points (shown in red). The CL–M values of the red points are the training inputs,
which are fixed, and the CL–M values of the black points are the prediction inputs.
The path of the black points represents the flight of a commercial aircraft, from climb
with CL ∼ 0.5 to cruise at M > 0.8 to descent with CL ∼ 0.3. The red points appear to
be duplicated because there is a third input, altitude, which is eliminated by projecting
onto the CL–M plane.

SMT is a recently developed tool and, so far, it has primarily been used in aerospace
engineering applications. However, this tool is useful to anyone needing to use or de-
velop surrogate modeling techniques, regardless of the application. In particular, given
the advantages of the newer surrogate modeling techniques (GE-KPLS and RMTS),
using SMT is particularly attractive.
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Table 3: Summary of SMT applications to engineering design problems.

Problem Surrogate Objective of the study Number of Reference
used design variables

3D blade KPLS Compare the accuracy and efficiency of the Up to 99 Bouhlel et al. [7]
KPLS model and the Optimus [34]
implementation of the kriging model

3D blade KPLSK Compare the accuracy and efficiency of the 99 Bouhlel et al. [6]
KPLSK model and the KPLS model

Automotive KPLS, Minimize the mass of a vehicle subject to 50 Bouhlel et al. [8]
KPLSK 68 constraints

Eight different GE-KPLS Compare the accuracy and efficiency of the Up to 15 Bouhlel and Martins [5]
engineering GE-KPLS model and the indirect GEK
problems

Aircraft wing MoE Minimize the drag of aircraft wings subject Up to 17 Bartoli et al. [2]
to lift constraints

2D airfoils GE-KPLS Build a fast interactive airfoil analysis and Up to 16 Li et al. [26]
design optimization tool

Aircraft RMTS Optimize an aircraft design while analyzing 3 Hwang and Munster [19]
performance the full mission using a CFD surrogate

Rotor RMTS Optimize a rotor using a surrogate model 2 Hwang and Ning [20]
analysis for the lift and drag of blade airfoils

A Analytical functions implemented in SMT
In the following descriptions, nx is the number of dimensions.

Sphere The sphere function is quadratic, continuous, convex, and unimodal. It is
given by

nx∑
i=1

x2
i , −10 ≤ xi ≤ 10, for i = 1, . . . , nx.

Branin [12] The Branin function is commonly used in optimization and has three
global minima. It is given by

f (x) =

(
x2 −

5.1

4π2
x2

1 +
5

π
x1 − 6

)2

+ 10

(
1− 1

8π

)
cos (x1) + 10,

where x = (x1, x2) with −5 ≤ x1 ≤ 10 and 0 ≤ x2 ≤ 15.

Rosenbrock [40] The Rosenbrock function is a continuous, nonlinear, and non-
convex function and usually used in optimization. The minimum of this function is
situated in a parabolic-shaped flat valley and is given by

nx−1∑
i=1

[(
xi+1 − x2

i

)2
+ (xi − 1)2

]
, −2 ≤ xi ≤ 2, for i = 1, . . . , nx.
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Tensor-product The tensor-product function approximates a step function, which
causes oscillations with some surrogate models [18], and is given by

nx∏
i=1

cos (aπxi) , −1 ≤ xi ≤ 1, for i = 1, . . . , nx,

or
nx∏
i=1

exp (xi) , −1 ≤ xi ≤ 1, for i = 1, . . . , nx,

or
nx∏
i=1

tanh (xi) , −1 ≤ xi ≤ 1, for i = 1, . . . , nx,

or
nx∏
i=1

exp
(
−2x2

i

)
, −1 ≤ xi ≤ 1, for i = 1, . . . , nx.

B Engineering problems implemented in SMT

Cantilever beam [10]

This function models a simple uniform cantilever beam with vertical and horizontal
loads

50

600

17∑
i=1

 12

bih3
i

( 17∑
j=i

lj

)3

−

(
17∑

j=i+1

lj

)3
 ,

where bi ∈ [0.01, 0.05], hi ∈ [0.3, 0.65], li ∈ [0.5, 1].

Robot arm [1]

This function gives the position of a robot arm√√√√( 4∑
i=1

Li cos

(
i∑

j=1

θj

))2

+

(
4∑
i=1

Li sin

(
i∑

j=1

θj

))2

,

where Li ∈ [0, 1] for i = 1, . . . , 4 and θj ∈ [0, 2π] for j = 1, . . . , 4.

Torsion vibration [27]

This function gives the low natural frequency of a torsion problem

1

2π

√
−b−

√
b2 − 4ac

2a
,

where Ki = πGidi
32Li

, Mj =
ρjπtjDj

4g
, Jj = 0.5Mj

Dj

2
, a = 1, b = −

(
K1+K2
J1

+ K2+K3
J2

)
,

c = K1K2+K2K3+K3K1

J1J2
, for d1 ∈ [1.8, 2.2], L1 ∈ [9, 11], G1 ∈ [105300000, 128700000],
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d2 ∈ [1.638, 2.002], L2 ∈ [10.8, 13.2], G2 ∈ [5580000, 6820000], d3 ∈ [2.025, 2.475], L3 ∈
[7.2, 8.8], G3 ∈ [3510000, 4290000], D1 ∈ [10.8, 13.2], t1 ∈ [2.7, 3.3], ρ1 ∈ [0.252, 0.308],
D2 ∈ [12.6, 15.4], t2 ∈ [3.6, 4.4], and ρ1 ∈ [0.09, 0.11].

Water flow [33]

This function characterizes the flow of water through a borehole that is drilled from
the ground surface through two aquifers

2πTu (Hu −Hl)

ln
(

r
rw

)[
1 + 2LTu

ln( r
rw

)r2wKw
+ Tu

Tl

] ,
where 0.05 ≤ rw ≤ 0.15, 100 ≤ r ≤ 50000, 63070 ≤ Tu ≤ 115600, 990 ≤ Hu ≤ 1110,
63.1 ≤ Tl ≤ 116, 700 ≤ Hl ≤ 820, 1120 ≤ L ≤ 1680, and 9855 ≤ Kw ≤ 12045.

Welded beam [11]

The shear stress of a welded beam problem is given by√
τ ′2 + τ ′′2 + lτ ′τ ′′√
0.25 (l2 + (h+ t)2)

,

where τ ′ = 6000√
2hl

, τ ′′ =
6000(14+0.5l)

√
0.25(l2+(h+t)2)

2
[
0.707hl

(
l2

12
+0.25(h+t)2

)] , for h ∈ [0.125, 1], and l, t ∈ [5, 10].

Wing weight [12]

The estimate of the weight of a light aircraft wing is given by

0.036S0.758
w W 0.0035

fw

(
A

cos2 Λ

)
q0.006λ0.04

(
100tc

cos Λ

)−0.3

(NzWdg)
0.49 + SwWp,

where 150 ≤ Sw ≤ 200, 220 ≤ Wfw ≤ 300, 6 ≤ A ≤ 10, −10 ≤ Λ ≤ 10, 16 ≤ q ≤ 45,
0.5 ≤ λ ≤ 1, 0.08 ≤ tc ≤ 0.18, 2.5 ≤ Nz ≤ 6, 1700 ≤ Wdg ≤ 25000, and 0.025 ≤ Wp ≤
0.08.
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