
HAL Id: hal-02294272
https://hal.science/hal-02294272v1

Submitted on 23 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A control-theory approach for cluster autonomic
management: maximizing usage while avoiding overload
Agustín Gabriel Yabo, Bogdan Robu, Olivier Richard, Bruno Bzeznik, Eric

Rutten

To cite this version:
Agustín Gabriel Yabo, Bogdan Robu, Olivier Richard, Bruno Bzeznik, Eric Rutten. A control-theory
approach for cluster autonomic management: maximizing usage while avoiding overload. CCTA
2019 - 3rd IEEE Conference on Control Technology and Applications, Aug 2019, Hong Kong, China.
pp.189-195, �10.1109/CCTA.2019.8920473�. �hal-02294272�

https://hal.science/hal-02294272v1
https://hal.archives-ouvertes.fr

A control-theory approach for cluster autonomic management: maximizing
usage while avoiding overload

Agustín Gabriel Yabo∗, Bogdan Robu†, Olivier Richard∗, Bruno Bzeznik∗, and Éric Rutten∗
∗Univ. Grenoble Alpes, Inria, CNRS, LIG, F-38000 Grenoble France

†Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, F-38000 Grenoble France
Email: {firstname.lastname}@inria.fr, bogdan.robu@gipsa-lab.grenoble-inp.fr

Abstract— Cloud and HPC (High-Performance
Computing) systems have increasingly become more
varying in their behavior, in particular in aspects
such as performance and power consumption, and the
fact that they are becoming less predictable demands
more runtime management. In this work, we describe
results addressing autonomic administration in HPC
systems for scientific workflows management through
a control theoretical approach. We propose a model
described by parameters related to the key aspects
of the infrastructure thus achieving a deterministic
dynamical representation that covers the diverse and
time-varying behaviors of the real computing system.
Later, we propose a model-predictive control loop
to achieve two different objectives: maximize cluster
utilization by best-effort jobs and control the file
server’s load in the presence of external disturbances.
The accuracy of the prediction relies on a parameter
estimation scheme based on the EKF (Extended
Kalman Filter) to adjust the predictive-model to
the real system, making the approach adaptive
to parametric variations in the infrastructure. The
closed loop strategy shows performance improvement
and consequently a reduction in the total computation
time. The problem is addressed in a general way, to
allow the implementation on similar HPC platforms,
as well as scalability to different infrastructures.

Keywords : Control of Computing Systems, High-
Performance Computing, Software Systems, Model-
Predictive Control

I. Introduction
A. Control Theory for High Performance Computing

Cloud and HPC (High-Performance Computing)
systems have increasingly become more varying in their
behavior, particularly in aspects such as performance and
power consumption. The fact that they are are becoming
less predictable demands more runtime management,
requiring frequent human intervention. Coping with
such phenomena must be done online based upon
measurements performed during execution time. This
can be done in response to monitored sensors of the
systems, by analysis of this data and utilization of the
results in order to trigger appropriate system-level or
application-level reconfiguration mechanisms. There is
not a single way to perform this reconfiguration, one of
them being the development of feedback loops (see for
example [1]) which in the domain of Computer Science
are the object of Autonomic Computing [2].

Control theory has been applied in High-performance
Computing rather scarcely therefore it is still in need
for basic research [3], [4], [5]. Most previous approaches
propose rather simple linear models that, to our best
understanding, lack the ability to reflect several non-
linear behaviors and variable constraints of the real
system, since their accuracy is limited to a specific region
of operation, failing to ensure the desired performance
and stability objectives for all possible situations.

In [6], such a predictable HPC system was designed
in order to control each job’s waiting time and running
time. Moreover, they proposed an admission control
scheme by deciding to accept or reject incoming jobs
in terms of their deadlines. To achieve this, they model
each job’s progress with a first order linear difference
equation. However, the proposed solution assumes each
job’s progress can be measured by the algorithm, which
is not always true in HPC environments.

In [7], a model predictive admission control approach
is proposed for performing real-time scheduling in HPC
clusters. They divided workflows into 2 categories (called
Data and Design), with different time duration each.
Thus, they assume to count on a priori knowledge of
the job’s duration (that should be provided by the user),
leading to an ad-hoc solution that is not robust to
variations in the analyzed workflows, and requires offline
analysis of the system.

B. Contributions
This work draws from a preliminary one [8] where

we approximated the cluster dynamics as a second
order system, considering its controlled variable as the
number of jobs in the cluster’s waiting queue. Then
a PI controller was implemented in order to track a
reference number of jobs by regulating the amount of
jobs submitted to the cluster.

While focusing on avoiding cluster overload our
previous work was very simplistic, needed strong
preliminary hypothesis and good system comprehension
for implementing control. Moreover, it didn’t consider
another major cause of cluster overload which is
filesystem overload and which depends directly on the
amount of running jobs in the cluster.

In this work, we present a model that comprises both
the waiting queue as well as the running jobs in the

cluster, based on fluid modeling theory [9]. Along with
this model, we investigate the dynamics of a fileserver’s
load average, and propose a scheme to measure the
impact of scientific computing workflows onto it. Later
on, we implement a model-predictive control loop that
relies on an EKF (Extended Kalman Filter) for online
parameter estimation to provide an accurate prediction
and robustness to variations in the workflow. Ultimately,
the scheme deals with two objectives: a) maximize cluster
usage, and b) regulate the fileserver’s load. While the
solution is presented in a general way, we focused on
a scheme that have not received much attention from
the control community: scientific workflows management.
In this context, there are a number of assumptions that
can greatly simplify the general HPC scheduling problem
(e.g. specific probability distributions for execution
times, rather uniform resource consumption, etc.). Last
but not least, the solution is non-intrusive, it doesn’t
interfere with the scheduling process of the jobs.

II. Background
A. Experimental setup

All the experiments in this paper are done on the
CIMENT HPC production cluster detailed below.

1) CIMENT center: the CIMENT center is one of
the most powerful High Performance Computing (HPC)
tier-2 centers in France. It provides HPC resources to
academic research communities from a wide range of
disciplines: Biology and Health, Chemistry, Environment
and Climate, Numerical Physics, Earth and Planetary
Sciences, and Distributed Computing [10].

2) CiGri middleware: CiGri1 is a simple, lightweight,
scalable and fault tolerant grid system designed to
exploit the unused resources of a set of computing
clusters. The software was developed at Université
Grenoble Alpes and actively used on the production
clusters of the CIMENT center, providing users the
possibility to launch and manage large scale scientific
computations. It interacts with the computing clusters
through OAR [11], a modular batch scheduler for HPC
clusters. The platform supports only one specific form
of job submission: the bag-of-tasks workload, composed
of a set of independent parametric jobs, which represent
the lowest level of granularity in the system.

The nature of this specific kind of workload arises from
the need of running large-scale scientific computations
with different parameters, by means of grid computing
infrastructures. As previously studied from historical
data from CiGri database [8], these jobs show small
variability in their execution time, with coefficients of
variability [12] that ranges from 10% to 30%, indicating
minor dispersion.

3) Utilization policy: The computing grid supports
campaign launching through two different submission
mechanisms:

1http://ciment.ujf-grenoble.fr/cigri/dokuwiki/doku.php

Cigri

Compute nodes
(Resources)

Irods
Storage system

Bag-of-Tasks

Local
users

Data
Files

Runner
Local
users

OAR

Cluster 1

Scheduler

OAR

Cluster 2

Scheduler

Fig. 1: The system global architecture.

• Campaign submission through CiGri: the user
submits a campaign, which yields a parametric bag-
of-tasks in the CiGri server (Figure 1), and the
Runner module subsequently sends its jobs to a
dedicated waiting queue in each OAR cluster. This
way, CiGri balances the amount of jobs submitted
onto all the clusters.

• Direct job submission through OAR: the user
decides the cluster on which the job is going
to run, and submits it through its Resource Job
Management System to the Local users queue in
the cluster (Figure 1). In this case, the user is not
constrained to run only parametric jobs.

This latter makes the system essentially different
from other, extensively explored, problems in IT
infrastructure. Such is the case of Cloud systems [13],
[14], [15], where there is no such differentiation in
the grid between CiGri and user jobs. MapReduce
is a more distributed parallel-oriented framework that
targets large parallelizable problems, while CiGri focuses
on independent parametric tasks. Another key difference
is that, even though in both environments the resources
are shared, in CiGri they are treated as a varying amount
of dedicated resources, which poses a different challenge
in terms of management.

B. Feedback loop objectives
In order to exploit idle resources in a transparent

manner, CiGri introduces the concept of best-effort jobs
into OAR, which are treated as 0-priority tasks by the
scheduler. This means that, if during their execution
in a specific resource, this latter is requested by a
local cluster user, the job is killed by the local batch
scheduler and later resubmitted according to specific
fault-treatment mechanisms [16]. Hence, the challenge
of CiGri is to guarantee the complete execution of this
scientific computations in spite of resources’ volatility, in
the most efficient way. This implies maximizing the usage
of idle resources by best-effort jobs, without overloading
any component of the infrastructure.

The two main issues in the CiGri environment that are
tackled throughout this work are:

• Resource under-utilization: the algorithm
cyclically submits a number of jobs to the cluster
(which increases at every iteration) and waits for
the completion of all submitted jobs. In practice,
this behavior yields situations where there are idle
resources in spite of the existence of remaining jobs
in the bag-of-tasks, which translates into the cluster
being under-used (or not used at all).

• Fileserver overload: every computing job
consumes storage resources, whether for reading
input files from a server, or for storing the output of
the script. The simplest I/O task can greatly affect
fileserver’s performance when running hundreds
of simultaneous jobs. This makes storage a major
challenge in parallel computing infrastructures, and
a limiting factor in the performance of the grid [17].
In the CiGri infrastructure, fileserver overloading is
a common problem that requires a human operator
to intervene in order to remedy the situation.

The main objective of this paper is to improve the job
submission mechanism implemented in CiGri. The way
CiGri handles job submission to the cluster is a major
factor in the overall performance and, thus, maximizing
the exploitation of idle resources requires an improved
strategy in this regard.

III. Modeling and control
A. Queue modeling

1) Overview: In this section, we model the behavior
of a single cluster managed by an OAR scheduler (Figure
2). The proposed model comprises the dedicated waiting
queue for best-effort jobs in the scheduler (scheduler’s
left queue in Figure 2) of length q, considering the jobs
sent by the runner as the input u. The number of jobs
taken from the waiting queue and allocated into resources
by the scheduler is denoted as b (for buffer), whereas
the number of best-effort running jobs in the cluster is
represented by r.

CiGri

Data files

u
Cluster nodes

iRODS

r

Bag-of-Tasks

Runner

Local
users

OAR Scheduler

q

b

Modelled dynamics

Fig. 2: Scheme of a CiGri environment single cluster.

The model is characterized by the following
parameters:

• Maximum number of jobs allowed rmax: the
scheduler can allocate a maximum number of

jobs rmax into the cluster depending on resource
availability2. The impact of users’ jobs (not
managed by CiGri) is represented in the model
through the variations of this parameter.

• Job allocation’s buffer b: the job allocation
process is entirely managed by the OAR scheduler.
For this work, we propose a deterministic expression
for the buffer b that provides an approximate
description of the scheduler’s behavior, based on the
constraints:
– 0 ≤ r ≤ rmax (i.e. it is not possible to use more

resources than those available in the cluster).
– 0 ≤ b ≤ q (i.e. it is not possible to allocate more

jobs that those available in the waiting queue).
• Processing rate p: CiGri’s throughput is given

by the number of finishing jobs in the cluster over
a period of time ∆t. In previous experiments [8],
we could verify an approximately linear relationship
between the throughput and the amount of running
jobs. Based on this results, the throughput can be
expressed as p × r, where p corresponds to a single
job’s processing rate.

2) Dynamical model: Based on queuing theory, the
dynamics can be described by the following system of
difference equations,

{
qk+∆t = qk + uk − bk

rk+∆t = rk + bk − (p∆t)rk
(1)

being qk, rk, uk and bk the above defined quantities
at time k. The model is based on the interpretation that
the amount of running jobs r behaves also as a queue,
where its inflow is the outflow of the waiting queue q.
The buffer function bk is defined as,

bk =

{
K(rmax − rk)∆t if qk ≥ K(rmax − rk)∆t

qk if qk < K(rmax − rk)∆t
(2)

The behavior of the scheduler is modeled as a
constrained proportional feedback loop that regulates the
amount of running jobs rk to an rmax reference value,
where the gain K depends on the scheduling time. For
the implementation of the control algorithm, and under
the assumption that the scheduler is sufficiently fast, we
approximate K∆t ≈ 1.

The proposed model was then validated by comparing
its response to that of the real system, using in both cases
the same randomly generated input (Fig. 3).

2given by the amount of idle resources in the cluster and workload
specific requirements: when idle resources in a cluster do not match
hardware requirements specified by the user of a CiGri campaign
(e.g. number of cores, amount of memory, etc.), they are considered
not available

0 200 400 600 800 1000 1200
0.0

2.5

5.0

7.5
Jo

b
s

uk

0 200 400 600 800 1000 1200
Time [seconds]

0

10

20

30

Jo
b

s

qk

qexp

Fig. 3: Validation of the queue model against 10 averaged
experiments performed in the real system (qexp).

B. File system analysis
To simplify the analysis, we focus on a specific kind of

best-effort computing job that can be broken down to 3
stages: Reading: the job reads input data, Processing:
the job performs certain computations over the input
data, Writing: the job writes the result data.

To our knowledge, this structure represents the
majority of the scientific workflows currently being
processed by CiGri. While most of the time is generally
spent on the processing stage (2nd step), the fileserver
overloading comes from the reading and writing stages.
It is noteworthy that this scheme defines an internal state
of the job, which cannot be observed by CiGri.

Therefore, we propose to model the fileserver’s load
as a subsystem state fk ≥ 0, with two inputs u1

k and
u2

k representing the contributions from the reading and
writing steps of each job resp. Preliminary experiments
showed that the dynamics of the system can be
approximated by a first-order linear equation,

fk+∆t = (1 − α∆t)fk + u1
k∆t + u2

k∆t.

The parameter α describes the unloading speed of the
fileserver, which depends mainly on the averaging of the
loadavg (load average) sensor of Unix-based systems. In
this work, we focused on the impact of the reading step
onto the fileserver (this implies u2

k = 0, ∀k > 0), that
we model in terms of the number of allocations b, as it
reflects the amount of starting jobs at each time instant,

fk+∆t = (1 − α∆t)fk + kin(bk−i)β∆t,

which characterizes the type of loading by a gain kin,
a delay i and an exponent β. We performed several
experiments with varying conditions so as to assess the
impact on the parameters: filesize of 1 mb, 25 mb, 100
mb and 500 mb; hardware of the fileserver with different
cores, and job average duration of 30 s, 15 min and 1 hr.
Throughout the experiments, we could verify that the
values of β, α and i remained constant, while the gain
kin varied considerably. Using a simple non-linear least

squares algorithm, we obtained that β ≈ 2.05, α ≈ 0.015,
and i = 2 when fixing the cycle step ∆t = 5s.

0 100 200 300 400 500 600 700
Time [seconds]

0

20

40

60

Jo
b

s

rk

0 100 200 300 400 500 600 700
Time [seconds]

0

5

10

lo
a
d

a
v
g

fk

fexp

Fig. 4: Validation of the fileserver model against averaged
experiments performed in the real system (fexp).

Parameter kin depends strongly on the amount of files
(and their size) used by each job, and so it varies for every
different workflow. For this reason, a robust approach
requires this parameter to be identified at runtime.

Following the same methodology previously used, we
validated the proposed model against experiments not
used in the modeling steps. In these cases, the cluster
was composed of 60 resources, as shown in Figure 4.

C. Parameter estimation
We define a CiGri environment, 1 cluster and M

fileservers, and incorporate the parameters (the rate p
and the gains k1

in, . . . , kM
in) to be estimated in the state

space formulation [18],

qk+∆t = qk + uk − bk

rk+∆t = rk + bk − (pk∆t)rk

f1
k+∆t = (1 − α∆t)f1

k + k1
in(bk−i)β∆t + w1

k
...

fM
k+∆t = (1 − α∆t)fM

k + kM
in (bk−i)β∆t + wM

k

pk+∆t = pk + wM+1
k

k1
in,k+∆t = k1

in,k + wM+2
k

...
kM

in,k+∆t = kM
in,k + w2M+1

k

where w1
k, . . . , wM

k are the process noises associated to
the impact of external agents on the storage system:
in the infrastructure, fileservers are not dedicated
to the CiGri environment, but shared among users
that consume storage resources. The process noise
wM+1

k , . . . , w2M+1
k represents the time-varying nature of

the parameters in the system. For simplification, the
experimental phase of this work was performed with two
fileservers (M = 2).

The method used for the estimation process is the
well-known EKF (Extended Kalman Filter), for being

able to deal with the non-linearities of the extended
state-space representation. In accordance with the fluid
modeling approach, we assume that the measurements
of q and r (integer-valued states) are actually quantized
measurements of the real ones (real-valued states)
(Figure 5a). The filtering scheme contemplates this
quantization effect as zero-mean measurement noise
in both states. The reason behind this decision is
that, in practice, simpler recursive parameter estimation
algorithms showed quite oscillatory results due to the
integer-valued nature of the state variables. This can
be better seen in Figure 5b, where we simulated and
compared both algorithms to illustrate this effect.

200 210 220 230 240 250
Time [seconds]

24

26

28

30

32
Waiting queue qk

Estimated qk

(a) Real-valued estimation q̂k

of integer variable qk

0 50 100 150 200
Time [seconds]

0.000

0.005

0.010

0.015

0.020

p

p (simple)

p (EKF)

(b) Simple (non-linear recursive
leasts-squares) algorithm and
EKF

Fig. 5: EKF implementation in fluid modeling scheme.

D. Control scheme
For the control loop, we implemented a model-

predictive controller, mainly for the advantages that such
an approach can deliver:

• It can easily deal with the constraints and non-
linearities of the model.

• The model used for prediction is updated at each
step with the parameters estimated by the EKF,
making the scheme inherently adaptive to this
variations in the model.

• It can cope with multiple objectives, as desired here.

Optimizer

Modelbased
prediction

Cluster
Actuation

Future
inputs

Kalman filter

Output

Estimation

Predicted
outputs

Parameters

Fig. 6: Control scheme

Figure 6 illustrates the structure of the controller. The
optimization process was simulated in Python using the
constrained non-linear optimization library from SciPy,
and then implemented in Ruby with the Ruby/GSL
library for numerical computing.

As for the model-predictive scheme, a constant
parametrization in the input was enforced, to simplify

the optimization problem. Additionally, the prediction
horizon was fixed to N = 3 as it gave acceptable results
in the experiments.

Two different objective functions were formulated:
• Maximize cluster usage: maximizing the cluster’s

usage can be accomplished by guaranteeing enough
waiting jobs q at every instant, which can be
achieved by tracking a reference value qdes,

J1
k (u) =

N∑
j=0

(
qk+j|k − qdes

)2
.

It should be noted that maximizing the cluster usage
by sending a maximal amount of jobs u is not an
optimal strategy in practice, as it overloads the
scheduler during execution.

• Avoid fileserver overloading: a system is
overloaded if the loadavg is higher than the number
of cores in the system (a rule of thumb widely used
by system’s administrators). Under this criteria, the
value of the reference is dynamically adjusted to
match the number of cores in the fileserver,

J2
k (u) =

M∑
l=1

N∑
j=0

(
f l

k+j|k − f l
des

)2

where M is the number of file servers in the infrastructure
and f l

des the number of cores in file server l.

IV. Experimental results

A. Maximizing cluster usage

We performed 10 similar experiments in a cluster
composed of 12 resources, in which we compared results
when applying the naif approach and the MPC controller
onto the waiting queue q when launching a 400 jobs
campaign. In every case, the average cluster usage was
computed as,

Usage[%] = 1
tf − t0

tf∑
k=t0

rk∆t

rmax
,

with t0 and tf the initial and final time of the campaign
execution respectively.

For every experiment, the reference of waiting jobs
was set to 40 as it proved to be a value that achieved
maximum cluster usage without producing significant
stress on the scheduler (results in Figure 7). The original
algorithm yields an average cluster utilization of 77%
while the closed loop one raises it to 85%, showing an
improvement of 8 percentage points, which achieves a
reduction in the total computation time of 132 s.

0 50 100 150 200 250 300 350 400
Time [seconds]

0

20

40

60
Jo

b
s

rmax

rk
qk

0 50 100 150 200 250 300 350 400
Time [seconds]

0

20

lo
a
d

a
v
g

f1k

f2k

Fig. 8: Maximizing the used resources rk yields an
overload in the first fileserver (with load f1

k) while it
doesn’t affect the second fileserver (with load f2

k).

0 500 1000 1500
Time [seconds]

0

20

40

Jo
b

s

qk

0 500 1000 1500
Time [seconds]

0

3

6

9

12

R
e
so

u
rc

e
s

rmax

rk

(a)

0 500 1000
Time [seconds]

0

20

40

Reference
qk

0 500 1000
Time [seconds]

0

3

6

9

12

rmax

rk

(b)

Fig. 7: Original job submission policy (a) and closed loop
behavior (b) when maximizing the amount of running
jobs rk to the number of available resources rmax.

B. Maximizing cluster while Controlling fileserver usage
In order to test the fileserver usage strategy, we

performed a number of experiments on an infrastructure
composed of a 60 resources cluster, and 2 fileservers with
4 cores each (which, as previously expressed, are assumed
to be overloaded when fk > 4). Then, we applied the
cluster usage maximization strategy when computing a
test workflow with average duration of 60 seconds. Each
job in the workflow reads a file of 2 mb from the first
fileserver, while the second fileserver is left unused. The
results are as expected: there is a major impact on the
fileserver load, that reaches 30, surpassing the overload
value fk = 4 (Figure 8).

We subsequently implemented the control loop for
avoiding fileserver overload, that contemplates both
loads f1

k and f2
k . The results of the experiment can be

seen in Figure 9, which shows how the controller is able
to keep the load f1

k under the desired value. As a result,

0 100 200 300 400 500
Time [seconds]

0

20

40

60

Jo
b

s

rmax

rk
qk

0 100 200 300 400 500
Time [seconds]

0

2

4

lo
a
d

a
v
g

Reference

f1k
f2k

Fig. 9: Controlling load of both fileservers f1
k and f2

k .

0 100 200 300
Time [seconds]

0.010

0.015

0.020

0.025 p

0 50 100 150
Time [seconds]

0.00

0.05

0.10

0.15

0.20

k1
in

k2
in

Fig. 10: Online estimation of p̂, k̂1
in and k̂2

in using EKF.

it reduces considerably the cluster usage to around 45%
(computed from the average of all 10 experiments) and,
conversely, increases the total computation time of the
campaign from 250 s in the first experiment to 345 s.

It is noteworthy that reducing the average cluster
usage in around 50% achieves a reduction in the peak of
the fileserver’s load of 9 times between experiments (from
36.71 in the first experiment to 4 in the second one).
Moreover, the EKF is able to estimate the processing
rate p, and the gains k1

in and k2
in, that reflects the

impact of the workflow onto the fileservers, as shown in
Figure 10. Given that the second fileserver is not used
by the campaign, the associated gain k2

in remains null
throughout the execution.

V. Discussion
A. Conclusion

In this work, we described results addressing
administration in HPC systems through a control theory
approach. First we performed an extensive analysis of
the system and proposed a deterministic dynamical
model. In opposition to the already analyzed previous
works where black-box linear models were obtained
based on classical identification tools, we propose a
system described by parameters meaningful for computer
scientists, which are related to the key aspects of the
infrastructure. As a result, we achieved a model that

contemplates the varying behaviors of the real computing
system.

Later on, we proposed a simple model-predictive
control loop to achieve two different objectives: a)
maximize cluster utilization by best-effort jobs, and
b) control the fileserver’s load due to the impact of
the jobs. The accuracy of the prediction relies on a
parameter estimation scheme based on the well-known
EKF (Extended Kalman Filter) to adjust the model used
for prediction to the real system, making the approach
adaptive to parametric variations in the infrastructure.

The closed-loop approach achieved an average increase
of 8 percentage points in performance when maximizing
the cluster usage, and managed to avoid overloading the
fileserver by deliberately restraining the submission of
jobs to the grid when required.

While all the analysis and experiments were performed
over the CiGri software, the problem is addressed in a
general way, to allow the implementation on similar HPC
computing platforms, as well as scalability to different
infrastructures. Additionally, the solution is intended
to be non-intrusive, as it doesn’t interfere with the
scheduling process.

B. Perspectives

While this work showed first results in the topic,
there are still several aspects to be covered. For a start,
we worked under the assumption that the scheduler is
not overloaded during execution, and so its loadavg is
not considered in the administration loop. CiGri deals
with this cases by merely stopping job submission to an
overloaded cluster, which acts as an on-off controller,
and overrides the proposed control loop. A dynamical
system’s perspective can contribute to a much more
efficient strategy in this regard.

Another pending issue is the file writing stage at
the end of each job, usually a major cause of fileserver
overloading, on which we are currently working.

The parameter estimation scheme proved to work on
this particular problem, but we believe the strategy can
be improved by studying more in depth the measurement
and process noises involved in the EKF scheme, so that a
more general framework can be achieved. Alternatively,
other methods can be explored and compared with the
current performance.

Finally, this very first approach was put to the test in
an experimental setup rather simple. In order to validate
our solution, further testing on different scenarios is
required: with more diverse workloads, and more realistic
resource usage by external users. The experiments were
also limited in terms of scale: to our knowledge, some
features and particularities of the system’s behavior
appear in larger configurations (i.e. the number of
resources and running jobs in the order of thousands),
and so this would be another interesting direction to
explore.

References
[1] M. Berekmeri, D. Serrano, S. Bouchenak, N. Marchand, and

B. Robu, “Feedback autonomic provisioning for guaranteeing
performance in mapreduce systems,” IEEE Transactions on
Cloud Computing, vol. 6, no. 4, 2018.

[2] J. O. Kephart and D. M. Chess, “The vision of autonomic
computing,” Computer, vol. 36, no. 1, pp. 41–50, 2003.

[3] B. Khusainov, E. Kerrigan, A. Suardi, and G. Constantinides,
“Nonlinear predictive control on a heterogeneous computing
platform,” pp. 11877–11882, ELSEVIER SCIENCE BV, 2017.

[4] N. Zhou, G. Delaval, B. Robu, E. Rutten, and J.-F. Méhaut,
“An autonomic-computing approach on mapping threads to
multi-cores fo software transactional memory,” Concurrency
and Computation: Practice and Experience, vol. 30, no. 18,
2018.

[5] E. Rutten, N. Marchand, and D. Simon, “Feedback Control
as MAPE-K loop in Autonomic Computing,” in Software
Engineering for Self-Adaptive Systems III, vol. 9640 of LNCS,
pp. 349–373, Springer, Jan. 2018.

[6] S.-M. Park and M. Humphrey, “Predictable high-performance
computing using feedback control and admission control,”
IEEE Trans. Parallel and Distributed Systems, vol. 22, no. 3,
2011.

[7] H. A. Ghazzawi, I. Bate, and L. S. Indrusiak, “MPC vs. PID
controllers in Multi-CPU multi-objective real-time scheduling
systems,” in Proc. UK Electronics Forum, pp. 77–83, 2012.

[8] E. Stahl, A. G. Yabo, O. Richard, B. Bzeznik, B. Robu,
and E. Rutten, “Towards a control-theory approach for
minimizing unused grid resources,” in Proc. 1st Int. Workshop
on Autonomous Infrastructure for Science, AI-Science’18,
2018.

[9] L. Malrait, S. Bouchenak, and N. Marchand, “Experience with
ConSer: A system for server control through fluid modeling,”
IEEE Transactions on Computers, vol. 60, no. 7, pp. 951–963,
2011.

[10] C. Biscarat and B. Bzeznik, “Synergy between the CIMENT
tier-2 HPC centre and the HEP community at LPSC in
Grenoble (France),” in Journal of Physics: Conference Series,
vol. 513, p. 032008, IOP Publishing, 2014.

[11] N. Capit, G. Da Costa, Y. Georgiou, G. Huard, C. Martin,
G. Mounié, P. Neyron, and O. Richard, “A batch scheduler
with high level components,” in IEEE Int. Symp. on Cluster
Computing and the Grid, CCGrid, pp. 776–783, 2005.

[12] R. Bendel, S. Higgins, J. Teberg, and D. Pyke, “Comparison
of skewness coefficient, coefficient of variation, and gini
coefficient as inequality measures within populations,”
Oecologia, vol. 78, no. 3, pp. 394–400, 1989.

[13] M. Berekmeri, D. Serrano, S. Bouchenak, N. Marchand, and
B. Robu, “A control approach for performance of big data
systems,” IFAC Proceedings Volumes, vol. 47, no. 3, pp. 152–
157, 2014.

[14] L. Baresi, S. Guinea, A. Leva, and G. Quattrocchi, “A discrete-
time feedback controller for containerized cloud applications,”
in Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pp. 217–
228, ACM, 2016.

[15] E. B. Lakew, A. V. Papadopoulos, M. Maggio, C. Klein,
and E. Elmroth, “Kpi-agnostic control for fine-grained
vertical elasticity,” in Proceedings of the 17th IEEE/ACM
International Symposium on Cluster, Cloud and Grid
Computing, pp. 589–598, IEEE Press, 2017.

[16] Y. Georgiou, O. Richard, and N. Capit, “Evaluations of the
lightweight grid cigri upon the grid5000 platform,” in IEEE
Int. Conf. on e-Science and Grid Computing, 2007.

[17] R. Jain, J. Werth, and J. C. Browne, Input/output in parallel
and distributed computer systems, vol. 362. Springer Science
& Business Media, 2012.

[18] E. A. Wan and R. Van Der Merwe, “The unscented kalman
filter for nonlinear estimation,” in Adaptive Systems for Signal
Processing, Communications, and Control Symposium 2000.
AS-SPCC, pp. 153–158, 2000.

