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Stabilization of Time-Delay Systems With a

Controlled Time-Varying Delay

and Applications
Wim Michiels, Member, IEEE, Vincent Van Assche, and Silviu-Iulian Niculescu, Member, IEEE

Abstract—We study the stability of a linear system with a point-
wise, time-varying delay. We assume that the delay varies around
a nominal value in a deterministic way and investigate the influ-
ence of this variation on stability. More precisely we are interested
in characterizing situations where the time-varying delay system
is stable, whereas the system with constant delay is unstable. Our
approach consists of relating the stability properties of a system
with a fast varying point-wise delay with these of a time-invariant
system with a distributed delay. Then we can use frequency domain
methods to analyze the problem and to derive stability criteria. The
results are first illustrated with two theoretical examples. Then, we
study a model of a variable speed rotating cutting tool. Based on
the developed theory, we thereby provide both a theoretical expla-
nation and a quantitative analysis tool for the beneficial effect of a
variation of the machine speed on enhancing stability properties,
which was reported in the literature.

Index Terms—Delay, nonautonomous systems, stability of vari-
able speed machines.

I. INTRODUCTION

T
HIS paper concerns the stability analysis of a linear system

with a time-varying delay, of the form

(1)

under appropriate initial conditions. We assume that the time-

delay varies around a nominal value in a deterministic way

(2)

where is a periodic function with zero mean and and

are parameters, determining the amplitude and frequency of the

variation. We investigate the influence of the variation of the

time-delay on the stability of (1).

This problem is inspired by applications in mechanical engi-

neering. More precisely, in the study of the dynamics of rotating
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cutting machines one encounters models of the form (1), where

the time-delay represents the time taken by the cutting inserts

for one revolution of the workpiece. Therefore, the time-delay

is proportional to with the rotational speed of the ma-

chine. A commonly used way to enlarge the stability region of

the steady–state solution of rotational machines and, in this way,

preventing undesirable oscillations or chatter, consists of fast

modulating the speed around its nominal value [8], [25]. Such a

modulation of the speed precisely corresponds to a modulation

of the time-delay in (1) of the form (2). Both experimental

results and numerical computations have demonstrated the ben-

eficial effect of the variation of the machine speed; see, e.g., [8]

and the references therein.

Whereas the effects of constant delays on the systems’ dy-

namics have been largely treated in the literature (see, for in-

stance, [21], [5], and the references therein), the time-varying

delay needs a deeper analysis since its presence may induce

complex behaviors: see, for example, the so-called quenching

phenomenon, as suggested and discussed by Louisell in [12],

where he proposed some examples of delay intervals for which

the constant and time-varying delays have “opposite” effects:

stable for the time-varying delay and unstable for the constant

one, and vice versa.

The aim of this paper is to handle the time-varying delay sys-

tems mentioned above using an appropriate comparison system

combined with some frequency-domain techniques. To the best

of the authors’ knowledge, there does not exist any similar anal-

ysis result in the literature. More explicitly, the stability analysis

of (1)–(2) and the comparison with the stability properties of the

associated constant delay system

(3)

—to analyze the effect of the delay variation—are performed in

two steps.

• First, we show that from a stability point of view, the

system (1)–(2) behaves as a time-invariant system with

a distributed delay, provided the frequency of variation

of the delay, , is large compared to the system’s dy-

namics. Such a condition is satisfied in the applications

mentioned previously.

• The second step then consists of comparing the sta-

bility of this distributed delay system, whose analysis

is more tractable (since it allows, e.g., frequency do-

main techniques), with the stability of the associated

constant delay system.
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While the variation of the delay in (1)–(2) could even be inter-

preted as a control action, as in the inspiring mechanical appli-

cation, in the existing literature on time-delay systems a delay

variation is always treated as an uncertainty, using an appro-

priate model transformation of the original system or the defi-

nition of some “fictitious” interconnected systems (see, for in-

stance, [21], [5], and the references therein). For a nominally

stable system, typically upper/lower bounds on the delay varia-

tion and/or its derivative guaranteeing stability are determined.

In the time-varying delay case, we mention the Lyapunov based

approach [9], some comparison system methodology [23], [4],

and the integral quadratic constraint approach [5] to derive such

(upper, lower, or derivative) bounds.

A deliberate fast periodic forcing of the delay (2) can be seen

as an application of vibrational control. In [11] and the refer-

ences therein, extensions of the classical averaging theory for

time-varying ordinary differential equations toward classes of

time-delay systems and the application to vibrational control are

considered. In [16], output feedback controllers with oscillatory

gains are analyzed. These works do however not treat the case

where the time-dependence of the vector-field precisely comes

from a variation of the delay.

The structure of the paper is as follows. In Section II, we re-

late stability properties of (1)–(2) with those of a time-invariant

distributed delay system. In Section III, we study the stability of

this distributed delay system and compare its properties with the

constant delay system (3). In Section IV, we present some illus-

trations of the main results. After analyzing two theoretical ex-

amples, we study a model for a variable speed cutting machine.

Section V summarizes the main contributions of the paper. The

notations are standard.

II. DISTRIBUTED DELAYS AS APPROXIMATION OF FAST

TIME-VARYING POINT-WISE DELAYS

The main result of the paper relates the stability of a system

with a fast varying point-wise delay with the stability of an au-

tonomous system with distributed delay.

Theorem 1: Consider

(4)

where is a periodic function, with zero

mean and period , and . Further,

let , and . Let the integrable function1

be defined by the relation

(5)

for every continuous function . If the compar-

ison system

(6)

1In fact, w represents a positive density measure.

is asymptotically stable, then (4) is globally uniformly asymp-

totically stable for large values of the parameter .

For sake of conciseness we postpone a detailed proof to the

Appendix. However, because of the nonstandard proof tech-

nique, we now outline its main elements.

Sketch of Proof: The existence of an integrable function

satisfying (5) is shown using the change of measure property

and the Radon–Nikodym theorem.

The stability assertion follows from an application of the tra-

jectory based proof technique, developed in [18] and [19] for the

stability analysis of ordinary differential equations and extended

toward classes of delay differential equations in [20]. This proof

technique relates closeness results for trajectories (in the sense

of uniform convergence of trajectories on compact time-inter-

vals) with stability results (which involve the behavior of trajec-

tories on infinite time-intervals). The main steps are as follows.

1) We prove that trajectories of (4) and (6) with matching

initial conditions uniformly converge to each other on

compact time-intervals as the parameter tends to in-

finity. This is done by estimating the difference of solu-

tions of (4) and (6) at time-instants later than the initial

time, and involves the application of a generalization

of the celebrated Gronwall Lemma.

2) This closeness result of trajectories of (6) and (4) is

linked with stability assertions. By a slight generaliza-

tion of [18, Th. 1], one can conclude from the exponen-

tial stability of (6) and the closeness result that the null

solution of system (4) is practically uniformly asymp-

totically stable (see the Appendix for a precise defini-

tion).

3) Practical uniform asymptotic stability of the null solu-

tion of (4) implies global uniform asymptotic stability

by a scaling property of its solutions.

Remark: From (5), one can interpret as the probability dis-

tribution of , where is uniformly distributed over the in-

terval .

Remark: Under the conditions of the theorem, the stability of

(4) is only guaranteed if is sufficiently large. Explicit bounds

on may be obtained from theoretical considerations (see, e.g.,

[17]), but these bounds are typically conservative. Therefore, we

advise to determine a threshold based on numerical simulation.

The stability of the time-invariant comparison system (6) is

determined by the roots of its characteristic equation

(7)

where

(8)

We now list some general properties of the functions and

, which will be useful in the rest of this paper.

The weight function always satisfies
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TABLE I
FOR THREE TYPES OF FUNCTIONS f IN (4), THE WEIGHT FUNCTION OF THE DISTRIBUTED DELAY COMPARISON SYSTEM (6), AS WELL AS THE

CORRECTION TERM g(s) IN THE CHARACTERISTIC (8) ARE SHOWN. J ( � ) DENOTES THE BESSEL FUNCTION OF THE FIRST KIND OF ORDER

ZERO, h( � ) IS THE DIRAC IMPULSE FUNCTION

take , respectively in (5). Since is integrable,

the function is smooth, and

On the imaginary axis, has a modulus smaller than one since

for all

(9)

Furthermore, when is symmetric around the origin, i.e.,

, then is real, following

from:

(10)

As an illustration we show for different types of functions

in (4) the corresponding weight function of the distributed

delay of comparison system (6) and the function in Table I.

III. STABILITY OF THE COMPARISON SYSTEM

The next step consists of relating the stability of the compar-

ison system (6) with the stability of the constant delay system

(11)

Notice that (6) can be seen as a modification of (11) by

“spreading out” the point-wise delay over an interval of length

. If this leads to larger stability regions in a parameter space,

then, by virtue of Theorem 1, a fast forcing of the delay will

also lead to larger stability regions.

First, we investigate the stability of (6) for small values of .

Then, we relate the obtained result with the sensitivity of sta-

bility w.r.t. changes of the nominal delay . Finally, we com-

ment on numerical tools for computing the right most eigen-

values of the comparison system (6).

A. Behavior of the Comparison System for Small

We investigate how the eigenvalues of (6) or, equivalently, the

roots of

(12)

behave for small values of . For , (12) simplifies to

(13)

the characteristic equation of (11).

Because is a smooth function with , roots of (12)

are continuous at each value of parameter . For a given

simple root of (13), this implies the existence of a root func-

tion of (12), satisfying and

(14)

To compute the sensitivity of the root w.r.t. , we differentiate

(14), leading to

(15)

(16)

where .

The property (15) is due to the zero mean assumption on the

delay forcing function , which is expressed in

As a consequence, the behavior of the eigenvalues for small

is determined by the second-order derivative . A stability

related corollary is as follows.

Proposition 1: Assume that the rightmost eigenvalues of

(11) are simple and on the imaginary axis. Denote them by

. If

(17)

then (6) is asymptotically stable for small values of .
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Proof: Choose such that, except for the eigenvalues

on the imaginary axis, (13) has no zeros in

. In this half plane, the roots of (12) satisfy

Therefore, there exists a compact set containing all the roots

of (12) in the half plane . From the continuity of and

, it follows that

as , uniformly on . By [15, Th. A1], a variant of

Rouché’s theorem, this implies that for small both (entire)

functions have the same number of zeros in , and as a conse-

quence in . Combining this fact with (17), which expresses

that the roots lying on the imaginary axis for move to the

open left half plane when slightly increasing , yields that all

the roots of (12) lie in the open left-half plane for sufficiently

small values of .

In the next section, we will study classes of parametrized

delay systems, for which condition (17) is always satisfied in

case of eigenvalues on the imaginary axis. This means that sta-

bility regions in the parameter space become larger when in-

creasing from zero. Indeed, internal points of a stability region

in the parameter space correspond to an asymptotically stable

system, which remains asymptotically stable when increasing

from zero (continuity argument), whereas points on the bound-

aries of a stability region, if any, correspond to a system with

rightmost eigenvalues on the imaginary axis, which becomes

asymptotically stable under the conditions of Proposition 1.

Finally, notice that parameter values corresponding to a zero

eigenvalue are invariant w.r.t. , following from .

B. Relation With Delay Sensitivity

To reveal a relation between the sensitivity of a root of

(12) for , i.e., an eigenvalue of (11), w.r.t. changes of

and its sensitivity w.r.t. the nominal delay value , extensively

studied in [21] and the references therein, one can study the root

function

satisfying (12) and . A simple computation shows

that

(18)

Since is positive, a consequence for the case of roots on

the imaginary axis is as follows.

Proposition 2: Assume that . Then

Thus, the behavior of the real parts of eigenvalues on the imag-

inary axis when changing is determined by the behavior of

their imaginary parts when changing the nominal delay.

This proposition and (18), along with Theorem 1, allow to

retrieve stability information for the time-varying delay case

directly from known results concerning sensitivity of stability

w.r.t. the nominal delay value. This will be illustrated with the

second example of the next section.

C. Computational Tools

Whereas the aforementioned analytical computations allow

to study the stability of the comparison system (6) for small

values of and to gain insight in the problem, quantitative sta-

bility information for any value of can be obtained by numer-

ically computing the rightmost eigenvalues.

When the weight function of the distributed delay in (6) is

bounded, both the numerical scheme proposed in [1], which re-

lies on a discretization of the infinitesimal generator of the delay

equation, as the numerical scheme of [13], which involves a dis-

cretization of the time-integration operator, can be used to com-

pute the rightmost eigenvalues. For the specific weight func-

tions , respectively , defined in Table I, tools

for delay equations with point-wise delays, such as the soft-

ware package DDE-BIFTOOL [3] are applicable. In the latter

case, the distributed delay with constant weight function in (6)

can be removed by a model transformation, yielding an equa-

tion with only point-wise delays, as explained in [14]. A nice

feature of DDE-BIFTOOL package is its continuation facility

which allows to compute stability regions in a two-parameter

space semiautomatically.

IV. ILLUSTRATIVE EXAMPLES

A. First-Order System

Consider the scalar equation

(19)

whose stability regions in the plane for were deter-

mined in, e.g., [2]. The distributed delay comparison system is

given by

(20)

with characteristic equation
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Fig. 1. Stability region of (20) in the (a; b) plane for different values of �. The solid curves correspond to g(s) = g (s); the dashed curves to g(s) = g (s).
The analytical expressions are given by (21)–(24).

Applying (16) to an imaginary root of and

taking the real part give

This quantity is negative for purely imaginary eigenvalues cor-

responding to values of and on the stability boundary, since

such parameter values satisfy , see [2]. Therefore,

the stability region of (20) in the plane enlarges when

is increased from zero. Under the assumption of a symmetric

weighting function, i.e., , this stability region can

easily be computed analytically using the method of -subdi-

vision [10], to yield

(21)

where the relation is implicitly defined by the curve

(22)

with (23) and (24), as shown at the bottom of the page. Notice

that for any is a positive real number, smaller than

one, following from (10), (9), and . Furthermore, the

specific choices of , defined in Table I, satisfy

(25)

From (23) and (25), one can conclude that the largest stability

region is obtained for the case , where all the weight

of the distributed delay lies in end-points of the interval.

In Fig. 1, we show the stability region of (20) in the

plane for different values of and , respectively

. In the latter case and for , we have

for . In Fig. 2(a), we plot

the real parts of the rightmost eigenvalues of (20) with

as a function of . The solid curves correspond to

, the dashed curves to . In Fig. 2(b), we

otherwise
(23)

and

otherwise
(24)

5



Fig. 2. (a) Real parts of the rightmost eigenvalues of (20) with (a; b) = (�1;�4) as a function of �. The solid curves correspond to g = g (s), the dashed
curves to g = g (s). (b) Simulated trajectories of the original system (19) with (a; b) = (�1;�4); � = 1;
 = 20; x � 1, and f = f ; f ; f (above, middle,
below).

show simulated trajectories of the corresponding system with

time-varying delay (19).

B. Delayed Feedback Stabilized Oscillators

Consider a single-input–single-output system with rational

transfer function

(26)

where , in closed-loop with a delayed

feedback control law

(27)

For , this stabilization problem was studied in [22] and

a procedure to determine a stabilizing pair (if any) was

presented.
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Fig. 3. Solid curves separate stability-instability regions of (29) in the (k; �)-plane for � = 0. Stable regions are indicated with “S.” For � = 0:05 the
stability regions of (29) are separated with the dotted curves.

The characteristic equation of the distributed delay compar-

ison system of (26)–(27) is given by

When applying (16) to an imaginary root of

, some simple computations yield

(28)

For more details, see the proof of [22, Th. 5], where one com-

putes the sensitivity of eigenvalues to changes of the nominal

delay value , and apply property (18).

When is constant and even, expression (28) sim-

plifies to

thus increasing from zero leads to larger stability regions. As

an illustration, we show in Fig. 3 stability regions of

(29)

in the space for two different values of . No-

tice that (29) concerns the case of an output feedback controlled

second-order oscillator, . The nominal

delay is considered also as a system parameter and con-

cerns the relative width of the interval over which the delay is

varied.

C. Variable Spindle Speed Cutting Machines

The following equation, taken from [8]:

(30)

models one mode of a mechanical rotational cutting process,

where represents the deflection of the machine tool and/or

workpiece, the natural frequency, the damping ratio and

the modal mass. The term , with

the cutting force coefficient, models the cutting force, which de-

pends on the time , taken by the cutting insert for one revolution

of the workpiece. Clearly the time-delay is proportional to

with the rotational speed of the machine. In [8] one assumes

that this speed is varied around a nominal value in the following

way:

which precisely corresponds to a modulation of the time-delay

of the form

(31)

Based on the theory developed in this paper and the model

(30), we now give an explanation for the beneficial effect of a

high frequency modulating of the machine speed on increasing

stability regions.

The characteristic equation of the distributed delay compar-

ison system of (30)–(31) is given by

7



Fig. 4. Dashed curve separates the stable and unstable regions in the (k; � )-space for (30) and (32) with m = 100; ! = 632:45; � = 0:039585, and � = 0.
The solid curve separates the stable and unstable regions for the distributed delay comparison system with � = 0:05� .

Applying the sensitivity formula (16) to an imaginary root

yields

which is strictly negative for any value of the system parame-

ters and any delay forcing function . Therefore, the stability

region of the steady state solution can always be enlarged by

“distributing” the point-wise delay over an interval, or, by virtue

of Theorem 1, by modulating the point-wise delay (speed).

To illustrate this, we compute the stability limits for the

system (30) and for the comparison system corresponding to a

modulation of the delay

(32)

where is the sawtooth function described in Table I. With

this choice, the kernel of the distributed delay of the comparison

system is a constant. Then, as explained in [14], we can use the

DDE-BIFTOOL package [3] to compute accurately the stability

limits which appear in Fig. 4. Note that the coefficient depends

on the width of the cutting tool and on the nominal depth of cut.

Therefore, the variation of the rotating speed allows to use a

larger tool and/or to remove more material at once, especially at

lower speed (i.e., larger delay).

V. CONCLUDING REMARKS

We investigated the effect of a delay variation on the stability

of linear time-delay systems. Theorem 1 related the stability of

a time-varying point-wise delay system with the stability of a

time-invariant distributed delay system. Its proof consisted of

an application of the recently developed trajectory-based proof

technique, which is time-domain based and relies on a compar-

ison of trajectories. As a mathematical tool, an extension of the

Gronwall Lemma to distributed delay systems played an impor-

tant role.

The stability of the distributed delay comparison system was

analyzed by studying the roots of its characteristic equation. For

sake of generality, the derived stability criteria, as Proposition 1,

were formulated using the correction function and are thus not

restricted to a particular class of delay variations (function ).

The same holds for the stabilizability assertions in the examples.

Only for the graphical illustrations particular choices of Table I

were used.

We provided three examples where a delay variation always

leads to larger stability regions in a parameter space. For the

rotating cutting machine application, our results confirmed that

a variation of the rotational speed can be used to allow a larger

tool and/or to remove more material per turn. Furthermore, we

believe that studying the eigenvalues of the distributed delay

comparison systems and their numerical computation are useful

new quantitative and qualitative tools for analysis and parameter

tuning in such problems.
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APPENDIX

PROOF OF THE MAIN THEOREM

We give a detailed Proof of Theorem 1. This requires a gen-

eralization of the Gronwall Lemma, which we consider first.

A. Generalization of the Gronwall Lemma

Lemma 1: For real numbers , define

as an integrable function satisfying . If a

continuous function satisfies , and

(33)

then it satisfies .

Proof: Define the function by

, where . The right-hand

size of (33) is a nondecreasing function of . Therefore, it is not

only an upper bound for , but also of Thus, we have

for all

(34)

By the classical Gronwall Lemma [6, Lemma 3.1, pp. 15–16],

one concludes from (34) that

and from the definition of the assertion of the Lemma

follows.

B. Proof of Theorem 1

First, we show that there always exists an integrable function

satisfying (5). Intuitively, for fixed , the right-hand side of

(5) can be considered as the image of the function under a

continuous linear functional over the space . Next,

following from the Riesz Representation Theorem this image

can always be expressed as a weighted integral of the function

over the space (left-hand side).

In a different way, since defined as in the Theorem’s state-

ment is measurable (a bounded function on some compact), then

for any -finite measure for which the right-hand integral in

(5) is properly defined in the sense (see, for instance, [24]),

the quantity will define a “new” measure, and we will have

the equality (change of measure)

with respect to the measure for any continuous function ,

since , and there exists such

that , and . Here, is defined as follows:

for any set (the measure

of the inverse image ; see, for instance, [7]). Notice

that the result is still valid if is integrable, and not necessarily

continuous. Next, since has zero mean, and using the previous

definition, we may restrict the class of measures to those mea-

sures for which is positive.

Finally, for any measure -finite which is absolutely con-

tinuous with respect to (see [24] for the definitions), there

exists a (positive) measure (integrable function) such that the

following condition holds:

The existence of a such a measure is guaranteed by the

Radon–Nikodym theorem (see [24]). The last term can be

rewritten as follows (density measure properties):

which simply says that the density will define the integrable

in (5).

We now come to the stability assertion, where we use the

trajectory-based proof technique, developed in [18]–[20].

For a given and , where

is the Banach space of continuous functions

mapping the interval into and equipped with the

supremum norm , denote by

and define as the unique forward solution of (4)

with initial condition

. Analogously, define as the unique forward so-

lution of (6) with initial condition

.

For technical reasons, we temporarily restrict the state–space

to , defined as

(35)

This is possible because the following invariance property holds

along the solutions of (4) and (6):

following from the fact that for all

(36)

and

(37)

where we used .

9



The crucial step of the trajectory based approach consists of

proving uniform convergence of solutions of (4) and (6) on com-

pact time-intervals, in the following sense:

with (38)

Therefore, fix . When omitting the explicit dependence

of and on the initial condition for notational

convenience, we have

and

The difference satisfies the estimate

(39)

where

(40)

and using Lemma 1, relation (39) implies

(41)

where

We now derive an upper bound on . For that, define a se-

quence of times

(42)

and choose such that . Some simple

computations yield (43), as shown at the bottom of the page.

Because of (36)–(37), there exists a constant such

that

with (44)

We now let or, equivalently, , and reconsider

the estimate (43). Following from the definition (5), we have

and from (44) and (42)

as

uniformly w.r.t. and with

. The estimates (36)–(37) and the restriction of the state space

to (35) imply that the functions and are

Lipschitz on with Lipschitz constants,

which can be chosen independent of , and

(43)
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with . As a consequence there also

exists a constant such that

Since , we have as ,

uniformly w.r.t. and with

. Similarly, one can show that as , uniformly

w.r.t. and with .

Putting the previous elements together, we have proven that

as (45)

uniformly w.r.t. and with

. Combining (41) and (45) results in (38).

The next step of the trajectory based approach consists of

linking the closeness result (38) with stability assertions. By a

slight modification2 of [18, Th. 1], the exponential stability of

(6) and the property (38) imply that the origin of system (4)

is practically uniformly asymptotically stable, in the following

sense [18, Def. 2].

1) (Semiglobal uniform boundedness):

with

(46)

2) (Semiglobal uniform attractivity):

with (47)

3) (Uniform stability):

with (48)

This result can be strengthened. From (47) and (46), one can

conclude that (with initial conditions restricted to

) the origin of (4) is globally uniformly asymptotic sta-

bility for large , by making use of the following scaling prop-

erty: if is a solution of (4), then is a

solution of (4), for any . Notice that the space

is invariant w.r.t. a multiplication of elements with a

scalar.

2The only difference is that initial conditions are now taken in a function
space. This does however not change the proof substantially. See [20], where
such a generalization is made.

Finally, global asymptotic stability carries over to the space

, because of the following property: if

then

and

This completes the proof.
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