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Abstract-We study the stability of a linear system with a pointwise, time-varying delay. We assume that the delay varies around a nominal value in a deterministic way and investigate the influence of this variation on stability. More precisely we are interested in characterizing situations where the time-varying delay system is stable, whereas the system with constant delay is unstable. Our approach consists of relating the stability properties of a system with a fast varying point-wise delay with these of a time-invariant system with a distributed delay. Then we can use frequency domain methods to analyze the problem and to derive stability criteria. The results are first illustrated with two theoretical examples. Then, we study a model of a variable speed rotating cutting tool. Based on the developed theory, we thereby provide both a theoretical explanation and a quantitative analysis tool for the beneficial effect of a variation of the machine speed on enhancing stability properties, which was reported in the literature. Index Terms-Delay, nonautonomous systems, stability of variable speed machines.

I. INTRODUCTION

T HIS paper concerns the stability analysis of a linear system with a time-varying delay, of the form [START_REF] Breda | Computing the characteristic roots for delay differential equations[END_REF] under appropriate initial conditions. We assume that the timedelay varies around a nominal value in a deterministic way [START_REF] Cooke | Discrete delay, distributed delay, and stability switches[END_REF] where is a periodic function with zero mean and and are parameters, determining the amplitude and frequency of the variation. We investigate the influence of the variation of the time-delay on the stability of [START_REF] Breda | Computing the characteristic roots for delay differential equations[END_REF].

This problem is inspired by applications in mechanical engineering. More precisely, in the study of the dynamics of rotating cutting machines one encounters models of the form [START_REF] Breda | Computing the characteristic roots for delay differential equations[END_REF], where the time-delay represents the time taken by the cutting inserts for one revolution of the workpiece. Therefore, the time-delay is proportional to with the rotational speed of the machine. A commonly used way to enlarge the stability region of the steady-state solution of rotational machines and, in this way, preventing undesirable oscillations or chatter, consists of fast modulating the speed around its nominal value [START_REF] Jayaram | Analytical stability analysis of variable spindle speed machines[END_REF], [START_REF] Sexton | The stability of machining with continuously varying spindle speed[END_REF]. Such a modulation of the speed precisely corresponds to a modulation of the time-delay in (1) of the form (2). Both experimental results and numerical computations have demonstrated the beneficial effect of the variation of the machine speed; see, e.g., [START_REF] Jayaram | Analytical stability analysis of variable spindle speed machines[END_REF] and the references therein.

Whereas the effects of constant delays on the systems' dynamics have been largely treated in the literature (see, for instance, [START_REF] Niculescu | Delay Effects on Stability. A Robust Control Approach[END_REF], [START_REF] Gu | Stability of Time-Delay Systems[END_REF], and the references therein), the time-varying delay needs a deeper analysis since its presence may induce complex behaviors: see, for example, the so-called quenching phenomenon, as suggested and discussed by Louisell in [START_REF] Louisell | New examples of quenching in delay differential equations having time-varying delay[END_REF], where he proposed some examples of delay intervals for which the constant and time-varying delays have "opposite" effects: stable for the time-varying delay and unstable for the constant one, and vice versa.

The aim of this paper is to handle the time-varying delay systems mentioned above using an appropriate comparison system combined with some frequency-domain techniques. To the best of the authors' knowledge, there does not exist any similar analysis result in the literature. More explicitly, the stability analysis of (1)-( 2) and the comparison with the stability properties of the associated constant delay system

(3)

-to analyze the effect of the delay variation-are performed in two steps.

• First, we show that from a stability point of view, the system (1)-( 2) behaves as a time-invariant system with a distributed delay, provided the frequency of variation of the delay, , is large compared to the system's dynamics. Such a condition is satisfied in the applications mentioned previously.

•

The second step then consists of comparing the stability of this distributed delay system, whose analysis is more tractable (since it allows, e.g., frequency domain techniques), with the stability of the associated constant delay system.

While the variation of the delay in (1)-( 2) could even be interpreted as a control action, as in the inspiring mechanical application, in the existing literature on time-delay systems a delay variation is always treated as an uncertainty, using an appropriate model transformation of the original system or the definition of some "fictitious" interconnected systems (see, for instance, [START_REF] Niculescu | Delay Effects on Stability. A Robust Control Approach[END_REF], [START_REF] Gu | Stability of Time-Delay Systems[END_REF], and the references therein). For a nominally stable system, typically upper/lower bounds on the delay variation and/or its derivative guaranteeing stability are determined. In the time-varying delay case, we mention the Lyapunov based approach [START_REF] Kharitonov | On the stability of linear systems with uncertain delay[END_REF], some comparison system methodology [START_REF] Niculescu | Robust exponential stability of uncertain systems with time-varying delays[END_REF], [START_REF] Goubet-Bartholoméüs | Stability of perturbed systems with time-varying delays[END_REF], and the integral quadratic constraint approach [START_REF] Gu | Stability of Time-Delay Systems[END_REF] to derive such (upper, lower, or derivative) bounds.

A deliberate fast periodic forcing of the delay (2) can be seen as an application of vibrational control. In [START_REF] Lehman | Vibrational control of nonlinear time lag systems with bounded delay: Averaging theory, stabilizability, and transient behavior[END_REF] and the references therein, extensions of the classical averaging theory for time-varying ordinary differential equations toward classes of time-delay systems and the application to vibrational control are considered. In [START_REF] Michiels | Using delays and timevarying gains to improve the output feedback stabilizability of linear systems: A comparison[END_REF], output feedback controllers with oscillatory gains are analyzed. These works do however not treat the case where the time-dependence of the vector-field precisely comes from a variation of the delay.

The structure of the paper is as follows. In Section II, we relate stability properties of ( 1)-( 2) with those of a time-invariant distributed delay system. In Section III, we study the stability of this distributed delay system and compare its properties with the constant delay system (3). In Section IV, we present some illustrations of the main results. After analyzing two theoretical examples, we study a model for a variable speed cutting machine. Section V summarizes the main contributions of the paper. The notations are standard.

II. DISTRIBUTED DELAYS AS APPROXIMATION OF FAST TIME-VARYING POINT-WISE DELAYS

The main result of the paper relates the stability of a system with a fast varying point-wise delay with the stability of an autonomous system with distributed delay.

Theorem 1:

Consider (4)
where is a periodic function, with zero mean and period , and . Further, let , and . Let the integrable function 1 be defined by the relation [START_REF] Gu | Stability of Time-Delay Systems[END_REF] for every continuous function . If the comparison system (6) 1 In fact, w represents a positive density measure. is asymptotically stable, then ( 4) is globally uniformly asymptotically stable for large values of the parameter .

For sake of conciseness we postpone a detailed proof to the Appendix. However, because of the nonstandard proof technique, we now outline its main elements.

Sketch of Proof: The existence of an integrable function satisfying ( 5) is shown using the change of measure property and the Radon-Nikodym theorem.

The stability assertion follows from an application of the trajectory based proof technique, developed in [START_REF] Moreau | Practical stability and stabilization[END_REF] and [START_REF] Moreau | Trajectory-based local approximations of ordinary differential equations[END_REF] for the stability analysis of ordinary differential equations and extended toward classes of delay differential equations in [START_REF] Moreau | Robustness of nonlinear delay equations w.r.t. bounded input perturbations: A trajectory based approach[END_REF]. This proof technique relates closeness results for trajectories (in the sense of uniform convergence of trajectories on compact time-intervals) with stability results (which involve the behavior of trajectories on infinite time-intervals). The main steps are as follows.

1)

We prove that trajectories of ( 4) and ( 6) with matching initial conditions uniformly converge to each other on compact time-intervals as the parameter tends to infinity. This is done by estimating the difference of solutions of ( 4) and ( 6) at time-instants later than the initial time, and involves the application of a generalization of the celebrated Gronwall Lemma.

2)

This closeness result of trajectories of ( 6) and ( 4) is linked with stability assertions. By a slight generalization of [18, Th. 1], one can conclude from the exponential stability of ( 6) and the closeness result that the null solution of system ( 4) is practically uniformly asymptotically stable (see the Appendix for a precise definition).

3)

Practical uniform asymptotic stability of the null solution of (4) implies global uniform asymptotic stability by a scaling property of its solutions. Remark: From (5), one can interpret as the probability distribution of , where is uniformly distributed over the interval . Remark: Under the conditions of the theorem, the stability of ( 4) is only guaranteed if is sufficiently large. Explicit bounds on may be obtained from theoretical considerations (see, e.g., [START_REF] Moreau | Trajectory-based global and semi-global stability results[END_REF]), but these bounds are typically conservative. Therefore, we advise to determine a threshold based on numerical simulation.

The stability of the time-invariant comparison system ( 6) is determined by the roots of its characteristic equation [START_REF] Halmos | Measure Theory, ser. The University Series in Higher Mathematics[END_REF] where [START_REF] Jayaram | Analytical stability analysis of variable spindle speed machines[END_REF] We now list some general properties of the functions and , which will be useful in the rest of this paper. The weight function always satisfies 

Furthermore, when is symmetric around the origin, i.e., , then is real, following from: [START_REF] Kolmanovskii | Stability of Functional Differential Equations[END_REF] As an illustration we show for different types of functions in (4) the corresponding weight function of the distributed delay of comparison system (6) and the function in Table I.

III. STABILITY OF THE COMPARISON SYSTEM

The next step consists of relating the stability of the comparison system [START_REF] Hale | Introduction to functional differential equations[END_REF] with the stability of the constant delay system [START_REF] Lehman | Vibrational control of nonlinear time lag systems with bounded delay: Averaging theory, stabilizability, and transient behavior[END_REF] Notice that (6) can be seen as a modification of (11) by "spreading out" the point-wise delay over an interval of length . If this leads to larger stability regions in a parameter space, then, by virtue of Theorem 1, a fast forcing of the delay will also lead to larger stability regions.

First, we investigate the stability of ( 6) for small values of . Then, we relate the obtained result with the sensitivity of stability w.r.t. changes of the nominal delay . Finally, we comment on numerical tools for computing the right most eigenvalues of the comparison system [START_REF] Hale | Introduction to functional differential equations[END_REF].

A. Behavior of the Comparison System for Small

We investigate how the eigenvalues of ( 6) or, equivalently, the roots of [START_REF] Louisell | New examples of quenching in delay differential equations having time-varying delay[END_REF] behave for small values of .For , [START_REF] Louisell | New examples of quenching in delay differential equations having time-varying delay[END_REF] simplifies to [START_REF] Luzyanina | Computing stability of differential equations with bounded distributed delays[END_REF] the characteristic equation of [START_REF] Lehman | Vibrational control of nonlinear time lag systems with bounded delay: Averaging theory, stabilizability, and transient behavior[END_REF].

Because is a smooth function with , roots of ( 12) are continuous at each value of parameter . For a given simple root of ( 13), this implies the existence of a root function of ( 12), satisfying and

To compute the sensitivity of the root w.r.t. , we differentiate [START_REF] Luzyanina | Equations with distributed delays: Bifurcation analysis using computational tools for discrete delay equations[END_REF], leading to

(15) (16) 
where . The property ( 15) is due to the zero mean assumption on the delay forcing function , which is expressed in As a consequence, the behavior of the eigenvalues for small is determined by the second-order derivative . A stability related corollary is as follows.

Proposition 1: Assume that the rightmost eigenvalues of ( 11) are simple and on the imaginary axis. Denote them by .If [START_REF] Moreau | Trajectory-based global and semi-global stability results[END_REF] then ( 6) is asymptotically stable for small values of .

Proof: Choose such that, except for the eigenvalues on the imaginary axis, (13) has no zeros in . In this half plane, the roots of (12) satisfy Therefore, there exists a compact set containing all the roots of ( 12) in the half plane . From the continuity of and , it follows that as , uniformly on . By [15, Th. A1], a variant of Rouché's theorem, this implies that for small both (entire) functions have the same number of zeros in , and as a consequence in . Combining this fact with [START_REF] Moreau | Trajectory-based global and semi-global stability results[END_REF], which expresses that the roots lying on the imaginary axis for move to the open left half plane when slightly increasing , yields that all the roots of ( 12) lie in the open left-half plane for sufficiently small values of .

In the next section, we will study classes of parametrized delay systems, for which condition ( 17) is always satisfied in case of eigenvalues on the imaginary axis. This means that stability regions in the parameter space become larger when increasing from zero. Indeed, internal points of a stability region in the parameter space correspond to an asymptotically stable system, which remains asymptotically stable when increasing from zero (continuity argument), whereas points on the boundaries of a stability region, if any, correspond to a system with rightmost eigenvalues on the imaginary axis, which becomes asymptotically stable under the conditions of Proposition 1.

Finally, notice that parameter values corresponding to a zero eigenvalue are invariant w.r.t. , following from .

B. Relation With Delay Sensitivity

To reveal a relation between the sensitivity of a root of (12) for , i.e., an eigenvalue of (11), w.r.t. changes of and its sensitivity w.r.t. the nominal delay value , extensively studied in [START_REF] Niculescu | Delay Effects on Stability. A Robust Control Approach[END_REF] and the references therein, one can study the root function satisfying [START_REF] Louisell | New examples of quenching in delay differential equations having time-varying delay[END_REF] and . A simple computation shows that [START_REF] Moreau | Practical stability and stabilization[END_REF] Since is positive, a consequence for the case of roots on the imaginary axis is as follows.

Proposition 2: Assume that . Then

Thus, the behavior of the real parts of eigenvalues on the imaginary axis when changing is determined by the behavior of their imaginary parts when changing the nominal delay. This proposition and ( 18), along with Theorem 1, allow to retrieve stability information for the time-varying delay case directly from known results concerning sensitivity of stability w.r.t. the nominal delay value. This will be illustrated with the second example of the next section.

C. Computational Tools

Whereas the aforementioned analytical computations allow to study the stability of the comparison system ( 6) for small values of and to gain insight in the problem, quantitative stability information for any value of can be obtained by numerically computing the rightmost eigenvalues.

When the weight function of the distributed delay in ( 6) is bounded, both the numerical scheme proposed in [START_REF] Breda | Computing the characteristic roots for delay differential equations[END_REF], which relies on a discretization of the infinitesimal generator of the delay equation, as the numerical scheme of [START_REF] Luzyanina | Computing stability of differential equations with bounded distributed delays[END_REF], which involves a discretization of the time-integration operator, can be used to compute the rightmost eigenvalues. For the specific weight functions , respectively ,d e fined in Table I, tools for delay equations with point-wise delays, such as the software package DDE-BIFTOOL [START_REF] Engelborghs | DDE-BIFTOOL v. 2.00: A Matlab package for bifurcation analysis of delay differential equation[END_REF] are applicable. In the latter case, the distributed delay with constant weight function in [START_REF] Hale | Introduction to functional differential equations[END_REF] can be removed by a model transformation, yielding an equation with only point-wise delays, as explained in [START_REF] Luzyanina | Equations with distributed delays: Bifurcation analysis using computational tools for discrete delay equations[END_REF]. A nice feature of DDE-BIFTOOL package is its continuation facility which allows to compute stability regions in a two-parameter space semiautomatically.

IV. ILLUSTRATIVE EXAMPLES

A. First-Order System

Consider the scalar equation [START_REF] Moreau | Trajectory-based local approximations of ordinary differential equations[END_REF] whose stability regions in the plane for were determined in, e.g., [START_REF] Cooke | Discrete delay, distributed delay, and stability switches[END_REF]. The distributed delay comparison system is given by [START_REF] Moreau | Robustness of nonlinear delay equations w.r.t. bounded input perturbations: A trajectory based approach[END_REF] with characteristic equation The analytical expressions are given by ( 21)- [START_REF] Rudin | Real and Complex Analysis[END_REF].

Applying [START_REF] Michiels | Using delays and timevarying gains to improve the output feedback stabilizability of linear systems: A comparison[END_REF] to an imaginary root of and taking the real part give This quantity is negative for purely imaginary eigenvalues corresponding to values of and on the stability boundary, since such parameter values satisfy , see [START_REF] Cooke | Discrete delay, distributed delay, and stability switches[END_REF]. Therefore, the stability region of (20) in the plane enlarges when is increased from zero. Under the assumption of a symmetric weighting function, i.e., , this stability region can easily be computed analytically using the method of -subdivision [START_REF] Kolmanovskii | Stability of Functional Differential Equations[END_REF], to yield [START_REF] Niculescu | Delay Effects on Stability. A Robust Control Approach[END_REF] where the relation is implicitly defined by the curve [START_REF] Niculescu | Some remarks on the delay stabilizing effect in SISO systems[END_REF] with ( 23) and [START_REF] Rudin | Real and Complex Analysis[END_REF], as shown at the bottom of the page. Notice that for any is a positive real number, smaller than one, following from (10), (9), and . Furthermore, the specific choices of ,defined in Table I, satisfy [START_REF] Sexton | The stability of machining with continuously varying spindle speed[END_REF] From ( 23) and ( 25), one can conclude that the largest stability region is obtained for the case , where all the weight of the distributed delay lies in end-points of the interval.

In Fig. 1, we show the stability region of (20) in the plane for different values of and , respectively . In the latter case and for ,w eh a v e for . In Fig. 2(a), we plot the real parts of the rightmost eigenvalues of ( 20 show simulated trajectories of the corresponding system with time-varying delay [START_REF] Moreau | Trajectory-based local approximations of ordinary differential equations[END_REF].

B. Delayed Feedback Stabilized Oscillators

Consider a single-input-single-output system with rational transfer function , this stabilization problem was studied in [START_REF] Niculescu | Some remarks on the delay stabilizing effect in SISO systems[END_REF] and a procedure to determine a stabilizing pair (if any) was presented. The characteristic equation of the distributed delay comparison system of ( 26)-( 27) is given by When applying [START_REF] Michiels | Using delays and timevarying gains to improve the output feedback stabilizability of linear systems: A comparison[END_REF] to an imaginary root of , some simple computations yield (28) For more details, see the proof of [START_REF] Niculescu | Some remarks on the delay stabilizing effect in SISO systems[END_REF]Th. 5], where one computes the sensitivity of eigenvalues to changes of the nominal delay value , and apply property [START_REF] Moreau | Practical stability and stabilization[END_REF].

When is constant and even, expression (28) simplifies to thus increasing from zero leads to larger stability regions. As an illustration, we show in Fig. 3 stability regions of (29) in the space for two different values of . Notice that (29) concerns the case of an output feedback controlled second-order oscillator, . The nominal delay is considered also as a system parameter and concerns the relative width of the interval over which the delay is varied.

C. Variable Spindle Speed Cutting Machines

The following equation, taken from [START_REF] Jayaram | Analytical stability analysis of variable spindle speed machines[END_REF]:

(30) models one mode of a mechanical rotational cutting process, where represents the deflection of the machine tool and/or workpiece, the natural frequency, the damping ratio and the modal mass. The term , with the cutting force coefficient, models the cutting force, which depends on the time , taken by the cutting insert for one revolution of the workpiece. Clearly the time-delay is proportional to with the rotational speed of the machine. In [START_REF] Jayaram | Analytical stability analysis of variable spindle speed machines[END_REF] one assumes that this speed is varied around a nominal value in the following way: which precisely corresponds to a modulation of the time-delay of the form (31)

Based on the theory developed in this paper and the model (30), we now give an explanation for the beneficial effect of a high frequency modulating of the machine speed on increasing stability regions.

The characteristic equation of the distributed delay comparison system of (30)-( 31) is given by Fig. 4. Dashed curve separates the stable and unstable regions in the (k; )-space for (30) and (32) with m =1 0 0 ;! = 632:45; =0 :039 585, and =0 . The solid curve separates the stable and unstable regions for the distributed delay comparison system with =0 :05 .

Applying the sensitivity formula ( 16) to an imaginary root yields which is strictly negative for any value of the system parameters and any delay forcing function . Therefore, the stability region of the steady state solution can always be enlarged by "distributing" the point-wise delay over an interval, or, by virtue of Theorem 1, by modulating the point-wise delay (speed).

To illustrate this, we compute the stability limits for the system (30) and for the comparison system corresponding to a modulation of the delay (32) where is the sawtooth function described in Table I. With this choice, the kernel of the distributed delay of the comparison system is a constant. Then, as explained in [START_REF] Luzyanina | Equations with distributed delays: Bifurcation analysis using computational tools for discrete delay equations[END_REF], we can use the DDE-BIFTOOL package [START_REF] Engelborghs | DDE-BIFTOOL v. 2.00: A Matlab package for bifurcation analysis of delay differential equation[END_REF] to compute accurately the stability limits which appear in Fig. 4. Note that the coefficient depends on the width of the cutting tool and on the nominal depth of cut. Therefore, the variation of the rotating speed allows to use a larger tool and/or to remove more material at once, especially at lower speed (i.e., larger delay).

V. C ONCLUDING REMARKS

We investigated the effect of a delay variation on the stability of linear time-delay systems. Theorem 1 related the stability of a time-varying point-wise delay system with the stability of a time-invariant distributed delay system. Its proof consisted of an application of the recently developed trajectory-based proof technique, which is time-domain based and relies on a comparison of trajectories. As a mathematical tool, an extension of the Gronwall Lemma to distributed delay systems played an important role.

The stability of the distributed delay comparison system was analyzed by studying the roots of its characteristic equation. For sake of generality, the derived stability criteria, as Proposition 1, were formulated using the correction function and are thus not restricted to a particular class of delay variations (function ). The same holds for the stabilizability assertions in the examples. Only for the graphical illustrations particular choices of Table I were used.

We provided three examples where a delay variation always leads to larger stability regions in a parameter space. For the rotating cutting machine application, our results confirmed that a variation of the rotational speed can be used to allow a larger tool and/or to remove more material per turn. Furthermore, we believe that studying the eigenvalues of the distributed delay comparison systems and their numerical computation are useful new quantitative and qualitative tools for analysis and parameter tuning in such problems.
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 1 Fig. 1. Stability region of (20) in the (a; b) plane for different values of . The solid curves correspond to g(s)=g (s); the dashed curves to g(s)=g (s).The analytical expressions are given by (21)-[START_REF] Rudin | Real and Complex Analysis[END_REF].

  ) with as a function of . The solid curves correspond to , the dashed curves to . In Fig.2(b)
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 2 Fig. 2. (a) Real parts of the rightmost eigenvalues of (20) with (a; b)=( 01; 04) as a function of . The solid curves correspond to g = g (s), the dashed curves to g = g (s). (b) Simulated trajectories of the original system (19) with (a; b)=( 01;04); =1; =20;x 1, and f = f ;f ;f (above, middle, below).
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 3 Fig. 3. Solid curves separate stability-instability regions of (29) in the (k; )-plane for =0 . Stable regions are indicated with "S." For =0 :05 the stability regions of (29) are separated with the dotted curves.

  

  Stabilization of Time-Delay Systems With a Controlled Time-Varying Delay and Applications

Wim Michiels, Member, IEEE, Vincent Van Assche, and Silviu-Iulian Niculescu, Member, IEEE

TABLE I FOR

 I THREE TYPES OF FUNCTIONS f IN (4), THE WEIGHT FUNCTION OF THE DISTRIBUTED DELAY COMPARISON SYSTEM (6), AS WELL AS THE CORRECTION TERM g(s) IN THE CHARACTERISTIC (8) ARE SHOWN. J ( 1 ) DENOTES THE BESSEL FUNCTION OF THE FIRST KIND OF ORDER ZERO, h( 1 ) ISTHEDIRAC IMPULSE FUNCTION

	take	, respectively	in (5). Since is integrable,
	the function	is smooth, and

On the imaginary axis, has a modulus smaller than one since for all

PROOF OF THE MAIN THEOREM

We give a detailed Proof of Theorem 1. This requires a generalization of the Gronwall Lemma, which we consider first. 

A. Generalization of the Gronwall Lemma

B. Proof of Theorem 1

First, we show that there always exists an integrable function satisfying [START_REF] Gu | Stability of Time-Delay Systems[END_REF]. Intuitively, for fixed , the right-hand side of (5) can be considered as the image of the function under a continuous linear functional over the space . Next, following from the Riesz Representation Theorem this image can always be expressed as a weighted integral of the function over the space (left-hand side).

In a different way, since defined as in the Theorem's statement is measurable (a bounded function on some compact), then for any -finite measure for which the right-hand integral in (5) is properly defined in the sense (see, for instance, [START_REF] Rudin | Real and Complex Analysis[END_REF]), the quantity will define a "new" measure, and we will have the equality (change of measure) with respect to the measure for any continuous function , since , and there exists such that , and . Here, is defined as follows: for any set (the measure of the inverse image ; see, for instance, [START_REF] Halmos | Measure Theory, ser. The University Series in Higher Mathematics[END_REF]). Notice that the result is still valid if is integrable, and not necessarily continuous. Next, since has zero mean, and using the previous definition, we may restrict the class of measures to those measures for which is positive. Finally, for any measure -finite which is absolutely continuous with respect to (see [START_REF] Rudin | Real and Complex Analysis[END_REF] for the definitions), there exists a (positive) measure (integrable function) such that the following condition holds:

The existence of a such a measure is guaranteed by the Radon-Nikodym theorem (see [START_REF] Rudin | Real and Complex Analysis[END_REF]). The last term can be rewritten as follows (density measure properties): which simply says that the density will define the integrable in [START_REF] Gu | Stability of Time-Delay Systems[END_REF].

We now come to the stability assertion, where we use the trajectory-based proof technique, developed in [START_REF] Moreau | Practical stability and stabilization[END_REF]- [START_REF] Moreau | Robustness of nonlinear delay equations w.r.t. bounded input perturbations: A trajectory based approach[END_REF].

For a given and , where is the Banach space of continuous functions mapping the interval into and equipped with the supremum norm , denote by and define as the unique forward solution of (4) with initial condition . Analogously, define as the unique forward solution of (6) with initial condition . For technical reasons, we temporarily restrict the state-space to ,defined as

This is possible because the following invariance property holds along the solutions of ( 4) and ( 6):

following from the fact that for all (36) and (37) where we used .

The crucial step of the trajectory based approach consists of proving uniform convergence of solutions of ( 4) and ( 6 This result can be strengthened. From (47) and (46), one can conclude that (with initial conditions restricted to ) the origin of ( 4) is globally uniformly asymptotic stability for large , by making use of the following scaling property: if is a solution of (4), then is a solution of (4), for any . Notice that the space is invariant w.r.t. a multiplication of elements with a scalar. 2 The only difference is that initial conditions are now taken in a function space. This does however not change the proof substantially. See [START_REF] Moreau | Robustness of nonlinear delay equations w.r.t. bounded input perturbations: A trajectory based approach[END_REF], where such a generalization is made.

Finally, global asymptotic stability carries over to the space , because of the following property: if then and This completes the proof.